main.cpp
12.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
#include <atomic>
#include <chrono>
#include <cstdlib>
#include <cstring>
#include <errno.h>
#include <inttypes.h>
#include <memory>
#include <mutex>
#if !defined(_WIN32)
#include <pthread.h>
#include <signal.h>
#include <unistd.h>
#endif
#include <setjmp.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <thread>
#include <time.h>
#include <vector>
#if defined(__APPLE__)
__OSX_AVAILABLE_STARTING(__MAC_10_6, __IPHONE_3_2)
int pthread_threadid_np(pthread_t, __uint64_t *);
#elif defined(__linux__)
#include <sys/syscall.h>
#elif defined(__NetBSD__)
#include <lwp.h>
#elif defined(_WIN32)
#include <windows.h>
#endif
static const char *const RETVAL_PREFIX = "retval:";
static const char *const SLEEP_PREFIX = "sleep:";
static const char *const STDERR_PREFIX = "stderr:";
static const char *const SET_MESSAGE_PREFIX = "set-message:";
static const char *const PRINT_MESSAGE_COMMAND = "print-message:";
static const char *const GET_DATA_ADDRESS_PREFIX = "get-data-address-hex:";
static const char *const GET_STACK_ADDRESS_COMMAND = "get-stack-address-hex:";
static const char *const GET_HEAP_ADDRESS_COMMAND = "get-heap-address-hex:";
static const char *const GET_CODE_ADDRESS_PREFIX = "get-code-address-hex:";
static const char *const CALL_FUNCTION_PREFIX = "call-function:";
static const char *const THREAD_PREFIX = "thread:";
static const char *const THREAD_COMMAND_NEW = "new";
static const char *const THREAD_COMMAND_PRINT_IDS = "print-ids";
static const char *const THREAD_COMMAND_SEGFAULT = "segfault";
static const char *const PRINT_PID_COMMAND = "print-pid";
static bool g_print_thread_ids = false;
static std::mutex g_print_mutex;
static bool g_threads_do_segfault = false;
static std::mutex g_jump_buffer_mutex;
static jmp_buf g_jump_buffer;
static bool g_is_segfaulting = false;
static char g_message[256];
static volatile char g_c1 = '0';
static volatile char g_c2 = '1';
static void print_pid() {
#if defined(_WIN32)
fprintf(stderr, "PID: %d\n", ::GetCurrentProcessId());
#else
fprintf(stderr, "PID: %d\n", getpid());
#endif
}
static void print_thread_id() {
// Put in the right magic here for your platform to spit out the thread id (tid)
// that debugserver/lldb-gdbserver would see as a TID. Otherwise, let the else
// clause print out the unsupported text so that the unit test knows to skip
// verifying thread ids.
#if defined(__APPLE__)
__uint64_t tid = 0;
pthread_threadid_np(pthread_self(), &tid);
printf("%" PRIx64, tid);
#elif defined(__linux__)
// This is a call to gettid() via syscall.
printf("%" PRIx64, static_cast<uint64_t>(syscall(__NR_gettid)));
#elif defined(__NetBSD__)
// Technically lwpid_t is 32-bit signed integer
printf("%" PRIx64, static_cast<uint64_t>(_lwp_self()));
#elif defined(_WIN32)
printf("%" PRIx64, static_cast<uint64_t>(::GetCurrentThreadId()));
#else
printf("{no-tid-support}");
#endif
}
static void signal_handler(int signo) {
#if defined(_WIN32)
// No signal support on Windows.
#else
const char *signal_name = nullptr;
switch (signo) {
case SIGUSR1:
signal_name = "SIGUSR1";
break;
case SIGSEGV:
signal_name = "SIGSEGV";
break;
default:
signal_name = nullptr;
}
// Print notice that we received the signal on a given thread.
{
std::lock_guard<std::mutex> lock(g_print_mutex);
if (signal_name)
printf("received %s on thread id: ", signal_name);
else
printf("received signo %d (%s) on thread id: ", signo, strsignal(signo));
print_thread_id();
printf("\n");
}
// Reset the signal handler if we're one of the expected signal handlers.
switch (signo) {
case SIGSEGV:
if (g_is_segfaulting) {
// Fix up the pointer we're writing to. This needs to happen if nothing
// intercepts the SIGSEGV (i.e. if somebody runs this from the command
// line).
longjmp(g_jump_buffer, 1);
}
break;
case SIGUSR1:
if (g_is_segfaulting) {
// Fix up the pointer we're writing to. This is used to test gdb remote
// signal delivery. A SIGSEGV will be raised when the thread is created,
// switched out for a SIGUSR1, and then this code still needs to fix the
// seg fault. (i.e. if somebody runs this from the command line).
longjmp(g_jump_buffer, 1);
}
break;
}
// Reset the signal handler.
sig_t sig_result = signal(signo, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set signal handler: errno=%d\n", errno);
exit(1);
}
#endif
}
static void swap_chars() {
#if defined(__x86_64__) || defined(__i386__)
asm volatile("movb %1, (%2)\n\t"
"movb %0, (%3)\n\t"
"movb %0, (%2)\n\t"
"movb %1, (%3)\n\t"
:
: "i"('0'), "i"('1'), "r"(&g_c1), "r"(&g_c2)
: "memory");
#elif defined(__aarch64__)
asm volatile("strb %w1, [%2]\n\t"
"strb %w0, [%3]\n\t"
"strb %w0, [%2]\n\t"
"strb %w1, [%3]\n\t"
:
: "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
: "memory");
#elif defined(__arm__)
asm volatile("strb %1, [%2]\n\t"
"strb %0, [%3]\n\t"
"strb %0, [%2]\n\t"
"strb %1, [%3]\n\t"
:
: "r"('0'), "r"('1'), "r"(&g_c1), "r"(&g_c2)
: "memory");
#else
#warning This may generate unpredictible assembly and cause the single-stepping test to fail.
#warning Please add appropriate assembly for your target.
g_c1 = '1';
g_c2 = '0';
g_c1 = '0';
g_c2 = '1';
#endif
}
static void hello() {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("hello, world\n");
}
static void *thread_func(void *arg) {
static std::atomic<int> s_thread_index(1);
const int this_thread_index = s_thread_index++;
if (g_print_thread_ids) {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("thread %d id: ", this_thread_index);
print_thread_id();
printf("\n");
}
if (g_threads_do_segfault) {
// Sleep for a number of seconds based on the thread index.
// TODO add ability to send commands to test exe so we can
// handle timing more precisely. This is clunky. All we're
// trying to do is add predictability as to the timing of
// signal generation by created threads.
int sleep_seconds = 2 * (this_thread_index - 1);
std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds));
// Test creating a SEGV.
{
std::lock_guard<std::mutex> lock(g_jump_buffer_mutex);
g_is_segfaulting = true;
int *bad_p = nullptr;
if (setjmp(g_jump_buffer) == 0) {
// Force a seg fault signal on this thread.
*bad_p = 0;
} else {
// Tell the system we're no longer seg faulting.
// Used by the SIGUSR1 signal handler that we inject
// in place of the SIGSEGV so it only tries to
// recover from the SIGSEGV if this seg fault code
// was in play.
g_is_segfaulting = false;
}
}
{
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("thread ");
print_thread_id();
printf(": past SIGSEGV\n");
}
}
int sleep_seconds_remaining = 60;
std::this_thread::sleep_for(std::chrono::seconds(sleep_seconds_remaining));
return nullptr;
}
int main(int argc, char **argv) {
lldb_enable_attach();
std::vector<std::thread> threads;
std::unique_ptr<uint8_t[]> heap_array_up;
int return_value = 0;
#if !defined(_WIN32)
// Set the signal handler.
sig_t sig_result = signal(SIGALRM, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGALRM signal handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGUSR1, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
exit(1);
}
sig_result = signal(SIGSEGV, signal_handler);
if (sig_result == SIG_ERR) {
fprintf(stderr, "failed to set SIGUSR1 handler: errno=%d\n", errno);
exit(1);
}
#endif
// Process command line args.
for (int i = 1; i < argc; ++i) {
if (std::strstr(argv[i], STDERR_PREFIX)) {
// Treat remainder as text to go to stderr.
fprintf(stderr, "%s\n", (argv[i] + strlen(STDERR_PREFIX)));
} else if (std::strstr(argv[i], RETVAL_PREFIX)) {
// Treat as the return value for the program.
return_value = std::atoi(argv[i] + strlen(RETVAL_PREFIX));
} else if (std::strstr(argv[i], SLEEP_PREFIX)) {
// Treat as the amount of time to have this process sleep (in seconds).
int sleep_seconds_remaining = std::atoi(argv[i] + strlen(SLEEP_PREFIX));
// Loop around, sleeping until all sleep time is used up. Note that
// signals will cause sleep to end early with the number of seconds
// remaining.
std::this_thread::sleep_for(
std::chrono::seconds(sleep_seconds_remaining));
} else if (std::strstr(argv[i], SET_MESSAGE_PREFIX)) {
// Copy the contents after "set-message:" to the g_message buffer.
// Used for reading inferior memory and verifying contents match
// expectations.
strncpy(g_message, argv[i] + strlen(SET_MESSAGE_PREFIX),
sizeof(g_message));
// Ensure we're null terminated.
g_message[sizeof(g_message) - 1] = '\0';
} else if (std::strstr(argv[i], PRINT_MESSAGE_COMMAND)) {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("message: %s\n", g_message);
} else if (std::strstr(argv[i], GET_DATA_ADDRESS_PREFIX)) {
volatile void *data_p = nullptr;
if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_message"))
data_p = &g_message[0];
else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c1"))
data_p = &g_c1;
else if (std::strstr(argv[i] + strlen(GET_DATA_ADDRESS_PREFIX), "g_c2"))
data_p = &g_c2;
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("data address: %p\n", data_p);
} else if (std::strstr(argv[i], GET_HEAP_ADDRESS_COMMAND)) {
// Create a byte array if not already present.
if (!heap_array_up)
heap_array_up.reset(new uint8_t[32]);
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("heap address: %p\n", heap_array_up.get());
} else if (std::strstr(argv[i], GET_STACK_ADDRESS_COMMAND)) {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("stack address: %p\n", &return_value);
} else if (std::strstr(argv[i], GET_CODE_ADDRESS_PREFIX)) {
void (*func_p)() = nullptr;
if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX), "hello"))
func_p = hello;
else if (std::strstr(argv[i] + strlen(GET_CODE_ADDRESS_PREFIX),
"swap_chars"))
func_p = swap_chars;
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("code address: %p\n", func_p);
} else if (std::strstr(argv[i], CALL_FUNCTION_PREFIX)) {
void (*func_p)() = nullptr;
// Default to providing the address of main.
if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX), "hello") == 0)
func_p = hello;
else if (std::strcmp(argv[i] + strlen(CALL_FUNCTION_PREFIX),
"swap_chars") == 0)
func_p = swap_chars;
else {
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("unknown function: %s\n",
argv[i] + strlen(CALL_FUNCTION_PREFIX));
}
if (func_p)
func_p();
} else if (std::strstr(argv[i], THREAD_PREFIX)) {
// Check if we're creating a new thread.
if (std::strstr(argv[i] + strlen(THREAD_PREFIX), THREAD_COMMAND_NEW)) {
threads.push_back(std::thread(thread_func, nullptr));
} else if (std::strstr(argv[i] + strlen(THREAD_PREFIX),
THREAD_COMMAND_PRINT_IDS)) {
// Turn on thread id announcing.
g_print_thread_ids = true;
// And announce us.
{
std::lock_guard<std::mutex> lock(g_print_mutex);
printf("thread 0 id: ");
print_thread_id();
printf("\n");
}
} else if (std::strstr(argv[i] + strlen(THREAD_PREFIX),
THREAD_COMMAND_SEGFAULT)) {
g_threads_do_segfault = true;
} else {
// At this point we don't do anything else with threads.
// Later use thread index and send command to thread.
}
} else if (std::strstr(argv[i], PRINT_PID_COMMAND)) {
print_pid();
} else {
// Treat the argument as text for stdout.
printf("%s\n", argv[i]);
}
}
// If we launched any threads, join them
for (std::vector<std::thread>::iterator it = threads.begin();
it != threads.end(); ++it)
it->join();
return return_value;
}