OperatingSystemPython.cpp 16.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
//===-- OperatingSystemPython.cpp -----------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "lldb/Host/Config.h"

#if LLDB_ENABLE_PYTHON

#include "OperatingSystemPython.h"

#include "Plugins/Process/Utility/DynamicRegisterInfo.h"
#include "Plugins/Process/Utility/RegisterContextDummy.h"
#include "Plugins/Process/Utility/RegisterContextMemory.h"
#include "Plugins/Process/Utility/ThreadMemory.h"
#include "lldb/Core/Debugger.h"
#include "lldb/Core/Module.h"
#include "lldb/Core/PluginManager.h"
#include "lldb/Core/ValueObjectVariable.h"
#include "lldb/Interpreter/CommandInterpreter.h"
#include "lldb/Interpreter/ScriptInterpreter.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/VariableList.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/StopInfo.h"
#include "lldb/Target/Target.h"
#include "lldb/Target/Thread.h"
#include "lldb/Target/ThreadList.h"
#include "lldb/Utility/DataBufferHeap.h"
#include "lldb/Utility/RegisterValue.h"
#include "lldb/Utility/StreamString.h"
#include "lldb/Utility/StructuredData.h"

#include <memory>

using namespace lldb;
using namespace lldb_private;

LLDB_PLUGIN_DEFINE(OperatingSystemPython)

void OperatingSystemPython::Initialize() {
  PluginManager::RegisterPlugin(GetPluginNameStatic(),
                                GetPluginDescriptionStatic(), CreateInstance,
                                nullptr);
}

void OperatingSystemPython::Terminate() {
  PluginManager::UnregisterPlugin(CreateInstance);
}

OperatingSystem *OperatingSystemPython::CreateInstance(Process *process,
                                                       bool force) {
  // Python OperatingSystem plug-ins must be requested by name, so force must
  // be true
  FileSpec python_os_plugin_spec(process->GetPythonOSPluginPath());
  if (python_os_plugin_spec &&
      FileSystem::Instance().Exists(python_os_plugin_spec)) {
    std::unique_ptr<OperatingSystemPython> os_up(
        new OperatingSystemPython(process, python_os_plugin_spec));
    if (os_up.get() && os_up->IsValid())
      return os_up.release();
  }
  return nullptr;
}

ConstString OperatingSystemPython::GetPluginNameStatic() {
  static ConstString g_name("python");
  return g_name;
}

const char *OperatingSystemPython::GetPluginDescriptionStatic() {
  return "Operating system plug-in that gathers OS information from a python "
         "class that implements the necessary OperatingSystem functionality.";
}

OperatingSystemPython::OperatingSystemPython(lldb_private::Process *process,
                                             const FileSpec &python_module_path)
    : OperatingSystem(process), m_thread_list_valobj_sp(), m_register_info_up(),
      m_interpreter(nullptr), m_python_object_sp() {
  if (!process)
    return;
  TargetSP target_sp = process->CalculateTarget();
  if (!target_sp)
    return;
  m_interpreter = target_sp->GetDebugger().GetScriptInterpreter();
  if (m_interpreter) {

    std::string os_plugin_class_name(
        python_module_path.GetFilename().AsCString(""));
    if (!os_plugin_class_name.empty()) {
      const bool init_session = false;
      char python_module_path_cstr[PATH_MAX];
      python_module_path.GetPath(python_module_path_cstr,
                                 sizeof(python_module_path_cstr));
      Status error;
      if (m_interpreter->LoadScriptingModule(python_module_path_cstr,
                                             init_session, error)) {
        // Strip the ".py" extension if there is one
        size_t py_extension_pos = os_plugin_class_name.rfind(".py");
        if (py_extension_pos != std::string::npos)
          os_plugin_class_name.erase(py_extension_pos);
        // Add ".OperatingSystemPlugIn" to the module name to get a string like
        // "modulename.OperatingSystemPlugIn"
        os_plugin_class_name += ".OperatingSystemPlugIn";
        StructuredData::ObjectSP object_sp =
            m_interpreter->OSPlugin_CreatePluginObject(
                os_plugin_class_name.c_str(), process->CalculateProcess());
        if (object_sp && object_sp->IsValid())
          m_python_object_sp = object_sp;
      }
    }
  }
}

OperatingSystemPython::~OperatingSystemPython() {}

DynamicRegisterInfo *OperatingSystemPython::GetDynamicRegisterInfo() {
  if (m_register_info_up == nullptr) {
    if (!m_interpreter || !m_python_object_sp)
      return nullptr;
    Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));

    LLDB_LOGF(log,
              "OperatingSystemPython::GetDynamicRegisterInfo() fetching "
              "thread register definitions from python for pid %" PRIu64,
              m_process->GetID());

    StructuredData::DictionarySP dictionary =
        m_interpreter->OSPlugin_RegisterInfo(m_python_object_sp);
    if (!dictionary)
      return nullptr;

    m_register_info_up = std::make_unique<DynamicRegisterInfo>(
        *dictionary, m_process->GetTarget().GetArchitecture());
    assert(m_register_info_up->GetNumRegisters() > 0);
    assert(m_register_info_up->GetNumRegisterSets() > 0);
  }
  return m_register_info_up.get();
}

// PluginInterface protocol
ConstString OperatingSystemPython::GetPluginName() {
  return GetPluginNameStatic();
}

uint32_t OperatingSystemPython::GetPluginVersion() { return 1; }

bool OperatingSystemPython::UpdateThreadList(ThreadList &old_thread_list,
                                             ThreadList &core_thread_list,
                                             ThreadList &new_thread_list) {
  if (!m_interpreter || !m_python_object_sp)
    return false;

  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OS));

  // First thing we have to do is to try to get the API lock, and the
  // interpreter lock. We're going to change the thread content of the process,
  // and we're going to use python, which requires the API lock to do it. We
  // need the interpreter lock to make sure thread_info_dict stays alive.
  //
  // If someone already has the API lock, that is ok, we just want to avoid
  // external code from making new API calls while this call is happening.
  //
  // This is a recursive lock so we can grant it to any Python code called on
  // the stack below us.
  Target &target = m_process->GetTarget();
  std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
                                                  std::defer_lock);
  (void)api_lock.try_lock(); // See above.
  auto interpreter_lock = m_interpreter->AcquireInterpreterLock();

  LLDB_LOGF(log,
            "OperatingSystemPython::UpdateThreadList() fetching thread "
            "data from python for pid %" PRIu64,
            m_process->GetID());

  // The threads that are in "core_thread_list" upon entry are the threads from
  // the lldb_private::Process subclass, no memory threads will be in this
  // list.
  StructuredData::ArraySP threads_list =
      m_interpreter->OSPlugin_ThreadsInfo(m_python_object_sp);

  const uint32_t num_cores = core_thread_list.GetSize(false);

  // Make a map so we can keep track of which cores were used from the
  // core_thread list. Any real threads/cores that weren't used should later be
  // put back into the "new_thread_list".
  std::vector<bool> core_used_map(num_cores, false);
  if (threads_list) {
    if (log) {
      StreamString strm;
      threads_list->Dump(strm);
      LLDB_LOGF(log, "threads_list = %s", strm.GetData());
    }

    const uint32_t num_threads = threads_list->GetSize();
    for (uint32_t i = 0; i < num_threads; ++i) {
      StructuredData::ObjectSP thread_dict_obj =
          threads_list->GetItemAtIndex(i);
      if (auto thread_dict = thread_dict_obj->GetAsDictionary()) {
        ThreadSP thread_sp(CreateThreadFromThreadInfo(
            *thread_dict, core_thread_list, old_thread_list, core_used_map,
            nullptr));
        if (thread_sp)
          new_thread_list.AddThread(thread_sp);
      }
    }
  }

  // Any real core threads that didn't end up backing a memory thread should
  // still be in the main thread list, and they should be inserted at the
  // beginning of the list
  uint32_t insert_idx = 0;
  for (uint32_t core_idx = 0; core_idx < num_cores; ++core_idx) {
    if (!core_used_map[core_idx]) {
      new_thread_list.InsertThread(
          core_thread_list.GetThreadAtIndex(core_idx, false), insert_idx);
      ++insert_idx;
    }
  }

  return new_thread_list.GetSize(false) > 0;
}

ThreadSP OperatingSystemPython::CreateThreadFromThreadInfo(
    StructuredData::Dictionary &thread_dict, ThreadList &core_thread_list,
    ThreadList &old_thread_list, std::vector<bool> &core_used_map,
    bool *did_create_ptr) {
  ThreadSP thread_sp;
  tid_t tid = LLDB_INVALID_THREAD_ID;
  if (!thread_dict.GetValueForKeyAsInteger("tid", tid))
    return ThreadSP();

  uint32_t core_number;
  addr_t reg_data_addr;
  llvm::StringRef name;
  llvm::StringRef queue;

  thread_dict.GetValueForKeyAsInteger("core", core_number, UINT32_MAX);
  thread_dict.GetValueForKeyAsInteger("register_data_addr", reg_data_addr,
                                      LLDB_INVALID_ADDRESS);
  thread_dict.GetValueForKeyAsString("name", name);
  thread_dict.GetValueForKeyAsString("queue", queue);

  // See if a thread already exists for "tid"
  thread_sp = old_thread_list.FindThreadByID(tid, false);
  if (thread_sp) {
    // A thread already does exist for "tid", make sure it was an operating
    // system
    // plug-in generated thread.
    if (!IsOperatingSystemPluginThread(thread_sp)) {
      // We have thread ID overlap between the protocol threads and the
      // operating system threads, clear the thread so we create an operating
      // system thread for this.
      thread_sp.reset();
    }
  }

  if (!thread_sp) {
    if (did_create_ptr)
      *did_create_ptr = true;
    thread_sp = std::make_shared<ThreadMemory>(*m_process, tid, name, queue,
                                               reg_data_addr);
  }

  if (core_number < core_thread_list.GetSize(false)) {
    ThreadSP core_thread_sp(
        core_thread_list.GetThreadAtIndex(core_number, false));
    if (core_thread_sp) {
      // Keep track of which cores were set as the backing thread for memory
      // threads...
      if (core_number < core_used_map.size())
        core_used_map[core_number] = true;

      ThreadSP backing_core_thread_sp(core_thread_sp->GetBackingThread());
      if (backing_core_thread_sp) {
        thread_sp->SetBackingThread(backing_core_thread_sp);
      } else {
        thread_sp->SetBackingThread(core_thread_sp);
      }
    }
  }
  return thread_sp;
}

void OperatingSystemPython::ThreadWasSelected(Thread *thread) {}

RegisterContextSP
OperatingSystemPython::CreateRegisterContextForThread(Thread *thread,
                                                      addr_t reg_data_addr) {
  RegisterContextSP reg_ctx_sp;
  if (!m_interpreter || !m_python_object_sp || !thread)
    return reg_ctx_sp;

  if (!IsOperatingSystemPluginThread(thread->shared_from_this()))
    return reg_ctx_sp;

  // First thing we have to do is to try to get the API lock, and the
  // interpreter lock. We're going to change the thread content of the process,
  // and we're going to use python, which requires the API lock to do it. We
  // need the interpreter lock to make sure thread_info_dict stays alive.
  //
  // If someone already has the API lock, that is ok, we just want to avoid
  // external code from making new API calls while this call is happening.
  //
  // This is a recursive lock so we can grant it to any Python code called on
  // the stack below us.
  Target &target = m_process->GetTarget();
  std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
                                                  std::defer_lock);
  (void)api_lock.try_lock(); // See above.
  auto interpreter_lock = m_interpreter->AcquireInterpreterLock();

  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));

  if (reg_data_addr != LLDB_INVALID_ADDRESS) {
    // The registers data is in contiguous memory, just create the register
    // context using the address provided
    LLDB_LOGF(log,
              "OperatingSystemPython::CreateRegisterContextForThread (tid "
              "= 0x%" PRIx64 ", 0x%" PRIx64 ", reg_data_addr = 0x%" PRIx64
              ") creating memory register context",
              thread->GetID(), thread->GetProtocolID(), reg_data_addr);
    reg_ctx_sp = std::make_shared<RegisterContextMemory>(
        *thread, 0, *GetDynamicRegisterInfo(), reg_data_addr);
  } else {
    // No register data address is provided, query the python plug-in to let it
    // make up the data as it sees fit
    LLDB_LOGF(log,
              "OperatingSystemPython::CreateRegisterContextForThread (tid "
              "= 0x%" PRIx64 ", 0x%" PRIx64
              ") fetching register data from python",
              thread->GetID(), thread->GetProtocolID());

    StructuredData::StringSP reg_context_data =
        m_interpreter->OSPlugin_RegisterContextData(m_python_object_sp,
                                                    thread->GetID());
    if (reg_context_data) {
      std::string value = std::string(reg_context_data->GetValue());
      DataBufferSP data_sp(new DataBufferHeap(value.c_str(), value.length()));
      if (data_sp->GetByteSize()) {
        RegisterContextMemory *reg_ctx_memory = new RegisterContextMemory(
            *thread, 0, *GetDynamicRegisterInfo(), LLDB_INVALID_ADDRESS);
        if (reg_ctx_memory) {
          reg_ctx_sp.reset(reg_ctx_memory);
          reg_ctx_memory->SetAllRegisterData(data_sp);
        }
      }
    }
  }
  // if we still have no register data, fallback on a dummy context to avoid
  // crashing
  if (!reg_ctx_sp) {
    LLDB_LOGF(log,
              "OperatingSystemPython::CreateRegisterContextForThread (tid "
              "= 0x%" PRIx64 ") forcing a dummy register context",
              thread->GetID());
    reg_ctx_sp = std::make_shared<RegisterContextDummy>(
        *thread, 0, target.GetArchitecture().GetAddressByteSize());
  }
  return reg_ctx_sp;
}

StopInfoSP
OperatingSystemPython::CreateThreadStopReason(lldb_private::Thread *thread) {
  // We should have gotten the thread stop info from the dictionary of data for
  // the thread in the initial call to get_thread_info(), this should have been
  // cached so we can return it here
  StopInfoSP
      stop_info_sp; //(StopInfo::CreateStopReasonWithSignal (*thread, SIGSTOP));
  return stop_info_sp;
}

lldb::ThreadSP OperatingSystemPython::CreateThread(lldb::tid_t tid,
                                                   addr_t context) {
  Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));

  LLDB_LOGF(log,
            "OperatingSystemPython::CreateThread (tid = 0x%" PRIx64
            ", context = 0x%" PRIx64 ") fetching register data from python",
            tid, context);

  if (m_interpreter && m_python_object_sp) {
    // First thing we have to do is to try to get the API lock, and the
    // interpreter lock. We're going to change the thread content of the
    // process, and we're going to use python, which requires the API lock to
    // do it. We need the interpreter lock to make sure thread_info_dict stays
    // alive.
    //
    // If someone already has the API lock, that is ok, we just want to avoid
    // external code from making new API calls while this call is happening.
    //
    // This is a recursive lock so we can grant it to any Python code called on
    // the stack below us.
    Target &target = m_process->GetTarget();
    std::unique_lock<std::recursive_mutex> api_lock(target.GetAPIMutex(),
                                                    std::defer_lock);
    (void)api_lock.try_lock(); // See above.
    auto interpreter_lock = m_interpreter->AcquireInterpreterLock();

    StructuredData::DictionarySP thread_info_dict =
        m_interpreter->OSPlugin_CreateThread(m_python_object_sp, tid, context);
    std::vector<bool> core_used_map;
    if (thread_info_dict) {
      ThreadList core_threads(m_process);
      ThreadList &thread_list = m_process->GetThreadList();
      bool did_create = false;
      ThreadSP thread_sp(
          CreateThreadFromThreadInfo(*thread_info_dict, core_threads,
                                     thread_list, core_used_map, &did_create));
      if (did_create)
        thread_list.AddThread(thread_sp);
      return thread_sp;
    }
  }
  return ThreadSP();
}

#endif // #if LLDB_ENABLE_PYTHON