SqrtLongDoubleX86.h
4.35 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
//===-- Square root of x86 long double numbers ------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#define LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H
#include "FPBits.h"
#include "Sqrt.h"
#include "utils/CPP/TypeTraits.h"
namespace __llvm_libc {
namespace fputil {
#if (defined(__x86_64__) || defined(__i386__))
namespace internal {
template <>
inline void normalize<long double>(int &exponent, __uint128_t &mantissa) {
// Use binary search to shift the leading 1 bit similar to float.
// With MantissaWidth<long double> = 63, it will take
// ceil(log2(63)) = 6 steps checking the mantissa bits.
constexpr int nsteps = 6; // = ceil(log2(MantissaWidth))
constexpr __uint128_t bounds[nsteps] = {
__uint128_t(1) << 32, __uint128_t(1) << 48, __uint128_t(1) << 56,
__uint128_t(1) << 60, __uint128_t(1) << 62, __uint128_t(1) << 63};
constexpr int shifts[nsteps] = {32, 16, 8, 4, 2, 1};
for (int i = 0; i < nsteps; ++i) {
if (mantissa < bounds[i]) {
exponent -= shifts[i];
mantissa <<= shifts[i];
}
}
}
} // namespace internal
// Correctly rounded SQRT with round to nearest, ties to even.
// Shift-and-add algorithm.
template <> inline long double sqrt<long double, 0>(long double x) {
using UIntType = typename FPBits<long double>::UIntType;
constexpr UIntType One = UIntType(1)
<< int(MantissaWidth<long double>::value);
FPBits<long double> bits(x);
if (bits.isInfOrNaN()) {
if (bits.sign && (bits.mantissa == 0)) {
// sqrt(-Inf) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
// sqrt(NaN) = NaN
// sqrt(+Inf) = +Inf
return x;
}
} else if (bits.isZero()) {
// sqrt(+0) = +0
// sqrt(-0) = -0
return x;
} else if (bits.sign) {
// sqrt( negative numbers ) = NaN
return FPBits<long double>::buildNaN(One >> 1);
} else {
int xExp = bits.getExponent();
UIntType xMant = bits.mantissa;
// Step 1a: Normalize denormal input
if (bits.implicitBit) {
xMant |= One;
} else if (bits.exponent == 0) {
internal::normalize<long double>(xExp, xMant);
}
// Step 1b: Make sure the exponent is even.
if (xExp & 1) {
--xExp;
xMant <<= 1;
}
// After step 1b, x = 2^(xExp) * xMant, where xExp is even, and
// 1 <= xMant < 4. So sqrt(x) = 2^(xExp / 2) * y, with 1 <= y < 2.
// Notice that the output of sqrt is always in the normal range.
// To perform shift-and-add algorithm to find y, let denote:
// y(n) = 1.y_1 y_2 ... y_n, we can define the nth residue to be:
// r(n) = 2^n ( xMant - y(n)^2 ).
// That leads to the following recurrence formula:
// r(n) = 2*r(n-1) - y_n*[ 2*y(n-1) + 2^(-n-1) ]
// with the initial conditions: y(0) = 1, and r(0) = x - 1.
// So the nth digit y_n of the mantissa of sqrt(x) can be found by:
// y_n = 1 if 2*r(n-1) >= 2*y(n - 1) + 2^(-n-1)
// 0 otherwise.
UIntType y = One;
UIntType r = xMant - One;
for (UIntType current_bit = One >> 1; current_bit; current_bit >>= 1) {
r <<= 1;
UIntType tmp = (y << 1) + current_bit; // 2*y(n - 1) + 2^(-n-1)
if (r >= tmp) {
r -= tmp;
y += current_bit;
}
}
// We compute one more iteration in order to round correctly.
bool lsb = y & 1; // Least significant bit
bool rb = false; // Round bit
r <<= 2;
UIntType tmp = (y << 2) + 1;
if (r >= tmp) {
r -= tmp;
rb = true;
}
// Append the exponent field.
xExp = ((xExp >> 1) + FPBits<long double>::exponentBias);
y |= (static_cast<UIntType>(xExp)
<< (MantissaWidth<long double>::value + 1));
// Round to nearest, ties to even
if (rb && (lsb || (r != 0))) {
++y;
}
// Extract output
FPBits<long double> out(0.0L);
out.exponent = xExp;
out.implicitBit = 1;
out.mantissa = (y & (One - 1));
return out;
}
}
#endif // defined(__x86_64__) || defined(__i386__)
} // namespace fputil
} // namespace __llvm_libc
#endif // LLVM_LIBC_UTILS_FPUTIL_SQRT_LONG_DOUBLE_X86_H