Object.cpp
83.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
//===- Object.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "Object.h"
#include "llvm-objcopy.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <unordered_set>
#include <utility>
#include <vector>
namespace llvm {
namespace objcopy {
namespace elf {
using namespace object;
using namespace ELF;
template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
uint8_t *B = Buf.getBufferStart() + Obj.ProgramHdrSegment.Offset +
Seg.Index * sizeof(Elf_Phdr);
Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
Phdr.p_type = Seg.Type;
Phdr.p_flags = Seg.Flags;
Phdr.p_offset = Seg.Offset;
Phdr.p_vaddr = Seg.VAddr;
Phdr.p_paddr = Seg.PAddr;
Phdr.p_filesz = Seg.FileSize;
Phdr.p_memsz = Seg.MemSize;
Phdr.p_align = Seg.Align;
}
Error SectionBase::removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) {
return Error::success();
}
Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
return Error::success();
}
void SectionBase::initialize(SectionTableRef SecTable) {}
void SectionBase::finalize() {}
void SectionBase::markSymbols() {}
void SectionBase::replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &) {}
void SectionBase::onRemove() {}
template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
uint8_t *B = Buf.getBufferStart() + Sec.HeaderOffset;
Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
Shdr.sh_name = Sec.NameIndex;
Shdr.sh_type = Sec.Type;
Shdr.sh_flags = Sec.Flags;
Shdr.sh_addr = Sec.Addr;
Shdr.sh_offset = Sec.Offset;
Shdr.sh_size = Sec.Size;
Shdr.sh_link = Sec.Link;
Shdr.sh_info = Sec.Info;
Shdr.sh_addralign = Sec.Align;
Shdr.sh_entsize = Sec.EntrySize;
}
template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
Sec.EntrySize = sizeof(Elf_Sym);
Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
// Align to the largest field in Elf_Sym.
Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
// Align to the largest field in Elf_Rel(a).
Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {}
template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {
Sec.Size = sizeof(Elf_Word) + Sec.GroupMembers.size() * sizeof(Elf_Word);
}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {}
template <class ELFT>
void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {}
void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
error("cannot write symbol section index table '" + Sec.Name + "' ");
}
void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
error("cannot write symbol table '" + Sec.Name + "' out to binary");
}
void BinarySectionWriter::visit(const RelocationSection &Sec) {
error("cannot write relocation section '" + Sec.Name + "' out to binary");
}
void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
error("cannot write '" + Sec.Name + "' out to binary");
}
void BinarySectionWriter::visit(const GroupSection &Sec) {
error("cannot write '" + Sec.Name + "' out to binary");
}
void SectionWriter::visit(const Section &Sec) {
if (Sec.Type != SHT_NOBITS)
llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
}
static bool addressOverflows32bit(uint64_t Addr) {
// Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
}
template <class T> static T checkedGetHex(StringRef S) {
T Value;
bool Fail = S.getAsInteger(16, Value);
assert(!Fail);
(void)Fail;
return Value;
}
// Fills exactly Len bytes of buffer with hexadecimal characters
// representing value 'X'
template <class T, class Iterator>
static Iterator utohexstr(T X, Iterator It, size_t Len) {
// Fill range with '0'
std::fill(It, It + Len, '0');
for (long I = Len - 1; I >= 0; --I) {
unsigned char Mod = static_cast<unsigned char>(X) & 15;
*(It + I) = hexdigit(Mod, false);
X >>= 4;
}
assert(X == 0);
return It + Len;
}
uint8_t IHexRecord::getChecksum(StringRef S) {
assert((S.size() & 1) == 0);
uint8_t Checksum = 0;
while (!S.empty()) {
Checksum += checkedGetHex<uint8_t>(S.take_front(2));
S = S.drop_front(2);
}
return -Checksum;
}
IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
ArrayRef<uint8_t> Data) {
IHexLineData Line(getLineLength(Data.size()));
assert(Line.size());
auto Iter = Line.begin();
*Iter++ = ':';
Iter = utohexstr(Data.size(), Iter, 2);
Iter = utohexstr(Addr, Iter, 4);
Iter = utohexstr(Type, Iter, 2);
for (uint8_t X : Data)
Iter = utohexstr(X, Iter, 2);
StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
Iter = utohexstr(getChecksum(S), Iter, 2);
*Iter++ = '\r';
*Iter++ = '\n';
assert(Iter == Line.end());
return Line;
}
static Error checkRecord(const IHexRecord &R) {
switch (R.Type) {
case IHexRecord::Data:
if (R.HexData.size() == 0)
return createStringError(
errc::invalid_argument,
"zero data length is not allowed for data records");
break;
case IHexRecord::EndOfFile:
break;
case IHexRecord::SegmentAddr:
// 20-bit segment address. Data length must be 2 bytes
// (4 bytes in hex)
if (R.HexData.size() != 4)
return createStringError(
errc::invalid_argument,
"segment address data should be 2 bytes in size");
break;
case IHexRecord::StartAddr80x86:
case IHexRecord::StartAddr:
if (R.HexData.size() != 8)
return createStringError(errc::invalid_argument,
"start address data should be 4 bytes in size");
// According to Intel HEX specification '03' record
// only specifies the code address within the 20-bit
// segmented address space of the 8086/80186. This
// means 12 high order bits should be zeroes.
if (R.Type == IHexRecord::StartAddr80x86 &&
R.HexData.take_front(3) != "000")
return createStringError(errc::invalid_argument,
"start address exceeds 20 bit for 80x86");
break;
case IHexRecord::ExtendedAddr:
// 16-31 bits of linear base address
if (R.HexData.size() != 4)
return createStringError(
errc::invalid_argument,
"extended address data should be 2 bytes in size");
break;
default:
// Unknown record type
return createStringError(errc::invalid_argument, "unknown record type: %u",
static_cast<unsigned>(R.Type));
}
return Error::success();
}
// Checks that IHEX line contains valid characters.
// This allows converting hexadecimal data to integers
// without extra verification.
static Error checkChars(StringRef Line) {
assert(!Line.empty());
if (Line[0] != ':')
return createStringError(errc::invalid_argument,
"missing ':' in the beginning of line.");
for (size_t Pos = 1; Pos < Line.size(); ++Pos)
if (hexDigitValue(Line[Pos]) == -1U)
return createStringError(errc::invalid_argument,
"invalid character at position %zu.", Pos + 1);
return Error::success();
}
Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
assert(!Line.empty());
// ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
if (Line.size() < 11)
return createStringError(errc::invalid_argument,
"line is too short: %zu chars.", Line.size());
if (Error E = checkChars(Line))
return std::move(E);
IHexRecord Rec;
size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
if (Line.size() != getLength(DataLen))
return createStringError(errc::invalid_argument,
"invalid line length %zu (should be %zu)",
Line.size(), getLength(DataLen));
Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
Rec.HexData = Line.substr(9, DataLen * 2);
if (getChecksum(Line.drop_front(1)) != 0)
return createStringError(errc::invalid_argument, "incorrect checksum.");
if (Error E = checkRecord(Rec))
return std::move(E);
return Rec;
}
static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
Segment *Seg = Sec->ParentSegment;
if (Seg && Seg->Type != ELF::PT_LOAD)
Seg = nullptr;
return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
: Sec->Addr;
}
void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
ArrayRef<uint8_t> Data) {
assert(Data.size() == Sec->Size);
const uint32_t ChunkSize = 16;
uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
while (!Data.empty()) {
uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
if (Addr > 0xFFFFFU) {
// Write extended address record, zeroing segment address
// if needed.
if (SegmentAddr != 0)
SegmentAddr = writeSegmentAddr(0U);
BaseAddr = writeBaseAddr(Addr);
} else {
// We can still remain 16-bit
SegmentAddr = writeSegmentAddr(Addr);
}
}
uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
assert(SegOffset <= 0xFFFFU);
DataSize = std::min(DataSize, 0x10000U - SegOffset);
writeData(0, SegOffset, Data.take_front(DataSize));
Addr += DataSize;
Data = Data.drop_front(DataSize);
}
}
uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
assert(Addr <= 0xFFFFFU);
uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
writeData(2, 0, Data);
return Addr & 0xF0000U;
}
uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
assert(Addr <= 0xFFFFFFFFU);
uint64_t Base = Addr & 0xFFFF0000U;
uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
static_cast<uint8_t>((Base >> 16) & 0xFF)};
writeData(4, 0, Data);
return Base;
}
void IHexSectionWriterBase::writeData(uint8_t Type, uint16_t Addr,
ArrayRef<uint8_t> Data) {
Offset += IHexRecord::getLineLength(Data.size());
}
void IHexSectionWriterBase::visit(const Section &Sec) {
writeSection(&Sec, Sec.Contents);
}
void IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
writeSection(&Sec, Sec.Data);
}
void IHexSectionWriterBase::visit(const StringTableSection &Sec) {
// Check that sizer has already done its work
assert(Sec.Size == Sec.StrTabBuilder.getSize());
// We are free to pass an invalid pointer to writeSection as long
// as we don't actually write any data. The real writer class has
// to override this method .
writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
}
void IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
writeSection(&Sec, Sec.Contents);
}
void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
ArrayRef<uint8_t> Data) {
IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
Offset += HexData.size();
}
void IHexSectionWriter::visit(const StringTableSection &Sec) {
assert(Sec.Size == Sec.StrTabBuilder.getSize());
std::vector<uint8_t> Data(Sec.Size);
Sec.StrTabBuilder.write(Data.data());
writeSection(&Sec, Data);
}
void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }
void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); }
void SectionWriter::visit(const OwnedDataSection &Sec) {
llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
}
static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};
static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
return Data.size() > ZlibGnuMagic.size() &&
std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
}
template <class ELFT>
static std::tuple<uint64_t, uint64_t>
getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
const bool IsGnuDebug = isDataGnuCompressed(Data);
const uint64_t DecompressedSize =
IsGnuDebug
? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
: reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
const uint64_t DecompressedAlign =
IsGnuDebug ? 1
: reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
->ch_addralign;
return std::make_tuple(DecompressedSize, DecompressedAlign);
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
? (ZlibGnuMagic.size() + sizeof(Sec.Size))
: sizeof(Elf_Chdr_Impl<ELFT>);
StringRef CompressedContent(
reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
Sec.OriginalData.size() - DataOffset);
SmallVector<char, 128> DecompressedContent;
if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
static_cast<size_t>(Sec.Size)))
reportError(Sec.Name, std::move(E));
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
}
void BinarySectionWriter::visit(const DecompressedSection &Sec) {
error("cannot write compressed section '" + Sec.Name + "' ");
}
void DecompressedSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void DecompressedSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
void OwnedDataSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
void OwnedDataSection::appendHexData(StringRef HexData) {
assert((HexData.size() & 1) == 0);
while (!HexData.empty()) {
Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
HexData = HexData.drop_front(2);
}
Size = Data.size();
}
void BinarySectionWriter::visit(const CompressedSection &Sec) {
error("cannot write compressed section '" + Sec.Name + "' ");
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
if (Sec.CompressionType == DebugCompressionType::None) {
std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
return;
}
if (Sec.CompressionType == DebugCompressionType::GNU) {
const char *Magic = "ZLIB";
memcpy(Buf, Magic, strlen(Magic));
Buf += strlen(Magic);
const uint64_t DecompressedSize =
support::endian::read64be(&Sec.DecompressedSize);
memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
Buf += sizeof(DecompressedSize);
} else {
Elf_Chdr_Impl<ELFT> Chdr;
Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
Chdr.ch_size = Sec.DecompressedSize;
Chdr.ch_addralign = Sec.DecompressedAlign;
memcpy(Buf, &Chdr, sizeof(Chdr));
Buf += sizeof(Chdr);
}
std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
}
CompressedSection::CompressedSection(const SectionBase &Sec,
DebugCompressionType CompressionType)
: SectionBase(Sec), CompressionType(CompressionType),
DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
if (Error E = zlib::compress(
StringRef(reinterpret_cast<const char *>(OriginalData.data()),
OriginalData.size()),
CompressedData))
reportError(Name, std::move(E));
size_t ChdrSize;
if (CompressionType == DebugCompressionType::GNU) {
Name = ".z" + Sec.Name.substr(1);
ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
} else {
Flags |= ELF::SHF_COMPRESSED;
ChdrSize =
std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
}
Size = ChdrSize + CompressedData.size();
Align = 8;
}
CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
uint64_t DecompressedSize,
uint64_t DecompressedAlign)
: CompressionType(DebugCompressionType::None),
DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
OriginalData = CompressedData;
}
void CompressedSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void CompressedSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }
uint32_t StringTableSection::findIndex(StringRef Name) const {
return StrTabBuilder.getOffset(Name);
}
void StringTableSection::prepareForLayout() {
StrTabBuilder.finalize();
Size = StrTabBuilder.getSize();
}
void SectionWriter::visit(const StringTableSection &Sec) {
Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
}
void StringTableSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void StringTableSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
}
void SectionIndexSection::initialize(SectionTableRef SecTable) {
Size = 0;
setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
Link,
"Link field value " + Twine(Link) + " in section " + Name + " is invalid",
"Link field value " + Twine(Link) + " in section " + Name +
" is not a symbol table"));
Symbols->setShndxTable(this);
}
void SectionIndexSection::finalize() { Link = Symbols->Index; }
void SectionIndexSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
switch (Index) {
case SHN_ABS:
case SHN_COMMON:
return true;
}
if (Machine == EM_AMDGPU) {
return Index == SHN_AMDGPU_LDS;
}
if (Machine == EM_HEXAGON) {
switch (Index) {
case SHN_HEXAGON_SCOMMON:
case SHN_HEXAGON_SCOMMON_1:
case SHN_HEXAGON_SCOMMON_2:
case SHN_HEXAGON_SCOMMON_4:
case SHN_HEXAGON_SCOMMON_8:
return true;
}
}
return false;
}
// Large indexes force us to clarify exactly what this function should do. This
// function should return the value that will appear in st_shndx when written
// out.
uint16_t Symbol::getShndx() const {
if (DefinedIn != nullptr) {
if (DefinedIn->Index >= SHN_LORESERVE)
return SHN_XINDEX;
return DefinedIn->Index;
}
if (ShndxType == SYMBOL_SIMPLE_INDEX) {
// This means that we don't have a defined section but we do need to
// output a legitimate section index.
return SHN_UNDEF;
}
assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
(ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
(ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
return static_cast<uint16_t>(ShndxType);
}
bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }
void SymbolTableSection::assignIndices() {
uint32_t Index = 0;
for (auto &Sym : Symbols)
Sym->Index = Index++;
}
void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
SectionBase *DefinedIn, uint64_t Value,
uint8_t Visibility, uint16_t Shndx,
uint64_t SymbolSize) {
Symbol Sym;
Sym.Name = Name.str();
Sym.Binding = Bind;
Sym.Type = Type;
Sym.DefinedIn = DefinedIn;
if (DefinedIn != nullptr)
DefinedIn->HasSymbol = true;
if (DefinedIn == nullptr) {
if (Shndx >= SHN_LORESERVE)
Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
else
Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
}
Sym.Value = Value;
Sym.Visibility = Visibility;
Sym.Size = SymbolSize;
Sym.Index = Symbols.size();
Symbols.emplace_back(std::make_unique<Symbol>(Sym));
Size += this->EntrySize;
}
Error SymbolTableSection::removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) {
if (ToRemove(SectionIndexTable))
SectionIndexTable = nullptr;
if (ToRemove(SymbolNames)) {
if (!AllowBrokenLinks)
return createStringError(
llvm::errc::invalid_argument,
"string table '%s' cannot be removed because it is "
"referenced by the symbol table '%s'",
SymbolNames->Name.data(), this->Name.data());
SymbolNames = nullptr;
}
return removeSymbols(
[ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
}
void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
[Callable](SymPtr &Sym) { Callable(*Sym); });
std::stable_partition(
std::begin(Symbols), std::end(Symbols),
[](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
assignIndices();
}
Error SymbolTableSection::removeSymbols(
function_ref<bool(const Symbol &)> ToRemove) {
Symbols.erase(
std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
[ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
std::end(Symbols));
Size = Symbols.size() * EntrySize;
assignIndices();
return Error::success();
}
void SymbolTableSection::replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) {
for (std::unique_ptr<Symbol> &Sym : Symbols)
if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
Sym->DefinedIn = To;
}
void SymbolTableSection::initialize(SectionTableRef SecTable) {
Size = 0;
setStrTab(SecTable.getSectionOfType<StringTableSection>(
Link,
"Symbol table has link index of " + Twine(Link) +
" which is not a valid index",
"Symbol table has link index of " + Twine(Link) +
" which is not a string table"));
}
void SymbolTableSection::finalize() {
uint32_t MaxLocalIndex = 0;
for (std::unique_ptr<Symbol> &Sym : Symbols) {
Sym->NameIndex =
SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
if (Sym->Binding == STB_LOCAL)
MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
}
// Now we need to set the Link and Info fields.
Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
Info = MaxLocalIndex + 1;
}
void SymbolTableSection::prepareForLayout() {
// Reserve proper amount of space in section index table, so we can
// layout sections correctly. We will fill the table with correct
// indexes later in fillShdnxTable.
if (SectionIndexTable)
SectionIndexTable->reserve(Symbols.size());
// Add all of our strings to SymbolNames so that SymbolNames has the right
// size before layout is decided.
// If the symbol names section has been removed, don't try to add strings to
// the table.
if (SymbolNames != nullptr)
for (std::unique_ptr<Symbol> &Sym : Symbols)
SymbolNames->addString(Sym->Name);
}
void SymbolTableSection::fillShndxTable() {
if (SectionIndexTable == nullptr)
return;
// Fill section index table with real section indexes. This function must
// be called after assignOffsets.
for (const std::unique_ptr<Symbol> &Sym : Symbols) {
if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
SectionIndexTable->addIndex(Sym->DefinedIn->Index);
else
SectionIndexTable->addIndex(SHN_UNDEF);
}
}
const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
if (Symbols.size() <= Index)
error("invalid symbol index: " + Twine(Index));
return Symbols[Index].get();
}
Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
return const_cast<Symbol *>(
static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
// Loop though symbols setting each entry of the symbol table.
for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
Sym->st_name = Symbol->NameIndex;
Sym->st_value = Symbol->Value;
Sym->st_size = Symbol->Size;
Sym->st_other = Symbol->Visibility;
Sym->setBinding(Symbol->Binding);
Sym->setType(Symbol->Type);
Sym->st_shndx = Symbol->getShndx();
++Sym;
}
}
void SymbolTableSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
Error RelocationSection::removeSectionReferences(
bool AllowBrokenLinks,
function_ref<bool(const SectionBase *)> ToRemove) {
if (ToRemove(Symbols)) {
if (!AllowBrokenLinks)
return createStringError(
llvm::errc::invalid_argument,
"symbol table '%s' cannot be removed because it is "
"referenced by the relocation section '%s'",
Symbols->Name.data(), this->Name.data());
Symbols = nullptr;
}
for (const Relocation &R : Relocations) {
if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
!ToRemove(R.RelocSymbol->DefinedIn))
continue;
return createStringError(llvm::errc::invalid_argument,
"section '%s' cannot be removed: (%s+0x%" PRIx64
") has relocation against symbol '%s'",
R.RelocSymbol->DefinedIn->Name.data(),
SecToApplyRel->Name.data(), R.Offset,
R.RelocSymbol->Name.c_str());
}
return Error::success();
}
template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::initialize(
SectionTableRef SecTable) {
if (Link != SHN_UNDEF)
setSymTab(SecTable.getSectionOfType<SymTabType>(
Link,
"Link field value " + Twine(Link) + " in section " + Name +
" is invalid",
"Link field value " + Twine(Link) + " in section " + Name +
" is not a symbol table"));
if (Info != SHN_UNDEF)
setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
" in section " + Name +
" is invalid"));
else
setSection(nullptr);
}
template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
this->Link = Symbols ? Symbols->Index : 0;
if (SecToApplyRel != nullptr)
this->Info = SecToApplyRel->Index;
}
template <class ELFT>
static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}
template <class ELFT>
static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
Rela.r_addend = Addend;
}
template <class RelRange, class T>
static void writeRel(const RelRange &Relocations, T *Buf) {
for (const auto &Reloc : Relocations) {
Buf->r_offset = Reloc.Offset;
setAddend(*Buf, Reloc.Addend);
Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
Reloc.Type, false);
++Buf;
}
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
if (Sec.Type == SHT_REL)
writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
else
writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
}
void RelocationSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void RelocationSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
Error RelocationSection::removeSymbols(
function_ref<bool(const Symbol &)> ToRemove) {
for (const Relocation &Reloc : Relocations)
if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
return createStringError(
llvm::errc::invalid_argument,
"not stripping symbol '%s' because it is named in a relocation",
Reloc.RelocSymbol->Name.data());
return Error::success();
}
void RelocationSection::markSymbols() {
for (const Relocation &Reloc : Relocations)
if (Reloc.RelocSymbol)
Reloc.RelocSymbol->Referenced = true;
}
void RelocationSection::replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) {
// Update the target section if it was replaced.
if (SectionBase *To = FromTo.lookup(SecToApplyRel))
SecToApplyRel = To;
}
void SectionWriter::visit(const DynamicRelocationSection &Sec) {
llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
}
void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
Error DynamicRelocationSection::removeSectionReferences(
bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
if (ToRemove(Symbols)) {
if (!AllowBrokenLinks)
return createStringError(
llvm::errc::invalid_argument,
"symbol table '%s' cannot be removed because it is "
"referenced by the relocation section '%s'",
Symbols->Name.data(), this->Name.data());
Symbols = nullptr;
}
// SecToApplyRel contains a section referenced by sh_info field. It keeps
// a section to which the relocation section applies. When we remove any
// sections we also remove their relocation sections. Since we do that much
// earlier, this assert should never be triggered.
assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
return Error::success();
}
Error Section::removeSectionReferences(
bool AllowBrokenDependency,
function_ref<bool(const SectionBase *)> ToRemove) {
if (ToRemove(LinkSection)) {
if (!AllowBrokenDependency)
return createStringError(llvm::errc::invalid_argument,
"section '%s' cannot be removed because it is "
"referenced by the section '%s'",
LinkSection->Name.data(), this->Name.data());
LinkSection = nullptr;
}
return Error::success();
}
void GroupSection::finalize() {
this->Info = Sym ? Sym->Index : 0;
this->Link = SymTab ? SymTab->Index : 0;
}
Error GroupSection::removeSectionReferences(
bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
if (ToRemove(SymTab)) {
if (!AllowBrokenLinks)
return createStringError(
llvm::errc::invalid_argument,
"section '.symtab' cannot be removed because it is "
"referenced by the group section '%s'",
this->Name.data());
SymTab = nullptr;
Sym = nullptr;
}
llvm::erase_if(GroupMembers, ToRemove);
return Error::success();
}
Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
if (ToRemove(*Sym))
return createStringError(llvm::errc::invalid_argument,
"symbol '%s' cannot be removed because it is "
"referenced by the section '%s[%d]'",
Sym->Name.data(), this->Name.data(), this->Index);
return Error::success();
}
void GroupSection::markSymbols() {
if (Sym)
Sym->Referenced = true;
}
void GroupSection::replaceSectionReferences(
const DenseMap<SectionBase *, SectionBase *> &FromTo) {
for (SectionBase *&Sec : GroupMembers)
if (SectionBase *To = FromTo.lookup(Sec))
Sec = To;
}
void GroupSection::onRemove() {
// As the header section of the group is removed, drop the Group flag in its
// former members.
for (SectionBase *Sec : GroupMembers)
Sec->Flags &= ~SHF_GROUP;
}
void Section::initialize(SectionTableRef SecTable) {
if (Link == ELF::SHN_UNDEF)
return;
LinkSection =
SecTable.getSection(Link, "Link field value " + Twine(Link) +
" in section " + Name + " is invalid");
if (LinkSection->Type == ELF::SHT_SYMTAB)
LinkSection = nullptr;
}
void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }
void GnuDebugLinkSection::init(StringRef File) {
FileName = sys::path::filename(File);
// The format for the .gnu_debuglink starts with the file name and is
// followed by a null terminator and then the CRC32 of the file. The CRC32
// should be 4 byte aligned. So we add the FileName size, a 1 for the null
// byte, and then finally push the size to alignment and add 4.
Size = alignTo(FileName.size() + 1, 4) + 4;
// The CRC32 will only be aligned if we align the whole section.
Align = 4;
Type = OriginalType = ELF::SHT_PROGBITS;
Name = ".gnu_debuglink";
// For sections not found in segments, OriginalOffset is only used to
// establish the order that sections should go in. By using the maximum
// possible offset we cause this section to wind up at the end.
OriginalOffset = std::numeric_limits<uint64_t>::max();
}
GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
uint32_t PrecomputedCRC)
: FileName(File), CRC32(PrecomputedCRC) {
init(File);
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
unsigned char *Buf = Out.getBufferStart() + Sec.Offset;
Elf_Word *CRC =
reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
*CRC = Sec.CRC32;
llvm::copy(Sec.FileName, Buf);
}
void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
ELF::Elf32_Word *Buf =
reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
*Buf++ = Sec.FlagWord;
for (SectionBase *S : Sec.GroupMembers)
support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
}
void GroupSection::accept(SectionVisitor &Visitor) const {
Visitor.visit(*this);
}
void GroupSection::accept(MutableSectionVisitor &Visitor) {
Visitor.visit(*this);
}
// Returns true IFF a section is wholly inside the range of a segment
static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
// If a section is empty it should be treated like it has a size of 1. This is
// to clarify the case when an empty section lies on a boundary between two
// segments and ensures that the section "belongs" to the second segment and
// not the first.
uint64_t SecSize = Sec.Size ? Sec.Size : 1;
if (Sec.Type == SHT_NOBITS) {
if (!(Sec.Flags & SHF_ALLOC))
return false;
bool SectionIsTLS = Sec.Flags & SHF_TLS;
bool SegmentIsTLS = Seg.Type == PT_TLS;
if (SectionIsTLS != SegmentIsTLS)
return false;
return Seg.VAddr <= Sec.Addr &&
Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
}
return Seg.Offset <= Sec.OriginalOffset &&
Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
}
// Returns true IFF a segment's original offset is inside of another segment's
// range.
static bool segmentOverlapsSegment(const Segment &Child,
const Segment &Parent) {
return Parent.OriginalOffset <= Child.OriginalOffset &&
Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
}
static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
// Any segment without a parent segment should come before a segment
// that has a parent segment.
if (A->OriginalOffset < B->OriginalOffset)
return true;
if (A->OriginalOffset > B->OriginalOffset)
return false;
return A->Index < B->Index;
}
void BasicELFBuilder::initFileHeader() {
Obj->Flags = 0x0;
Obj->Type = ET_REL;
Obj->OSABI = ELFOSABI_NONE;
Obj->ABIVersion = 0;
Obj->Entry = 0x0;
Obj->Machine = EM_NONE;
Obj->Version = 1;
}
void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }
StringTableSection *BasicELFBuilder::addStrTab() {
auto &StrTab = Obj->addSection<StringTableSection>();
StrTab.Name = ".strtab";
Obj->SectionNames = &StrTab;
return &StrTab;
}
SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
auto &SymTab = Obj->addSection<SymbolTableSection>();
SymTab.Name = ".symtab";
SymTab.Link = StrTab->Index;
// The symbol table always needs a null symbol
SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
Obj->SymbolTable = &SymTab;
return &SymTab;
}
void BasicELFBuilder::initSections() {
for (SectionBase &Sec : Obj->sections())
Sec.initialize(Obj->sections());
}
void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
auto Data = ArrayRef<uint8_t>(
reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
MemBuf->getBufferSize());
auto &DataSection = Obj->addSection<Section>(Data);
DataSection.Name = ".data";
DataSection.Type = ELF::SHT_PROGBITS;
DataSection.Size = Data.size();
DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
[](char C) { return !isalnum(C); }, '_');
Twine Prefix = Twine("_binary_") + SanitizedFilename;
SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
/*Value=*/0, NewSymbolVisibility, 0, 0);
SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
/*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
/*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
0);
}
std::unique_ptr<Object> BinaryELFBuilder::build() {
initFileHeader();
initHeaderSegment();
SymbolTableSection *SymTab = addSymTab(addStrTab());
initSections();
addData(SymTab);
return std::move(Obj);
}
// Adds sections from IHEX data file. Data should have been
// fully validated by this time.
void IHexELFBuilder::addDataSections() {
OwnedDataSection *Section = nullptr;
uint64_t SegmentAddr = 0, BaseAddr = 0;
uint32_t SecNo = 1;
for (const IHexRecord &R : Records) {
uint64_t RecAddr;
switch (R.Type) {
case IHexRecord::Data:
// Ignore empty data records
if (R.HexData.empty())
continue;
RecAddr = R.Addr + SegmentAddr + BaseAddr;
if (!Section || Section->Addr + Section->Size != RecAddr)
// OriginalOffset field is only used to sort section properly, so
// instead of keeping track of real offset in IHEX file, we use
// section number.
Section = &Obj->addSection<OwnedDataSection>(
".sec" + std::to_string(SecNo++), RecAddr,
ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
Section->appendHexData(R.HexData);
break;
case IHexRecord::EndOfFile:
break;
case IHexRecord::SegmentAddr:
// 20-bit segment address.
SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
break;
case IHexRecord::StartAddr80x86:
case IHexRecord::StartAddr:
Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
assert(Obj->Entry <= 0xFFFFFU);
break;
case IHexRecord::ExtendedAddr:
// 16-31 bits of linear base address
BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
break;
default:
llvm_unreachable("unknown record type");
}
}
}
std::unique_ptr<Object> IHexELFBuilder::build() {
initFileHeader();
initHeaderSegment();
StringTableSection *StrTab = addStrTab();
addSymTab(StrTab);
initSections();
addDataSections();
return std::move(Obj);
}
template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
for (Segment &Parent : Obj.segments()) {
// Every segment will overlap with itself but we don't want a segment to
// be its own parent so we avoid that situation.
if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
// We want a canonical "most parental" segment but this requires
// inspecting the ParentSegment.
if (compareSegmentsByOffset(&Parent, &Child))
if (Child.ParentSegment == nullptr ||
compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
Child.ParentSegment = &Parent;
}
}
}
}
template <class ELFT> void ELFBuilder<ELFT>::findEhdrOffset() {
if (!ExtractPartition)
return;
for (const SectionBase &Sec : Obj.sections()) {
if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
EhdrOffset = Sec.Offset;
return;
}
}
error("could not find partition named '" + *ExtractPartition + "'");
}
template <class ELFT>
void ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
uint32_t Index = 0;
for (const auto &Phdr : unwrapOrError(HeadersFile.program_headers())) {
if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
error("program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
" and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
" goes past the end of the file");
ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
(size_t)Phdr.p_filesz};
Segment &Seg = Obj.addSegment(Data);
Seg.Type = Phdr.p_type;
Seg.Flags = Phdr.p_flags;
Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
Seg.Offset = Phdr.p_offset + EhdrOffset;
Seg.VAddr = Phdr.p_vaddr;
Seg.PAddr = Phdr.p_paddr;
Seg.FileSize = Phdr.p_filesz;
Seg.MemSize = Phdr.p_memsz;
Seg.Align = Phdr.p_align;
Seg.Index = Index++;
for (SectionBase &Sec : Obj.sections())
if (sectionWithinSegment(Sec, Seg)) {
Seg.addSection(&Sec);
if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
Sec.ParentSegment = &Seg;
}
}
auto &ElfHdr = Obj.ElfHdrSegment;
ElfHdr.Index = Index++;
ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;
const auto &Ehdr = *HeadersFile.getHeader();
auto &PrHdr = Obj.ProgramHdrSegment;
PrHdr.Type = PT_PHDR;
PrHdr.Flags = 0;
// The spec requires us to have p_vaddr % p_align == p_offset % p_align.
// Whereas this works automatically for ElfHdr, here OriginalOffset is
// always non-zero and to ensure the equation we assign the same value to
// VAddr as well.
PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
PrHdr.PAddr = 0;
PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
// The spec requires us to naturally align all the fields.
PrHdr.Align = sizeof(Elf_Addr);
PrHdr.Index = Index++;
// Now we do an O(n^2) loop through the segments in order to match up
// segments.
for (Segment &Child : Obj.segments())
setParentSegment(Child);
setParentSegment(ElfHdr);
setParentSegment(PrHdr);
}
template <class ELFT>
void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
error("invalid alignment " + Twine(GroupSec->Align) + " of group section '" +
GroupSec->Name + "'");
SectionTableRef SecTable = Obj.sections();
if (GroupSec->Link != SHN_UNDEF) {
auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
GroupSec->Link,
"link field value '" + Twine(GroupSec->Link) + "' in section '" +
GroupSec->Name + "' is invalid",
"link field value '" + Twine(GroupSec->Link) + "' in section '" +
GroupSec->Name + "' is not a symbol table");
Symbol *Sym = SymTab->getSymbolByIndex(GroupSec->Info);
if (!Sym)
error("info field value '" + Twine(GroupSec->Info) + "' in section '" +
GroupSec->Name + "' is not a valid symbol index");
GroupSec->setSymTab(SymTab);
GroupSec->setSymbol(Sym);
}
if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
GroupSec->Contents.empty())
error("the content of the section " + GroupSec->Name + " is malformed");
const ELF::Elf32_Word *Word =
reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
const ELF::Elf32_Word *End =
Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
GroupSec->setFlagWord(*Word++);
for (; Word != End; ++Word) {
uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
GroupSec->addMember(SecTable.getSection(
Index, "group member index " + Twine(Index) + " in section '" +
GroupSec->Name + "' is invalid"));
}
}
template <class ELFT>
void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
ArrayRef<Elf_Word> ShndxData;
auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
for (const auto &Sym : Symbols) {
SectionBase *DefSection = nullptr;
StringRef Name = unwrapOrError(Sym.getName(StrTabData));
if (Sym.st_shndx == SHN_XINDEX) {
if (SymTab->getShndxTable() == nullptr)
error("symbol '" + Name +
"' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists");
if (ShndxData.data() == nullptr) {
const Elf_Shdr &ShndxSec =
*unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
ShndxData = unwrapOrError(
ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
if (ShndxData.size() != Symbols.size())
error("symbol section index table does not have the same number of "
"entries as the symbol table");
}
Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
DefSection = Obj.sections().getSection(
Index,
"symbol '" + Name + "' has invalid section index " + Twine(Index));
} else if (Sym.st_shndx >= SHN_LORESERVE) {
if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
error(
"symbol '" + Name +
"' has unsupported value greater than or equal to SHN_LORESERVE: " +
Twine(Sym.st_shndx));
}
} else if (Sym.st_shndx != SHN_UNDEF) {
DefSection = Obj.sections().getSection(
Sym.st_shndx, "symbol '" + Name +
"' is defined has invalid section index " +
Twine(Sym.st_shndx));
}
SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
}
}
template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}
template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
ToSet = Rela.r_addend;
}
template <class T>
static void initRelocations(RelocationSection *Relocs,
SymbolTableSection *SymbolTable, T RelRange) {
for (const auto &Rel : RelRange) {
Relocation ToAdd;
ToAdd.Offset = Rel.r_offset;
getAddend(ToAdd.Addend, Rel);
ToAdd.Type = Rel.getType(false);
if (uint32_t Sym = Rel.getSymbol(false)) {
if (!SymbolTable)
error("'" + Relocs->Name +
"': relocation references symbol with index " + Twine(Sym) +
", but there is no symbol table");
ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Sym);
}
Relocs->addRelocation(ToAdd);
}
}
SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
if (Index == SHN_UNDEF || Index > Sections.size())
error(ErrMsg);
return Sections[Index - 1].get();
}
template <class T>
T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
Twine TypeErrMsg) {
if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
return Sec;
error(TypeErrMsg);
}
template <class ELFT>
SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
ArrayRef<uint8_t> Data;
switch (Shdr.sh_type) {
case SHT_REL:
case SHT_RELA:
if (Shdr.sh_flags & SHF_ALLOC) {
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return Obj.addSection<DynamicRelocationSection>(Data);
}
return Obj.addSection<RelocationSection>();
case SHT_STRTAB:
// If a string table is allocated we don't want to mess with it. That would
// mean altering the memory image. There are no special link types or
// anything so we can just use a Section.
if (Shdr.sh_flags & SHF_ALLOC) {
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return Obj.addSection<Section>(Data);
}
return Obj.addSection<StringTableSection>();
case SHT_HASH:
case SHT_GNU_HASH:
// Hash tables should refer to SHT_DYNSYM which we're not going to change.
// Because of this we don't need to mess with the hash tables either.
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return Obj.addSection<Section>(Data);
case SHT_GROUP:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return Obj.addSection<GroupSection>(Data);
case SHT_DYNSYM:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return Obj.addSection<DynamicSymbolTableSection>(Data);
case SHT_DYNAMIC:
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
return Obj.addSection<DynamicSection>(Data);
case SHT_SYMTAB: {
auto &SymTab = Obj.addSection<SymbolTableSection>();
Obj.SymbolTable = &SymTab;
return SymTab;
}
case SHT_SYMTAB_SHNDX: {
auto &ShndxSection = Obj.addSection<SectionIndexSection>();
Obj.SectionIndexTable = &ShndxSection;
return ShndxSection;
}
case SHT_NOBITS:
return Obj.addSection<Section>(Data);
default: {
Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
StringRef Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
if (Name.startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
uint64_t DecompressedSize, DecompressedAlign;
std::tie(DecompressedSize, DecompressedAlign) =
getDecompressedSizeAndAlignment<ELFT>(Data);
return Obj.addSection<CompressedSection>(Data, DecompressedSize,
DecompressedAlign);
}
return Obj.addSection<Section>(Data);
}
}
}
template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
uint32_t Index = 0;
for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
if (Index == 0) {
++Index;
continue;
}
auto &Sec = makeSection(Shdr);
Sec.Name = std::string(unwrapOrError(ElfFile.getSectionName(&Shdr)));
Sec.Type = Sec.OriginalType = Shdr.sh_type;
Sec.Flags = Sec.OriginalFlags = Shdr.sh_flags;
Sec.Addr = Shdr.sh_addr;
Sec.Offset = Shdr.sh_offset;
Sec.OriginalOffset = Shdr.sh_offset;
Sec.Size = Shdr.sh_size;
Sec.Link = Shdr.sh_link;
Sec.Info = Shdr.sh_info;
Sec.Align = Shdr.sh_addralign;
Sec.EntrySize = Shdr.sh_entsize;
Sec.Index = Index++;
Sec.OriginalData =
ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
(Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
}
}
template <class ELFT> void ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
uint32_t ShstrIndex = ElfFile.getHeader()->e_shstrndx;
if (ShstrIndex == SHN_XINDEX)
ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;
if (ShstrIndex == SHN_UNDEF)
Obj.HadShdrs = false;
else
Obj.SectionNames =
Obj.sections().template getSectionOfType<StringTableSection>(
ShstrIndex,
"e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
" is invalid",
"e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
" does not reference a string table");
// If a section index table exists we'll need to initialize it before we
// initialize the symbol table because the symbol table might need to
// reference it.
if (Obj.SectionIndexTable)
Obj.SectionIndexTable->initialize(Obj.sections());
// Now that all of the sections have been added we can fill out some extra
// details about symbol tables. We need the symbol table filled out before
// any relocations.
if (Obj.SymbolTable) {
Obj.SymbolTable->initialize(Obj.sections());
initSymbolTable(Obj.SymbolTable);
} else if (EnsureSymtab) {
Obj.addNewSymbolTable();
}
// Now that all sections and symbols have been added we can add
// relocations that reference symbols and set the link and info fields for
// relocation sections.
for (auto &Sec : Obj.sections()) {
if (&Sec == Obj.SymbolTable)
continue;
Sec.initialize(Obj.sections());
if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
if (RelSec->Type == SHT_REL)
initRelocations(RelSec, Obj.SymbolTable,
unwrapOrError(ElfFile.rels(Shdr)));
else
initRelocations(RelSec, Obj.SymbolTable,
unwrapOrError(ElfFile.relas(Shdr)));
} else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
initGroupSection(GroupSec);
}
}
}
template <class ELFT> void ELFBuilder<ELFT>::build(bool EnsureSymtab) {
readSectionHeaders();
findEhdrOffset();
// The ELFFile whose ELF headers and program headers are copied into the
// output file. Normally the same as ElfFile, but if we're extracting a
// loadable partition it will point to the partition's headers.
ELFFile<ELFT> HeadersFile = unwrapOrError(ELFFile<ELFT>::create(toStringRef(
{ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})));
auto &Ehdr = *HeadersFile.getHeader();
Obj.OSABI = Ehdr.e_ident[EI_OSABI];
Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
Obj.Type = Ehdr.e_type;
Obj.Machine = Ehdr.e_machine;
Obj.Version = Ehdr.e_version;
Obj.Entry = Ehdr.e_entry;
Obj.Flags = Ehdr.e_flags;
readSections(EnsureSymtab);
readProgramHeaders(HeadersFile);
}
Writer::~Writer() {}
Reader::~Reader() {}
std::unique_ptr<Object> BinaryReader::create(bool /*EnsureSymtab*/) const {
return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
}
Expected<std::vector<IHexRecord>> IHexReader::parse() const {
SmallVector<StringRef, 16> Lines;
std::vector<IHexRecord> Records;
bool HasSections = false;
MemBuf->getBuffer().split(Lines, '\n');
Records.reserve(Lines.size());
for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
StringRef Line = Lines[LineNo - 1].trim();
if (Line.empty())
continue;
Expected<IHexRecord> R = IHexRecord::parse(Line);
if (!R)
return parseError(LineNo, R.takeError());
if (R->Type == IHexRecord::EndOfFile)
break;
HasSections |= (R->Type == IHexRecord::Data);
Records.push_back(*R);
}
if (!HasSections)
return parseError(-1U, "no sections");
return std::move(Records);
}
std::unique_ptr<Object> IHexReader::create(bool /*EnsureSymtab*/) const {
std::vector<IHexRecord> Records = unwrapOrError(parse());
return IHexELFBuilder(Records).build();
}
std::unique_ptr<Object> ELFReader::create(bool EnsureSymtab) const {
auto Obj = std::make_unique<Object>();
if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
Builder.build(EnsureSymtab);
return Obj;
} else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
Builder.build(EnsureSymtab);
return Obj;
} else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
Builder.build(EnsureSymtab);
return Obj;
} else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
Builder.build(EnsureSymtab);
return Obj;
}
error("invalid file type");
}
template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf.getBufferStart());
std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
Ehdr.e_ident[EI_MAG0] = 0x7f;
Ehdr.e_ident[EI_MAG1] = 'E';
Ehdr.e_ident[EI_MAG2] = 'L';
Ehdr.e_ident[EI_MAG3] = 'F';
Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
Ehdr.e_ident[EI_DATA] =
ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;
Ehdr.e_type = Obj.Type;
Ehdr.e_machine = Obj.Machine;
Ehdr.e_version = Obj.Version;
Ehdr.e_entry = Obj.Entry;
// We have to use the fully-qualified name llvm::size
// since some compilers complain on ambiguous resolution.
Ehdr.e_phnum = llvm::size(Obj.segments());
Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
Ehdr.e_flags = Obj.Flags;
Ehdr.e_ehsize = sizeof(Elf_Ehdr);
if (WriteSectionHeaders && Obj.sections().size() != 0) {
Ehdr.e_shentsize = sizeof(Elf_Shdr);
Ehdr.e_shoff = Obj.SHOff;
// """
// If the number of sections is greater than or equal to
// SHN_LORESERVE (0xff00), this member has the value zero and the actual
// number of section header table entries is contained in the sh_size field
// of the section header at index 0.
// """
auto Shnum = Obj.sections().size() + 1;
if (Shnum >= SHN_LORESERVE)
Ehdr.e_shnum = 0;
else
Ehdr.e_shnum = Shnum;
// """
// If the section name string table section index is greater than or equal
// to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
// and the actual index of the section name string table section is
// contained in the sh_link field of the section header at index 0.
// """
if (Obj.SectionNames->Index >= SHN_LORESERVE)
Ehdr.e_shstrndx = SHN_XINDEX;
else
Ehdr.e_shstrndx = Obj.SectionNames->Index;
} else {
Ehdr.e_shentsize = 0;
Ehdr.e_shoff = 0;
Ehdr.e_shnum = 0;
Ehdr.e_shstrndx = 0;
}
}
template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
for (auto &Seg : Obj.segments())
writePhdr(Seg);
}
template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
// This reference serves to write the dummy section header at the begining
// of the file. It is not used for anything else
Elf_Shdr &Shdr =
*reinterpret_cast<Elf_Shdr *>(Buf.getBufferStart() + Obj.SHOff);
Shdr.sh_name = 0;
Shdr.sh_type = SHT_NULL;
Shdr.sh_flags = 0;
Shdr.sh_addr = 0;
Shdr.sh_offset = 0;
// See writeEhdr for why we do this.
uint64_t Shnum = Obj.sections().size() + 1;
if (Shnum >= SHN_LORESERVE)
Shdr.sh_size = Shnum;
else
Shdr.sh_size = 0;
// See writeEhdr for why we do this.
if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
Shdr.sh_link = Obj.SectionNames->Index;
else
Shdr.sh_link = 0;
Shdr.sh_info = 0;
Shdr.sh_addralign = 0;
Shdr.sh_entsize = 0;
for (SectionBase &Sec : Obj.sections())
writeShdr(Sec);
}
template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
for (SectionBase &Sec : Obj.sections())
// Segments are responsible for writing their contents, so only write the
// section data if the section is not in a segment. Note that this renders
// sections in segments effectively immutable.
if (Sec.ParentSegment == nullptr)
Sec.accept(*SecWriter);
}
template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
for (Segment &Seg : Obj.segments()) {
size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
std::memcpy(Buf.getBufferStart() + Seg.Offset, Seg.getContents().data(),
Size);
}
// Iterate over removed sections and overwrite their old data with zeroes.
for (auto &Sec : Obj.removedSections()) {
Segment *Parent = Sec.ParentSegment;
if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
continue;
uint64_t Offset =
Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
std::memset(Buf.getBufferStart() + Offset, 0, Sec.Size);
}
}
template <class ELFT>
ELFWriter<ELFT>::ELFWriter(Object &Obj, Buffer &Buf, bool WSH,
bool OnlyKeepDebug)
: Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
OnlyKeepDebug(OnlyKeepDebug) {}
Error Object::removeSections(bool AllowBrokenLinks,
std::function<bool(const SectionBase &)> ToRemove) {
auto Iter = std::stable_partition(
std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
if (ToRemove(*Sec))
return false;
if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
if (auto ToRelSec = RelSec->getSection())
return !ToRemove(*ToRelSec);
}
return true;
});
if (SymbolTable != nullptr && ToRemove(*SymbolTable))
SymbolTable = nullptr;
if (SectionNames != nullptr && ToRemove(*SectionNames))
SectionNames = nullptr;
if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
SectionIndexTable = nullptr;
// Now make sure there are no remaining references to the sections that will
// be removed. Sometimes it is impossible to remove a reference so we emit
// an error here instead.
std::unordered_set<const SectionBase *> RemoveSections;
RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
for (auto &Segment : Segments)
Segment->removeSection(RemoveSec.get());
RemoveSec->onRemove();
RemoveSections.insert(RemoveSec.get());
}
// For each section that remains alive, we want to remove the dead references.
// This either might update the content of the section (e.g. remove symbols
// from symbol table that belongs to removed section) or trigger an error if
// a live section critically depends on a section being removed somehow
// (e.g. the removed section is referenced by a relocation).
for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
if (Error E = KeepSec->removeSectionReferences(AllowBrokenLinks,
[&RemoveSections](const SectionBase *Sec) {
return RemoveSections.find(Sec) != RemoveSections.end();
}))
return E;
}
// Transfer removed sections into the Object RemovedSections container for use
// later.
std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
// Now finally get rid of them all together.
Sections.erase(Iter, std::end(Sections));
return Error::success();
}
Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
if (SymbolTable)
for (const SecPtr &Sec : Sections)
if (Error E = Sec->removeSymbols(ToRemove))
return E;
return Error::success();
}
void Object::addNewSymbolTable() {
assert(!SymbolTable && "Object must not has a SymbolTable.");
// Reuse an existing SHT_STRTAB section if it exists.
StringTableSection *StrTab = nullptr;
for (SectionBase &Sec : sections()) {
if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
StrTab = static_cast<StringTableSection *>(&Sec);
// Prefer a string table that is not the section header string table, if
// such a table exists.
if (SectionNames != &Sec)
break;
}
}
if (!StrTab)
StrTab = &addSection<StringTableSection>();
SymbolTableSection &SymTab = addSection<SymbolTableSection>();
SymTab.Name = ".symtab";
SymTab.Link = StrTab->Index;
SymTab.initialize(sections());
SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
SymbolTable = &SymTab;
}
void Object::sortSections() {
// Use stable_sort to maintain the original ordering as closely as possible.
llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
// Put SHT_GROUP sections first, since group section headers must come
// before the sections they contain. This also matches what GNU objcopy
// does.
if (A->Type != B->Type &&
(A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
return A->Type == ELF::SHT_GROUP;
// For all other sections, sort by offset order.
return A->OriginalOffset < B->OriginalOffset;
});
}
// Orders segments such that if x = y->ParentSegment then y comes before x.
static void orderSegments(std::vector<Segment *> &Segments) {
llvm::stable_sort(Segments, compareSegmentsByOffset);
}
// This function finds a consistent layout for a list of segments starting from
// an Offset. It assumes that Segments have been sorted by orderSegments and
// returns an Offset one past the end of the last segment.
static uint64_t layoutSegments(std::vector<Segment *> &Segments,
uint64_t Offset) {
assert(llvm::is_sorted(Segments, compareSegmentsByOffset));
// The only way a segment should move is if a section was between two
// segments and that section was removed. If that section isn't in a segment
// then it's acceptable, but not ideal, to simply move it to after the
// segments. So we can simply layout segments one after the other accounting
// for alignment.
for (Segment *Seg : Segments) {
// We assume that segments have been ordered by OriginalOffset and Index
// such that a parent segment will always come before a child segment in
// OrderedSegments. This means that the Offset of the ParentSegment should
// already be set and we can set our offset relative to it.
if (Seg->ParentSegment != nullptr) {
Segment *Parent = Seg->ParentSegment;
Seg->Offset =
Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
} else {
Seg->Offset =
alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
}
Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
}
return Offset;
}
// This function finds a consistent layout for a list of sections. It assumes
// that the ->ParentSegment of each section has already been laid out. The
// supplied starting Offset is used for the starting offset of any section that
// does not have a ParentSegment. It returns either the offset given if all
// sections had a ParentSegment or an offset one past the last section if there
// was a section that didn't have a ParentSegment.
template <class Range>
static uint64_t layoutSections(Range Sections, uint64_t Offset) {
// Now the offset of every segment has been set we can assign the offsets
// of each section. For sections that are covered by a segment we should use
// the segment's original offset and the section's original offset to compute
// the offset from the start of the segment. Using the offset from the start
// of the segment we can assign a new offset to the section. For sections not
// covered by segments we can just bump Offset to the next valid location.
uint32_t Index = 1;
for (auto &Sec : Sections) {
Sec.Index = Index++;
if (Sec.ParentSegment != nullptr) {
auto Segment = *Sec.ParentSegment;
Sec.Offset =
Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
} else {
Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
Sec.Offset = Offset;
if (Sec.Type != SHT_NOBITS)
Offset += Sec.Size;
}
}
return Offset;
}
// Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
// occupy no space in the file.
static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
uint32_t Index = 1;
for (auto &Sec : Obj.sections()) {
Sec.Index = Index++;
auto *FirstSec = Sec.ParentSegment && Sec.ParentSegment->Type == PT_LOAD
? Sec.ParentSegment->firstSection()
: nullptr;
// The first section in a PT_LOAD has to have congruent offset and address
// modulo the alignment, which usually equals the maximum page size.
if (FirstSec && FirstSec == &Sec)
Off = alignTo(Off, Sec.ParentSegment->Align, Sec.Addr);
// sh_offset is not significant for SHT_NOBITS sections, but the congruence
// rule must be followed if it is the first section in a PT_LOAD. Do not
// advance Off.
if (Sec.Type == SHT_NOBITS) {
Sec.Offset = Off;
continue;
}
if (!FirstSec) {
// FirstSec being nullptr generally means that Sec does not have the
// SHF_ALLOC flag.
Off = Sec.Align ? alignTo(Off, Sec.Align) : Off;
} else if (FirstSec != &Sec) {
// The offset is relative to the first section in the PT_LOAD segment. Use
// sh_offset for non-SHF_ALLOC sections.
Off = Sec.OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
}
Sec.Offset = Off;
Off += Sec.Size;
}
return Off;
}
// Rewrite p_offset and p_filesz of non-empty non-PT_PHDR segments after
// sh_offset values have been updated.
static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
uint64_t HdrEnd) {
uint64_t MaxOffset = 0;
for (Segment *Seg : Segments) {
const SectionBase *FirstSec = Seg->firstSection();
if (Seg->Type == PT_PHDR || !FirstSec)
continue;
uint64_t Offset = FirstSec->Offset;
uint64_t FileSize = 0;
for (const SectionBase *Sec : Seg->Sections) {
uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
if (Sec->Offset + Size > Offset)
FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
}
// If the segment includes EHDR and program headers, don't make it smaller
// than the headers.
if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
FileSize += Offset - Seg->Offset;
Offset = Seg->Offset;
FileSize = std::max(FileSize, HdrEnd - Offset);
}
Seg->Offset = Offset;
Seg->FileSize = FileSize;
MaxOffset = std::max(MaxOffset, Offset + FileSize);
}
return MaxOffset;
}
template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
Segment &ElfHdr = Obj.ElfHdrSegment;
ElfHdr.Type = PT_PHDR;
ElfHdr.Flags = 0;
ElfHdr.VAddr = 0;
ElfHdr.PAddr = 0;
ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
ElfHdr.Align = 0;
}
template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
// We need a temporary list of segments that has a special order to it
// so that we know that anytime ->ParentSegment is set that segment has
// already had its offset properly set.
std::vector<Segment *> OrderedSegments;
for (Segment &Segment : Obj.segments())
OrderedSegments.push_back(&Segment);
OrderedSegments.push_back(&Obj.ElfHdrSegment);
OrderedSegments.push_back(&Obj.ProgramHdrSegment);
orderSegments(OrderedSegments);
uint64_t Offset;
if (OnlyKeepDebug) {
// For --only-keep-debug, the sections that did not preserve contents were
// changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
// then rewrite p_offset/p_filesz of program headers.
uint64_t HdrEnd =
sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
Offset = std::max(Offset,
layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
} else {
// Offset is used as the start offset of the first segment to be laid out.
// Since the ELF Header (ElfHdrSegment) must be at the start of the file,
// we start at offset 0.
Offset = layoutSegments(OrderedSegments, 0);
Offset = layoutSections(Obj.sections(), Offset);
}
// If we need to write the section header table out then we need to align the
// Offset so that SHOffset is valid.
if (WriteSectionHeaders)
Offset = alignTo(Offset, sizeof(Elf_Addr));
Obj.SHOff = Offset;
}
template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
// We already have the section header offset so we can calculate the total
// size by just adding up the size of each section header.
if (!WriteSectionHeaders)
return Obj.SHOff;
size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
}
template <class ELFT> Error ELFWriter<ELFT>::write() {
// Segment data must be written first, so that the ELF header and program
// header tables can overwrite it, if covered by a segment.
writeSegmentData();
writeEhdr();
writePhdrs();
writeSectionData();
if (WriteSectionHeaders)
writeShdrs();
return Buf.commit();
}
static Error removeUnneededSections(Object &Obj) {
// We can remove an empty symbol table from non-relocatable objects.
// Relocatable objects typically have relocation sections whose
// sh_link field points to .symtab, so we can't remove .symtab
// even if it is empty.
if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
!Obj.SymbolTable->empty())
return Error::success();
// .strtab can be used for section names. In such a case we shouldn't
// remove it.
auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
? nullptr
: Obj.SymbolTable->getStrTab();
return Obj.removeSections(false, [&](const SectionBase &Sec) {
return &Sec == Obj.SymbolTable || &Sec == StrTab;
});
}
template <class ELFT> Error ELFWriter<ELFT>::finalize() {
// It could happen that SectionNames has been removed and yet the user wants
// a section header table output. We need to throw an error if a user tries
// to do that.
if (Obj.SectionNames == nullptr && WriteSectionHeaders)
return createStringError(llvm::errc::invalid_argument,
"cannot write section header table because "
"section header string table was removed");
if (Error E = removeUnneededSections(Obj))
return E;
Obj.sortSections();
// We need to assign indexes before we perform layout because we need to know
// if we need large indexes or not. We can assign indexes first and check as
// we go to see if we will actully need large indexes.
bool NeedsLargeIndexes = false;
if (Obj.sections().size() >= SHN_LORESERVE) {
SectionTableRef Sections = Obj.sections();
NeedsLargeIndexes =
std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
[](const SectionBase &Sec) { return Sec.HasSymbol; });
// TODO: handle case where only one section needs the large index table but
// only needs it because the large index table hasn't been removed yet.
}
if (NeedsLargeIndexes) {
// This means we definitely need to have a section index table but if we
// already have one then we should use it instead of making a new one.
if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
// Addition of a section to the end does not invalidate the indexes of
// other sections and assigns the correct index to the new section.
auto &Shndx = Obj.addSection<SectionIndexSection>();
Obj.SymbolTable->setShndxTable(&Shndx);
Shndx.setSymTab(Obj.SymbolTable);
}
} else {
// Since we don't need SectionIndexTable we should remove it and all
// references to it.
if (Obj.SectionIndexTable != nullptr) {
// We do not support sections referring to the section index table.
if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
[this](const SectionBase &Sec) {
return &Sec == Obj.SectionIndexTable;
}))
return E;
}
}
// Make sure we add the names of all the sections. Importantly this must be
// done after we decide to add or remove SectionIndexes.
if (Obj.SectionNames != nullptr)
for (const SectionBase &Sec : Obj.sections())
Obj.SectionNames->addString(Sec.Name);
initEhdrSegment();
// Before we can prepare for layout the indexes need to be finalized.
// Also, the output arch may not be the same as the input arch, so fix up
// size-related fields before doing layout calculations.
uint64_t Index = 0;
auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
for (SectionBase &Sec : Obj.sections()) {
Sec.Index = Index++;
Sec.accept(*SecSizer);
}
// The symbol table does not update all other sections on update. For
// instance, symbol names are not added as new symbols are added. This means
// that some sections, like .strtab, don't yet have their final size.
if (Obj.SymbolTable != nullptr)
Obj.SymbolTable->prepareForLayout();
// Now that all strings are added we want to finalize string table builders,
// because that affects section sizes which in turn affects section offsets.
for (SectionBase &Sec : Obj.sections())
if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
StrTab->prepareForLayout();
assignOffsets();
// layoutSections could have modified section indexes, so we need
// to fill the index table after assignOffsets.
if (Obj.SymbolTable != nullptr)
Obj.SymbolTable->fillShndxTable();
// Finally now that all offsets and indexes have been set we can finalize any
// remaining issues.
uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
for (SectionBase &Sec : Obj.sections()) {
Sec.HeaderOffset = Offset;
Offset += sizeof(Elf_Shdr);
if (WriteSectionHeaders)
Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
Sec.finalize();
}
if (Error E = Buf.allocate(totalSize()))
return E;
SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(Buf);
return Error::success();
}
Error BinaryWriter::write() {
for (const SectionBase &Sec : Obj.allocSections())
Sec.accept(*SecWriter);
return Buf.commit();
}
Error BinaryWriter::finalize() {
// Compute the section LMA based on its sh_offset and the containing segment's
// p_offset and p_paddr. Also compute the minimum LMA of all non-empty
// sections as MinAddr. In the output, the contents between address 0 and
// MinAddr will be skipped.
uint64_t MinAddr = UINT64_MAX;
for (SectionBase &Sec : Obj.allocSections()) {
if (Sec.ParentSegment != nullptr)
Sec.Addr =
Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
if (Sec.Size > 0)
MinAddr = std::min(MinAddr, Sec.Addr);
}
// Now that every section has been laid out we just need to compute the total
// file size. This might not be the same as the offset returned by
// layoutSections, because we want to truncate the last segment to the end of
// its last non-empty section, to match GNU objcopy's behaviour.
TotalSize = 0;
for (SectionBase &Sec : Obj.allocSections())
if (Sec.Type != SHT_NOBITS && Sec.Size > 0) {
Sec.Offset = Sec.Addr - MinAddr;
TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
}
if (Error E = Buf.allocate(TotalSize))
return E;
SecWriter = std::make_unique<BinarySectionWriter>(Buf);
return Error::success();
}
bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
const SectionBase *Rhs) const {
return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
(sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
}
uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
IHexLineData HexData;
uint8_t Data[4] = {};
// We don't write entry point record if entry is zero.
if (Obj.Entry == 0)
return 0;
if (Obj.Entry <= 0xFFFFFU) {
Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
support::big);
HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
} else {
support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
support::big);
HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
}
memcpy(Buf, HexData.data(), HexData.size());
return HexData.size();
}
uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
memcpy(Buf, HexData.data(), HexData.size());
return HexData.size();
}
Error IHexWriter::write() {
IHexSectionWriter Writer(Buf);
// Write sections.
for (const SectionBase *Sec : Sections)
Sec->accept(Writer);
uint64_t Offset = Writer.getBufferOffset();
// Write entry point address.
Offset += writeEntryPointRecord(Buf.getBufferStart() + Offset);
// Write EOF.
Offset += writeEndOfFileRecord(Buf.getBufferStart() + Offset);
assert(Offset == TotalSize);
return Buf.commit();
}
Error IHexWriter::checkSection(const SectionBase &Sec) {
uint64_t Addr = sectionPhysicalAddr(&Sec);
if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
return createStringError(
errc::invalid_argument,
"Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(),
Addr, Addr + Sec.Size - 1);
return Error::success();
}
Error IHexWriter::finalize() {
bool UseSegments = false;
auto ShouldWrite = [](const SectionBase &Sec) {
return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
};
auto IsInPtLoad = [](const SectionBase &Sec) {
return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
};
// We can't write 64-bit addresses.
if (addressOverflows32bit(Obj.Entry))
return createStringError(errc::invalid_argument,
"Entry point address 0x%llx overflows 32 bits.",
Obj.Entry);
// If any section we're to write has segment then we
// switch to using physical addresses. Otherwise we
// use section virtual address.
for (const SectionBase &Sec : Obj.sections())
if (ShouldWrite(Sec) && IsInPtLoad(Sec)) {
UseSegments = true;
break;
}
for (const SectionBase &Sec : Obj.sections())
if (ShouldWrite(Sec) && (!UseSegments || IsInPtLoad(Sec))) {
if (Error E = checkSection(Sec))
return E;
Sections.insert(&Sec);
}
IHexSectionWriterBase LengthCalc(Buf);
for (const SectionBase *Sec : Sections)
Sec->accept(LengthCalc);
// We need space to write section records + StartAddress record
// (if start adress is not zero) + EndOfFile record.
TotalSize = LengthCalc.getBufferOffset() +
(Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
IHexRecord::getLineLength(0);
if (Error E = Buf.allocate(TotalSize))
return E;
return Error::success();
}
template class ELFBuilder<ELF64LE>;
template class ELFBuilder<ELF64BE>;
template class ELFBuilder<ELF32LE>;
template class ELFBuilder<ELF32BE>;
template class ELFWriter<ELF64LE>;
template class ELFWriter<ELF64BE>;
template class ELFWriter<ELF32LE>;
template class ELFWriter<ELF32BE>;
} // end namespace elf
} // end namespace objcopy
} // end namespace llvm