LiveVariables.cpp
30.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveVariable analysis pass. For each machine
// instruction in the function, this pass calculates the set of registers that
// are immediately dead after the instruction (i.e., the instruction calculates
// the value, but it is never used) and the set of registers that are used by
// the instruction, but are never used after the instruction (i.e., they are
// killed).
//
// This class computes live variables using a sparse implementation based on
// the machine code SSA form. This class computes live variable information for
// each virtual and _register allocatable_ physical register in a function. It
// uses the dominance properties of SSA form to efficiently compute live
// variables for virtual registers, and assumes that physical registers are only
// live within a single basic block (allowing it to do a single local analysis
// to resolve physical register lifetimes in each basic block). If a physical
// register is not register allocatable, it is not tracked. This is useful for
// things like the stack pointer and condition codes.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;
char LiveVariables::ID = 0;
char &llvm::LiveVariablesID = LiveVariables::ID;
INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
"Live Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
INITIALIZE_PASS_END(LiveVariables, "livevars",
"Live Variable Analysis", false, false)
void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequiredID(UnreachableMachineBlockElimID);
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineInstr *
LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
if (Kills[i]->getParent() == MBB)
return Kills[i];
return nullptr;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveVariables::VarInfo::dump() const {
dbgs() << " Alive in blocks: ";
for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
E = AliveBlocks.end(); I != E; ++I)
dbgs() << *I << ", ";
dbgs() << "\n Killed by:";
if (Kills.empty())
dbgs() << " No instructions.\n";
else {
for (unsigned i = 0, e = Kills.size(); i != e; ++i)
dbgs() << "\n #" << i << ": " << *Kills[i];
dbgs() << "\n";
}
}
#endif
/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
assert(Register::isVirtualRegister(RegIdx) &&
"getVarInfo: not a virtual register!");
VirtRegInfo.grow(RegIdx);
return VirtRegInfo[RegIdx];
}
void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
MachineBasicBlock *DefBlock,
MachineBasicBlock *MBB,
std::vector<MachineBasicBlock*> &WorkList) {
unsigned BBNum = MBB->getNumber();
// Check to see if this basic block is one of the killing blocks. If so,
// remove it.
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
if (VRInfo.Kills[i]->getParent() == MBB) {
VRInfo.Kills.erase(VRInfo.Kills.begin()+i); // Erase entry
break;
}
if (MBB == DefBlock) return; // Terminate recursion
if (VRInfo.AliveBlocks.test(BBNum))
return; // We already know the block is live
// Mark the variable known alive in this bb
VRInfo.AliveBlocks.set(BBNum);
assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
}
void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
MachineBasicBlock *DefBlock,
MachineBasicBlock *MBB) {
std::vector<MachineBasicBlock*> WorkList;
MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);
while (!WorkList.empty()) {
MachineBasicBlock *Pred = WorkList.back();
WorkList.pop_back();
MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
}
}
void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
MachineInstr &MI) {
assert(MRI->getVRegDef(reg) && "Register use before def!");
unsigned BBNum = MBB->getNumber();
VarInfo& VRInfo = getVarInfo(reg);
// Check to see if this basic block is already a kill block.
if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
// Yes, this register is killed in this basic block already. Increase the
// live range by updating the kill instruction.
VRInfo.Kills.back() = &MI;
return;
}
#ifndef NDEBUG
for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
#endif
// This situation can occur:
//
// ,------.
// | |
// | v
// | t2 = phi ... t1 ...
// | |
// | v
// | t1 = ...
// | ... = ... t1 ...
// | |
// `------'
//
// where there is a use in a PHI node that's a predecessor to the defining
// block. We don't want to mark all predecessors as having the value "alive"
// in this case.
if (MBB == MRI->getVRegDef(reg)->getParent()) return;
// Add a new kill entry for this basic block. If this virtual register is
// already marked as alive in this basic block, that means it is alive in at
// least one of the successor blocks, it's not a kill.
if (!VRInfo.AliveBlocks.test(BBNum))
VRInfo.Kills.push_back(&MI);
// Update all dominating blocks to mark them as "known live".
for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
E = MBB->pred_end(); PI != E; ++PI)
MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
}
void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr &MI) {
VarInfo &VRInfo = getVarInfo(Reg);
if (VRInfo.AliveBlocks.empty())
// If vr is not alive in any block, then defaults to dead.
VRInfo.Kills.push_back(&MI);
}
/// FindLastPartialDef - Return the last partial def of the specified register.
/// Also returns the sub-registers that're defined by the instruction.
MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
SmallSet<unsigned,4> &PartDefRegs) {
unsigned LastDefReg = 0;
unsigned LastDefDist = 0;
MachineInstr *LastDef = nullptr;
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
MachineInstr *Def = PhysRegDef[SubReg];
if (!Def)
continue;
unsigned Dist = DistanceMap[Def];
if (Dist > LastDefDist) {
LastDefReg = SubReg;
LastDef = Def;
LastDefDist = Dist;
}
}
if (!LastDef)
return nullptr;
PartDefRegs.insert(LastDefReg);
for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
MachineOperand &MO = LastDef->getOperand(i);
if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
continue;
Register DefReg = MO.getReg();
if (TRI->isSubRegister(Reg, DefReg)) {
for (MCSubRegIterator SubRegs(DefReg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
PartDefRegs.insert(*SubRegs);
}
}
return LastDef;
}
/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
/// implicit defs to a machine instruction if there was an earlier def of its
/// super-register.
void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr &MI) {
MachineInstr *LastDef = PhysRegDef[Reg];
// If there was a previous use or a "full" def all is well.
if (!LastDef && !PhysRegUse[Reg]) {
// Otherwise, the last sub-register def implicitly defines this register.
// e.g.
// AH =
// AL = ... implicit-def EAX, implicit killed AH
// = AH
// ...
// = EAX
// All of the sub-registers must have been defined before the use of Reg!
SmallSet<unsigned, 4> PartDefRegs;
MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
// If LastPartialDef is NULL, it must be using a livein register.
if (LastPartialDef) {
LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
true/*IsImp*/));
PhysRegDef[Reg] = LastPartialDef;
SmallSet<unsigned, 8> Processed;
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
if (Processed.count(SubReg))
continue;
if (PartDefRegs.count(SubReg))
continue;
// This part of Reg was defined before the last partial def. It's killed
// here.
LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
false/*IsDef*/,
true/*IsImp*/));
PhysRegDef[SubReg] = LastPartialDef;
for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
Processed.insert(*SS);
}
}
} else if (LastDef && !PhysRegUse[Reg] &&
!LastDef->findRegisterDefOperand(Reg))
// Last def defines the super register, add an implicit def of reg.
LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
true/*IsImp*/));
// Remember this use.
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
PhysRegUse[*SubRegs] = &MI;
}
/// FindLastRefOrPartRef - Return the last reference or partial reference of
/// the specified register.
MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
MachineInstr *LastDef = PhysRegDef[Reg];
MachineInstr *LastUse = PhysRegUse[Reg];
if (!LastDef && !LastUse)
return nullptr;
MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
unsigned LastPartDefDist = 0;
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
MachineInstr *Def = PhysRegDef[SubReg];
if (Def && Def != LastDef) {
// There was a def of this sub-register in between. This is a partial
// def, keep track of the last one.
unsigned Dist = DistanceMap[Def];
if (Dist > LastPartDefDist)
LastPartDefDist = Dist;
} else if (MachineInstr *Use = PhysRegUse[SubReg]) {
unsigned Dist = DistanceMap[Use];
if (Dist > LastRefOrPartRefDist) {
LastRefOrPartRefDist = Dist;
LastRefOrPartRef = Use;
}
}
}
return LastRefOrPartRef;
}
bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
MachineInstr *LastDef = PhysRegDef[Reg];
MachineInstr *LastUse = PhysRegUse[Reg];
if (!LastDef && !LastUse)
return false;
MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
// The whole register is used.
// AL =
// AH =
//
// = AX
// = AL, implicit killed AX
// AX =
//
// Or whole register is defined, but not used at all.
// dead AX =
// ...
// AX =
//
// Or whole register is defined, but only partly used.
// dead AX = implicit-def AL
// = killed AL
// AX =
MachineInstr *LastPartDef = nullptr;
unsigned LastPartDefDist = 0;
SmallSet<unsigned, 8> PartUses;
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
MachineInstr *Def = PhysRegDef[SubReg];
if (Def && Def != LastDef) {
// There was a def of this sub-register in between. This is a partial
// def, keep track of the last one.
unsigned Dist = DistanceMap[Def];
if (Dist > LastPartDefDist) {
LastPartDefDist = Dist;
LastPartDef = Def;
}
continue;
}
if (MachineInstr *Use = PhysRegUse[SubReg]) {
for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid();
++SS)
PartUses.insert(*SS);
unsigned Dist = DistanceMap[Use];
if (Dist > LastRefOrPartRefDist) {
LastRefOrPartRefDist = Dist;
LastRefOrPartRef = Use;
}
}
}
if (!PhysRegUse[Reg]) {
// Partial uses. Mark register def dead and add implicit def of
// sub-registers which are used.
// dead EAX = op implicit-def AL
// That is, EAX def is dead but AL def extends pass it.
PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
if (!PartUses.count(SubReg))
continue;
bool NeedDef = true;
if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
if (MO) {
NeedDef = false;
assert(!MO->isDead());
}
}
if (NeedDef)
PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
true/*IsDef*/, true/*IsImp*/));
MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
if (LastSubRef)
LastSubRef->addRegisterKilled(SubReg, TRI, true);
else {
LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true);
SS.isValid(); ++SS)
PhysRegUse[*SS] = LastRefOrPartRef;
}
for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
PartUses.erase(*SS);
}
} else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
if (LastPartDef)
// The last partial def kills the register.
LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
true/*IsImp*/, true/*IsKill*/));
else {
MachineOperand *MO =
LastRefOrPartRef->findRegisterDefOperand(Reg, false, false, TRI);
bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
// If the last reference is the last def, then it's not used at all.
// That is, unless we are currently processing the last reference itself.
LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
if (NeedEC) {
// If we are adding a subreg def and the superreg def is marked early
// clobber, add an early clobber marker to the subreg def.
MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
if (MO)
MO->setIsEarlyClobber();
}
}
} else
LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
return true;
}
void LiveVariables::HandleRegMask(const MachineOperand &MO) {
// Call HandlePhysRegKill() for all live registers clobbered by Mask.
// Clobbered registers are always dead, sp there is no need to use
// HandlePhysRegDef().
for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
// Skip dead regs.
if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
continue;
// Skip mask-preserved regs.
if (!MO.clobbersPhysReg(Reg))
continue;
// Kill the largest clobbered super-register.
// This avoids needless implicit operands.
unsigned Super = Reg;
for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
Super = *SR;
HandlePhysRegKill(Super, nullptr);
}
}
void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
SmallVectorImpl<unsigned> &Defs) {
// What parts of the register are previously defined?
SmallSet<unsigned, 32> Live;
if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs)
Live.insert(*SubRegs);
} else {
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
// If a register isn't itself defined, but all parts that make up of it
// are defined, then consider it also defined.
// e.g.
// AL =
// AH =
// = AX
if (Live.count(SubReg))
continue;
if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true);
SS.isValid(); ++SS)
Live.insert(*SS);
}
}
}
// Start from the largest piece, find the last time any part of the register
// is referenced.
HandlePhysRegKill(Reg, MI);
// Only some of the sub-registers are used.
for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
if (!Live.count(SubReg))
// Skip if this sub-register isn't defined.
continue;
HandlePhysRegKill(SubReg, MI);
}
if (MI)
Defs.push_back(Reg); // Remember this def.
}
void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI,
SmallVectorImpl<unsigned> &Defs) {
while (!Defs.empty()) {
unsigned Reg = Defs.back();
Defs.pop_back();
for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
SubRegs.isValid(); ++SubRegs) {
unsigned SubReg = *SubRegs;
PhysRegDef[SubReg] = &MI;
PhysRegUse[SubReg] = nullptr;
}
}
}
void LiveVariables::runOnInstr(MachineInstr &MI,
SmallVectorImpl<unsigned> &Defs) {
assert(!MI.isDebugInstr());
// Process all of the operands of the instruction...
unsigned NumOperandsToProcess = MI.getNumOperands();
// Unless it is a PHI node. In this case, ONLY process the DEF, not any
// of the uses. They will be handled in other basic blocks.
if (MI.isPHI())
NumOperandsToProcess = 1;
// Clear kill and dead markers. LV will recompute them.
SmallVector<unsigned, 4> UseRegs;
SmallVector<unsigned, 4> DefRegs;
SmallVector<unsigned, 1> RegMasks;
for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isRegMask()) {
RegMasks.push_back(i);
continue;
}
if (!MO.isReg() || MO.getReg() == 0)
continue;
Register MOReg = MO.getReg();
if (MO.isUse()) {
if (!(Register::isPhysicalRegister(MOReg) && MRI->isReserved(MOReg)))
MO.setIsKill(false);
if (MO.readsReg())
UseRegs.push_back(MOReg);
} else {
assert(MO.isDef());
// FIXME: We should not remove any dead flags. However the MIPS RDDSP
// instruction needs it at the moment: http://llvm.org/PR27116.
if (Register::isPhysicalRegister(MOReg) && !MRI->isReserved(MOReg))
MO.setIsDead(false);
DefRegs.push_back(MOReg);
}
}
MachineBasicBlock *MBB = MI.getParent();
// Process all uses.
for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
unsigned MOReg = UseRegs[i];
if (Register::isVirtualRegister(MOReg))
HandleVirtRegUse(MOReg, MBB, MI);
else if (!MRI->isReserved(MOReg))
HandlePhysRegUse(MOReg, MI);
}
// Process all masked registers. (Call clobbers).
for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
HandleRegMask(MI.getOperand(RegMasks[i]));
// Process all defs.
for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
unsigned MOReg = DefRegs[i];
if (Register::isVirtualRegister(MOReg))
HandleVirtRegDef(MOReg, MI);
else if (!MRI->isReserved(MOReg))
HandlePhysRegDef(MOReg, &MI, Defs);
}
UpdatePhysRegDefs(MI, Defs);
}
void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) {
// Mark live-in registers as live-in.
SmallVector<unsigned, 4> Defs;
for (const auto &LI : MBB->liveins()) {
assert(Register::isPhysicalRegister(LI.PhysReg) &&
"Cannot have a live-in virtual register!");
HandlePhysRegDef(LI.PhysReg, nullptr, Defs);
}
// Loop over all of the instructions, processing them.
DistanceMap.clear();
unsigned Dist = 0;
for (MachineInstr &MI : *MBB) {
if (MI.isDebugInstr())
continue;
DistanceMap.insert(std::make_pair(&MI, Dist++));
runOnInstr(MI, Defs);
}
// Handle any virtual assignments from PHI nodes which might be at the
// bottom of this basic block. We check all of our successor blocks to see
// if they have PHI nodes, and if so, we simulate an assignment at the end
// of the current block.
if (!PHIVarInfo[MBB->getNumber()].empty()) {
SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()];
for (SmallVectorImpl<unsigned>::iterator I = VarInfoVec.begin(),
E = VarInfoVec.end(); I != E; ++I)
// Mark it alive only in the block we are representing.
MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
MBB);
}
// MachineCSE may CSE instructions which write to non-allocatable physical
// registers across MBBs. Remember if any reserved register is liveout.
SmallSet<unsigned, 4> LiveOuts;
for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
MachineBasicBlock *SuccMBB = *SI;
if (SuccMBB->isEHPad())
continue;
for (const auto &LI : SuccMBB->liveins()) {
if (!TRI->isInAllocatableClass(LI.PhysReg))
// Ignore other live-ins, e.g. those that are live into landing pads.
LiveOuts.insert(LI.PhysReg);
}
}
// Loop over PhysRegDef / PhysRegUse, killing any registers that are
// available at the end of the basic block.
for (unsigned i = 0; i != NumRegs; ++i)
if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
HandlePhysRegDef(i, nullptr, Defs);
}
bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
MF = &mf;
MRI = &mf.getRegInfo();
TRI = MF->getSubtarget().getRegisterInfo();
const unsigned NumRegs = TRI->getNumRegs();
PhysRegDef.assign(NumRegs, nullptr);
PhysRegUse.assign(NumRegs, nullptr);
PHIVarInfo.resize(MF->getNumBlockIDs());
PHIJoins.clear();
// FIXME: LiveIntervals will be updated to remove its dependence on
// LiveVariables to improve compilation time and eliminate bizarre pass
// dependencies. Until then, we can't change much in -O0.
if (!MRI->isSSA())
report_fatal_error("regalloc=... not currently supported with -O0");
analyzePHINodes(mf);
// Calculate live variable information in depth first order on the CFG of the
// function. This guarantees that we will see the definition of a virtual
// register before its uses due to dominance properties of SSA (except for PHI
// nodes, which are treated as a special case).
MachineBasicBlock *Entry = &MF->front();
df_iterator_default_set<MachineBasicBlock*,16> Visited;
for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
runOnBlock(MBB, NumRegs);
PhysRegDef.assign(NumRegs, nullptr);
PhysRegUse.assign(NumRegs, nullptr);
}
// Convert and transfer the dead / killed information we have gathered into
// VirtRegInfo onto MI's.
for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
const unsigned Reg = Register::index2VirtReg(i);
for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
else
VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
}
// Check to make sure there are no unreachable blocks in the MC CFG for the
// function. If so, it is due to a bug in the instruction selector or some
// other part of the code generator if this happens.
#ifndef NDEBUG
for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif
PhysRegDef.clear();
PhysRegUse.clear();
PHIVarInfo.clear();
return false;
}
/// replaceKillInstruction - Update register kill info by replacing a kill
/// instruction with a new one.
void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
MachineInstr &NewMI) {
VarInfo &VI = getVarInfo(Reg);
std::replace(VI.Kills.begin(), VI.Kills.end(), &OldMI, &NewMI);
}
/// removeVirtualRegistersKilled - Remove all killed info for the specified
/// instruction.
void LiveVariables::removeVirtualRegistersKilled(MachineInstr &MI) {
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
MachineOperand &MO = MI.getOperand(i);
if (MO.isReg() && MO.isKill()) {
MO.setIsKill(false);
Register Reg = MO.getReg();
if (Register::isVirtualRegister(Reg)) {
bool removed = getVarInfo(Reg).removeKill(MI);
assert(removed && "kill not in register's VarInfo?");
(void)removed;
}
}
}
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the variable information of a virtual register
/// which is used in a PHI node. We map that to the BB the vreg is coming from.
///
void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
for (const auto &MBB : Fn)
for (const auto &BBI : MBB) {
if (!BBI.isPHI())
break;
for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
if (BBI.getOperand(i).readsReg())
PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()]
.push_back(BBI.getOperand(i).getReg());
}
}
bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
unsigned Reg,
MachineRegisterInfo &MRI) {
unsigned Num = MBB.getNumber();
// Reg is live-through.
if (AliveBlocks.test(Num))
return true;
// Registers defined in MBB cannot be live in.
const MachineInstr *Def = MRI.getVRegDef(Reg);
if (Def && Def->getParent() == &MBB)
return false;
// Reg was not defined in MBB, was it killed here?
return findKill(&MBB);
}
bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
LiveVariables::VarInfo &VI = getVarInfo(Reg);
SmallPtrSet<const MachineBasicBlock *, 8> Kills;
for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
Kills.insert(VI.Kills[i]->getParent());
// Loop over all of the successors of the basic block, checking to see if
// the value is either live in the block, or if it is killed in the block.
for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
// Is it alive in this successor?
unsigned SuccIdx = SuccMBB->getNumber();
if (VI.AliveBlocks.test(SuccIdx))
return true;
// Or is it live because there is a use in a successor that kills it?
if (Kills.count(SuccMBB))
return true;
}
return false;
}
/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
/// variables that are live out of DomBB will be marked as passing live through
/// BB.
void LiveVariables::addNewBlock(MachineBasicBlock *BB,
MachineBasicBlock *DomBB,
MachineBasicBlock *SuccBB) {
const unsigned NumNew = BB->getNumber();
DenseSet<unsigned> Defs, Kills;
MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
for (; BBI != BBE && BBI->isPHI(); ++BBI) {
// Record the def of the PHI node.
Defs.insert(BBI->getOperand(0).getReg());
// All registers used by PHI nodes in SuccBB must be live through BB.
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
if (BBI->getOperand(i+1).getMBB() == BB)
getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
}
// Record all vreg defs and kills of all instructions in SuccBB.
for (; BBI != BBE; ++BBI) {
for (MachineInstr::mop_iterator I = BBI->operands_begin(),
E = BBI->operands_end(); I != E; ++I) {
if (I->isReg() && Register::isVirtualRegister(I->getReg())) {
if (I->isDef())
Defs.insert(I->getReg());
else if (I->isKill())
Kills.insert(I->getReg());
}
}
}
// Update info for all live variables
for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
unsigned Reg = Register::index2VirtReg(i);
// If the Defs is defined in the successor it can't be live in BB.
if (Defs.count(Reg))
continue;
// If the register is either killed in or live through SuccBB it's also live
// through BB.
VarInfo &VI = getVarInfo(Reg);
if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
VI.AliveBlocks.set(NumNew);
}
}
/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
/// variables that are live out of DomBB will be marked as passing live through
/// BB. LiveInSets[BB] is *not* updated (because it is not needed during
/// PHIElimination).
void LiveVariables::addNewBlock(MachineBasicBlock *BB,
MachineBasicBlock *DomBB,
MachineBasicBlock *SuccBB,
std::vector<SparseBitVector<>> &LiveInSets) {
const unsigned NumNew = BB->getNumber();
SparseBitVector<> &BV = LiveInSets[SuccBB->getNumber()];
for (auto R = BV.begin(), E = BV.end(); R != E; R++) {
unsigned VirtReg = Register::index2VirtReg(*R);
LiveVariables::VarInfo &VI = getVarInfo(VirtReg);
VI.AliveBlocks.set(NumNew);
}
// All registers used by PHI nodes in SuccBB must be live through BB.
for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
BBE = SuccBB->end();
BBI != BBE && BBI->isPHI(); ++BBI) {
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
if (BBI->getOperand(i + 1).getMBB() == BB &&
BBI->getOperand(i).readsReg())
getVarInfo(BBI->getOperand(i).getReg())
.AliveBlocks.set(NumNew);
}
}