LegacyDivergenceAnalysis.cpp 14.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
//===- LegacyDivergenceAnalysis.cpp --------- Legacy Divergence Analysis
//Implementation -==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements divergence analysis which determines whether a branch
// in a GPU program is divergent.It can help branch optimizations such as jump
// threading and loop unswitching to make better decisions.
//
// GPU programs typically use the SIMD execution model, where multiple threads
// in the same execution group have to execute in lock-step. Therefore, if the
// code contains divergent branches (i.e., threads in a group do not agree on
// which path of the branch to take), the group of threads has to execute all
// the paths from that branch with different subsets of threads enabled until
// they converge at the immediately post-dominating BB of the paths.
//
// Due to this execution model, some optimizations such as jump
// threading and loop unswitching can be unfortunately harmful when performed on
// divergent branches. Therefore, an analysis that computes which branches in a
// GPU program are divergent can help the compiler to selectively run these
// optimizations.
//
// This file defines divergence analysis which computes a conservative but
// non-trivial approximation of all divergent branches in a GPU program. It
// partially implements the approach described in
//
//   Divergence Analysis
//   Sampaio, Souza, Collange, Pereira
//   TOPLAS '13
//
// The divergence analysis identifies the sources of divergence (e.g., special
// variables that hold the thread ID), and recursively marks variables that are
// data or sync dependent on a source of divergence as divergent.
//
// While data dependency is a well-known concept, the notion of sync dependency
// is worth more explanation. Sync dependence characterizes the control flow
// aspect of the propagation of branch divergence. For example,
//
//   %cond = icmp slt i32 %tid, 10
//   br i1 %cond, label %then, label %else
// then:
//   br label %merge
// else:
//   br label %merge
// merge:
//   %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// The current implementation has the following limitations:
// 1. intra-procedural. It conservatively considers the arguments of a
//    non-kernel-entry function and the return value of a function call as
//    divergent.
// 2. memory as black box. It conservatively considers values loaded from
//    generic or local address as divergent. This can be improved by leveraging
//    pointer analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LegacyDivergenceAnalysis.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/DivergenceAnalysis.h"
#include "llvm/Analysis/Passes.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Value.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <vector>
using namespace llvm;

#define DEBUG_TYPE "divergence"

// transparently use the GPUDivergenceAnalysis
static cl::opt<bool> UseGPUDA("use-gpu-divergence-analysis", cl::init(false),
                              cl::Hidden,
                              cl::desc("turn the LegacyDivergenceAnalysis into "
                                       "a wrapper for GPUDivergenceAnalysis"));

namespace {

class DivergencePropagator {
public:
  DivergencePropagator(Function &F, TargetTransformInfo &TTI, DominatorTree &DT,
                       PostDominatorTree &PDT, DenseSet<const Value *> &DV,
                       DenseSet<const Use *> &DU)
      : F(F), TTI(TTI), DT(DT), PDT(PDT), DV(DV), DU(DU) {}
  void populateWithSourcesOfDivergence();
  void propagate();

private:
  // A helper function that explores data dependents of V.
  void exploreDataDependency(Value *V);
  // A helper function that explores sync dependents of TI.
  void exploreSyncDependency(Instruction *TI);
  // Computes the influence region from Start to End. This region includes all
  // basic blocks on any simple path from Start to End.
  void computeInfluenceRegion(BasicBlock *Start, BasicBlock *End,
                              DenseSet<BasicBlock *> &InfluenceRegion);
  // Finds all users of I that are outside the influence region, and add these
  // users to Worklist.
  void findUsersOutsideInfluenceRegion(
      Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion);

  Function &F;
  TargetTransformInfo &TTI;
  DominatorTree &DT;
  PostDominatorTree &PDT;
  std::vector<Value *> Worklist; // Stack for DFS.
  DenseSet<const Value *> &DV;   // Stores all divergent values.
  DenseSet<const Use *> &DU;   // Stores divergent uses of possibly uniform
                               // values.
};

void DivergencePropagator::populateWithSourcesOfDivergence() {
  Worklist.clear();
  DV.clear();
  DU.clear();
  for (auto &I : instructions(F)) {
    if (TTI.isSourceOfDivergence(&I)) {
      Worklist.push_back(&I);
      DV.insert(&I);
    }
  }
  for (auto &Arg : F.args()) {
    if (TTI.isSourceOfDivergence(&Arg)) {
      Worklist.push_back(&Arg);
      DV.insert(&Arg);
    }
  }
}

void DivergencePropagator::exploreSyncDependency(Instruction *TI) {
  // Propagation rule 1: if branch TI is divergent, all PHINodes in TI's
  // immediate post dominator are divergent. This rule handles if-then-else
  // patterns. For example,
  //
  // if (tid < 5)
  //   a1 = 1;
  // else
  //   a2 = 2;
  // a = phi(a1, a2); // sync dependent on (tid < 5)
  BasicBlock *ThisBB = TI->getParent();

  // Unreachable blocks may not be in the dominator tree.
  if (!DT.isReachableFromEntry(ThisBB))
    return;

  // If the function has no exit blocks or doesn't reach any exit blocks, the
  // post dominator may be null.
  DomTreeNode *ThisNode = PDT.getNode(ThisBB);
  if (!ThisNode)
    return;

  BasicBlock *IPostDom = ThisNode->getIDom()->getBlock();
  if (IPostDom == nullptr)
    return;

  for (auto I = IPostDom->begin(); isa<PHINode>(I); ++I) {
    // A PHINode is uniform if it returns the same value no matter which path is
    // taken.
    if (!cast<PHINode>(I)->hasConstantOrUndefValue() && DV.insert(&*I).second)
      Worklist.push_back(&*I);
  }

  // Propagation rule 2: if a value defined in a loop is used outside, the user
  // is sync dependent on the condition of the loop exits that dominate the
  // user. For example,
  //
  // int i = 0;
  // do {
  //   i++;
  //   if (foo(i)) ... // uniform
  // } while (i < tid);
  // if (bar(i)) ...   // divergent
  //
  // A program may contain unstructured loops. Therefore, we cannot leverage
  // LoopInfo, which only recognizes natural loops.
  //
  // The algorithm used here handles both natural and unstructured loops.  Given
  // a branch TI, we first compute its influence region, the union of all simple
  // paths from TI to its immediate post dominator (IPostDom). Then, we search
  // for all the values defined in the influence region but used outside. All
  // these users are sync dependent on TI.
  DenseSet<BasicBlock *> InfluenceRegion;
  computeInfluenceRegion(ThisBB, IPostDom, InfluenceRegion);
  // An insight that can speed up the search process is that all the in-region
  // values that are used outside must dominate TI. Therefore, instead of
  // searching every basic blocks in the influence region, we search all the
  // dominators of TI until it is outside the influence region.
  BasicBlock *InfluencedBB = ThisBB;
  while (InfluenceRegion.count(InfluencedBB)) {
    for (auto &I : *InfluencedBB) {
      if (!DV.count(&I))
        findUsersOutsideInfluenceRegion(I, InfluenceRegion);
    }
    DomTreeNode *IDomNode = DT.getNode(InfluencedBB)->getIDom();
    if (IDomNode == nullptr)
      break;
    InfluencedBB = IDomNode->getBlock();
  }
}

void DivergencePropagator::findUsersOutsideInfluenceRegion(
    Instruction &I, const DenseSet<BasicBlock *> &InfluenceRegion) {
  for (Use &Use : I.uses()) {
    Instruction *UserInst = cast<Instruction>(Use.getUser());
    if (!InfluenceRegion.count(UserInst->getParent())) {
      DU.insert(&Use);
      if (DV.insert(UserInst).second)
        Worklist.push_back(UserInst);
    }
  }
}

// A helper function for computeInfluenceRegion that adds successors of "ThisBB"
// to the influence region.
static void
addSuccessorsToInfluenceRegion(BasicBlock *ThisBB, BasicBlock *End,
                               DenseSet<BasicBlock *> &InfluenceRegion,
                               std::vector<BasicBlock *> &InfluenceStack) {
  for (BasicBlock *Succ : successors(ThisBB)) {
    if (Succ != End && InfluenceRegion.insert(Succ).second)
      InfluenceStack.push_back(Succ);
  }
}

void DivergencePropagator::computeInfluenceRegion(
    BasicBlock *Start, BasicBlock *End,
    DenseSet<BasicBlock *> &InfluenceRegion) {
  assert(PDT.properlyDominates(End, Start) &&
         "End does not properly dominate Start");

  // The influence region starts from the end of "Start" to the beginning of
  // "End". Therefore, "Start" should not be in the region unless "Start" is in
  // a loop that doesn't contain "End".
  std::vector<BasicBlock *> InfluenceStack;
  addSuccessorsToInfluenceRegion(Start, End, InfluenceRegion, InfluenceStack);
  while (!InfluenceStack.empty()) {
    BasicBlock *BB = InfluenceStack.back();
    InfluenceStack.pop_back();
    addSuccessorsToInfluenceRegion(BB, End, InfluenceRegion, InfluenceStack);
  }
}

void DivergencePropagator::exploreDataDependency(Value *V) {
  // Follow def-use chains of V.
  for (User *U : V->users()) {
    if (!TTI.isAlwaysUniform(U) && DV.insert(U).second)
      Worklist.push_back(U);
  }
}

void DivergencePropagator::propagate() {
  // Traverse the dependency graph using DFS.
  while (!Worklist.empty()) {
    Value *V = Worklist.back();
    Worklist.pop_back();
    if (Instruction *I = dyn_cast<Instruction>(V)) {
      // Terminators with less than two successors won't introduce sync
      // dependency. Ignore them.
      if (I->isTerminator() && I->getNumSuccessors() > 1)
        exploreSyncDependency(I);
    }
    exploreDataDependency(V);
  }
}

} // namespace

// Register this pass.
char LegacyDivergenceAnalysis::ID = 0;
LegacyDivergenceAnalysis::LegacyDivergenceAnalysis() : FunctionPass(ID) {
  initializeLegacyDivergenceAnalysisPass(*PassRegistry::getPassRegistry());
}
INITIALIZE_PASS_BEGIN(LegacyDivergenceAnalysis, "divergence",
                      "Legacy Divergence Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_END(LegacyDivergenceAnalysis, "divergence",
                    "Legacy Divergence Analysis", false, true)

FunctionPass *llvm::createLegacyDivergenceAnalysisPass() {
  return new LegacyDivergenceAnalysis();
}

void LegacyDivergenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<PostDominatorTreeWrapperPass>();
  AU.addRequired<LoopInfoWrapperPass>();
  AU.setPreservesAll();
}

bool LegacyDivergenceAnalysis::shouldUseGPUDivergenceAnalysis(
    const Function &F, const TargetTransformInfo &TTI) const {
  if (!(UseGPUDA || TTI.useGPUDivergenceAnalysis()))
    return false;

  // GPUDivergenceAnalysis requires a reducible CFG.
  auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  using RPOTraversal = ReversePostOrderTraversal<const Function *>;
  RPOTraversal FuncRPOT(&F);
  return !containsIrreducibleCFG<const BasicBlock *, const RPOTraversal,
                                 const LoopInfo>(FuncRPOT, LI);
}

bool LegacyDivergenceAnalysis::runOnFunction(Function &F) {
  auto *TTIWP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
  if (TTIWP == nullptr)
    return false;

  TargetTransformInfo &TTI = TTIWP->getTTI(F);
  // Fast path: if the target does not have branch divergence, we do not mark
  // any branch as divergent.
  if (!TTI.hasBranchDivergence())
    return false;

  DivergentValues.clear();
  DivergentUses.clear();
  gpuDA = nullptr;

  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();

  if (shouldUseGPUDivergenceAnalysis(F, TTI)) {
    // run the new GPU divergence analysis
    auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    gpuDA = std::make_unique<GPUDivergenceAnalysis>(F, DT, PDT, LI, TTI);

  } else {
    // run LLVM's existing DivergenceAnalysis
    DivergencePropagator DP(F, TTI, DT, PDT, DivergentValues, DivergentUses);
    DP.populateWithSourcesOfDivergence();
    DP.propagate();
  }

  LLVM_DEBUG(dbgs() << "\nAfter divergence analysis on " << F.getName()
                    << ":\n";
             print(dbgs(), F.getParent()));

  return false;
}

bool LegacyDivergenceAnalysis::isDivergent(const Value *V) const {
  if (gpuDA) {
    return gpuDA->isDivergent(*V);
  }
  return DivergentValues.count(V);
}

bool LegacyDivergenceAnalysis::isDivergentUse(const Use *U) const {
  if (gpuDA) {
    return gpuDA->isDivergentUse(*U);
  }
  return DivergentValues.count(U->get()) || DivergentUses.count(U);
}

void LegacyDivergenceAnalysis::print(raw_ostream &OS, const Module *) const {
  if ((!gpuDA || !gpuDA->hasDivergence()) && DivergentValues.empty())
    return;

  const Function *F = nullptr;
  if (!DivergentValues.empty()) {
    const Value *FirstDivergentValue = *DivergentValues.begin();
    if (const Argument *Arg = dyn_cast<Argument>(FirstDivergentValue)) {
      F = Arg->getParent();
    } else if (const Instruction *I =
                   dyn_cast<Instruction>(FirstDivergentValue)) {
      F = I->getParent()->getParent();
    } else {
      llvm_unreachable("Only arguments and instructions can be divergent");
    }
  } else if (gpuDA) {
    F = &gpuDA->getFunction();
  }
  if (!F)
    return;

  // Dumps all divergent values in F, arguments and then instructions.
  for (auto &Arg : F->args()) {
    OS << (isDivergent(&Arg) ? "DIVERGENT: " : "           ");
    OS << Arg << "\n";
  }
  // Iterate instructions using instructions() to ensure a deterministic order.
  for (auto BI = F->begin(), BE = F->end(); BI != BE; ++BI) {
    auto &BB = *BI;
    OS << "\n           " << BB.getName() << ":\n";
    for (auto &I : BB.instructionsWithoutDebug()) {
      OS << (isDivergent(&I) ? "DIVERGENT:     " : "               ");
      OS << I << "\n";
    }
  }
  OS << "\n";
}