LoopConvertUtils.cpp
30.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
//===--- LoopConvertUtils.cpp - clang-tidy --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "LoopConvertUtils.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/Lambda.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/Lexer.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <string>
#include <utility>
using namespace clang::ast_matchers;
namespace clang {
namespace tidy {
namespace modernize {
/// Tracks a stack of parent statements during traversal.
///
/// All this really does is inject push_back() before running
/// RecursiveASTVisitor::TraverseStmt() and pop_back() afterwards. The Stmt atop
/// the stack is the parent of the current statement (NULL for the topmost
/// statement).
bool StmtAncestorASTVisitor::TraverseStmt(Stmt *Statement) {
StmtAncestors.insert(std::make_pair(Statement, StmtStack.back()));
StmtStack.push_back(Statement);
RecursiveASTVisitor<StmtAncestorASTVisitor>::TraverseStmt(Statement);
StmtStack.pop_back();
return true;
}
/// Keep track of the DeclStmt associated with each VarDecl.
///
/// Combined with StmtAncestors, this provides roughly the same information as
/// Scope, as we can map a VarDecl to its DeclStmt, then walk up the parent tree
/// using StmtAncestors.
bool StmtAncestorASTVisitor::VisitDeclStmt(DeclStmt *Decls) {
for (const auto *decl : Decls->decls()) {
if (const auto *V = dyn_cast<VarDecl>(decl))
DeclParents.insert(std::make_pair(V, Decls));
}
return true;
}
/// record the DeclRefExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
Components.push_back(E);
return true;
}
/// record the MemberExpr as part of the parent expression.
bool ComponentFinderASTVisitor::VisitMemberExpr(MemberExpr *Member) {
Components.push_back(Member);
return true;
}
/// Forward any DeclRefExprs to a check on the referenced variable
/// declaration.
bool DependencyFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
if (auto *V = dyn_cast_or_null<VarDecl>(DeclRef->getDecl()))
return VisitVarDecl(V);
return true;
}
/// Determine if any this variable is declared inside the ContainingStmt.
bool DependencyFinderASTVisitor::VisitVarDecl(VarDecl *V) {
const Stmt *Curr = DeclParents->lookup(V);
// First, see if the variable was declared within an inner scope of the loop.
while (Curr != nullptr) {
if (Curr == ContainingStmt) {
DependsOnInsideVariable = true;
return false;
}
Curr = StmtParents->lookup(Curr);
}
// Next, check if the variable was removed from existence by an earlier
// iteration.
for (const auto &I : *ReplacedVars) {
if (I.second == V) {
DependsOnInsideVariable = true;
return false;
}
}
return true;
}
/// If we already created a variable for TheLoop, check to make sure
/// that the name was not already taken.
bool DeclFinderASTVisitor::VisitForStmt(ForStmt *TheLoop) {
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(TheLoop);
if (I != GeneratedDecls->end() && I->second == Name) {
Found = true;
return false;
}
return true;
}
/// If any named declaration within the AST subtree has the same name,
/// then consider Name already taken.
bool DeclFinderASTVisitor::VisitNamedDecl(NamedDecl *D) {
const IdentifierInfo *Ident = D->getIdentifier();
if (Ident && Ident->getName() == Name) {
Found = true;
return false;
}
return true;
}
/// Forward any declaration references to the actual check on the
/// referenced declaration.
bool DeclFinderASTVisitor::VisitDeclRefExpr(DeclRefExpr *DeclRef) {
if (auto *D = dyn_cast<NamedDecl>(DeclRef->getDecl()))
return VisitNamedDecl(D);
return true;
}
/// If the new variable name conflicts with any type used in the loop,
/// then we mark that variable name as taken.
bool DeclFinderASTVisitor::VisitTypeLoc(TypeLoc TL) {
QualType QType = TL.getType();
// Check if our name conflicts with a type, to handle for typedefs.
if (QType.getAsString() == Name) {
Found = true;
return false;
}
// Check for base type conflicts. For example, when a struct is being
// referenced in the body of the loop, the above getAsString() will return the
// whole type (ex. "struct s"), but will be caught here.
if (const IdentifierInfo *Ident = QType.getBaseTypeIdentifier()) {
if (Ident->getName() == Name) {
Found = true;
return false;
}
}
return true;
}
/// Look through conversion/copy constructors to find the explicit
/// initialization expression, returning it is found.
///
/// The main idea is that given
/// vector<int> v;
/// we consider either of these initializations
/// vector<int>::iterator it = v.begin();
/// vector<int>::iterator it(v.begin());
/// and retrieve `v.begin()` as the expression used to initialize `it` but do
/// not include
/// vector<int>::iterator it;
/// vector<int>::iterator it(v.begin(), 0); // if this constructor existed
/// as being initialized from `v.begin()`
const Expr *digThroughConstructors(const Expr *E) {
if (!E)
return nullptr;
E = E->IgnoreImplicit();
if (const auto *ConstructExpr = dyn_cast<CXXConstructExpr>(E)) {
// The initial constructor must take exactly one parameter, but base class
// and deferred constructors can take more.
if (ConstructExpr->getNumArgs() != 1 ||
ConstructExpr->getConstructionKind() != CXXConstructExpr::CK_Complete)
return nullptr;
E = ConstructExpr->getArg(0);
if (const auto *Temp = dyn_cast<MaterializeTemporaryExpr>(E))
E = Temp->getSubExpr();
return digThroughConstructors(E);
}
return E;
}
/// Returns true when two Exprs are equivalent.
bool areSameExpr(ASTContext *Context, const Expr *First, const Expr *Second) {
if (!First || !Second)
return false;
llvm::FoldingSetNodeID FirstID, SecondID;
First->Profile(FirstID, *Context, true);
Second->Profile(SecondID, *Context, true);
return FirstID == SecondID;
}
/// Returns the DeclRefExpr represented by E, or NULL if there isn't one.
const DeclRefExpr *getDeclRef(const Expr *E) {
return dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
}
/// Returns true when two ValueDecls are the same variable.
bool areSameVariable(const ValueDecl *First, const ValueDecl *Second) {
return First && Second &&
First->getCanonicalDecl() == Second->getCanonicalDecl();
}
/// Determines if an expression is a declaration reference to a
/// particular variable.
static bool exprReferencesVariable(const ValueDecl *Target, const Expr *E) {
if (!Target || !E)
return false;
const DeclRefExpr *Decl = getDeclRef(E);
return Decl && areSameVariable(Target, Decl->getDecl());
}
/// If the expression is a dereference or call to operator*(), return the
/// operand. Otherwise, return NULL.
static const Expr *getDereferenceOperand(const Expr *E) {
if (const auto *Uop = dyn_cast<UnaryOperator>(E))
return Uop->getOpcode() == UO_Deref ? Uop->getSubExpr() : nullptr;
if (const auto *OpCall = dyn_cast<CXXOperatorCallExpr>(E)) {
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1
? OpCall->getArg(0)
: nullptr;
}
return nullptr;
}
/// Returns true when the Container contains an Expr equivalent to E.
template <typename ContainerT>
static bool containsExpr(ASTContext *Context, const ContainerT *Container,
const Expr *E) {
llvm::FoldingSetNodeID ID;
E->Profile(ID, *Context, true);
for (const auto &I : *Container) {
if (ID == I.second)
return true;
}
return false;
}
/// Returns true when the index expression is a declaration reference to
/// IndexVar.
///
/// If the index variable is `index`, this function returns true on
/// arrayExpression[index];
/// containerExpression[index];
/// but not
/// containerExpression[notIndex];
static bool isIndexInSubscriptExpr(const Expr *IndexExpr,
const VarDecl *IndexVar) {
const DeclRefExpr *Idx = getDeclRef(IndexExpr);
return Idx && Idx->getType()->isIntegerType() &&
areSameVariable(IndexVar, Idx->getDecl());
}
/// Returns true when the index expression is a declaration reference to
/// IndexVar, Obj is the same expression as SourceExpr after all parens and
/// implicit casts are stripped off.
///
/// If PermitDeref is true, IndexExpression may
/// be a dereference (overloaded or builtin operator*).
///
/// This function is intended for array-like containers, as it makes sure that
/// both the container and the index match.
/// If the loop has index variable `index` and iterates over `container`, then
/// isIndexInSubscriptExpr returns true for
/// \code
/// container[index]
/// container.at(index)
/// container->at(index)
/// \endcode
/// but not for
/// \code
/// container[notIndex]
/// notContainer[index]
/// \endcode
/// If PermitDeref is true, then isIndexInSubscriptExpr additionally returns
/// true on these expressions:
/// \code
/// (*container)[index]
/// (*container).at(index)
/// \endcode
static bool isIndexInSubscriptExpr(ASTContext *Context, const Expr *IndexExpr,
const VarDecl *IndexVar, const Expr *Obj,
const Expr *SourceExpr, bool PermitDeref) {
if (!SourceExpr || !Obj || !isIndexInSubscriptExpr(IndexExpr, IndexVar))
return false;
if (areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
Obj->IgnoreParenImpCasts()))
return true;
if (const Expr *InnerObj = getDereferenceOperand(Obj->IgnoreParenImpCasts()))
if (PermitDeref && areSameExpr(Context, SourceExpr->IgnoreParenImpCasts(),
InnerObj->IgnoreParenImpCasts()))
return true;
return false;
}
/// Returns true when Opcall is a call a one-parameter dereference of
/// IndexVar.
///
/// For example, if the index variable is `index`, returns true for
/// *index
/// but not
/// index
/// *notIndex
static bool isDereferenceOfOpCall(const CXXOperatorCallExpr *OpCall,
const VarDecl *IndexVar) {
return OpCall->getOperator() == OO_Star && OpCall->getNumArgs() == 1 &&
exprReferencesVariable(IndexVar, OpCall->getArg(0));
}
/// Returns true when Uop is a dereference of IndexVar.
///
/// For example, if the index variable is `index`, returns true for
/// *index
/// but not
/// index
/// *notIndex
static bool isDereferenceOfUop(const UnaryOperator *Uop,
const VarDecl *IndexVar) {
return Uop->getOpcode() == UO_Deref &&
exprReferencesVariable(IndexVar, Uop->getSubExpr());
}
/// Determines whether the given Decl defines a variable initialized to
/// the loop object.
///
/// This is intended to find cases such as
/// \code
/// for (int i = 0; i < arraySize(arr); ++i) {
/// T t = arr[i];
/// // use t, do not use i
/// }
/// \endcode
/// and
/// \code
/// for (iterator i = container.begin(), e = container.end(); i != e; ++i) {
/// T t = *i;
/// // use t, do not use i
/// }
/// \endcode
static bool isAliasDecl(ASTContext *Context, const Decl *TheDecl,
const VarDecl *IndexVar) {
const auto *VDecl = dyn_cast<VarDecl>(TheDecl);
if (!VDecl)
return false;
if (!VDecl->hasInit())
return false;
bool OnlyCasts = true;
const Expr *Init = VDecl->getInit()->IgnoreParenImpCasts();
if (Init && isa<CXXConstructExpr>(Init)) {
Init = digThroughConstructors(Init);
OnlyCasts = false;
}
if (!Init)
return false;
// Check that the declared type is the same as (or a reference to) the
// container type.
if (!OnlyCasts) {
QualType InitType = Init->getType();
QualType DeclarationType = VDecl->getType();
if (!DeclarationType.isNull() && DeclarationType->isReferenceType())
DeclarationType = DeclarationType.getNonReferenceType();
if (InitType.isNull() || DeclarationType.isNull() ||
!Context->hasSameUnqualifiedType(DeclarationType, InitType))
return false;
}
switch (Init->getStmtClass()) {
case Stmt::ArraySubscriptExprClass: {
const auto *E = cast<ArraySubscriptExpr>(Init);
// We don't really care which array is used here. We check to make sure
// it was the correct one later, since the AST will traverse it next.
return isIndexInSubscriptExpr(E->getIdx(), IndexVar);
}
case Stmt::UnaryOperatorClass:
return isDereferenceOfUop(cast<UnaryOperator>(Init), IndexVar);
case Stmt::CXXOperatorCallExprClass: {
const auto *OpCall = cast<CXXOperatorCallExpr>(Init);
if (OpCall->getOperator() == OO_Star)
return isDereferenceOfOpCall(OpCall, IndexVar);
if (OpCall->getOperator() == OO_Subscript) {
assert(OpCall->getNumArgs() == 2);
return isIndexInSubscriptExpr(OpCall->getArg(1), IndexVar);
}
break;
}
case Stmt::CXXMemberCallExprClass: {
const auto *MemCall = cast<CXXMemberCallExpr>(Init);
// This check is needed because getMethodDecl can return nullptr if the
// callee is a member function pointer.
const auto *MDecl = MemCall->getMethodDecl();
if (MDecl && !isa<CXXConversionDecl>(MDecl) &&
MDecl->getNameAsString() == "at" && MemCall->getNumArgs() == 1) {
return isIndexInSubscriptExpr(MemCall->getArg(0), IndexVar);
}
return false;
}
default:
break;
}
return false;
}
/// Determines whether the bound of a for loop condition expression is
/// the same as the statically computable size of ArrayType.
///
/// Given
/// \code
/// const int N = 5;
/// int arr[N];
/// \endcode
/// This is intended to permit
/// \code
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
/// for (int i = 0; i < arraysize(arr); ++i) { /* use arr[i] */ }
/// \endcode
static bool arrayMatchesBoundExpr(ASTContext *Context,
const QualType &ArrayType,
const Expr *ConditionExpr) {
if (!ConditionExpr || ConditionExpr->isValueDependent())
return false;
const ConstantArrayType *ConstType =
Context->getAsConstantArrayType(ArrayType);
if (!ConstType)
return false;
llvm::APSInt ConditionSize;
if (!ConditionExpr->isIntegerConstantExpr(ConditionSize, *Context))
return false;
llvm::APSInt ArraySize(ConstType->getSize());
return llvm::APSInt::isSameValue(ConditionSize, ArraySize);
}
ForLoopIndexUseVisitor::ForLoopIndexUseVisitor(ASTContext *Context,
const VarDecl *IndexVar,
const VarDecl *EndVar,
const Expr *ContainerExpr,
const Expr *ArrayBoundExpr,
bool ContainerNeedsDereference)
: Context(Context), IndexVar(IndexVar), EndVar(EndVar),
ContainerExpr(ContainerExpr), ArrayBoundExpr(ArrayBoundExpr),
ContainerNeedsDereference(ContainerNeedsDereference),
OnlyUsedAsIndex(true), AliasDecl(nullptr),
ConfidenceLevel(Confidence::CL_Safe), NextStmtParent(nullptr),
CurrStmtParent(nullptr), ReplaceWithAliasUse(false),
AliasFromForInit(false) {
if (ContainerExpr)
addComponent(ContainerExpr);
}
bool ForLoopIndexUseVisitor::findAndVerifyUsages(const Stmt *Body) {
TraverseStmt(const_cast<Stmt *>(Body));
return OnlyUsedAsIndex && ContainerExpr;
}
void ForLoopIndexUseVisitor::addComponents(const ComponentVector &Components) {
// FIXME: add sort(on ID)+unique to avoid extra work.
for (const auto &I : Components)
addComponent(I);
}
void ForLoopIndexUseVisitor::addComponent(const Expr *E) {
llvm::FoldingSetNodeID ID;
const Expr *Node = E->IgnoreParenImpCasts();
Node->Profile(ID, *Context, true);
DependentExprs.push_back(std::make_pair(Node, ID));
}
void ForLoopIndexUseVisitor::addUsage(const Usage &U) {
SourceLocation Begin = U.Range.getBegin();
if (Begin.isMacroID())
Begin = Context->getSourceManager().getSpellingLoc(Begin);
if (UsageLocations.insert(Begin).second)
Usages.push_back(U);
}
/// If the unary operator is a dereference of IndexVar, include it
/// as a valid usage and prune the traversal.
///
/// For example, if container.begin() and container.end() both return pointers
/// to int, this makes sure that the initialization for `k` is not counted as an
/// unconvertible use of the iterator `i`.
/// \code
/// for (int *i = container.begin(), *e = container.end(); i != e; ++i) {
/// int k = *i + 2;
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseUnaryOperator(UnaryOperator *Uop) {
// If we dereference an iterator that's actually a pointer, count the
// occurrence.
if (isDereferenceOfUop(Uop, IndexVar)) {
addUsage(Usage(Uop));
return true;
}
return VisitorBase::TraverseUnaryOperator(Uop);
}
/// If the member expression is operator-> (overloaded or not) on
/// IndexVar, include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
/// struct Foo { int bar(); int x; };
/// vector<Foo> v;
/// \endcode
/// the following uses will be considered convertible:
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int b = i->bar();
/// int k = i->x + 1;
/// }
/// \endcode
/// though
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int k = i.insert(1);
/// }
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// int b = e->bar();
/// }
/// \endcode
/// will not.
bool ForLoopIndexUseVisitor::TraverseMemberExpr(MemberExpr *Member) {
const Expr *Base = Member->getBase();
const DeclRefExpr *Obj = getDeclRef(Base);
const Expr *ResultExpr = Member;
QualType ExprType;
if (const auto *Call =
dyn_cast<CXXOperatorCallExpr>(Base->IgnoreParenImpCasts())) {
// If operator->() is a MemberExpr containing a CXXOperatorCallExpr, then
// the MemberExpr does not have the expression we want. We therefore catch
// that instance here.
// For example, if vector<Foo>::iterator defines operator->(), then the
// example `i->bar()` at the top of this function is a CXXMemberCallExpr
// referring to `i->` as the member function called. We want just `i`, so
// we take the argument to operator->() as the base object.
if (Call->getOperator() == OO_Arrow) {
assert(Call->getNumArgs() == 1 &&
"Operator-> takes more than one argument");
Obj = getDeclRef(Call->getArg(0));
ResultExpr = Obj;
ExprType = Call->getCallReturnType(*Context);
}
}
if (Obj && exprReferencesVariable(IndexVar, Obj)) {
// Member calls on the iterator with '.' are not allowed.
if (!Member->isArrow()) {
OnlyUsedAsIndex = false;
return true;
}
if (ExprType.isNull())
ExprType = Obj->getType();
if (!ExprType->isPointerType())
return false;
// FIXME: This works around not having the location of the arrow operator.
// Consider adding OperatorLoc to MemberExpr?
SourceLocation ArrowLoc = Lexer::getLocForEndOfToken(
Base->getExprLoc(), 0, Context->getSourceManager(),
Context->getLangOpts());
// If something complicated is happening (i.e. the next token isn't an
// arrow), give up on making this work.
if (ArrowLoc.isValid()) {
addUsage(Usage(ResultExpr, Usage::UK_MemberThroughArrow,
SourceRange(Base->getExprLoc(), ArrowLoc)));
return true;
}
}
return VisitorBase::TraverseMemberExpr(Member);
}
/// If a member function call is the at() accessor on the container with
/// IndexVar as the single argument, include it as a valid usage and prune
/// the traversal.
///
/// Member calls on other objects will not be permitted.
/// Calls on the iterator object are not permitted, unless done through
/// operator->(). The one exception is allowing vector::at() for pseudoarrays.
bool ForLoopIndexUseVisitor::TraverseCXXMemberCallExpr(
CXXMemberCallExpr *MemberCall) {
auto *Member =
dyn_cast<MemberExpr>(MemberCall->getCallee()->IgnoreParenImpCasts());
if (!Member)
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
// We specifically allow an accessor named "at" to let STL in, though
// this is restricted to pseudo-arrays by requiring a single, integer
// argument.
const IdentifierInfo *Ident = Member->getMemberDecl()->getIdentifier();
if (Ident && Ident->isStr("at") && MemberCall->getNumArgs() == 1) {
if (isIndexInSubscriptExpr(Context, MemberCall->getArg(0), IndexVar,
Member->getBase(), ContainerExpr,
ContainerNeedsDereference)) {
addUsage(Usage(MemberCall));
return true;
}
}
if (containsExpr(Context, &DependentExprs, Member->getBase()))
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
return VisitorBase::TraverseCXXMemberCallExpr(MemberCall);
}
/// If an overloaded operator call is a dereference of IndexVar or
/// a subscript of the container with IndexVar as the single argument,
/// include it as a valid usage and prune the traversal.
///
/// For example, given
/// \code
/// struct Foo { int bar(); int x; };
/// vector<Foo> v;
/// void f(Foo);
/// \endcode
/// the following uses will be considered convertible:
/// \code
/// for (vector<Foo>::iterator i = v.begin(), e = v.end(); i != e; ++i) {
/// f(*i);
/// }
/// for (int i = 0; i < v.size(); ++i) {
/// int i = v[i] + 1;
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseCXXOperatorCallExpr(
CXXOperatorCallExpr *OpCall) {
switch (OpCall->getOperator()) {
case OO_Star:
if (isDereferenceOfOpCall(OpCall, IndexVar)) {
addUsage(Usage(OpCall));
return true;
}
break;
case OO_Subscript:
if (OpCall->getNumArgs() != 2)
break;
if (isIndexInSubscriptExpr(Context, OpCall->getArg(1), IndexVar,
OpCall->getArg(0), ContainerExpr,
ContainerNeedsDereference)) {
addUsage(Usage(OpCall));
return true;
}
break;
default:
break;
}
return VisitorBase::TraverseCXXOperatorCallExpr(OpCall);
}
/// If we encounter an array with IndexVar as the index of an
/// ArraySubscriptExpression, note it as a consistent usage and prune the
/// AST traversal.
///
/// For example, given
/// \code
/// const int N = 5;
/// int arr[N];
/// \endcode
/// This is intended to permit
/// \code
/// for (int i = 0; i < N; ++i) { /* use arr[i] */ }
/// \endcode
/// but not
/// \code
/// for (int i = 0; i < N; ++i) { /* use notArr[i] */ }
/// \endcode
/// and further checking needs to be done later to ensure that exactly one array
/// is referenced.
bool ForLoopIndexUseVisitor::TraverseArraySubscriptExpr(ArraySubscriptExpr *E) {
Expr *Arr = E->getBase();
if (!isIndexInSubscriptExpr(E->getIdx(), IndexVar))
return VisitorBase::TraverseArraySubscriptExpr(E);
if ((ContainerExpr &&
!areSameExpr(Context, Arr->IgnoreParenImpCasts(),
ContainerExpr->IgnoreParenImpCasts())) ||
!arrayMatchesBoundExpr(Context, Arr->IgnoreImpCasts()->getType(),
ArrayBoundExpr)) {
// If we have already discovered the array being indexed and this isn't it
// or this array doesn't match, mark this loop as unconvertible.
OnlyUsedAsIndex = false;
return VisitorBase::TraverseArraySubscriptExpr(E);
}
if (!ContainerExpr)
ContainerExpr = Arr;
addUsage(Usage(E));
return true;
}
/// If we encounter a reference to IndexVar in an unpruned branch of the
/// traversal, mark this loop as unconvertible.
///
/// This determines the set of convertible loops: any usages of IndexVar
/// not explicitly considered convertible by this traversal will be caught by
/// this function.
///
/// Additionally, if the container expression is more complex than just a
/// DeclRefExpr, and some part of it is appears elsewhere in the loop, lower
/// our confidence in the transformation.
///
/// For example, these are not permitted:
/// \code
/// for (int i = 0; i < N; ++i) { printf("arr[%d] = %d", i, arr[i]); }
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// i.insert(0);
/// for (vector<int>::iterator i = container.begin(), e = container.end();
/// i != e; ++i)
/// if (i + 1 != e)
/// printf("%d", *i);
/// \endcode
///
/// And these will raise the risk level:
/// \code
/// int arr[10][20];
/// int l = 5;
/// for (int j = 0; j < 20; ++j)
/// int k = arr[l][j] + l; // using l outside arr[l] is considered risky
/// for (int i = 0; i < obj.getVector().size(); ++i)
/// obj.foo(10); // using `obj` is considered risky
/// \endcode
bool ForLoopIndexUseVisitor::VisitDeclRefExpr(DeclRefExpr *E) {
const ValueDecl *TheDecl = E->getDecl();
if (areSameVariable(IndexVar, TheDecl) ||
exprReferencesVariable(IndexVar, E) || areSameVariable(EndVar, TheDecl) ||
exprReferencesVariable(EndVar, E))
OnlyUsedAsIndex = false;
if (containsExpr(Context, &DependentExprs, E))
ConfidenceLevel.lowerTo(Confidence::CL_Risky);
return true;
}
/// If the loop index is captured by a lambda, replace this capture
/// by the range-for loop variable.
///
/// For example:
/// \code
/// for (int i = 0; i < N; ++i) {
/// auto f = [v, i](int k) {
/// printf("%d\n", v[i] + k);
/// };
/// f(v[i]);
/// }
/// \endcode
///
/// Will be replaced by:
/// \code
/// for (auto & elem : v) {
/// auto f = [v, elem](int k) {
/// printf("%d\n", elem + k);
/// };
/// f(elem);
/// }
/// \endcode
bool ForLoopIndexUseVisitor::TraverseLambdaCapture(LambdaExpr *LE,
const LambdaCapture *C,
Expr *Init) {
if (C->capturesVariable()) {
const VarDecl *VDecl = C->getCapturedVar();
if (areSameVariable(IndexVar, cast<ValueDecl>(VDecl))) {
// FIXME: if the index is captured, it will count as an usage and the
// alias (if any) won't work, because it is only used in case of having
// exactly one usage.
addUsage(Usage(nullptr,
C->getCaptureKind() == LCK_ByCopy ? Usage::UK_CaptureByCopy
: Usage::UK_CaptureByRef,
C->getLocation()));
}
}
return VisitorBase::TraverseLambdaCapture(LE, C, Init);
}
/// If we find that another variable is created just to refer to the loop
/// element, note it for reuse as the loop variable.
///
/// See the comments for isAliasDecl.
bool ForLoopIndexUseVisitor::VisitDeclStmt(DeclStmt *S) {
if (!AliasDecl && S->isSingleDecl() &&
isAliasDecl(Context, S->getSingleDecl(), IndexVar)) {
AliasDecl = S;
if (CurrStmtParent) {
if (isa<IfStmt>(CurrStmtParent) || isa<WhileStmt>(CurrStmtParent) ||
isa<SwitchStmt>(CurrStmtParent))
ReplaceWithAliasUse = true;
else if (isa<ForStmt>(CurrStmtParent)) {
if (cast<ForStmt>(CurrStmtParent)->getConditionVariableDeclStmt() == S)
ReplaceWithAliasUse = true;
else
// It's assumed S came the for loop's init clause.
AliasFromForInit = true;
}
}
}
return true;
}
bool ForLoopIndexUseVisitor::TraverseStmt(Stmt *S) {
// If this is an initialization expression for a lambda capture, prune the
// traversal so that we don't end up diagnosing the contained DeclRefExpr as
// inconsistent usage. No need to record the usage here -- this is done in
// TraverseLambdaCapture().
if (const auto *LE = dyn_cast_or_null<LambdaExpr>(NextStmtParent)) {
// Any child of a LambdaExpr that isn't the body is an initialization
// expression.
if (S != LE->getBody()) {
return true;
}
}
// All this pointer swapping is a mechanism for tracking immediate parentage
// of Stmts.
const Stmt *OldNextParent = NextStmtParent;
CurrStmtParent = NextStmtParent;
NextStmtParent = S;
bool Result = VisitorBase::TraverseStmt(S);
NextStmtParent = OldNextParent;
return Result;
}
std::string VariableNamer::createIndexName() {
// FIXME: Add in naming conventions to handle:
// - How to handle conflicts.
// - An interactive process for naming.
std::string IteratorName;
StringRef ContainerName;
if (TheContainer)
ContainerName = TheContainer->getName();
size_t Len = ContainerName.size();
if (Len > 1 && ContainerName.endswith(Style == NS_UpperCase ? "S" : "s")) {
IteratorName = std::string(ContainerName.substr(0, Len - 1));
// E.g.: (auto thing : things)
if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
return IteratorName;
}
if (Len > 2 && ContainerName.endswith(Style == NS_UpperCase ? "S_" : "s_")) {
IteratorName = std::string(ContainerName.substr(0, Len - 2));
// E.g.: (auto thing : things_)
if (!declarationExists(IteratorName) || IteratorName == OldIndex->getName())
return IteratorName;
}
return std::string(OldIndex->getName());
}
/// Determines whether or not the name \a Symbol conflicts with
/// language keywords or defined macros. Also checks if the name exists in
/// LoopContext, any of its parent contexts, or any of its child statements.
///
/// We also check to see if the same identifier was generated by this loop
/// converter in a loop nested within SourceStmt.
bool VariableNamer::declarationExists(StringRef Symbol) {
assert(Context != nullptr && "Expected an ASTContext");
IdentifierInfo &Ident = Context->Idents.get(Symbol);
// Check if the symbol is not an identifier (ie. is a keyword or alias).
if (!isAnyIdentifier(Ident.getTokenID()))
return true;
// Check for conflicting macro definitions.
if (Ident.hasMacroDefinition())
return true;
// Determine if the symbol was generated in a parent context.
for (const Stmt *S = SourceStmt; S != nullptr; S = ReverseAST->lookup(S)) {
StmtGeneratedVarNameMap::const_iterator I = GeneratedDecls->find(S);
if (I != GeneratedDecls->end() && I->second == Symbol)
return true;
}
// FIXME: Rather than detecting conflicts at their usages, we should check the
// parent context.
// For some reason, lookup() always returns the pair (NULL, NULL) because its
// StoredDeclsMap is not initialized (i.e. LookupPtr.getInt() is false inside
// of DeclContext::lookup()). Why is this?
// Finally, determine if the symbol was used in the loop or a child context.
DeclFinderASTVisitor DeclFinder(std::string(Symbol), GeneratedDecls);
return DeclFinder.findUsages(SourceStmt);
}
} // namespace modernize
} // namespace tidy
} // namespace clang