CallLowering.cpp 19.9 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509
//===-- lib/CodeGen/GlobalISel/CallLowering.cpp - Call lowering -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements some simple delegations needed for call lowering.
///
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/Utils.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "call-lowering"

using namespace llvm;

void CallLowering::anchor() {}

bool CallLowering::lowerCall(MachineIRBuilder &MIRBuilder, const CallBase &CB,
                             ArrayRef<Register> ResRegs,
                             ArrayRef<ArrayRef<Register>> ArgRegs,
                             Register SwiftErrorVReg,
                             std::function<unsigned()> GetCalleeReg) const {
  CallLoweringInfo Info;
  const DataLayout &DL = MIRBuilder.getDataLayout();

  // First step is to marshall all the function's parameters into the correct
  // physregs and memory locations. Gather the sequence of argument types that
  // we'll pass to the assigner function.
  unsigned i = 0;
  unsigned NumFixedArgs = CB.getFunctionType()->getNumParams();
  for (auto &Arg : CB.args()) {
    ArgInfo OrigArg{ArgRegs[i], Arg->getType(), ISD::ArgFlagsTy{},
                    i < NumFixedArgs};
    setArgFlags(OrigArg, i + AttributeList::FirstArgIndex, DL, CB);
    Info.OrigArgs.push_back(OrigArg);
    ++i;
  }

  // Try looking through a bitcast from one function type to another.
  // Commonly happens with calls to objc_msgSend().
  const Value *CalleeV = CB.getCalledOperand()->stripPointerCasts();
  if (const Function *F = dyn_cast<Function>(CalleeV))
    Info.Callee = MachineOperand::CreateGA(F, 0);
  else
    Info.Callee = MachineOperand::CreateReg(GetCalleeReg(), false);

  Info.OrigRet = ArgInfo{ResRegs, CB.getType(), ISD::ArgFlagsTy{}};
  if (!Info.OrigRet.Ty->isVoidTy())
    setArgFlags(Info.OrigRet, AttributeList::ReturnIndex, DL, CB);

  MachineFunction &MF = MIRBuilder.getMF();
  Info.KnownCallees = CB.getMetadata(LLVMContext::MD_callees);
  Info.CallConv = CB.getCallingConv();
  Info.SwiftErrorVReg = SwiftErrorVReg;
  Info.IsMustTailCall = CB.isMustTailCall();
  Info.IsTailCall =
      CB.isTailCall() && isInTailCallPosition(CB, MF.getTarget()) &&
      (MF.getFunction()
           .getFnAttribute("disable-tail-calls")
           .getValueAsString() != "true");
  Info.IsVarArg = CB.getFunctionType()->isVarArg();
  return lowerCall(MIRBuilder, Info);
}

template <typename FuncInfoTy>
void CallLowering::setArgFlags(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                               const DataLayout &DL,
                               const FuncInfoTy &FuncInfo) const {
  auto &Flags = Arg.Flags[0];
  const AttributeList &Attrs = FuncInfo.getAttributes();
  if (Attrs.hasAttribute(OpIdx, Attribute::ZExt))
    Flags.setZExt();
  if (Attrs.hasAttribute(OpIdx, Attribute::SExt))
    Flags.setSExt();
  if (Attrs.hasAttribute(OpIdx, Attribute::InReg))
    Flags.setInReg();
  if (Attrs.hasAttribute(OpIdx, Attribute::StructRet))
    Flags.setSRet();
  if (Attrs.hasAttribute(OpIdx, Attribute::SwiftSelf))
    Flags.setSwiftSelf();
  if (Attrs.hasAttribute(OpIdx, Attribute::SwiftError))
    Flags.setSwiftError();
  if (Attrs.hasAttribute(OpIdx, Attribute::ByVal))
    Flags.setByVal();
  if (Attrs.hasAttribute(OpIdx, Attribute::Preallocated))
    Flags.setPreallocated();
  if (Attrs.hasAttribute(OpIdx, Attribute::InAlloca))
    Flags.setInAlloca();

  if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) {
    Type *ElementTy = cast<PointerType>(Arg.Ty)->getElementType();

    auto Ty = Attrs.getAttribute(OpIdx, Attribute::ByVal).getValueAsType();
    Flags.setByValSize(DL.getTypeAllocSize(Ty ? Ty : ElementTy));

    // For ByVal, alignment should be passed from FE.  BE will guess if
    // this info is not there but there are cases it cannot get right.
    Align FrameAlign;
    if (auto ParamAlign = FuncInfo.getParamAlign(OpIdx - 2))
      FrameAlign = *ParamAlign;
    else
      FrameAlign = Align(getTLI()->getByValTypeAlignment(ElementTy, DL));
    Flags.setByValAlign(FrameAlign);
  }
  if (Attrs.hasAttribute(OpIdx, Attribute::Nest))
    Flags.setNest();
  Flags.setOrigAlign(DL.getABITypeAlign(Arg.Ty));
}

template void
CallLowering::setArgFlags<Function>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                                    const DataLayout &DL,
                                    const Function &FuncInfo) const;

template void
CallLowering::setArgFlags<CallBase>(CallLowering::ArgInfo &Arg, unsigned OpIdx,
                                    const DataLayout &DL,
                                    const CallBase &FuncInfo) const;

Register CallLowering::packRegs(ArrayRef<Register> SrcRegs, Type *PackedTy,
                                MachineIRBuilder &MIRBuilder) const {
  assert(SrcRegs.size() > 1 && "Nothing to pack");

  const DataLayout &DL = MIRBuilder.getMF().getDataLayout();
  MachineRegisterInfo *MRI = MIRBuilder.getMRI();

  LLT PackedLLT = getLLTForType(*PackedTy, DL);

  SmallVector<LLT, 8> LLTs;
  SmallVector<uint64_t, 8> Offsets;
  computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
  assert(LLTs.size() == SrcRegs.size() && "Regs / types mismatch");

  Register Dst = MRI->createGenericVirtualRegister(PackedLLT);
  MIRBuilder.buildUndef(Dst);
  for (unsigned i = 0; i < SrcRegs.size(); ++i) {
    Register NewDst = MRI->createGenericVirtualRegister(PackedLLT);
    MIRBuilder.buildInsert(NewDst, Dst, SrcRegs[i], Offsets[i]);
    Dst = NewDst;
  }

  return Dst;
}

void CallLowering::unpackRegs(ArrayRef<Register> DstRegs, Register SrcReg,
                              Type *PackedTy,
                              MachineIRBuilder &MIRBuilder) const {
  assert(DstRegs.size() > 1 && "Nothing to unpack");

  const DataLayout &DL = MIRBuilder.getDataLayout();

  SmallVector<LLT, 8> LLTs;
  SmallVector<uint64_t, 8> Offsets;
  computeValueLLTs(DL, *PackedTy, LLTs, &Offsets);
  assert(LLTs.size() == DstRegs.size() && "Regs / types mismatch");

  for (unsigned i = 0; i < DstRegs.size(); ++i)
    MIRBuilder.buildExtract(DstRegs[i], SrcReg, Offsets[i]);
}

bool CallLowering::handleAssignments(MachineIRBuilder &MIRBuilder,
                                     SmallVectorImpl<ArgInfo> &Args,
                                     ValueHandler &Handler) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  SmallVector<CCValAssign, 16> ArgLocs;
  CCState CCInfo(F.getCallingConv(), F.isVarArg(), MF, ArgLocs, F.getContext());
  return handleAssignments(CCInfo, ArgLocs, MIRBuilder, Args, Handler);
}

bool CallLowering::handleAssignments(CCState &CCInfo,
                                     SmallVectorImpl<CCValAssign> &ArgLocs,
                                     MachineIRBuilder &MIRBuilder,
                                     SmallVectorImpl<ArgInfo> &Args,
                                     ValueHandler &Handler) const {
  MachineFunction &MF = MIRBuilder.getMF();
  const Function &F = MF.getFunction();
  const DataLayout &DL = F.getParent()->getDataLayout();

  unsigned NumArgs = Args.size();
  for (unsigned i = 0; i != NumArgs; ++i) {
    EVT CurVT = EVT::getEVT(Args[i].Ty);
    if (!CurVT.isSimple() ||
        Handler.assignArg(i, CurVT.getSimpleVT(), CurVT.getSimpleVT(),
                          CCValAssign::Full, Args[i], Args[i].Flags[0],
                          CCInfo)) {
      MVT NewVT = TLI->getRegisterTypeForCallingConv(
          F.getContext(), F.getCallingConv(), EVT(CurVT));

      // If we need to split the type over multiple regs, check it's a scenario
      // we currently support.
      unsigned NumParts = TLI->getNumRegistersForCallingConv(
          F.getContext(), F.getCallingConv(), CurVT);
      if (NumParts > 1) {
        // For now only handle exact splits.
        if (NewVT.getSizeInBits() * NumParts != CurVT.getSizeInBits())
          return false;
      }

      // For incoming arguments (physregs to vregs), we could have values in
      // physregs (or memlocs) which we want to extract and copy to vregs.
      // During this, we might have to deal with the LLT being split across
      // multiple regs, so we have to record this information for later.
      //
      // If we have outgoing args, then we have the opposite case. We have a
      // vreg with an LLT which we want to assign to a physical location, and
      // we might have to record that the value has to be split later.
      if (Handler.isIncomingArgumentHandler()) {
        if (NumParts == 1) {
          // Try to use the register type if we couldn't assign the VT.
          if (Handler.assignArg(i, NewVT, NewVT, CCValAssign::Full, Args[i],
                                Args[i].Flags[0], CCInfo))
            return false;
        } else {
          // We're handling an incoming arg which is split over multiple regs.
          // E.g. passing an s128 on AArch64.
          ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
          Args[i].OrigRegs.push_back(Args[i].Regs[0]);
          Args[i].Regs.clear();
          Args[i].Flags.clear();
          LLT NewLLT = getLLTForMVT(NewVT);
          // For each split register, create and assign a vreg that will store
          // the incoming component of the larger value. These will later be
          // merged to form the final vreg.
          for (unsigned Part = 0; Part < NumParts; ++Part) {
            Register Reg =
                MIRBuilder.getMRI()->createGenericVirtualRegister(NewLLT);
            ISD::ArgFlagsTy Flags = OrigFlags;
            if (Part == 0) {
              Flags.setSplit();
            } else {
              Flags.setOrigAlign(Align(1));
              if (Part == NumParts - 1)
                Flags.setSplitEnd();
            }
            Args[i].Regs.push_back(Reg);
            Args[i].Flags.push_back(Flags);
            if (Handler.assignArg(i + Part, NewVT, NewVT, CCValAssign::Full,
                                  Args[i], Args[i].Flags[Part], CCInfo)) {
              // Still couldn't assign this smaller part type for some reason.
              return false;
            }
          }
        }
      } else {
        // Handling an outgoing arg that might need to be split.
        if (NumParts < 2)
          return false; // Don't know how to deal with this type combination.

        // This type is passed via multiple registers in the calling convention.
        // We need to extract the individual parts.
        Register LargeReg = Args[i].Regs[0];
        LLT SmallTy = LLT::scalar(NewVT.getSizeInBits());
        auto Unmerge = MIRBuilder.buildUnmerge(SmallTy, LargeReg);
        assert(Unmerge->getNumOperands() == NumParts + 1);
        ISD::ArgFlagsTy OrigFlags = Args[i].Flags[0];
        // We're going to replace the regs and flags with the split ones.
        Args[i].Regs.clear();
        Args[i].Flags.clear();
        for (unsigned PartIdx = 0; PartIdx < NumParts; ++PartIdx) {
          ISD::ArgFlagsTy Flags = OrigFlags;
          if (PartIdx == 0) {
            Flags.setSplit();
          } else {
            Flags.setOrigAlign(Align(1));
            if (PartIdx == NumParts - 1)
              Flags.setSplitEnd();
          }
          Args[i].Regs.push_back(Unmerge.getReg(PartIdx));
          Args[i].Flags.push_back(Flags);
          if (Handler.assignArg(i + PartIdx, NewVT, NewVT, CCValAssign::Full,
                                Args[i], Args[i].Flags[PartIdx], CCInfo))
            return false;
        }
      }
    }
  }

  for (unsigned i = 0, e = Args.size(), j = 0; i != e; ++i, ++j) {
    assert(j < ArgLocs.size() && "Skipped too many arg locs");

    CCValAssign &VA = ArgLocs[j];
    assert(VA.getValNo() == i && "Location doesn't correspond to current arg");

    if (VA.needsCustom()) {
      unsigned NumArgRegs =
          Handler.assignCustomValue(Args[i], makeArrayRef(ArgLocs).slice(j));
      if (!NumArgRegs)
        return false;
      j += NumArgRegs;
      continue;
    }

    // FIXME: Pack registers if we have more than one.
    Register ArgReg = Args[i].Regs[0];

    EVT OrigVT = EVT::getEVT(Args[i].Ty);
    EVT VAVT = VA.getValVT();
    const LLT OrigTy = getLLTForType(*Args[i].Ty, DL);

    if (VA.isRegLoc()) {
      if (Handler.isIncomingArgumentHandler() && VAVT != OrigVT) {
        if (VAVT.getSizeInBits() < OrigVT.getSizeInBits()) {
          // Expected to be multiple regs for a single incoming arg.
          unsigned NumArgRegs = Args[i].Regs.size();
          if (NumArgRegs < 2)
            return false;

          assert((j + (NumArgRegs - 1)) < ArgLocs.size() &&
                 "Too many regs for number of args");
          for (unsigned Part = 0; Part < NumArgRegs; ++Part) {
            // There should be Regs.size() ArgLocs per argument.
            VA = ArgLocs[j + Part];
            Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
          }
          j += NumArgRegs - 1;
          // Merge the split registers into the expected larger result vreg
          // of the original call.
          MIRBuilder.buildMerge(Args[i].OrigRegs[0], Args[i].Regs);
          continue;
        }
        const LLT VATy(VAVT.getSimpleVT());
        Register NewReg =
            MIRBuilder.getMRI()->createGenericVirtualRegister(VATy);
        Handler.assignValueToReg(NewReg, VA.getLocReg(), VA);
        // If it's a vector type, we either need to truncate the elements
        // or do an unmerge to get the lower block of elements.
        if (VATy.isVector() &&
            VATy.getNumElements() > OrigVT.getVectorNumElements()) {
          // Just handle the case where the VA type is 2 * original type.
          if (VATy.getNumElements() != OrigVT.getVectorNumElements() * 2) {
            LLVM_DEBUG(dbgs()
                       << "Incoming promoted vector arg has too many elts");
            return false;
          }
          auto Unmerge = MIRBuilder.buildUnmerge({OrigTy, OrigTy}, {NewReg});
          MIRBuilder.buildCopy(ArgReg, Unmerge.getReg(0));
        } else {
          MIRBuilder.buildTrunc(ArgReg, {NewReg}).getReg(0);
        }
      } else if (!Handler.isIncomingArgumentHandler()) {
        assert((j + (Args[i].Regs.size() - 1)) < ArgLocs.size() &&
               "Too many regs for number of args");
        // This is an outgoing argument that might have been split.
        for (unsigned Part = 0; Part < Args[i].Regs.size(); ++Part) {
          // There should be Regs.size() ArgLocs per argument.
          VA = ArgLocs[j + Part];
          Handler.assignValueToReg(Args[i].Regs[Part], VA.getLocReg(), VA);
        }
        j += Args[i].Regs.size() - 1;
      } else {
        Handler.assignValueToReg(ArgReg, VA.getLocReg(), VA);
      }
    } else if (VA.isMemLoc()) {
      // Don't currently support loading/storing a type that needs to be split
      // to the stack. Should be easy, just not implemented yet.
      if (Args[i].Regs.size() > 1) {
        LLVM_DEBUG(
            dbgs()
            << "Load/store a split arg to/from the stack not implemented yet");
        return false;
      }

      EVT LocVT = VA.getValVT();
      unsigned MemSize = LocVT == MVT::iPTR ? DL.getPointerSize()
                                            : LocVT.getStoreSize();

      unsigned Offset = VA.getLocMemOffset();
      MachinePointerInfo MPO;
      Register StackAddr = Handler.getStackAddress(MemSize, Offset, MPO);
      Handler.assignValueToAddress(Args[i], StackAddr, MemSize, MPO, VA);
    } else {
      // FIXME: Support byvals and other weirdness
      return false;
    }
  }
  return true;
}

bool CallLowering::analyzeArgInfo(CCState &CCState,
                                  SmallVectorImpl<ArgInfo> &Args,
                                  CCAssignFn &AssignFnFixed,
                                  CCAssignFn &AssignFnVarArg) const {
  for (unsigned i = 0, e = Args.size(); i < e; ++i) {
    MVT VT = MVT::getVT(Args[i].Ty);
    CCAssignFn &Fn = Args[i].IsFixed ? AssignFnFixed : AssignFnVarArg;
    if (Fn(i, VT, VT, CCValAssign::Full, Args[i].Flags[0], CCState)) {
      // Bail out on anything we can't handle.
      LLVM_DEBUG(dbgs() << "Cannot analyze " << EVT(VT).getEVTString()
                        << " (arg number = " << i << "\n");
      return false;
    }
  }
  return true;
}

bool CallLowering::resultsCompatible(CallLoweringInfo &Info,
                                     MachineFunction &MF,
                                     SmallVectorImpl<ArgInfo> &InArgs,
                                     CCAssignFn &CalleeAssignFnFixed,
                                     CCAssignFn &CalleeAssignFnVarArg,
                                     CCAssignFn &CallerAssignFnFixed,
                                     CCAssignFn &CallerAssignFnVarArg) const {
  const Function &F = MF.getFunction();
  CallingConv::ID CalleeCC = Info.CallConv;
  CallingConv::ID CallerCC = F.getCallingConv();

  if (CallerCC == CalleeCC)
    return true;

  SmallVector<CCValAssign, 16> ArgLocs1;
  CCState CCInfo1(CalleeCC, false, MF, ArgLocs1, F.getContext());
  if (!analyzeArgInfo(CCInfo1, InArgs, CalleeAssignFnFixed,
                      CalleeAssignFnVarArg))
    return false;

  SmallVector<CCValAssign, 16> ArgLocs2;
  CCState CCInfo2(CallerCC, false, MF, ArgLocs2, F.getContext());
  if (!analyzeArgInfo(CCInfo2, InArgs, CallerAssignFnFixed,
                      CalleeAssignFnVarArg))
    return false;

  // We need the argument locations to match up exactly. If there's more in
  // one than the other, then we are done.
  if (ArgLocs1.size() != ArgLocs2.size())
    return false;

  // Make sure that each location is passed in exactly the same way.
  for (unsigned i = 0, e = ArgLocs1.size(); i < e; ++i) {
    const CCValAssign &Loc1 = ArgLocs1[i];
    const CCValAssign &Loc2 = ArgLocs2[i];

    // We need both of them to be the same. So if one is a register and one
    // isn't, we're done.
    if (Loc1.isRegLoc() != Loc2.isRegLoc())
      return false;

    if (Loc1.isRegLoc()) {
      // If they don't have the same register location, we're done.
      if (Loc1.getLocReg() != Loc2.getLocReg())
        return false;

      // They matched, so we can move to the next ArgLoc.
      continue;
    }

    // Loc1 wasn't a RegLoc, so they both must be MemLocs. Check if they match.
    if (Loc1.getLocMemOffset() != Loc2.getLocMemOffset())
      return false;
  }

  return true;
}

Register CallLowering::ValueHandler::extendRegister(Register ValReg,
                                                    CCValAssign &VA,
                                                    unsigned MaxSizeBits) {
  LLT LocTy{VA.getLocVT()};
  LLT ValTy = MRI.getType(ValReg);
  if (LocTy.getSizeInBits() == ValTy.getSizeInBits())
    return ValReg;

  if (LocTy.isScalar() && MaxSizeBits && MaxSizeBits < LocTy.getSizeInBits()) {
    if (MaxSizeBits <= ValTy.getSizeInBits())
      return ValReg;
    LocTy = LLT::scalar(MaxSizeBits);
  }

  switch (VA.getLocInfo()) {
  default: break;
  case CCValAssign::Full:
  case CCValAssign::BCvt:
    // FIXME: bitconverting between vector types may or may not be a
    // nop in big-endian situations.
    return ValReg;
  case CCValAssign::AExt: {
    auto MIB = MIRBuilder.buildAnyExt(LocTy, ValReg);
    return MIB.getReg(0);
  }
  case CCValAssign::SExt: {
    Register NewReg = MRI.createGenericVirtualRegister(LocTy);
    MIRBuilder.buildSExt(NewReg, ValReg);
    return NewReg;
  }
  case CCValAssign::ZExt: {
    Register NewReg = MRI.createGenericVirtualRegister(LocTy);
    MIRBuilder.buildZExt(NewReg, ValReg);
    return NewReg;
  }
  }
  llvm_unreachable("unable to extend register");
}

void CallLowering::ValueHandler::anchor() {}