LiveVariables.cpp 30.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836
//===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the LiveVariable analysis pass.  For each machine
// instruction in the function, this pass calculates the set of registers that
// are immediately dead after the instruction (i.e., the instruction calculates
// the value, but it is never used) and the set of registers that are used by
// the instruction, but are never used after the instruction (i.e., they are
// killed).
//
// This class computes live variables using a sparse implementation based on
// the machine code SSA form.  This class computes live variable information for
// each virtual and _register allocatable_ physical register in a function.  It
// uses the dominance properties of SSA form to efficiently compute live
// variables for virtual registers, and assumes that physical registers are only
// live within a single basic block (allowing it to do a single local analysis
// to resolve physical register lifetimes in each basic block).  If a physical
// register is not register allocatable, it is not tracked.  This is useful for
// things like the stack pointer and condition codes.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
using namespace llvm;

char LiveVariables::ID = 0;
char &llvm::LiveVariablesID = LiveVariables::ID;
INITIALIZE_PASS_BEGIN(LiveVariables, "livevars",
                "Live Variable Analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(UnreachableMachineBlockElim)
INITIALIZE_PASS_END(LiveVariables, "livevars",
                "Live Variable Analysis", false, false)


void LiveVariables::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequiredID(UnreachableMachineBlockElimID);
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

MachineInstr *
LiveVariables::VarInfo::findKill(const MachineBasicBlock *MBB) const {
  for (unsigned i = 0, e = Kills.size(); i != e; ++i)
    if (Kills[i]->getParent() == MBB)
      return Kills[i];
  return nullptr;
}

#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void LiveVariables::VarInfo::dump() const {
  dbgs() << "  Alive in blocks: ";
  for (SparseBitVector<>::iterator I = AliveBlocks.begin(),
           E = AliveBlocks.end(); I != E; ++I)
    dbgs() << *I << ", ";
  dbgs() << "\n  Killed by:";
  if (Kills.empty())
    dbgs() << " No instructions.\n";
  else {
    for (unsigned i = 0, e = Kills.size(); i != e; ++i)
      dbgs() << "\n    #" << i << ": " << *Kills[i];
    dbgs() << "\n";
  }
}
#endif

/// getVarInfo - Get (possibly creating) a VarInfo object for the given vreg.
LiveVariables::VarInfo &LiveVariables::getVarInfo(unsigned RegIdx) {
  assert(Register::isVirtualRegister(RegIdx) &&
         "getVarInfo: not a virtual register!");
  VirtRegInfo.grow(RegIdx);
  return VirtRegInfo[RegIdx];
}

void LiveVariables::MarkVirtRegAliveInBlock(VarInfo& VRInfo,
                                            MachineBasicBlock *DefBlock,
                                            MachineBasicBlock *MBB,
                                    std::vector<MachineBasicBlock*> &WorkList) {
  unsigned BBNum = MBB->getNumber();

  // Check to see if this basic block is one of the killing blocks.  If so,
  // remove it.
  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
    if (VRInfo.Kills[i]->getParent() == MBB) {
      VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
      break;
    }

  if (MBB == DefBlock) return;  // Terminate recursion

  if (VRInfo.AliveBlocks.test(BBNum))
    return;  // We already know the block is live

  // Mark the variable known alive in this bb
  VRInfo.AliveBlocks.set(BBNum);

  assert(MBB != &MF->front() && "Can't find reaching def for virtreg");
  WorkList.insert(WorkList.end(), MBB->pred_rbegin(), MBB->pred_rend());
}

void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
                                            MachineBasicBlock *DefBlock,
                                            MachineBasicBlock *MBB) {
  std::vector<MachineBasicBlock*> WorkList;
  MarkVirtRegAliveInBlock(VRInfo, DefBlock, MBB, WorkList);

  while (!WorkList.empty()) {
    MachineBasicBlock *Pred = WorkList.back();
    WorkList.pop_back();
    MarkVirtRegAliveInBlock(VRInfo, DefBlock, Pred, WorkList);
  }
}

void LiveVariables::HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
                                     MachineInstr &MI) {
  assert(MRI->getVRegDef(reg) && "Register use before def!");

  unsigned BBNum = MBB->getNumber();

  VarInfo& VRInfo = getVarInfo(reg);

  // Check to see if this basic block is already a kill block.
  if (!VRInfo.Kills.empty() && VRInfo.Kills.back()->getParent() == MBB) {
    // Yes, this register is killed in this basic block already. Increase the
    // live range by updating the kill instruction.
    VRInfo.Kills.back() = &MI;
    return;
  }

#ifndef NDEBUG
  for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
    assert(VRInfo.Kills[i]->getParent() != MBB && "entry should be at end!");
#endif

  // This situation can occur:
  //
  //     ,------.
  //     |      |
  //     |      v
  //     |   t2 = phi ... t1 ...
  //     |      |
  //     |      v
  //     |   t1 = ...
  //     |  ... = ... t1 ...
  //     |      |
  //     `------'
  //
  // where there is a use in a PHI node that's a predecessor to the defining
  // block. We don't want to mark all predecessors as having the value "alive"
  // in this case.
  if (MBB == MRI->getVRegDef(reg)->getParent()) return;

  // Add a new kill entry for this basic block. If this virtual register is
  // already marked as alive in this basic block, that means it is alive in at
  // least one of the successor blocks, it's not a kill.
  if (!VRInfo.AliveBlocks.test(BBNum))
    VRInfo.Kills.push_back(&MI);

  // Update all dominating blocks to mark them as "known live".
  for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
         E = MBB->pred_end(); PI != E; ++PI)
    MarkVirtRegAliveInBlock(VRInfo, MRI->getVRegDef(reg)->getParent(), *PI);
}

void LiveVariables::HandleVirtRegDef(unsigned Reg, MachineInstr &MI) {
  VarInfo &VRInfo = getVarInfo(Reg);

  if (VRInfo.AliveBlocks.empty())
    // If vr is not alive in any block, then defaults to dead.
    VRInfo.Kills.push_back(&MI);
}

/// FindLastPartialDef - Return the last partial def of the specified register.
/// Also returns the sub-registers that're defined by the instruction.
MachineInstr *LiveVariables::FindLastPartialDef(unsigned Reg,
                                            SmallSet<unsigned,4> &PartDefRegs) {
  unsigned LastDefReg = 0;
  unsigned LastDefDist = 0;
  MachineInstr *LastDef = nullptr;
  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    unsigned SubReg = *SubRegs;
    MachineInstr *Def = PhysRegDef[SubReg];
    if (!Def)
      continue;
    unsigned Dist = DistanceMap[Def];
    if (Dist > LastDefDist) {
      LastDefReg  = SubReg;
      LastDef     = Def;
      LastDefDist = Dist;
    }
  }

  if (!LastDef)
    return nullptr;

  PartDefRegs.insert(LastDefReg);
  for (unsigned i = 0, e = LastDef->getNumOperands(); i != e; ++i) {
    MachineOperand &MO = LastDef->getOperand(i);
    if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
      continue;
    Register DefReg = MO.getReg();
    if (TRI->isSubRegister(Reg, DefReg)) {
      for (MCSubRegIterator SubRegs(DefReg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        PartDefRegs.insert(*SubRegs);
    }
  }
  return LastDef;
}

/// HandlePhysRegUse - Turn previous partial def's into read/mod/writes. Add
/// implicit defs to a machine instruction if there was an earlier def of its
/// super-register.
void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr &MI) {
  MachineInstr *LastDef = PhysRegDef[Reg];
  // If there was a previous use or a "full" def all is well.
  if (!LastDef && !PhysRegUse[Reg]) {
    // Otherwise, the last sub-register def implicitly defines this register.
    // e.g.
    // AH =
    // AL = ... implicit-def EAX, implicit killed AH
    //    = AH
    // ...
    //    = EAX
    // All of the sub-registers must have been defined before the use of Reg!
    SmallSet<unsigned, 4> PartDefRegs;
    MachineInstr *LastPartialDef = FindLastPartialDef(Reg, PartDefRegs);
    // If LastPartialDef is NULL, it must be using a livein register.
    if (LastPartialDef) {
      LastPartialDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
                                                           true/*IsImp*/));
      PhysRegDef[Reg] = LastPartialDef;
      SmallSet<unsigned, 8> Processed;
      for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
        unsigned SubReg = *SubRegs;
        if (Processed.count(SubReg))
          continue;
        if (PartDefRegs.count(SubReg))
          continue;
        // This part of Reg was defined before the last partial def. It's killed
        // here.
        LastPartialDef->addOperand(MachineOperand::CreateReg(SubReg,
                                                             false/*IsDef*/,
                                                             true/*IsImp*/));
        PhysRegDef[SubReg] = LastPartialDef;
        for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
          Processed.insert(*SS);
      }
    }
  } else if (LastDef && !PhysRegUse[Reg] &&
             !LastDef->findRegisterDefOperand(Reg))
    // Last def defines the super register, add an implicit def of reg.
    LastDef->addOperand(MachineOperand::CreateReg(Reg, true/*IsDef*/,
                                                  true/*IsImp*/));

  // Remember this use.
  for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
       SubRegs.isValid(); ++SubRegs)
    PhysRegUse[*SubRegs] = &MI;
}

/// FindLastRefOrPartRef - Return the last reference or partial reference of
/// the specified register.
MachineInstr *LiveVariables::FindLastRefOrPartRef(unsigned Reg) {
  MachineInstr *LastDef = PhysRegDef[Reg];
  MachineInstr *LastUse = PhysRegUse[Reg];
  if (!LastDef && !LastUse)
    return nullptr;

  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
  unsigned LastPartDefDist = 0;
  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    unsigned SubReg = *SubRegs;
    MachineInstr *Def = PhysRegDef[SubReg];
    if (Def && Def != LastDef) {
      // There was a def of this sub-register in between. This is a partial
      // def, keep track of the last one.
      unsigned Dist = DistanceMap[Def];
      if (Dist > LastPartDefDist)
        LastPartDefDist = Dist;
    } else if (MachineInstr *Use = PhysRegUse[SubReg]) {
      unsigned Dist = DistanceMap[Use];
      if (Dist > LastRefOrPartRefDist) {
        LastRefOrPartRefDist = Dist;
        LastRefOrPartRef = Use;
      }
    }
  }

  return LastRefOrPartRef;
}

bool LiveVariables::HandlePhysRegKill(unsigned Reg, MachineInstr *MI) {
  MachineInstr *LastDef = PhysRegDef[Reg];
  MachineInstr *LastUse = PhysRegUse[Reg];
  if (!LastDef && !LastUse)
    return false;

  MachineInstr *LastRefOrPartRef = LastUse ? LastUse : LastDef;
  unsigned LastRefOrPartRefDist = DistanceMap[LastRefOrPartRef];
  // The whole register is used.
  // AL =
  // AH =
  //
  //    = AX
  //    = AL, implicit killed AX
  // AX =
  //
  // Or whole register is defined, but not used at all.
  // dead AX =
  // ...
  // AX =
  //
  // Or whole register is defined, but only partly used.
  // dead AX = implicit-def AL
  //    = killed AL
  // AX =
  MachineInstr *LastPartDef = nullptr;
  unsigned LastPartDefDist = 0;
  SmallSet<unsigned, 8> PartUses;
  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    unsigned SubReg = *SubRegs;
    MachineInstr *Def = PhysRegDef[SubReg];
    if (Def && Def != LastDef) {
      // There was a def of this sub-register in between. This is a partial
      // def, keep track of the last one.
      unsigned Dist = DistanceMap[Def];
      if (Dist > LastPartDefDist) {
        LastPartDefDist = Dist;
        LastPartDef = Def;
      }
      continue;
    }
    if (MachineInstr *Use = PhysRegUse[SubReg]) {
      for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true); SS.isValid();
           ++SS)
        PartUses.insert(*SS);
      unsigned Dist = DistanceMap[Use];
      if (Dist > LastRefOrPartRefDist) {
        LastRefOrPartRefDist = Dist;
        LastRefOrPartRef = Use;
      }
    }
  }

  if (!PhysRegUse[Reg]) {
    // Partial uses. Mark register def dead and add implicit def of
    // sub-registers which are used.
    // dead EAX  = op  implicit-def AL
    // That is, EAX def is dead but AL def extends pass it.
    PhysRegDef[Reg]->addRegisterDead(Reg, TRI, true);
    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
      unsigned SubReg = *SubRegs;
      if (!PartUses.count(SubReg))
        continue;
      bool NeedDef = true;
      if (PhysRegDef[Reg] == PhysRegDef[SubReg]) {
        MachineOperand *MO = PhysRegDef[Reg]->findRegisterDefOperand(SubReg);
        if (MO) {
          NeedDef = false;
          assert(!MO->isDead());
        }
      }
      if (NeedDef)
        PhysRegDef[Reg]->addOperand(MachineOperand::CreateReg(SubReg,
                                                 true/*IsDef*/, true/*IsImp*/));
      MachineInstr *LastSubRef = FindLastRefOrPartRef(SubReg);
      if (LastSubRef)
        LastSubRef->addRegisterKilled(SubReg, TRI, true);
      else {
        LastRefOrPartRef->addRegisterKilled(SubReg, TRI, true);
        for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true);
             SS.isValid(); ++SS)
          PhysRegUse[*SS] = LastRefOrPartRef;
      }
      for (MCSubRegIterator SS(SubReg, TRI); SS.isValid(); ++SS)
        PartUses.erase(*SS);
    }
  } else if (LastRefOrPartRef == PhysRegDef[Reg] && LastRefOrPartRef != MI) {
    if (LastPartDef)
      // The last partial def kills the register.
      LastPartDef->addOperand(MachineOperand::CreateReg(Reg, false/*IsDef*/,
                                                true/*IsImp*/, true/*IsKill*/));
    else {
      MachineOperand *MO =
        LastRefOrPartRef->findRegisterDefOperand(Reg, false, false, TRI);
      bool NeedEC = MO->isEarlyClobber() && MO->getReg() != Reg;
      // If the last reference is the last def, then it's not used at all.
      // That is, unless we are currently processing the last reference itself.
      LastRefOrPartRef->addRegisterDead(Reg, TRI, true);
      if (NeedEC) {
        // If we are adding a subreg def and the superreg def is marked early
        // clobber, add an early clobber marker to the subreg def.
        MO = LastRefOrPartRef->findRegisterDefOperand(Reg);
        if (MO)
          MO->setIsEarlyClobber();
      }
    }
  } else
    LastRefOrPartRef->addRegisterKilled(Reg, TRI, true);
  return true;
}

void LiveVariables::HandleRegMask(const MachineOperand &MO) {
  // Call HandlePhysRegKill() for all live registers clobbered by Mask.
  // Clobbered registers are always dead, sp there is no need to use
  // HandlePhysRegDef().
  for (unsigned Reg = 1, NumRegs = TRI->getNumRegs(); Reg != NumRegs; ++Reg) {
    // Skip dead regs.
    if (!PhysRegDef[Reg] && !PhysRegUse[Reg])
      continue;
    // Skip mask-preserved regs.
    if (!MO.clobbersPhysReg(Reg))
      continue;
    // Kill the largest clobbered super-register.
    // This avoids needless implicit operands.
    unsigned Super = Reg;
    for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR)
      if ((PhysRegDef[*SR] || PhysRegUse[*SR]) && MO.clobbersPhysReg(*SR))
        Super = *SR;
    HandlePhysRegKill(Super, nullptr);
  }
}

void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
                                     SmallVectorImpl<unsigned> &Defs) {
  // What parts of the register are previously defined?
  SmallSet<unsigned, 32> Live;
  if (PhysRegDef[Reg] || PhysRegUse[Reg]) {
    for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
         SubRegs.isValid(); ++SubRegs)
      Live.insert(*SubRegs);
  } else {
    for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
      unsigned SubReg = *SubRegs;
      // If a register isn't itself defined, but all parts that make up of it
      // are defined, then consider it also defined.
      // e.g.
      // AL =
      // AH =
      //    = AX
      if (Live.count(SubReg))
        continue;
      if (PhysRegDef[SubReg] || PhysRegUse[SubReg]) {
        for (MCSubRegIterator SS(SubReg, TRI, /*IncludeSelf=*/true);
             SS.isValid(); ++SS)
          Live.insert(*SS);
      }
    }
  }

  // Start from the largest piece, find the last time any part of the register
  // is referenced.
  HandlePhysRegKill(Reg, MI);
  // Only some of the sub-registers are used.
  for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
    unsigned SubReg = *SubRegs;
    if (!Live.count(SubReg))
      // Skip if this sub-register isn't defined.
      continue;
    HandlePhysRegKill(SubReg, MI);
  }

  if (MI)
    Defs.push_back(Reg);  // Remember this def.
}

void LiveVariables::UpdatePhysRegDefs(MachineInstr &MI,
                                      SmallVectorImpl<unsigned> &Defs) {
  while (!Defs.empty()) {
    unsigned Reg = Defs.back();
    Defs.pop_back();
    for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
         SubRegs.isValid(); ++SubRegs) {
      unsigned SubReg = *SubRegs;
      PhysRegDef[SubReg] = &MI;
      PhysRegUse[SubReg]  = nullptr;
    }
  }
}

void LiveVariables::runOnInstr(MachineInstr &MI,
                               SmallVectorImpl<unsigned> &Defs) {
  assert(!MI.isDebugInstr());
  // Process all of the operands of the instruction...
  unsigned NumOperandsToProcess = MI.getNumOperands();

  // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
  // of the uses.  They will be handled in other basic blocks.
  if (MI.isPHI())
    NumOperandsToProcess = 1;

  // Clear kill and dead markers. LV will recompute them.
  SmallVector<unsigned, 4> UseRegs;
  SmallVector<unsigned, 4> DefRegs;
  SmallVector<unsigned, 1> RegMasks;
  for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (MO.isRegMask()) {
      RegMasks.push_back(i);
      continue;
    }
    if (!MO.isReg() || MO.getReg() == 0)
      continue;
    Register MOReg = MO.getReg();
    if (MO.isUse()) {
      if (!(Register::isPhysicalRegister(MOReg) && MRI->isReserved(MOReg)))
        MO.setIsKill(false);
      if (MO.readsReg())
        UseRegs.push_back(MOReg);
    } else {
      assert(MO.isDef());
      // FIXME: We should not remove any dead flags. However the MIPS RDDSP
      // instruction needs it at the moment: http://llvm.org/PR27116.
      if (Register::isPhysicalRegister(MOReg) && !MRI->isReserved(MOReg))
        MO.setIsDead(false);
      DefRegs.push_back(MOReg);
    }
  }

  MachineBasicBlock *MBB = MI.getParent();
  // Process all uses.
  for (unsigned i = 0, e = UseRegs.size(); i != e; ++i) {
    unsigned MOReg = UseRegs[i];
    if (Register::isVirtualRegister(MOReg))
      HandleVirtRegUse(MOReg, MBB, MI);
    else if (!MRI->isReserved(MOReg))
      HandlePhysRegUse(MOReg, MI);
  }

  // Process all masked registers. (Call clobbers).
  for (unsigned i = 0, e = RegMasks.size(); i != e; ++i)
    HandleRegMask(MI.getOperand(RegMasks[i]));

  // Process all defs.
  for (unsigned i = 0, e = DefRegs.size(); i != e; ++i) {
    unsigned MOReg = DefRegs[i];
    if (Register::isVirtualRegister(MOReg))
      HandleVirtRegDef(MOReg, MI);
    else if (!MRI->isReserved(MOReg))
      HandlePhysRegDef(MOReg, &MI, Defs);
  }
  UpdatePhysRegDefs(MI, Defs);
}

void LiveVariables::runOnBlock(MachineBasicBlock *MBB, const unsigned NumRegs) {
  // Mark live-in registers as live-in.
  SmallVector<unsigned, 4> Defs;
  for (const auto &LI : MBB->liveins()) {
    assert(Register::isPhysicalRegister(LI.PhysReg) &&
           "Cannot have a live-in virtual register!");
    HandlePhysRegDef(LI.PhysReg, nullptr, Defs);
  }

  // Loop over all of the instructions, processing them.
  DistanceMap.clear();
  unsigned Dist = 0;
  for (MachineInstr &MI : *MBB) {
    if (MI.isDebugInstr())
      continue;
    DistanceMap.insert(std::make_pair(&MI, Dist++));

    runOnInstr(MI, Defs);
  }

  // Handle any virtual assignments from PHI nodes which might be at the
  // bottom of this basic block.  We check all of our successor blocks to see
  // if they have PHI nodes, and if so, we simulate an assignment at the end
  // of the current block.
  if (!PHIVarInfo[MBB->getNumber()].empty()) {
    SmallVectorImpl<unsigned> &VarInfoVec = PHIVarInfo[MBB->getNumber()];

    for (SmallVectorImpl<unsigned>::iterator I = VarInfoVec.begin(),
           E = VarInfoVec.end(); I != E; ++I)
      // Mark it alive only in the block we are representing.
      MarkVirtRegAliveInBlock(getVarInfo(*I),MRI->getVRegDef(*I)->getParent(),
                              MBB);
  }

  // MachineCSE may CSE instructions which write to non-allocatable physical
  // registers across MBBs. Remember if any reserved register is liveout.
  SmallSet<unsigned, 4> LiveOuts;
  for (MachineBasicBlock::const_succ_iterator SI = MBB->succ_begin(),
         SE = MBB->succ_end(); SI != SE; ++SI) {
    MachineBasicBlock *SuccMBB = *SI;
    if (SuccMBB->isEHPad())
      continue;
    for (const auto &LI : SuccMBB->liveins()) {
      if (!TRI->isInAllocatableClass(LI.PhysReg))
        // Ignore other live-ins, e.g. those that are live into landing pads.
        LiveOuts.insert(LI.PhysReg);
    }
  }

  // Loop over PhysRegDef / PhysRegUse, killing any registers that are
  // available at the end of the basic block.
  for (unsigned i = 0; i != NumRegs; ++i)
    if ((PhysRegDef[i] || PhysRegUse[i]) && !LiveOuts.count(i))
      HandlePhysRegDef(i, nullptr, Defs);
}

bool LiveVariables::runOnMachineFunction(MachineFunction &mf) {
  MF = &mf;
  MRI = &mf.getRegInfo();
  TRI = MF->getSubtarget().getRegisterInfo();

  const unsigned NumRegs = TRI->getNumRegs();
  PhysRegDef.assign(NumRegs, nullptr);
  PhysRegUse.assign(NumRegs, nullptr);
  PHIVarInfo.resize(MF->getNumBlockIDs());
  PHIJoins.clear();

  // FIXME: LiveIntervals will be updated to remove its dependence on
  // LiveVariables to improve compilation time and eliminate bizarre pass
  // dependencies. Until then, we can't change much in -O0.
  if (!MRI->isSSA())
    report_fatal_error("regalloc=... not currently supported with -O0");

  analyzePHINodes(mf);

  // Calculate live variable information in depth first order on the CFG of the
  // function.  This guarantees that we will see the definition of a virtual
  // register before its uses due to dominance properties of SSA (except for PHI
  // nodes, which are treated as a special case).
  MachineBasicBlock *Entry = &MF->front();
  df_iterator_default_set<MachineBasicBlock*,16> Visited;

  for (MachineBasicBlock *MBB : depth_first_ext(Entry, Visited)) {
    runOnBlock(MBB, NumRegs);

    PhysRegDef.assign(NumRegs, nullptr);
    PhysRegUse.assign(NumRegs, nullptr);
  }

  // Convert and transfer the dead / killed information we have gathered into
  // VirtRegInfo onto MI's.
  for (unsigned i = 0, e1 = VirtRegInfo.size(); i != e1; ++i) {
    const unsigned Reg = Register::index2VirtReg(i);
    for (unsigned j = 0, e2 = VirtRegInfo[Reg].Kills.size(); j != e2; ++j)
      if (VirtRegInfo[Reg].Kills[j] == MRI->getVRegDef(Reg))
        VirtRegInfo[Reg].Kills[j]->addRegisterDead(Reg, TRI);
      else
        VirtRegInfo[Reg].Kills[j]->addRegisterKilled(Reg, TRI);
  }

  // Check to make sure there are no unreachable blocks in the MC CFG for the
  // function.  If so, it is due to a bug in the instruction selector or some
  // other part of the code generator if this happens.
#ifndef NDEBUG
  for(MachineFunction::iterator i = MF->begin(), e = MF->end(); i != e; ++i)
    assert(Visited.count(&*i) != 0 && "unreachable basic block found");
#endif

  PhysRegDef.clear();
  PhysRegUse.clear();
  PHIVarInfo.clear();

  return false;
}

/// replaceKillInstruction - Update register kill info by replacing a kill
/// instruction with a new one.
void LiveVariables::replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
                                           MachineInstr &NewMI) {
  VarInfo &VI = getVarInfo(Reg);
  std::replace(VI.Kills.begin(), VI.Kills.end(), &OldMI, &NewMI);
}

/// removeVirtualRegistersKilled - Remove all killed info for the specified
/// instruction.
void LiveVariables::removeVirtualRegistersKilled(MachineInstr &MI) {
  for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
    MachineOperand &MO = MI.getOperand(i);
    if (MO.isReg() && MO.isKill()) {
      MO.setIsKill(false);
      Register Reg = MO.getReg();
      if (Register::isVirtualRegister(Reg)) {
        bool removed = getVarInfo(Reg).removeKill(MI);
        assert(removed && "kill not in register's VarInfo?");
        (void)removed;
      }
    }
  }
}

/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the variable information of a virtual register
/// which is used in a PHI node. We map that to the BB the vreg is coming from.
///
void LiveVariables::analyzePHINodes(const MachineFunction& Fn) {
  for (const auto &MBB : Fn)
    for (const auto &BBI : MBB) {
      if (!BBI.isPHI())
        break;
      for (unsigned i = 1, e = BBI.getNumOperands(); i != e; i += 2)
        if (BBI.getOperand(i).readsReg())
          PHIVarInfo[BBI.getOperand(i + 1).getMBB()->getNumber()]
            .push_back(BBI.getOperand(i).getReg());
    }
}

bool LiveVariables::VarInfo::isLiveIn(const MachineBasicBlock &MBB,
                                      unsigned Reg,
                                      MachineRegisterInfo &MRI) {
  unsigned Num = MBB.getNumber();

  // Reg is live-through.
  if (AliveBlocks.test(Num))
    return true;

  // Registers defined in MBB cannot be live in.
  const MachineInstr *Def = MRI.getVRegDef(Reg);
  if (Def && Def->getParent() == &MBB)
    return false;

 // Reg was not defined in MBB, was it killed here?
  return findKill(&MBB);
}

bool LiveVariables::isLiveOut(unsigned Reg, const MachineBasicBlock &MBB) {
  LiveVariables::VarInfo &VI = getVarInfo(Reg);

  SmallPtrSet<const MachineBasicBlock *, 8> Kills;
  for (unsigned i = 0, e = VI.Kills.size(); i != e; ++i)
    Kills.insert(VI.Kills[i]->getParent());

  // Loop over all of the successors of the basic block, checking to see if
  // the value is either live in the block, or if it is killed in the block.
  for (const MachineBasicBlock *SuccMBB : MBB.successors()) {
    // Is it alive in this successor?
    unsigned SuccIdx = SuccMBB->getNumber();
    if (VI.AliveBlocks.test(SuccIdx))
      return true;
    // Or is it live because there is a use in a successor that kills it?
    if (Kills.count(SuccMBB))
      return true;
  }

  return false;
}

/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
/// variables that are live out of DomBB will be marked as passing live through
/// BB.
void LiveVariables::addNewBlock(MachineBasicBlock *BB,
                                MachineBasicBlock *DomBB,
                                MachineBasicBlock *SuccBB) {
  const unsigned NumNew = BB->getNumber();

  DenseSet<unsigned> Defs, Kills;

  MachineBasicBlock::iterator BBI = SuccBB->begin(), BBE = SuccBB->end();
  for (; BBI != BBE && BBI->isPHI(); ++BBI) {
    // Record the def of the PHI node.
    Defs.insert(BBI->getOperand(0).getReg());

    // All registers used by PHI nodes in SuccBB must be live through BB.
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
      if (BBI->getOperand(i+1).getMBB() == BB)
        getVarInfo(BBI->getOperand(i).getReg()).AliveBlocks.set(NumNew);
  }

  // Record all vreg defs and kills of all instructions in SuccBB.
  for (; BBI != BBE; ++BBI) {
    for (MachineInstr::mop_iterator I = BBI->operands_begin(),
         E = BBI->operands_end(); I != E; ++I) {
      if (I->isReg() && Register::isVirtualRegister(I->getReg())) {
        if (I->isDef())
          Defs.insert(I->getReg());
        else if (I->isKill())
          Kills.insert(I->getReg());
      }
    }
  }

  // Update info for all live variables
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = Register::index2VirtReg(i);

    // If the Defs is defined in the successor it can't be live in BB.
    if (Defs.count(Reg))
      continue;

    // If the register is either killed in or live through SuccBB it's also live
    // through BB.
    VarInfo &VI = getVarInfo(Reg);
    if (Kills.count(Reg) || VI.AliveBlocks.test(SuccBB->getNumber()))
      VI.AliveBlocks.set(NumNew);
  }
}

/// addNewBlock - Add a new basic block BB as an empty succcessor to DomBB. All
/// variables that are live out of DomBB will be marked as passing live through
/// BB. LiveInSets[BB] is *not* updated (because it is not needed during
/// PHIElimination).
void LiveVariables::addNewBlock(MachineBasicBlock *BB,
                                MachineBasicBlock *DomBB,
                                MachineBasicBlock *SuccBB,
                                std::vector<SparseBitVector<>> &LiveInSets) {
  const unsigned NumNew = BB->getNumber();

  SparseBitVector<> &BV = LiveInSets[SuccBB->getNumber()];
  for (auto R = BV.begin(), E = BV.end(); R != E; R++) {
    unsigned VirtReg = Register::index2VirtReg(*R);
    LiveVariables::VarInfo &VI = getVarInfo(VirtReg);
    VI.AliveBlocks.set(NumNew);
  }
  // All registers used by PHI nodes in SuccBB must be live through BB.
  for (MachineBasicBlock::iterator BBI = SuccBB->begin(),
         BBE = SuccBB->end();
       BBI != BBE && BBI->isPHI(); ++BBI) {
    for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
      if (BBI->getOperand(i + 1).getMBB() == BB &&
          BBI->getOperand(i).readsReg())
        getVarInfo(BBI->getOperand(i).getReg())
          .AliveBlocks.set(NumNew);
  }
}