GISelKnownBits.cpp 18.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
//===- lib/CodeGen/GlobalISel/GISelKnownBits.cpp --------------*- C++ *-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// Provides analysis for querying information about KnownBits during GISel
/// passes.
//
//===------------------
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetOpcodes.h"

#define DEBUG_TYPE "gisel-known-bits"

using namespace llvm;

char llvm::GISelKnownBitsAnalysis::ID = 0;

INITIALIZE_PASS(GISelKnownBitsAnalysis, DEBUG_TYPE,
                "Analysis for ComputingKnownBits", false, true)

GISelKnownBits::GISelKnownBits(MachineFunction &MF, unsigned MaxDepth)
    : MF(MF), MRI(MF.getRegInfo()), TL(*MF.getSubtarget().getTargetLowering()),
      DL(MF.getFunction().getParent()->getDataLayout()), MaxDepth(MaxDepth) {}

Align GISelKnownBits::computeKnownAlignment(Register R, unsigned Depth) {
  const MachineInstr *MI = MRI.getVRegDef(R);
  switch (MI->getOpcode()) {
  case TargetOpcode::COPY:
    return computeKnownAlignment(MI->getOperand(1).getReg(), Depth);
  case TargetOpcode::G_FRAME_INDEX: {
    int FrameIdx = MI->getOperand(1).getIndex();
    return MF.getFrameInfo().getObjectAlign(FrameIdx);
  }
  case TargetOpcode::G_INTRINSIC:
  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
  default:
    return TL.computeKnownAlignForTargetInstr(*this, R, MRI, Depth + 1);
  }
}

KnownBits GISelKnownBits::getKnownBits(MachineInstr &MI) {
  assert(MI.getNumExplicitDefs() == 1 &&
         "expected single return generic instruction");
  return getKnownBits(MI.getOperand(0).getReg());
}

KnownBits GISelKnownBits::getKnownBits(Register R) {
  const LLT Ty = MRI.getType(R);
  APInt DemandedElts =
      Ty.isVector() ? APInt::getAllOnesValue(Ty.getNumElements()) : APInt(1, 1);
  return getKnownBits(R, DemandedElts);
}

KnownBits GISelKnownBits::getKnownBits(Register R, const APInt &DemandedElts,
                                       unsigned Depth) {
  // For now, we only maintain the cache during one request.
  assert(ComputeKnownBitsCache.empty() && "Cache should have been cleared");

  KnownBits Known;
  computeKnownBitsImpl(R, Known, DemandedElts);
  ComputeKnownBitsCache.clear();
  return Known;
}

bool GISelKnownBits::signBitIsZero(Register R) {
  LLT Ty = MRI.getType(R);
  unsigned BitWidth = Ty.getScalarSizeInBits();
  return maskedValueIsZero(R, APInt::getSignMask(BitWidth));
}

APInt GISelKnownBits::getKnownZeroes(Register R) {
  return getKnownBits(R).Zero;
}

APInt GISelKnownBits::getKnownOnes(Register R) { return getKnownBits(R).One; }

LLVM_ATTRIBUTE_UNUSED static void
dumpResult(const MachineInstr &MI, const KnownBits &Known, unsigned Depth) {
  dbgs() << "[" << Depth << "] Compute known bits: " << MI << "[" << Depth
         << "] Computed for: " << MI << "[" << Depth << "] Known: 0x"
         << (Known.Zero | Known.One).toString(16, false) << "\n"
         << "[" << Depth << "] Zero: 0x" << Known.Zero.toString(16, false)
         << "\n"
         << "[" << Depth << "] One:  0x" << Known.One.toString(16, false)
         << "\n";
}

void GISelKnownBits::computeKnownBitsImpl(Register R, KnownBits &Known,
                                          const APInt &DemandedElts,
                                          unsigned Depth) {
  MachineInstr &MI = *MRI.getVRegDef(R);
  unsigned Opcode = MI.getOpcode();
  LLT DstTy = MRI.getType(R);

  // Handle the case where this is called on a register that does not have a
  // type constraint (i.e. it has a register class constraint instead). This is
  // unlikely to occur except by looking through copies but it is possible for
  // the initial register being queried to be in this state.
  if (!DstTy.isValid()) {
    Known = KnownBits();
    return;
  }

  unsigned BitWidth = DstTy.getSizeInBits();
  auto CacheEntry = ComputeKnownBitsCache.find(R);
  if (CacheEntry != ComputeKnownBitsCache.end()) {
    Known = CacheEntry->second;
    LLVM_DEBUG(dbgs() << "Cache hit at ");
    LLVM_DEBUG(dumpResult(MI, Known, Depth));
    assert(Known.getBitWidth() == BitWidth && "Cache entry size doesn't match");
    return;
  }
  Known = KnownBits(BitWidth); // Don't know anything

  if (DstTy.isVector())
    return; // TODO: Handle vectors.

  // Depth may get bigger than max depth if it gets passed to a different
  // GISelKnownBits object.
  // This may happen when say a generic part uses a GISelKnownBits object
  // with some max depth, but then we hit TL.computeKnownBitsForTargetInstr
  // which creates a new GISelKnownBits object with a different and smaller
  // depth. If we just check for equality, we would never exit if the depth
  // that is passed down to the target specific GISelKnownBits object is
  // already bigger than its max depth.
  if (Depth >= getMaxDepth())
    return;

  if (!DemandedElts)
    return; // No demanded elts, better to assume we don't know anything.

  KnownBits Known2;

  switch (Opcode) {
  default:
    TL.computeKnownBitsForTargetInstr(*this, R, Known, DemandedElts, MRI,
                                      Depth);
    break;
  case TargetOpcode::COPY:
  case TargetOpcode::G_PHI:
  case TargetOpcode::PHI: {
    Known.One = APInt::getAllOnesValue(BitWidth);
    Known.Zero = APInt::getAllOnesValue(BitWidth);
    // Destination registers should not have subregisters at this
    // point of the pipeline, otherwise the main live-range will be
    // defined more than once, which is against SSA.
    assert(MI.getOperand(0).getSubReg() == 0 && "Is this code in SSA?");
    // Record in the cache that we know nothing for MI.
    // This will get updated later and in the meantime, if we reach that
    // phi again, because of a loop, we will cut the search thanks to this
    // cache entry.
    // We could actually build up more information on the phi by not cutting
    // the search, but that additional information is more a side effect
    // than an intended choice.
    // Therefore, for now, save on compile time until we derive a proper way
    // to derive known bits for PHIs within loops.
    ComputeKnownBitsCache[R] = KnownBits(BitWidth);
    // PHI's operand are a mix of registers and basic blocks interleaved.
    // We only care about the register ones.
    for (unsigned Idx = 1; Idx < MI.getNumOperands(); Idx += 2) {
      const MachineOperand &Src = MI.getOperand(Idx);
      Register SrcReg = Src.getReg();
      // Look through trivial copies and phis but don't look through trivial
      // copies or phis of the form `%1:(s32) = OP %0:gpr32`, known-bits
      // analysis is currently unable to determine the bit width of a
      // register class.
      //
      // We can't use NoSubRegister by name as it's defined by each target but
      // it's always defined to be 0 by tablegen.
      if (SrcReg.isVirtual() && Src.getSubReg() == 0 /*NoSubRegister*/ &&
          MRI.getType(SrcReg).isValid()) {
        // For COPYs we don't do anything, don't increase the depth.
        computeKnownBitsImpl(SrcReg, Known2, DemandedElts,
                             Depth + (Opcode != TargetOpcode::COPY));
        Known.One &= Known2.One;
        Known.Zero &= Known2.Zero;
        // If we reach a point where we don't know anything
        // just stop looking through the operands.
        if (Known.One == 0 && Known.Zero == 0)
          break;
      } else {
        // We know nothing.
        Known = KnownBits(BitWidth);
        break;
      }
    }
    break;
  }
  case TargetOpcode::G_CONSTANT: {
    auto CstVal = getConstantVRegVal(R, MRI);
    if (!CstVal)
      break;
    Known.One = *CstVal;
    Known.Zero = ~Known.One;
    break;
  }
  case TargetOpcode::G_FRAME_INDEX: {
    int FrameIdx = MI.getOperand(1).getIndex();
    TL.computeKnownBitsForFrameIndex(FrameIdx, Known, MF);
    break;
  }
  case TargetOpcode::G_SUB: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    Known = KnownBits::computeForAddSub(/*Add*/ false, /*NSW*/ false, Known,
                                        Known2);
    break;
  }
  case TargetOpcode::G_XOR: {
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    Known ^= Known2;
    break;
  }
  case TargetOpcode::G_PTR_ADD: {
    // G_PTR_ADD is like G_ADD. FIXME: Is this true for all targets?
    LLT Ty = MRI.getType(MI.getOperand(1).getReg());
    if (DL.isNonIntegralAddressSpace(Ty.getAddressSpace()))
      break;
    LLVM_FALLTHROUGH;
  }
  case TargetOpcode::G_ADD: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    Known =
        KnownBits::computeForAddSub(/*Add*/ true, /*NSW*/ false, Known, Known2);
    break;
  }
  case TargetOpcode::G_AND: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    Known &= Known2;
    break;
  }
  case TargetOpcode::G_OR: {
    // If either the LHS or the RHS are Zero, the result is zero.
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);

    Known |= Known2;
    break;
  }
  case TargetOpcode::G_MUL: {
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known, DemandedElts,
                         Depth + 1);
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known2, DemandedElts,
                         Depth + 1);
    // If low bits are zero in either operand, output low known-0 bits.
    // Also compute a conservative estimate for high known-0 bits.
    // More trickiness is possible, but this is sufficient for the
    // interesting case of alignment computation.
    unsigned TrailZ =
        Known.countMinTrailingZeros() + Known2.countMinTrailingZeros();
    unsigned LeadZ =
        std::max(Known.countMinLeadingZeros() + Known2.countMinLeadingZeros(),
                 BitWidth) -
        BitWidth;

    Known.resetAll();
    Known.Zero.setLowBits(std::min(TrailZ, BitWidth));
    Known.Zero.setHighBits(std::min(LeadZ, BitWidth));
    break;
  }
  case TargetOpcode::G_SELECT: {
    computeKnownBitsImpl(MI.getOperand(3).getReg(), Known, DemandedElts,
                         Depth + 1);
    // If we don't know any bits, early out.
    if (Known.isUnknown())
      break;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), Known2, DemandedElts,
                         Depth + 1);
    // Only known if known in both the LHS and RHS.
    Known.One &= Known2.One;
    Known.Zero &= Known2.Zero;
    break;
  }
  case TargetOpcode::G_FCMP:
  case TargetOpcode::G_ICMP: {
    if (TL.getBooleanContents(DstTy.isVector(),
                              Opcode == TargetOpcode::G_FCMP) ==
            TargetLowering::ZeroOrOneBooleanContent &&
        BitWidth > 1)
      Known.Zero.setBitsFrom(1);
    break;
  }
  case TargetOpcode::G_SEXT: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    // If the sign bit is known to be zero or one, then sext will extend
    // it to the top bits, else it will just zext.
    Known = Known.sext(BitWidth);
    break;
  }
  case TargetOpcode::G_ANYEXT: {
    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);
    Known = Known.zext(BitWidth);
    break;
  }
  case TargetOpcode::G_LOAD: {
    if (MI.hasOneMemOperand()) {
      const MachineMemOperand *MMO = *MI.memoperands_begin();
      if (const MDNode *Ranges = MMO->getRanges()) {
        computeKnownBitsFromRangeMetadata(*Ranges, Known);
      }
    }
    break;
  }
  case TargetOpcode::G_ZEXTLOAD: {
    // Everything above the retrieved bits is zero
    if (MI.hasOneMemOperand())
      Known.Zero.setBitsFrom((*MI.memoperands_begin())->getSizeInBits());
    break;
  }
  case TargetOpcode::G_ASHR:
  case TargetOpcode::G_LSHR:
  case TargetOpcode::G_SHL: {
    KnownBits RHSKnown;
    computeKnownBitsImpl(MI.getOperand(2).getReg(), RHSKnown, DemandedElts,
                         Depth + 1);
    if (!RHSKnown.isConstant()) {
      LLVM_DEBUG(
          MachineInstr *RHSMI = MRI.getVRegDef(MI.getOperand(2).getReg());
          dbgs() << '[' << Depth << "] Shift not known constant: " << *RHSMI);
      break;
    }
    uint64_t Shift = RHSKnown.getConstant().getZExtValue();
    LLVM_DEBUG(dbgs() << '[' << Depth << "] Shift is " << Shift << '\n');

    computeKnownBitsImpl(MI.getOperand(1).getReg(), Known, DemandedElts,
                         Depth + 1);

    switch (Opcode) {
    case TargetOpcode::G_ASHR:
      Known.Zero = Known.Zero.ashr(Shift);
      Known.One = Known.One.ashr(Shift);
      break;
    case TargetOpcode::G_LSHR:
      Known.Zero = Known.Zero.lshr(Shift);
      Known.One = Known.One.lshr(Shift);
      Known.Zero.setBitsFrom(Known.Zero.getBitWidth() - Shift);
      break;
    case TargetOpcode::G_SHL:
      Known.Zero = Known.Zero.shl(Shift);
      Known.One = Known.One.shl(Shift);
      Known.Zero.setBits(0, Shift);
      break;
    }
    break;
  }
  case TargetOpcode::G_INTTOPTR:
  case TargetOpcode::G_PTRTOINT:
    // Fall through and handle them the same as zext/trunc.
    LLVM_FALLTHROUGH;
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_TRUNC: {
    Register SrcReg = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(SrcReg);
    unsigned SrcBitWidth = SrcTy.isPointer()
                               ? DL.getIndexSizeInBits(SrcTy.getAddressSpace())
                               : SrcTy.getSizeInBits();
    assert(SrcBitWidth && "SrcBitWidth can't be zero");
    Known = Known.zextOrTrunc(SrcBitWidth);
    computeKnownBitsImpl(SrcReg, Known, DemandedElts, Depth + 1);
    Known = Known.zextOrTrunc(BitWidth);
    if (BitWidth > SrcBitWidth)
      Known.Zero.setBitsFrom(SrcBitWidth);
    break;
  }
  }

  assert(!Known.hasConflict() && "Bits known to be one AND zero?");
  LLVM_DEBUG(dumpResult(MI, Known, Depth));

  // Update the cache.
  ComputeKnownBitsCache[R] = Known;
}

unsigned GISelKnownBits::computeNumSignBits(Register R,
                                            const APInt &DemandedElts,
                                            unsigned Depth) {
  MachineInstr &MI = *MRI.getVRegDef(R);
  unsigned Opcode = MI.getOpcode();

  if (Opcode == TargetOpcode::G_CONSTANT)
    return MI.getOperand(1).getCImm()->getValue().getNumSignBits();

  if (Depth == getMaxDepth())
    return 1;

  if (!DemandedElts)
    return 1; // No demanded elts, better to assume we don't know anything.

  LLT DstTy = MRI.getType(R);
  const unsigned TyBits = DstTy.getScalarSizeInBits();

  // Handle the case where this is called on a register that does not have a
  // type constraint. This is unlikely to occur except by looking through copies
  // but it is possible for the initial register being queried to be in this
  // state.
  if (!DstTy.isValid())
    return 1;

  unsigned FirstAnswer = 1;
  switch (Opcode) {
  case TargetOpcode::COPY: {
    MachineOperand &Src = MI.getOperand(1);
    if (Src.getReg().isVirtual() && Src.getSubReg() == 0 &&
        MRI.getType(Src.getReg()).isValid()) {
      // Don't increment Depth for this one since we didn't do any work.
      return computeNumSignBits(Src.getReg(), DemandedElts, Depth);
    }

    return 1;
  }
  case TargetOpcode::G_SEXT: {
    Register Src = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(Src);
    unsigned Tmp = DstTy.getScalarSizeInBits() - SrcTy.getScalarSizeInBits();
    return computeNumSignBits(Src, DemandedElts, Depth + 1) + Tmp;
  }
  case TargetOpcode::G_SEXTLOAD: {
    Register Dst = MI.getOperand(0).getReg();
    LLT Ty = MRI.getType(Dst);
    // TODO: add vector support
    if (Ty.isVector())
      break;
    if (MI.hasOneMemOperand())
      return Ty.getSizeInBits() - (*MI.memoperands_begin())->getSizeInBits();
    break;
  }
  case TargetOpcode::G_TRUNC: {
    Register Src = MI.getOperand(1).getReg();
    LLT SrcTy = MRI.getType(Src);

    // Check if the sign bits of source go down as far as the truncated value.
    unsigned DstTyBits = DstTy.getScalarSizeInBits();
    unsigned NumSrcBits = SrcTy.getScalarSizeInBits();
    unsigned NumSrcSignBits = computeNumSignBits(Src, DemandedElts, Depth + 1);
    if (NumSrcSignBits > (NumSrcBits - DstTyBits))
      return NumSrcSignBits - (NumSrcBits - DstTyBits);
    break;
  }
  case TargetOpcode::G_INTRINSIC:
  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
  default: {
    unsigned NumBits =
      TL.computeNumSignBitsForTargetInstr(*this, R, DemandedElts, MRI, Depth);
    if (NumBits > 1)
      FirstAnswer = std::max(FirstAnswer, NumBits);
    break;
  }
  }

  // Finally, if we can prove that the top bits of the result are 0's or 1's,
  // use this information.
  KnownBits Known = getKnownBits(R, DemandedElts, Depth);
  APInt Mask;
  if (Known.isNonNegative()) {        // sign bit is 0
    Mask = Known.Zero;
  } else if (Known.isNegative()) {  // sign bit is 1;
    Mask = Known.One;
  } else {
    // Nothing known.
    return FirstAnswer;
  }

  // Okay, we know that the sign bit in Mask is set.  Use CLO to determine
  // the number of identical bits in the top of the input value.
  Mask <<= Mask.getBitWidth() - TyBits;
  return std::max(FirstAnswer, Mask.countLeadingOnes());
}

unsigned GISelKnownBits::computeNumSignBits(Register R, unsigned Depth) {
  LLT Ty = MRI.getType(R);
  APInt DemandedElts = Ty.isVector()
                           ? APInt::getAllOnesValue(Ty.getNumElements())
                           : APInt(1, 1);
  return computeNumSignBits(R, DemandedElts, Depth);
}

void GISelKnownBitsAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  MachineFunctionPass::getAnalysisUsage(AU);
}

bool GISelKnownBitsAnalysis::runOnMachineFunction(MachineFunction &MF) {
  return false;
}