PipeWindows.cpp
11.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
//===-- PipeWindows.cpp ---------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "lldb/Host/windows/PipeWindows.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"
#include <fcntl.h>
#include <io.h>
#include <rpc.h>
#include <atomic>
#include <string>
using namespace lldb;
using namespace lldb_private;
namespace {
std::atomic<uint32_t> g_pipe_serial(0);
constexpr llvm::StringLiteral g_pipe_name_prefix = "\\\\.\\Pipe\\";
} // namespace
PipeWindows::PipeWindows()
: m_read(INVALID_HANDLE_VALUE), m_write(INVALID_HANDLE_VALUE),
m_read_fd(PipeWindows::kInvalidDescriptor),
m_write_fd(PipeWindows::kInvalidDescriptor) {
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
PipeWindows::PipeWindows(pipe_t read, pipe_t write)
: m_read((HANDLE)read), m_write((HANDLE)write),
m_read_fd(PipeWindows::kInvalidDescriptor),
m_write_fd(PipeWindows::kInvalidDescriptor) {
assert(read != LLDB_INVALID_PIPE || write != LLDB_INVALID_PIPE);
// Don't risk in passing file descriptors and getting handles from them by
// _get_osfhandle since the retrieved handles are highly likely unrecognized
// in the current process and usually crashes the program. Pass handles
// instead since the handle can be inherited.
if (read != LLDB_INVALID_PIPE) {
m_read_fd = _open_osfhandle((intptr_t)read, _O_RDONLY);
// Make sure the fd and native handle are consistent.
if (m_read_fd < 0)
m_read = INVALID_HANDLE_VALUE;
}
if (write != LLDB_INVALID_PIPE) {
m_write_fd = _open_osfhandle((intptr_t)write, _O_WRONLY);
if (m_write_fd < 0)
m_write = INVALID_HANDLE_VALUE;
}
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
PipeWindows::~PipeWindows() { Close(); }
Status PipeWindows::CreateNew(bool child_process_inherit) {
// Create an anonymous pipe with the specified inheritance.
SECURITY_ATTRIBUTES sa{sizeof(SECURITY_ATTRIBUTES), 0,
child_process_inherit ? TRUE : FALSE};
BOOL result = ::CreatePipe(&m_read, &m_write, &sa, 1024);
if (result == FALSE)
return Status(::GetLastError(), eErrorTypeWin32);
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
m_read_overlapped.hEvent = ::CreateEventA(nullptr, TRUE, FALSE, nullptr);
m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
return Status();
}
Status PipeWindows::CreateNewNamed(bool child_process_inherit) {
// Even for anonymous pipes, we open a named pipe. This is because you
// cannot get overlapped i/o on Windows without using a named pipe. So we
// synthesize a unique name.
uint32_t serial = g_pipe_serial.fetch_add(1);
std::string pipe_name;
llvm::raw_string_ostream pipe_name_stream(pipe_name);
pipe_name_stream << "lldb.pipe." << ::GetCurrentProcessId() << "." << serial;
pipe_name_stream.flush();
return CreateNew(pipe_name.c_str(), child_process_inherit);
}
Status PipeWindows::CreateNew(llvm::StringRef name,
bool child_process_inherit) {
if (name.empty())
return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);
if (CanRead() || CanWrite())
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
std::string pipe_path = g_pipe_name_prefix.str();
pipe_path.append(name.str());
// Always open for overlapped i/o. We implement blocking manually in Read
// and Write.
DWORD read_mode = FILE_FLAG_OVERLAPPED;
m_read = ::CreateNamedPipeA(
pipe_path.c_str(), PIPE_ACCESS_INBOUND | read_mode,
PIPE_TYPE_BYTE | PIPE_WAIT, 1, 1024, 1024, 120 * 1000, NULL);
if (INVALID_HANDLE_VALUE == m_read)
return Status(::GetLastError(), eErrorTypeWin32);
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
// Open the write end of the pipe. Note that closing either the read or
// write end of the pipe could directly close the pipe itself.
Status result = OpenNamedPipe(name, child_process_inherit, false);
if (!result.Success()) {
CloseReadFileDescriptor();
return result;
}
return result;
}
Status PipeWindows::CreateWithUniqueName(llvm::StringRef prefix,
bool child_process_inherit,
llvm::SmallVectorImpl<char> &name) {
llvm::SmallString<128> pipe_name;
Status error;
::UUID unique_id;
RPC_CSTR unique_string;
RPC_STATUS status = ::UuidCreate(&unique_id);
if (status == RPC_S_OK || status == RPC_S_UUID_LOCAL_ONLY)
status = ::UuidToStringA(&unique_id, &unique_string);
if (status == RPC_S_OK) {
pipe_name = prefix;
pipe_name += "-";
pipe_name += reinterpret_cast<char *>(unique_string);
::RpcStringFreeA(&unique_string);
error = CreateNew(pipe_name, child_process_inherit);
} else {
error.SetError(status, eErrorTypeWin32);
}
if (error.Success())
name = pipe_name;
return error;
}
Status PipeWindows::OpenAsReader(llvm::StringRef name,
bool child_process_inherit) {
if (CanRead())
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
return OpenNamedPipe(name, child_process_inherit, true);
}
Status
PipeWindows::OpenAsWriterWithTimeout(llvm::StringRef name,
bool child_process_inherit,
const std::chrono::microseconds &timeout) {
if (CanWrite())
return Status(ERROR_ALREADY_EXISTS, eErrorTypeWin32);
return OpenNamedPipe(name, child_process_inherit, false);
}
Status PipeWindows::OpenNamedPipe(llvm::StringRef name,
bool child_process_inherit, bool is_read) {
if (name.empty())
return Status(ERROR_INVALID_PARAMETER, eErrorTypeWin32);
assert(is_read ? !CanRead() : !CanWrite());
SECURITY_ATTRIBUTES attributes = {};
attributes.bInheritHandle = child_process_inherit;
std::string pipe_path = g_pipe_name_prefix.str();
pipe_path.append(name.str());
if (is_read) {
m_read = ::CreateFileA(pipe_path.c_str(), GENERIC_READ, 0, &attributes,
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
if (INVALID_HANDLE_VALUE == m_read)
return Status(::GetLastError(), eErrorTypeWin32);
m_read_fd = _open_osfhandle((intptr_t)m_read, _O_RDONLY);
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
m_read_overlapped.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);
} else {
m_write = ::CreateFileA(pipe_path.c_str(), GENERIC_WRITE, 0, &attributes,
OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL);
if (INVALID_HANDLE_VALUE == m_write)
return Status(::GetLastError(), eErrorTypeWin32);
m_write_fd = _open_osfhandle((intptr_t)m_write, _O_WRONLY);
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
return Status();
}
int PipeWindows::GetReadFileDescriptor() const { return m_read_fd; }
int PipeWindows::GetWriteFileDescriptor() const { return m_write_fd; }
int PipeWindows::ReleaseReadFileDescriptor() {
if (!CanRead())
return PipeWindows::kInvalidDescriptor;
int result = m_read_fd;
m_read_fd = PipeWindows::kInvalidDescriptor;
if (m_read_overlapped.hEvent)
::CloseHandle(m_read_overlapped.hEvent);
m_read = INVALID_HANDLE_VALUE;
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
return result;
}
int PipeWindows::ReleaseWriteFileDescriptor() {
if (!CanWrite())
return PipeWindows::kInvalidDescriptor;
int result = m_write_fd;
m_write_fd = PipeWindows::kInvalidDescriptor;
m_write = INVALID_HANDLE_VALUE;
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
return result;
}
void PipeWindows::CloseReadFileDescriptor() {
if (!CanRead())
return;
if (m_read_overlapped.hEvent)
::CloseHandle(m_read_overlapped.hEvent);
_close(m_read_fd);
m_read = INVALID_HANDLE_VALUE;
m_read_fd = PipeWindows::kInvalidDescriptor;
ZeroMemory(&m_read_overlapped, sizeof(m_read_overlapped));
}
void PipeWindows::CloseWriteFileDescriptor() {
if (!CanWrite())
return;
_close(m_write_fd);
m_write = INVALID_HANDLE_VALUE;
m_write_fd = PipeWindows::kInvalidDescriptor;
ZeroMemory(&m_write_overlapped, sizeof(m_write_overlapped));
}
void PipeWindows::Close() {
CloseReadFileDescriptor();
CloseWriteFileDescriptor();
}
Status PipeWindows::Delete(llvm::StringRef name) { return Status(); }
bool PipeWindows::CanRead() const { return (m_read != INVALID_HANDLE_VALUE); }
bool PipeWindows::CanWrite() const { return (m_write != INVALID_HANDLE_VALUE); }
HANDLE
PipeWindows::GetReadNativeHandle() { return m_read; }
HANDLE
PipeWindows::GetWriteNativeHandle() { return m_write; }
Status PipeWindows::ReadWithTimeout(void *buf, size_t size,
const std::chrono::microseconds &duration,
size_t &bytes_read) {
if (!CanRead())
return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32);
bytes_read = 0;
DWORD sys_bytes_read = size;
BOOL result = ::ReadFile(m_read, buf, sys_bytes_read, &sys_bytes_read,
&m_read_overlapped);
if (!result && GetLastError() != ERROR_IO_PENDING)
return Status(::GetLastError(), eErrorTypeWin32);
DWORD timeout = (duration == std::chrono::microseconds::zero())
? INFINITE
: duration.count() * 1000;
DWORD wait_result = ::WaitForSingleObject(m_read_overlapped.hEvent, timeout);
if (wait_result != WAIT_OBJECT_0) {
// The operation probably failed. However, if it timed out, we need to
// cancel the I/O. Between the time we returned from WaitForSingleObject
// and the time we call CancelIoEx, the operation may complete. If that
// hapens, CancelIoEx will fail and return ERROR_NOT_FOUND. If that
// happens, the original operation should be considered to have been
// successful.
bool failed = true;
DWORD failure_error = ::GetLastError();
if (wait_result == WAIT_TIMEOUT) {
BOOL cancel_result = CancelIoEx(m_read, &m_read_overlapped);
if (!cancel_result && GetLastError() == ERROR_NOT_FOUND)
failed = false;
}
if (failed)
return Status(failure_error, eErrorTypeWin32);
}
// Now we call GetOverlappedResult setting bWait to false, since we've
// already waited as long as we're willing to.
if (!GetOverlappedResult(m_read, &m_read_overlapped, &sys_bytes_read, FALSE))
return Status(::GetLastError(), eErrorTypeWin32);
bytes_read = sys_bytes_read;
return Status();
}
Status PipeWindows::Write(const void *buf, size_t num_bytes,
size_t &bytes_written) {
if (!CanWrite())
return Status(ERROR_INVALID_HANDLE, eErrorTypeWin32);
DWORD sys_bytes_written = 0;
BOOL write_result = ::WriteFile(m_write, buf, num_bytes, &sys_bytes_written,
&m_write_overlapped);
if (!write_result && GetLastError() != ERROR_IO_PENDING)
return Status(::GetLastError(), eErrorTypeWin32);
BOOL result = GetOverlappedResult(m_write, &m_write_overlapped,
&sys_bytes_written, TRUE);
if (!result)
return Status(::GetLastError(), eErrorTypeWin32);
return Status();
}