Heuristic.py 18.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
# DExTer : Debugging Experience Tester
# ~~~~~~   ~         ~~         ~   ~~
#
# Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
"""Calculate a 'score' based on some dextIR.
Assign penalties based on different commands to decrease the score.
1.000 would be a perfect score.
0.000 is the worst theoretical score possible.
"""

from collections import defaultdict, namedtuple, Counter
import difflib
import os
from itertools import groupby
from dex.command.StepValueInfo import StepValueInfo


PenaltyCommand = namedtuple('PenaltyCommand', ['pen_dict', 'max_penalty'])
# 'meta' field used in different ways by different things
PenaltyInstance = namedtuple('PenaltyInstance', ['meta', 'the_penalty'])


def add_heuristic_tool_arguments(parser):
    parser.add_argument(
        '--penalty-variable-optimized',
        type=int,
        default=3,
        help='set the penalty multiplier for each'
        ' occurrence of a variable that was optimized'
        ' away',
        metavar='<int>')
    parser.add_argument(
        '--penalty-misordered-values',
        type=int,
        default=3,
        help='set the penalty multiplier for each'
        ' occurrence of a misordered value.',
        metavar='<int>')
    parser.add_argument(
        '--penalty-irretrievable',
        type=int,
        default=4,
        help='set the penalty multiplier for each'
        " occurrence of a variable that couldn't"
        ' be retrieved',
        metavar='<int>')
    parser.add_argument(
        '--penalty-not-evaluatable',
        type=int,
        default=5,
        help='set the penalty multiplier for each'
        " occurrence of a variable that couldn't"
        ' be evaluated',
        metavar='<int>')
    parser.add_argument(
        '--penalty-missing-values',
        type=int,
        default=6,
        help='set the penalty multiplier for each missing'
        ' value',
        metavar='<int>')
    parser.add_argument(
        '--penalty-incorrect-values',
        type=int,
        default=7,
        help='set the penalty multiplier for each'
        ' occurrence of an unexpected value.',
        metavar='<int>')
    parser.add_argument(
        '--penalty-unreachable',
        type=int,
        default=4,  # XXX XXX XXX selected by random
        help='set the penalty for each line stepped onto that should'
        ' have been unreachable.',
        metavar='<int>')
    parser.add_argument(
        '--penalty-misordered-steps',
        type=int,
        default=2,  # XXX XXX XXX selected by random
        help='set the penalty for differences in the order of steps'
        ' the program was expected to observe.',
        metavar='<int>')
    parser.add_argument(
        '--penalty-missing-step',
        type=int,
        default=4,  # XXX XXX XXX selected by random
        help='set the penalty for the program skipping over a step.',
        metavar='<int>')
    parser.add_argument(
        '--penalty-incorrect-program-state',
        type=int,
        default=4,  # XXX XXX XXX selected by random
        help='set the penalty for the program never entering an expected state'
        ' or entering an unexpected state.',
        metavar='<int>')


class Heuristic(object):
    def __init__(self, context, steps):
        self.context = context
        self.penalties = {}

        worst_penalty = max([
            self.penalty_variable_optimized, self.penalty_irretrievable,
            self.penalty_not_evaluatable, self.penalty_incorrect_values,
            self.penalty_missing_values, self.penalty_unreachable,
            self.penalty_missing_step, self.penalty_misordered_steps
        ])

        # Get DexExpectWatchType results.
        try:
            for command in steps.commands['DexExpectWatchType']:
                command.eval(steps)
                maximum_possible_penalty = min(3, len(
                    command.values)) * worst_penalty
                name, p = self._calculate_expect_watch_penalties(
                    command, maximum_possible_penalty)
                name = name + ' ExpectType'
                self.penalties[name] = PenaltyCommand(p,
                                                      maximum_possible_penalty)
        except KeyError:
            pass

        # Get DexExpectWatchValue results.
        try:
            for command in steps.commands['DexExpectWatchValue']:
                command.eval(steps)
                maximum_possible_penalty = min(3, len(
                    command.values)) * worst_penalty
                name, p = self._calculate_expect_watch_penalties(
                    command, maximum_possible_penalty)
                name = name + ' ExpectValue'
                self.penalties[name] = PenaltyCommand(p,
                                                      maximum_possible_penalty)
        except KeyError:
            pass

        try:
            penalties = defaultdict(list)
            maximum_possible_penalty_all = 0
            for expect_state in steps.commands['DexExpectProgramState']:
                success = expect_state.eval(steps)
                p = 0 if success else self.penalty_incorrect_program_state

                meta = 'expected {}: {}'.format(
                    '{} times'.format(expect_state.times)
                        if expect_state.times >= 0 else 'at least once',
                    expect_state.program_state_text)

                if success:
                    meta = '<g>{}</>'.format(meta)

                maximum_possible_penalty = self.penalty_incorrect_program_state
                maximum_possible_penalty_all += maximum_possible_penalty
                name = expect_state.program_state_text
                penalties[meta] = [PenaltyInstance('{} times'.format(
                    len(expect_state.encounters)), p)]
            self.penalties['expected program states'] = PenaltyCommand(
                penalties, maximum_possible_penalty_all)
        except KeyError:
            pass

        # Get the total number of each step kind.
        step_kind_counts = defaultdict(int)
        for step in getattr(steps, 'steps'):
            step_kind_counts[step.step_kind] += 1

        # Get DexExpectStepKind results.
        penalties = defaultdict(list)
        maximum_possible_penalty_all = 0
        try:
            for command in steps.commands['DexExpectStepKind']:
                command.eval()
                # Cap the penalty at 2 * expected count or else 1
                maximum_possible_penalty = max(command.count * 2, 1)
                p = abs(command.count - step_kind_counts[command.name])
                actual_penalty = min(p, maximum_possible_penalty)
                key = ('{}'.format(command.name)
                       if actual_penalty else '<g>{}</>'.format(command.name))
                penalties[key] = [PenaltyInstance(p, actual_penalty)]
                maximum_possible_penalty_all += maximum_possible_penalty
            self.penalties['step kind differences'] = PenaltyCommand(
                penalties, maximum_possible_penalty_all)
        except KeyError:
            pass

        if 'DexUnreachable' in steps.commands:
            cmds = steps.commands['DexUnreachable']
            unreach_count = 0

            # Find steps with unreachable in them
            ureachs = [
                s for s in steps.steps if 'DexUnreachable' in s.watches.keys()
            ]

            # There's no need to match up cmds with the actual watches
            upen = self.penalty_unreachable

            count = upen * len(ureachs)
            if count != 0:
                d = dict()
                for x in ureachs:
                    msg = 'line {} reached'.format(x.current_location.lineno)
                    d[msg] = [PenaltyInstance(upen, upen)]
            else:
                d = {
                    '<g>No unreachable lines seen</>': [PenaltyInstance(0, 0)]
                }
            total = PenaltyCommand(d, len(cmds) * upen)

            self.penalties['unreachable lines'] = total

        if 'DexExpectStepOrder' in steps.commands:
            cmds = steps.commands['DexExpectStepOrder']

            # Form a list of which line/cmd we _should_ have seen
            cmd_num_lst = [(x, c.lineno) for c in cmds
                                         for x in c.sequence]
            # Order them by the sequence number
            cmd_num_lst.sort(key=lambda t: t[0])
            # Strip out sequence key
            cmd_num_lst = [y for x, y in cmd_num_lst]

            # Now do the same, but for the actually observed lines/cmds
            ss = steps.steps
            deso = [s for s in ss if 'DexExpectStepOrder' in s.watches.keys()]
            deso = [s.watches['DexExpectStepOrder'] for s in deso]
            # We rely on the steps remaining in order here
            order_list = [int(x.expression) for x in deso]

            # First off, check to see whether or not there are missing items
            expected = Counter(cmd_num_lst)
            seen = Counter(order_list)

            unseen_line_dict = dict()
            skipped_line_dict = dict()

            mispen = self.penalty_missing_step
            num_missing = 0
            num_repeats = 0
            for k, v in expected.items():
                if k not in seen:
                    msg = 'Line {} not seen'.format(k)
                    unseen_line_dict[msg] = [PenaltyInstance(mispen, mispen)]
                    num_missing += v
                elif v > seen[k]:
                    msg = 'Line {} skipped at least once'.format(k)
                    skipped_line_dict[msg] = [PenaltyInstance(mispen, mispen)]
                    num_missing += v - seen[k]
                elif v < seen[k]:
                    # Don't penalise unexpected extra sightings of a line
                    # for now
                    num_repeats = seen[k] - v
                    pass

            if len(unseen_line_dict) == 0:
                pi = PenaltyInstance(0, 0)
                unseen_line_dict['<g>All lines were seen</>'] = [pi]

            if len(skipped_line_dict) == 0:
                pi = PenaltyInstance(0, 0)
                skipped_line_dict['<g>No lines were skipped</>'] = [pi]

            total = PenaltyCommand(unseen_line_dict, len(expected) * mispen)
            self.penalties['Unseen lines'] = total
            total = PenaltyCommand(skipped_line_dict, len(expected) * mispen)
            self.penalties['Skipped lines'] = total

            ordpen = self.penalty_misordered_steps
            cmd_num_lst = [str(x) for x in cmd_num_lst]
            order_list = [str(x) for x in order_list]
            lst = list(difflib.Differ().compare(cmd_num_lst, order_list))
            diff_detail = Counter(l[0] for l in lst)

            assert '?' not in diff_detail

            # Diffs are hard to interpret; there are many algorithms for
            # condensing them. Ignore all that, and just print out the changed
            # sequences, it's up to the user to interpret what's going on.

            def filt_lines(s, seg, e, key):
                lst = [s]
                for x in seg:
                    if x[0] == key:
                        lst.append(int(x[2:]))
                lst.append(e)
                return lst

            diff_msgs = dict()

            def reportdiff(start_idx, segment, end_idx):
                msg = 'Order mismatch, expected linenos {}, saw {}'
                expected_linenos = filt_lines(start_idx, segment, end_idx, '-')
                seen_linenos = filt_lines(start_idx, segment, end_idx, '+')
                msg = msg.format(expected_linenos, seen_linenos)
                diff_msgs[msg] = [PenaltyInstance(ordpen, ordpen)]

            # Group by changed segments.
            start_expt_step = 0
            end_expt_step = 0
            to_print_lst = []
            for k, subit in groupby(lst, lambda x: x[0] == ' '):
                if k:  # Whitespace group
                    nochanged = [x for x in subit]
                    end_expt_step = int(nochanged[0][2:])
                    if len(to_print_lst) > 0:
                        reportdiff(start_expt_step, to_print_lst,
                                   end_expt_step)
                    start_expt_step = int(nochanged[-1][2:])
                    to_print_lst = []
                else:  # Diff group, save for printing
                    to_print_lst = [x for x in subit]

            # If there was a dangling different step, print that too.
            if len(to_print_lst) > 0:
                reportdiff(start_expt_step, to_print_lst, '[End]')

            if len(diff_msgs) == 0:
                diff_msgs['<g>No lines misordered</>'] = [
                    PenaltyInstance(0, 0)
                ]
            total = PenaltyCommand(diff_msgs, len(cmd_num_lst) * ordpen)
            self.penalties['Misordered lines'] = total

        return

    def _calculate_expect_watch_penalties(self, c, maximum_possible_penalty):
        penalties = defaultdict(list)

        if c.line_range[0] == c.line_range[-1]:
            line_range = str(c.line_range[0])
        else:
            line_range = '{}-{}'.format(c.line_range[0], c.line_range[-1])

        name = '{}:{} [{}]'.format(
            os.path.basename(c.path), line_range, c.expression)

        num_actual_watches = len(c.expected_watches) + len(
            c.unexpected_watches)

        penalty_available = maximum_possible_penalty

        # Only penalize for missing values if we have actually seen a watch
        # that's returned us an actual value at some point, or if we've not
        # encountered the value at all.
        if num_actual_watches or c.times_encountered == 0:
            for v in c.missing_values:
                current_penalty = min(penalty_available,
                                      self.penalty_missing_values)
                penalty_available -= current_penalty
                penalties['missing values'].append(
                    PenaltyInstance(v, current_penalty))

        for v in c.encountered_values:
            penalties['<g>expected encountered watches</>'].append(
                PenaltyInstance(v, 0))

        penalty_descriptions = [
            (self.penalty_not_evaluatable, c.invalid_watches,
             'could not evaluate'),
            (self.penalty_variable_optimized, c.optimized_out_watches,
             'result optimized away'),
            (self.penalty_misordered_values, c.misordered_watches,
             'misordered result'),
            (self.penalty_irretrievable, c.irretrievable_watches,
             'result could not be retrieved'),
            (self.penalty_incorrect_values, c.unexpected_watches,
             'unexpected result'),
        ]

        for penalty_score, watches, description in penalty_descriptions:
            # We only penalize the encountered issue for each missing value per
            # command but we still want to record each one, so set the penalty
            # to 0 after the threshold is passed.
            times_to_penalize = len(c.missing_values)

            for w in watches:
                times_to_penalize -= 1
                penalty_score = min(penalty_available, penalty_score)
                penalty_available -= penalty_score
                penalties[description].append(
                    PenaltyInstance(w, penalty_score))
                if not times_to_penalize:
                    penalty_score = 0

        return name, penalties

    @property
    def penalty(self):
        result = 0

        maximum_allowed_penalty = 0
        for name, pen_cmd in self.penalties.items():
            maximum_allowed_penalty += pen_cmd.max_penalty
            value = pen_cmd.pen_dict
            for category, inst_list in value.items():
                result += sum(x.the_penalty for x in inst_list)
        return min(result, maximum_allowed_penalty)

    @property
    def max_penalty(self):
        return sum(p_cat.max_penalty for p_cat in self.penalties.values())

    @property
    def score(self):
        try:
            return 1.0 - (self.penalty / float(self.max_penalty))
        except ZeroDivisionError:
            return float('nan')

    @property
    def summary_string(self):
        score = self.score
        isnan = score != score  # pylint: disable=comparison-with-itself
        color = 'g'
        if score < 0.25 or isnan:
            color = 'r'
        elif score < 0.75:
            color = 'y'

        return '<{}>({:.4f})</>'.format(color, score)

    @property
    def verbose_output(self):  # noqa
        string = ''
        string += ('\n')
        for command in sorted(self.penalties):
            pen_cmd = self.penalties[command]
            maximum_possible_penalty = pen_cmd.max_penalty
            total_penalty = 0
            lines = []
            for category in sorted(pen_cmd.pen_dict):
                lines.append('    <r>{}</>:\n'.format(category))

                for result, penalty in pen_cmd.pen_dict[category]:
                    if isinstance(result, StepValueInfo):
                        text = 'step {}'.format(result.step_index)
                        if result.expected_value:
                            text += ' ({})'.format(result.expected_value)
                    else:
                        text = str(result)
                    if penalty:
                        assert penalty > 0, penalty
                        total_penalty += penalty
                        text += ' <r>[-{}]</>'.format(penalty)
                    lines.append('      {}\n'.format(text))

                lines.append('\n')

            string += ('  <b>{}</> <y>[{}/{}]</>\n'.format(
                command, total_penalty, maximum_possible_penalty))
            for line in lines:
                string += (line)
        string += ('\n')
        return string

    @property
    def penalty_variable_optimized(self):
        return self.context.options.penalty_variable_optimized

    @property
    def penalty_irretrievable(self):
        return self.context.options.penalty_irretrievable

    @property
    def penalty_not_evaluatable(self):
        return self.context.options.penalty_not_evaluatable

    @property
    def penalty_incorrect_values(self):
        return self.context.options.penalty_incorrect_values

    @property
    def penalty_missing_values(self):
        return self.context.options.penalty_missing_values

    @property
    def penalty_misordered_values(self):
        return self.context.options.penalty_misordered_values

    @property
    def penalty_unreachable(self):
        return self.context.options.penalty_unreachable

    @property
    def penalty_missing_step(self):
        return self.context.options.penalty_missing_step

    @property
    def penalty_misordered_steps(self):
        return self.context.options.penalty_misordered_steps

    @property
    def penalty_incorrect_program_state(self):
        return self.context.options.penalty_incorrect_program_state