rtl.cpp
63.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
//===----RTLs/hsa/src/rtl.cpp - Target RTLs Implementation -------- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// RTL for hsa machine
//
//===----------------------------------------------------------------------===//
#include <algorithm>
#include <assert.h>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <dlfcn.h>
#include <elf.h>
#include <ffi.h>
#include <fstream>
#include <iostream>
#include <libelf.h>
#include <list>
#include <memory>
#include <mutex>
#include <shared_mutex>
#include <thread>
#include <unordered_map>
#include <vector>
// Header from ATMI interface
#include "atmi_interop_hsa.h"
#include "atmi_runtime.h"
#include "internal.h"
#include "Debug.h"
#include "omptargetplugin.h"
// Get static gpu grid values from clang target-specific constants managed
// in the header file llvm/Frontend/OpenMP/OMPGridValues.h
// Copied verbatim to meet the requirement that libomptarget builds without
// a copy of llvm checked out nearby
namespace llvm {
namespace omp {
enum GVIDX {
/// The maximum number of workers in a kernel.
/// (THREAD_ABSOLUTE_LIMIT) - (GV_Warp_Size), might be issue for blockDim.z
GV_Threads,
/// The size reserved for data in a shared memory slot.
GV_Slot_Size,
/// The default value of maximum number of threads in a worker warp.
GV_Warp_Size,
/// Alternate warp size for some AMDGCN architectures. Same as GV_Warp_Size
/// for NVPTX.
GV_Warp_Size_32,
/// The number of bits required to represent the max number of threads in warp
GV_Warp_Size_Log2,
/// GV_Warp_Size * GV_Slot_Size,
GV_Warp_Slot_Size,
/// the maximum number of teams.
GV_Max_Teams,
/// Global Memory Alignment
GV_Mem_Align,
/// (~0u >> (GV_Warp_Size - GV_Warp_Size_Log2))
GV_Warp_Size_Log2_Mask,
// An alternative to the heavy data sharing infrastructure that uses global
// memory is one that uses device __shared__ memory. The amount of such space
// (in bytes) reserved by the OpenMP runtime is noted here.
GV_SimpleBufferSize,
// The absolute maximum team size for a working group
GV_Max_WG_Size,
// The default maximum team size for a working group
GV_Default_WG_Size,
// This is GV_Max_WG_Size / GV_WarpSize. 32 for NVPTX and 16 for AMDGCN.
GV_Max_Warp_Number,
/// The slot size that should be reserved for a working warp.
/// (~0u >> (GV_Warp_Size - GV_Warp_Size_Log2))
GV_Warp_Size_Log2_MaskL
};
static constexpr unsigned AMDGPUGpuGridValues[] = {
448, // GV_Threads
256, // GV_Slot_Size
64, // GV_Warp_Size
32, // GV_Warp_Size_32
6, // GV_Warp_Size_Log2
64 * 256, // GV_Warp_Slot_Size
128, // GV_Max_Teams
256, // GV_Mem_Align
63, // GV_Warp_Size_Log2_Mask
896, // GV_SimpleBufferSize
1024, // GV_Max_WG_Size,
256, // GV_Defaut_WG_Size
1024 / 64, // GV_Max_WG_Size / GV_WarpSize
63 // GV_Warp_Size_Log2_MaskL
};
} // namespace omp
} // namespace llvm
#ifndef TARGET_NAME
#define TARGET_NAME AMDHSA
#endif
#define DEBUG_PREFIX "Target " GETNAME(TARGET_NAME) " RTL"
int print_kernel_trace;
// Size of the target call stack struture
uint32_t TgtStackItemSize = 0;
#undef check // Drop definition from internal.h
#ifdef OMPTARGET_DEBUG
#define check(msg, status) \
if (status != ATMI_STATUS_SUCCESS) { \
/* fprintf(stderr, "[%s:%d] %s failed.\n", __FILE__, __LINE__, #msg);*/ \
DP(#msg " failed\n"); \
/*assert(0);*/ \
} else { \
/* fprintf(stderr, "[%s:%d] %s succeeded.\n", __FILE__, __LINE__, #msg); \
*/ \
DP(#msg " succeeded\n"); \
}
#else
#define check(msg, status) \
{}
#endif
#include "../../common/elf_common.c"
static bool elf_machine_id_is_amdgcn(__tgt_device_image *image) {
const uint16_t amdgcnMachineID = 224;
int32_t r = elf_check_machine(image, amdgcnMachineID);
if (!r) {
DP("Supported machine ID not found\n");
}
return r;
}
/// Keep entries table per device
struct FuncOrGblEntryTy {
__tgt_target_table Table;
std::vector<__tgt_offload_entry> Entries;
};
enum ExecutionModeType {
SPMD, // constructors, destructors,
// combined constructs (`teams distribute parallel for [simd]`)
GENERIC, // everything else
NONE
};
struct KernelArgPool {
private:
static pthread_mutex_t mutex;
public:
uint32_t kernarg_segment_size;
void *kernarg_region = nullptr;
std::queue<int> free_kernarg_segments;
uint32_t kernarg_size_including_implicit() {
return kernarg_segment_size + sizeof(atmi_implicit_args_t);
}
~KernelArgPool() {
if (kernarg_region) {
auto r = hsa_amd_memory_pool_free(kernarg_region);
assert(r == HSA_STATUS_SUCCESS);
ErrorCheck(Memory pool free, r);
}
}
// Can't really copy or move a mutex
KernelArgPool() = default;
KernelArgPool(const KernelArgPool &) = delete;
KernelArgPool(KernelArgPool &&) = delete;
KernelArgPool(uint32_t kernarg_segment_size)
: kernarg_segment_size(kernarg_segment_size) {
// atmi uses one pool per kernel for all gpus, with a fixed upper size
// preserving that exact scheme here, including the queue<int>
{
hsa_status_t err = hsa_amd_memory_pool_allocate(
atl_gpu_kernarg_pools[0],
kernarg_size_including_implicit() * MAX_NUM_KERNELS, 0,
&kernarg_region);
ErrorCheck(Allocating memory for the executable-kernel, err);
core::allow_access_to_all_gpu_agents(kernarg_region);
for (int i = 0; i < MAX_NUM_KERNELS; i++) {
free_kernarg_segments.push(i);
}
}
}
void *allocate(uint64_t arg_num) {
assert((arg_num * sizeof(void *)) == kernarg_segment_size);
lock l(&mutex);
void *res = nullptr;
if (!free_kernarg_segments.empty()) {
int free_idx = free_kernarg_segments.front();
res = static_cast<void *>(static_cast<char *>(kernarg_region) +
(free_idx * kernarg_size_including_implicit()));
assert(free_idx == pointer_to_index(res));
free_kernarg_segments.pop();
}
return res;
}
void deallocate(void *ptr) {
lock l(&mutex);
int idx = pointer_to_index(ptr);
free_kernarg_segments.push(idx);
}
private:
int pointer_to_index(void *ptr) {
ptrdiff_t bytes =
static_cast<char *>(ptr) - static_cast<char *>(kernarg_region);
assert(bytes >= 0);
assert(bytes % kernarg_size_including_implicit() == 0);
return bytes / kernarg_size_including_implicit();
}
struct lock {
lock(pthread_mutex_t *m) : m(m) { pthread_mutex_lock(m); }
~lock() { pthread_mutex_unlock(m); }
pthread_mutex_t *m;
};
};
pthread_mutex_t KernelArgPool::mutex = PTHREAD_MUTEX_INITIALIZER;
std::unordered_map<std::string /*kernel*/, std::unique_ptr<KernelArgPool>>
KernelArgPoolMap;
/// Use a single entity to encode a kernel and a set of flags
struct KernelTy {
// execution mode of kernel
// 0 - SPMD mode (without master warp)
// 1 - Generic mode (with master warp)
int8_t ExecutionMode;
int16_t ConstWGSize;
int8_t MaxParLevel;
int32_t device_id;
void *CallStackAddr;
const char *Name;
KernelTy(int8_t _ExecutionMode, int16_t _ConstWGSize, int8_t _MaxParLevel,
int32_t _device_id, void *_CallStackAddr, const char *_Name,
uint32_t _kernarg_segment_size)
: ExecutionMode(_ExecutionMode), ConstWGSize(_ConstWGSize),
MaxParLevel(_MaxParLevel), device_id(_device_id),
CallStackAddr(_CallStackAddr), Name(_Name) {
DP("Construct kernelinfo: ExecMode %d\n", ExecutionMode);
std::string N(_Name);
if (KernelArgPoolMap.find(N) == KernelArgPoolMap.end()) {
KernelArgPoolMap.insert(
std::make_pair(N, std::unique_ptr<KernelArgPool>(
new KernelArgPool(_kernarg_segment_size))));
}
}
};
/// List that contains all the kernels.
/// FIXME: we may need this to be per device and per library.
std::list<KernelTy> KernelsList;
// ATMI API to get gpu and gpu memory place
static atmi_place_t get_gpu_place(int device_id) {
return ATMI_PLACE_GPU(0, device_id);
}
static atmi_mem_place_t get_gpu_mem_place(int device_id) {
return ATMI_MEM_PLACE_GPU_MEM(0, device_id, 0);
}
static std::vector<hsa_agent_t> find_gpu_agents() {
std::vector<hsa_agent_t> res;
hsa_status_t err = hsa_iterate_agents(
[](hsa_agent_t agent, void *data) -> hsa_status_t {
std::vector<hsa_agent_t> *res =
static_cast<std::vector<hsa_agent_t> *>(data);
hsa_device_type_t device_type;
// get_info fails iff HSA runtime not yet initialized
hsa_status_t err =
hsa_agent_get_info(agent, HSA_AGENT_INFO_DEVICE, &device_type);
if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS)
printf("rtl.cpp: err %d\n", err);
assert(err == HSA_STATUS_SUCCESS);
if (device_type == HSA_DEVICE_TYPE_GPU) {
res->push_back(agent);
}
return HSA_STATUS_SUCCESS;
},
&res);
// iterate_agents fails iff HSA runtime not yet initialized
if (print_kernel_trace > 0 && err != HSA_STATUS_SUCCESS)
printf("rtl.cpp: err %d\n", err);
assert(err == HSA_STATUS_SUCCESS);
return res;
}
static void callbackQueue(hsa_status_t status, hsa_queue_t *source,
void *data) {
if (status != HSA_STATUS_SUCCESS) {
const char *status_string;
if (hsa_status_string(status, &status_string) != HSA_STATUS_SUCCESS) {
status_string = "unavailable";
}
fprintf(stderr, "[%s:%d] GPU error in queue %p %d (%s)\n", __FILE__,
__LINE__, source, status, status_string);
abort();
}
}
namespace core {
void packet_store_release(uint32_t *packet, uint16_t header, uint16_t rest) {
__atomic_store_n(packet, header | (rest << 16), __ATOMIC_RELEASE);
}
uint16_t create_header(hsa_packet_type_t type, int barrier,
atmi_task_fence_scope_t acq_fence,
atmi_task_fence_scope_t rel_fence) {
uint16_t header = type << HSA_PACKET_HEADER_TYPE;
header |= barrier << HSA_PACKET_HEADER_BARRIER;
header |= (hsa_fence_scope_t) static_cast<int>(
acq_fence << HSA_PACKET_HEADER_ACQUIRE_FENCE_SCOPE);
header |= (hsa_fence_scope_t) static_cast<int>(
rel_fence << HSA_PACKET_HEADER_RELEASE_FENCE_SCOPE);
return header;
}
} // namespace core
/// Class containing all the device information
class RTLDeviceInfoTy {
std::vector<std::list<FuncOrGblEntryTy>> FuncGblEntries;
public:
// load binary populates symbol tables and mutates various global state
// run uses those symbol tables
std::shared_timed_mutex load_run_lock;
int NumberOfDevices;
// GPU devices
std::vector<hsa_agent_t> HSAAgents;
std::vector<hsa_queue_t *> HSAQueues; // one per gpu
// Device properties
std::vector<int> ComputeUnits;
std::vector<int> GroupsPerDevice;
std::vector<int> ThreadsPerGroup;
std::vector<int> WarpSize;
// OpenMP properties
std::vector<int> NumTeams;
std::vector<int> NumThreads;
// OpenMP Environment properties
int EnvNumTeams;
int EnvTeamLimit;
int EnvMaxTeamsDefault;
// OpenMP Requires Flags
int64_t RequiresFlags;
// Resource pools
SignalPoolT FreeSignalPool;
struct atmiFreePtrDeletor {
void operator()(void *p) {
atmi_free(p); // ignore failure to free
}
};
// device_State shared across loaded binaries, error if inconsistent size
std::vector<std::pair<std::unique_ptr<void, atmiFreePtrDeletor>, uint64_t>>
deviceStateStore;
static const int HardTeamLimit = 1 << 20; // 1 Meg
static const int DefaultNumTeams = 128;
static const int Max_Teams =
llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_Teams];
static const int Warp_Size =
llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
static const int Max_WG_Size =
llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Max_WG_Size];
static const int Default_WG_Size =
llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Default_WG_Size];
atmi_status_t freesignalpool_memcpy(void *dest, const void *src,
size_t size) {
hsa_signal_t s = FreeSignalPool.pop();
if (s.handle == 0) {
return ATMI_STATUS_ERROR;
}
atmi_status_t r = atmi_memcpy(s, dest, src, size);
FreeSignalPool.push(s);
return r;
}
// Record entry point associated with device
void addOffloadEntry(int32_t device_id, __tgt_offload_entry entry) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
E.Entries.push_back(entry);
}
// Return true if the entry is associated with device
bool findOffloadEntry(int32_t device_id, void *addr) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
for (auto &it : E.Entries) {
if (it.addr == addr)
return true;
}
return false;
}
// Return the pointer to the target entries table
__tgt_target_table *getOffloadEntriesTable(int32_t device_id) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
int32_t size = E.Entries.size();
// Table is empty
if (!size)
return 0;
__tgt_offload_entry *begin = &E.Entries[0];
__tgt_offload_entry *end = &E.Entries[size - 1];
// Update table info according to the entries and return the pointer
E.Table.EntriesBegin = begin;
E.Table.EntriesEnd = ++end;
return &E.Table;
}
// Clear entries table for a device
void clearOffloadEntriesTable(int device_id) {
assert(device_id < (int32_t)FuncGblEntries.size() &&
"Unexpected device id!");
FuncGblEntries[device_id].emplace_back();
FuncOrGblEntryTy &E = FuncGblEntries[device_id].back();
// KernelArgPoolMap.clear();
E.Entries.clear();
E.Table.EntriesBegin = E.Table.EntriesEnd = 0;
}
RTLDeviceInfoTy() {
// LIBOMPTARGET_KERNEL_TRACE provides a kernel launch trace to stderr
// anytime. You do not need a debug library build.
// 0 => no tracing
// 1 => tracing dispatch only
// >1 => verbosity increase
if (char *envStr = getenv("LIBOMPTARGET_KERNEL_TRACE"))
print_kernel_trace = atoi(envStr);
else
print_kernel_trace = 0;
DP("Start initializing HSA-ATMI\n");
atmi_status_t err = atmi_init();
if (err != ATMI_STATUS_SUCCESS) {
DP("Error when initializing HSA-ATMI\n");
return;
}
HSAAgents = find_gpu_agents();
NumberOfDevices = (int)HSAAgents.size();
if (NumberOfDevices == 0) {
DP("There are no devices supporting HSA.\n");
return;
} else {
DP("There are %d devices supporting HSA.\n", NumberOfDevices);
}
// Init the device info
HSAQueues.resize(NumberOfDevices);
FuncGblEntries.resize(NumberOfDevices);
ThreadsPerGroup.resize(NumberOfDevices);
ComputeUnits.resize(NumberOfDevices);
GroupsPerDevice.resize(NumberOfDevices);
WarpSize.resize(NumberOfDevices);
NumTeams.resize(NumberOfDevices);
NumThreads.resize(NumberOfDevices);
deviceStateStore.resize(NumberOfDevices);
for (int i = 0; i < NumberOfDevices; i++) {
uint32_t queue_size = 0;
{
hsa_status_t err;
err = hsa_agent_get_info(HSAAgents[i], HSA_AGENT_INFO_QUEUE_MAX_SIZE,
&queue_size);
ErrorCheck(Querying the agent maximum queue size, err);
if (queue_size > core::Runtime::getInstance().getMaxQueueSize()) {
queue_size = core::Runtime::getInstance().getMaxQueueSize();
}
}
hsa_status_t rc = hsa_queue_create(
HSAAgents[i], queue_size, HSA_QUEUE_TYPE_MULTI, callbackQueue, NULL,
UINT32_MAX, UINT32_MAX, &HSAQueues[i]);
if (rc != HSA_STATUS_SUCCESS) {
DP("Failed to create HSA queues\n");
return;
}
deviceStateStore[i] = {nullptr, 0};
}
for (int i = 0; i < NumberOfDevices; i++) {
ThreadsPerGroup[i] = RTLDeviceInfoTy::Default_WG_Size;
GroupsPerDevice[i] = RTLDeviceInfoTy::DefaultNumTeams;
ComputeUnits[i] = 1;
DP("Device %d: Initial groupsPerDevice %d & threadsPerGroup %d\n", i,
GroupsPerDevice[i], ThreadsPerGroup[i]);
}
// Get environment variables regarding teams
char *envStr = getenv("OMP_TEAM_LIMIT");
if (envStr) {
// OMP_TEAM_LIMIT has been set
EnvTeamLimit = std::stoi(envStr);
DP("Parsed OMP_TEAM_LIMIT=%d\n", EnvTeamLimit);
} else {
EnvTeamLimit = -1;
}
envStr = getenv("OMP_NUM_TEAMS");
if (envStr) {
// OMP_NUM_TEAMS has been set
EnvNumTeams = std::stoi(envStr);
DP("Parsed OMP_NUM_TEAMS=%d\n", EnvNumTeams);
} else {
EnvNumTeams = -1;
}
// Get environment variables regarding expMaxTeams
envStr = getenv("OMP_MAX_TEAMS_DEFAULT");
if (envStr) {
EnvMaxTeamsDefault = std::stoi(envStr);
DP("Parsed OMP_MAX_TEAMS_DEFAULT=%d\n", EnvMaxTeamsDefault);
} else {
EnvMaxTeamsDefault = -1;
}
// Default state.
RequiresFlags = OMP_REQ_UNDEFINED;
}
~RTLDeviceInfoTy() {
DP("Finalizing the HSA-ATMI DeviceInfo.\n");
// Run destructors on types that use HSA before
// atmi_finalize removes access to it
deviceStateStore.clear();
KernelArgPoolMap.clear();
atmi_finalize();
}
};
pthread_mutex_t SignalPoolT::mutex = PTHREAD_MUTEX_INITIALIZER;
// TODO: May need to drop the trailing to fields until deviceRTL is updated
struct omptarget_device_environmentTy {
int32_t debug_level; // gets value of envvar LIBOMPTARGET_DEVICE_RTL_DEBUG
// only useful for Debug build of deviceRTLs
int32_t num_devices; // gets number of active offload devices
int32_t device_num; // gets a value 0 to num_devices-1
};
static RTLDeviceInfoTy DeviceInfo;
namespace {
int32_t dataRetrieve(int32_t DeviceId, void *HstPtr, void *TgtPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
// Return success if we are not copying back to host from target.
if (!HstPtr)
return OFFLOAD_SUCCESS;
atmi_status_t err;
DP("Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
(long long unsigned)(Elf64_Addr)TgtPtr,
(long long unsigned)(Elf64_Addr)HstPtr);
err = DeviceInfo.freesignalpool_memcpy(HstPtr, TgtPtr, (size_t)Size);
if (err != ATMI_STATUS_SUCCESS) {
DP("Error when copying data from device to host. Pointers: "
"host = 0x%016lx, device = 0x%016lx, size = %lld\n",
(Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
return OFFLOAD_FAIL;
}
DP("DONE Retrieve data %ld bytes, (tgt:%016llx) -> (hst:%016llx).\n", Size,
(long long unsigned)(Elf64_Addr)TgtPtr,
(long long unsigned)(Elf64_Addr)HstPtr);
return OFFLOAD_SUCCESS;
}
int32_t dataSubmit(int32_t DeviceId, void *TgtPtr, void *HstPtr, int64_t Size,
__tgt_async_info *AsyncInfoPtr) {
assert(AsyncInfoPtr && "AsyncInfoPtr is nullptr");
atmi_status_t err;
assert(DeviceId < DeviceInfo.NumberOfDevices && "Device ID too large");
// Return success if we are not doing host to target.
if (!HstPtr)
return OFFLOAD_SUCCESS;
DP("Submit data %ld bytes, (hst:%016llx) -> (tgt:%016llx).\n", Size,
(long long unsigned)(Elf64_Addr)HstPtr,
(long long unsigned)(Elf64_Addr)TgtPtr);
err = DeviceInfo.freesignalpool_memcpy(TgtPtr, HstPtr, (size_t)Size);
if (err != ATMI_STATUS_SUCCESS) {
DP("Error when copying data from host to device. Pointers: "
"host = 0x%016lx, device = 0x%016lx, size = %lld\n",
(Elf64_Addr)HstPtr, (Elf64_Addr)TgtPtr, (unsigned long long)Size);
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
// Async.
// The implementation was written with cuda streams in mind. The semantics of
// that are to execute kernels on a queue in order of insertion. A synchronise
// call then makes writes visible between host and device. This means a series
// of N data_submit_async calls are expected to execute serially. HSA offers
// various options to run the data copies concurrently. This may require changes
// to libomptarget.
// __tgt_async_info* contains a void * Queue. Queue = 0 is used to indicate that
// there are no outstanding kernels that need to be synchronized. Any async call
// may be passed a Queue==0, at which point the cuda implementation will set it
// to non-null (see getStream). The cuda streams are per-device. Upstream may
// change this interface to explicitly initialize the async_info_pointer, but
// until then hsa lazily initializes it as well.
void initAsyncInfoPtr(__tgt_async_info *async_info_ptr) {
// set non-null while using async calls, return to null to indicate completion
assert(async_info_ptr);
if (!async_info_ptr->Queue) {
async_info_ptr->Queue = reinterpret_cast<void *>(UINT64_MAX);
}
}
void finiAsyncInfoPtr(__tgt_async_info *async_info_ptr) {
assert(async_info_ptr);
assert(async_info_ptr->Queue);
async_info_ptr->Queue = 0;
}
} // namespace
int32_t __tgt_rtl_is_valid_binary(__tgt_device_image *image) {
return elf_machine_id_is_amdgcn(image);
}
int __tgt_rtl_number_of_devices() { return DeviceInfo.NumberOfDevices; }
int64_t __tgt_rtl_init_requires(int64_t RequiresFlags) {
DP("Init requires flags to %ld\n", RequiresFlags);
DeviceInfo.RequiresFlags = RequiresFlags;
return RequiresFlags;
}
int32_t __tgt_rtl_init_device(int device_id) {
hsa_status_t err;
// this is per device id init
DP("Initialize the device id: %d\n", device_id);
hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
// Get number of Compute Unit
uint32_t compute_units = 0;
err = hsa_agent_get_info(
agent, (hsa_agent_info_t)HSA_AMD_AGENT_INFO_COMPUTE_UNIT_COUNT,
&compute_units);
if (err != HSA_STATUS_SUCCESS) {
DeviceInfo.ComputeUnits[device_id] = 1;
DP("Error getting compute units : settiing to 1\n");
} else {
DeviceInfo.ComputeUnits[device_id] = compute_units;
DP("Using %d compute unis per grid\n", DeviceInfo.ComputeUnits[device_id]);
}
if (print_kernel_trace > 1)
fprintf(stderr, "Device#%-2d CU's: %2d\n", device_id,
DeviceInfo.ComputeUnits[device_id]);
// Query attributes to determine number of threads/block and blocks/grid.
uint16_t workgroup_max_dim[3];
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_WORKGROUP_MAX_DIM,
&workgroup_max_dim);
if (err != HSA_STATUS_SUCCESS) {
DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
DP("Error getting grid dims: num groups : %d\n",
RTLDeviceInfoTy::DefaultNumTeams);
} else if (workgroup_max_dim[0] <= RTLDeviceInfoTy::HardTeamLimit) {
DeviceInfo.GroupsPerDevice[device_id] = workgroup_max_dim[0];
DP("Using %d ROCm blocks per grid\n",
DeviceInfo.GroupsPerDevice[device_id]);
} else {
DeviceInfo.GroupsPerDevice[device_id] = RTLDeviceInfoTy::HardTeamLimit;
DP("Max ROCm blocks per grid %d exceeds the hard team limit %d, capping "
"at the hard limit\n",
workgroup_max_dim[0], RTLDeviceInfoTy::HardTeamLimit);
}
// Get thread limit
hsa_dim3_t grid_max_dim;
err = hsa_agent_get_info(agent, HSA_AGENT_INFO_GRID_MAX_DIM, &grid_max_dim);
if (err == HSA_STATUS_SUCCESS) {
DeviceInfo.ThreadsPerGroup[device_id] =
reinterpret_cast<uint32_t *>(&grid_max_dim)[0] /
DeviceInfo.GroupsPerDevice[device_id];
if ((DeviceInfo.ThreadsPerGroup[device_id] >
RTLDeviceInfoTy::Max_WG_Size) ||
DeviceInfo.ThreadsPerGroup[device_id] == 0) {
DP("Capped thread limit: %d\n", RTLDeviceInfoTy::Max_WG_Size);
DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
} else {
DP("Using ROCm Queried thread limit: %d\n",
DeviceInfo.ThreadsPerGroup[device_id]);
}
} else {
DeviceInfo.ThreadsPerGroup[device_id] = RTLDeviceInfoTy::Max_WG_Size;
DP("Error getting max block dimension, use default:%d \n",
RTLDeviceInfoTy::Max_WG_Size);
}
// Get wavefront size
uint32_t wavefront_size = 0;
err =
hsa_agent_get_info(agent, HSA_AGENT_INFO_WAVEFRONT_SIZE, &wavefront_size);
if (err == HSA_STATUS_SUCCESS) {
DP("Queried wavefront size: %d\n", wavefront_size);
DeviceInfo.WarpSize[device_id] = wavefront_size;
} else {
DP("Default wavefront size: %d\n",
llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size]);
DeviceInfo.WarpSize[device_id] =
llvm::omp::AMDGPUGpuGridValues[llvm::omp::GVIDX::GV_Warp_Size];
}
// Adjust teams to the env variables
if (DeviceInfo.EnvTeamLimit > 0 &&
DeviceInfo.GroupsPerDevice[device_id] > DeviceInfo.EnvTeamLimit) {
DeviceInfo.GroupsPerDevice[device_id] = DeviceInfo.EnvTeamLimit;
DP("Capping max groups per device to OMP_TEAM_LIMIT=%d\n",
DeviceInfo.EnvTeamLimit);
}
// Set default number of teams
if (DeviceInfo.EnvNumTeams > 0) {
DeviceInfo.NumTeams[device_id] = DeviceInfo.EnvNumTeams;
DP("Default number of teams set according to environment %d\n",
DeviceInfo.EnvNumTeams);
} else {
DeviceInfo.NumTeams[device_id] = RTLDeviceInfoTy::DefaultNumTeams;
DP("Default number of teams set according to library's default %d\n",
RTLDeviceInfoTy::DefaultNumTeams);
}
if (DeviceInfo.NumTeams[device_id] > DeviceInfo.GroupsPerDevice[device_id]) {
DeviceInfo.NumTeams[device_id] = DeviceInfo.GroupsPerDevice[device_id];
DP("Default number of teams exceeds device limit, capping at %d\n",
DeviceInfo.GroupsPerDevice[device_id]);
}
// Set default number of threads
DeviceInfo.NumThreads[device_id] = RTLDeviceInfoTy::Default_WG_Size;
DP("Default number of threads set according to library's default %d\n",
RTLDeviceInfoTy::Default_WG_Size);
if (DeviceInfo.NumThreads[device_id] >
DeviceInfo.ThreadsPerGroup[device_id]) {
DeviceInfo.NumTeams[device_id] = DeviceInfo.ThreadsPerGroup[device_id];
DP("Default number of threads exceeds device limit, capping at %d\n",
DeviceInfo.ThreadsPerGroup[device_id]);
}
DP("Device %d: default limit for groupsPerDevice %d & threadsPerGroup %d\n",
device_id, DeviceInfo.GroupsPerDevice[device_id],
DeviceInfo.ThreadsPerGroup[device_id]);
DP("Device %d: wavefront size %d, total threads %d x %d = %d\n", device_id,
DeviceInfo.WarpSize[device_id], DeviceInfo.ThreadsPerGroup[device_id],
DeviceInfo.GroupsPerDevice[device_id],
DeviceInfo.GroupsPerDevice[device_id] *
DeviceInfo.ThreadsPerGroup[device_id]);
return OFFLOAD_SUCCESS;
}
namespace {
Elf64_Shdr *find_only_SHT_HASH(Elf *elf) {
size_t N;
int rc = elf_getshdrnum(elf, &N);
if (rc != 0) {
return nullptr;
}
Elf64_Shdr *result = nullptr;
for (size_t i = 0; i < N; i++) {
Elf_Scn *scn = elf_getscn(elf, i);
if (scn) {
Elf64_Shdr *shdr = elf64_getshdr(scn);
if (shdr) {
if (shdr->sh_type == SHT_HASH) {
if (result == nullptr) {
result = shdr;
} else {
// multiple SHT_HASH sections not handled
return nullptr;
}
}
}
}
}
return result;
}
const Elf64_Sym *elf_lookup(Elf *elf, char *base, Elf64_Shdr *section_hash,
const char *symname) {
assert(section_hash);
size_t section_symtab_index = section_hash->sh_link;
Elf64_Shdr *section_symtab =
elf64_getshdr(elf_getscn(elf, section_symtab_index));
size_t section_strtab_index = section_symtab->sh_link;
const Elf64_Sym *symtab =
reinterpret_cast<const Elf64_Sym *>(base + section_symtab->sh_offset);
const uint32_t *hashtab =
reinterpret_cast<const uint32_t *>(base + section_hash->sh_offset);
// Layout:
// nbucket
// nchain
// bucket[nbucket]
// chain[nchain]
uint32_t nbucket = hashtab[0];
const uint32_t *bucket = &hashtab[2];
const uint32_t *chain = &hashtab[nbucket + 2];
const size_t max = strlen(symname) + 1;
const uint32_t hash = elf_hash(symname);
for (uint32_t i = bucket[hash % nbucket]; i != 0; i = chain[i]) {
char *n = elf_strptr(elf, section_strtab_index, symtab[i].st_name);
if (strncmp(symname, n, max) == 0) {
return &symtab[i];
}
}
return nullptr;
}
typedef struct {
void *addr = nullptr;
uint32_t size = UINT32_MAX;
} symbol_info;
int get_symbol_info_without_loading(Elf *elf, char *base, const char *symname,
symbol_info *res) {
if (elf_kind(elf) != ELF_K_ELF) {
return 1;
}
Elf64_Shdr *section_hash = find_only_SHT_HASH(elf);
if (!section_hash) {
return 1;
}
const Elf64_Sym *sym = elf_lookup(elf, base, section_hash, symname);
if (!sym) {
return 1;
}
if (sym->st_size > UINT32_MAX) {
return 1;
}
res->size = static_cast<uint32_t>(sym->st_size);
res->addr = sym->st_value + base;
return 0;
}
int get_symbol_info_without_loading(char *base, size_t img_size,
const char *symname, symbol_info *res) {
Elf *elf = elf_memory(base, img_size);
if (elf) {
int rc = get_symbol_info_without_loading(elf, base, symname, res);
elf_end(elf);
return rc;
}
return 1;
}
atmi_status_t interop_get_symbol_info(char *base, size_t img_size,
const char *symname, void **var_addr,
uint32_t *var_size) {
symbol_info si;
int rc = get_symbol_info_without_loading(base, img_size, symname, &si);
if (rc == 0) {
*var_addr = si.addr;
*var_size = si.size;
return ATMI_STATUS_SUCCESS;
} else {
return ATMI_STATUS_ERROR;
}
}
template <typename C>
atmi_status_t module_register_from_memory_to_place(void *module_bytes,
size_t module_size,
atmi_place_t place, C cb) {
auto L = [](void *data, size_t size, void *cb_state) -> atmi_status_t {
C *unwrapped = static_cast<C *>(cb_state);
return (*unwrapped)(data, size);
};
return atmi_module_register_from_memory_to_place(
module_bytes, module_size, place, L, static_cast<void *>(&cb));
}
} // namespace
static uint64_t get_device_State_bytes(char *ImageStart, size_t img_size) {
uint64_t device_State_bytes = 0;
{
// If this is the deviceRTL, get the state variable size
symbol_info size_si;
int rc = get_symbol_info_without_loading(
ImageStart, img_size, "omptarget_nvptx_device_State_size", &size_si);
if (rc == 0) {
if (size_si.size != sizeof(uint64_t)) {
fprintf(stderr,
"Found device_State_size variable with wrong size, aborting\n");
exit(1);
}
// Read number of bytes directly from the elf
memcpy(&device_State_bytes, size_si.addr, sizeof(uint64_t));
}
}
return device_State_bytes;
}
static __tgt_target_table *
__tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
static __tgt_target_table *
__tgt_rtl_load_binary_locked(int32_t device_id, __tgt_device_image *image);
__tgt_target_table *__tgt_rtl_load_binary(int32_t device_id,
__tgt_device_image *image) {
DeviceInfo.load_run_lock.lock();
__tgt_target_table *res = __tgt_rtl_load_binary_locked(device_id, image);
DeviceInfo.load_run_lock.unlock();
return res;
}
__tgt_target_table *__tgt_rtl_load_binary_locked(int32_t device_id,
__tgt_device_image *image) {
const size_t img_size = (char *)image->ImageEnd - (char *)image->ImageStart;
DeviceInfo.clearOffloadEntriesTable(device_id);
// We do not need to set the ELF version because the caller of this function
// had to do that to decide the right runtime to use
if (!elf_machine_id_is_amdgcn(image)) {
return NULL;
}
omptarget_device_environmentTy host_device_env;
host_device_env.num_devices = DeviceInfo.NumberOfDevices;
host_device_env.device_num = device_id;
host_device_env.debug_level = 0;
#ifdef OMPTARGET_DEBUG
if (char *envStr = getenv("LIBOMPTARGET_DEVICE_RTL_DEBUG")) {
host_device_env.debug_level = std::stoi(envStr);
}
#endif
auto on_deserialized_data = [&](void *data, size_t size) -> atmi_status_t {
const char *device_env_Name = "omptarget_device_environment";
symbol_info si;
int rc = get_symbol_info_without_loading((char *)image->ImageStart,
img_size, device_env_Name, &si);
if (rc != 0) {
DP("Finding global device environment '%s' - symbol missing.\n",
device_env_Name);
// no need to return FAIL, consider this is a not a device debug build.
return ATMI_STATUS_SUCCESS;
}
if (si.size != sizeof(host_device_env)) {
return ATMI_STATUS_ERROR;
}
DP("Setting global device environment %lu bytes\n", si.size);
uint64_t offset = (char *)si.addr - (char *)image->ImageStart;
void *pos = (char *)data + offset;
memcpy(pos, &host_device_env, sizeof(host_device_env));
return ATMI_STATUS_SUCCESS;
};
atmi_status_t err;
{
err = module_register_from_memory_to_place(
(void *)image->ImageStart, img_size, get_gpu_place(device_id),
on_deserialized_data);
check("Module registering", err);
if (err != ATMI_STATUS_SUCCESS) {
char GPUName[64] = "--unknown gpu--";
hsa_agent_t agent = DeviceInfo.HSAAgents[device_id];
(void)hsa_agent_get_info(agent, (hsa_agent_info_t)HSA_AGENT_INFO_NAME,
(void *)GPUName);
fprintf(stderr,
"Possible gpu arch mismatch: %s, please check"
" compiler: -march=<gpu> flag\n",
GPUName);
return NULL;
}
}
DP("ATMI module successfully loaded!\n");
// Zero the pseudo-bss variable by calling into hsa
// Do this post-load to handle got
uint64_t device_State_bytes =
get_device_State_bytes((char *)image->ImageStart, img_size);
auto &dss = DeviceInfo.deviceStateStore[device_id];
if (device_State_bytes != 0) {
if (dss.first.get() == nullptr) {
assert(dss.second == 0);
void *ptr = NULL;
atmi_status_t err =
atmi_malloc(&ptr, device_State_bytes, get_gpu_mem_place(device_id));
if (err != ATMI_STATUS_SUCCESS) {
fprintf(stderr, "Failed to allocate device_state array\n");
return NULL;
}
dss = {std::unique_ptr<void, RTLDeviceInfoTy::atmiFreePtrDeletor>{ptr},
device_State_bytes};
}
void *ptr = dss.first.get();
if (device_State_bytes != dss.second) {
fprintf(stderr, "Inconsistent sizes of device_State unsupported\n");
exit(1);
}
void *state_ptr;
uint32_t state_ptr_size;
err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id),
"omptarget_nvptx_device_State",
&state_ptr, &state_ptr_size);
if (err != ATMI_STATUS_SUCCESS) {
fprintf(stderr, "failed to find device_state ptr\n");
return NULL;
}
if (state_ptr_size != sizeof(void *)) {
fprintf(stderr, "unexpected size of state_ptr %u != %zu\n",
state_ptr_size, sizeof(void *));
return NULL;
}
// write ptr to device memory so it can be used by later kernels
err = DeviceInfo.freesignalpool_memcpy(state_ptr, &ptr, sizeof(void *));
if (err != ATMI_STATUS_SUCCESS) {
fprintf(stderr, "memcpy install of state_ptr failed\n");
return NULL;
}
assert((device_State_bytes & 0x3) == 0); // known >= 4 byte aligned
hsa_status_t rc = hsa_amd_memory_fill(ptr, 0, device_State_bytes / 4);
if (rc != HSA_STATUS_SUCCESS) {
fprintf(stderr, "zero fill device_state failed with %u\n", rc);
return NULL;
}
}
// TODO: Check with Guansong to understand the below comment more thoroughly.
// Here, we take advantage of the data that is appended after img_end to get
// the symbols' name we need to load. This data consist of the host entries
// begin and end as well as the target name (see the offloading linker script
// creation in clang compiler).
// Find the symbols in the module by name. The name can be obtain by
// concatenating the host entry name with the target name
__tgt_offload_entry *HostBegin = image->EntriesBegin;
__tgt_offload_entry *HostEnd = image->EntriesEnd;
for (__tgt_offload_entry *e = HostBegin; e != HostEnd; ++e) {
if (!e->addr) {
// The host should have always something in the address to
// uniquely identify the target region.
fprintf(stderr, "Analyzing host entry '<null>' (size = %lld)...\n",
(unsigned long long)e->size);
return NULL;
}
if (e->size) {
__tgt_offload_entry entry = *e;
void *varptr;
uint32_t varsize;
err = atmi_interop_hsa_get_symbol_info(get_gpu_mem_place(device_id),
e->name, &varptr, &varsize);
if (err != ATMI_STATUS_SUCCESS) {
DP("Loading global '%s' (Failed)\n", e->name);
// Inform the user what symbol prevented offloading
fprintf(stderr, "Loading global '%s' (Failed)\n", e->name);
return NULL;
}
if (varsize != e->size) {
DP("Loading global '%s' - size mismatch (%u != %lu)\n", e->name,
varsize, e->size);
return NULL;
}
DP("Entry point " DPxMOD " maps to global %s (" DPxMOD ")\n",
DPxPTR(e - HostBegin), e->name, DPxPTR(varptr));
entry.addr = (void *)varptr;
DeviceInfo.addOffloadEntry(device_id, entry);
if (DeviceInfo.RequiresFlags & OMP_REQ_UNIFIED_SHARED_MEMORY &&
e->flags & OMP_DECLARE_TARGET_LINK) {
// If unified memory is present any target link variables
// can access host addresses directly. There is no longer a
// need for device copies.
err = DeviceInfo.freesignalpool_memcpy(varptr, e->addr, sizeof(void *));
if (err != ATMI_STATUS_SUCCESS)
DP("Error when copying USM\n");
DP("Copy linked variable host address (" DPxMOD ")"
"to device address (" DPxMOD ")\n",
DPxPTR(*((void **)e->addr)), DPxPTR(varptr));
}
continue;
}
DP("to find the kernel name: %s size: %lu\n", e->name, strlen(e->name));
atmi_mem_place_t place = get_gpu_mem_place(device_id);
uint32_t kernarg_segment_size;
err = atmi_interop_hsa_get_kernel_info(
place, e->name, HSA_EXECUTABLE_SYMBOL_INFO_KERNEL_KERNARG_SEGMENT_SIZE,
&kernarg_segment_size);
// each arg is a void * in this openmp implementation
uint32_t arg_num = kernarg_segment_size / sizeof(void *);
std::vector<size_t> arg_sizes(arg_num);
for (std::vector<size_t>::iterator it = arg_sizes.begin();
it != arg_sizes.end(); it++) {
*it = sizeof(void *);
}
// default value GENERIC (in case symbol is missing from cubin file)
int8_t ExecModeVal = ExecutionModeType::GENERIC;
// get flat group size if present, else Default_WG_Size
int16_t WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
// Max parallel level
int16_t MaxParLevVal = 0;
// get Kernel Descriptor if present.
// Keep struct in sync wih getTgtAttributeStructQTy in CGOpenMPRuntime.cpp
struct KernDescValType {
uint16_t Version;
uint16_t TSize;
uint16_t WG_Size;
uint8_t Mode;
uint8_t HostServices;
uint8_t MaxParallelLevel;
};
struct KernDescValType KernDescVal;
std::string KernDescNameStr(e->name);
KernDescNameStr += "_kern_desc";
const char *KernDescName = KernDescNameStr.c_str();
void *KernDescPtr;
uint32_t KernDescSize;
void *CallStackAddr;
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
KernDescName, &KernDescPtr, &KernDescSize);
if (err == ATMI_STATUS_SUCCESS) {
if ((size_t)KernDescSize != sizeof(KernDescVal))
DP("Loading global computation properties '%s' - size mismatch (%u != "
"%lu)\n",
KernDescName, KernDescSize, sizeof(KernDescVal));
memcpy(&KernDescVal, KernDescPtr, (size_t)KernDescSize);
// Check structure size against recorded size.
if ((size_t)KernDescSize != KernDescVal.TSize)
DP("KernDescVal size %lu does not match advertized size %d for '%s'\n",
sizeof(KernDescVal), KernDescVal.TSize, KernDescName);
DP("After loading global for %s KernDesc \n", KernDescName);
DP("KernDesc: Version: %d\n", KernDescVal.Version);
DP("KernDesc: TSize: %d\n", KernDescVal.TSize);
DP("KernDesc: WG_Size: %d\n", KernDescVal.WG_Size);
DP("KernDesc: Mode: %d\n", KernDescVal.Mode);
DP("KernDesc: HostServices: %x\n", KernDescVal.HostServices);
DP("KernDesc: MaxParallelLevel: %x\n", KernDescVal.MaxParallelLevel);
// gather location of callStack and size of struct
MaxParLevVal = KernDescVal.MaxParallelLevel;
if (MaxParLevVal > 0) {
uint32_t varsize;
const char *CsNam = "omptarget_nest_par_call_stack";
err = atmi_interop_hsa_get_symbol_info(place, CsNam, &CallStackAddr,
&varsize);
if (err != ATMI_STATUS_SUCCESS) {
fprintf(stderr, "Addr of %s failed\n", CsNam);
return NULL;
}
void *StructSizePtr;
const char *SsNam = "omptarget_nest_par_call_struct_size";
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
SsNam, &StructSizePtr, &varsize);
if ((err != ATMI_STATUS_SUCCESS) ||
(varsize != sizeof(TgtStackItemSize))) {
fprintf(stderr, "Addr of %s failed\n", SsNam);
return NULL;
}
memcpy(&TgtStackItemSize, StructSizePtr, sizeof(TgtStackItemSize));
DP("Size of our struct is %d\n", TgtStackItemSize);
}
// Get ExecMode
ExecModeVal = KernDescVal.Mode;
DP("ExecModeVal %d\n", ExecModeVal);
if (KernDescVal.WG_Size == 0) {
KernDescVal.WG_Size = RTLDeviceInfoTy::Default_WG_Size;
DP("Setting KernDescVal.WG_Size to default %d\n", KernDescVal.WG_Size);
}
WGSizeVal = KernDescVal.WG_Size;
DP("WGSizeVal %d\n", WGSizeVal);
check("Loading KernDesc computation property", err);
} else {
DP("Warning: Loading KernDesc '%s' - symbol not found, ", KernDescName);
// Generic
std::string ExecModeNameStr(e->name);
ExecModeNameStr += "_exec_mode";
const char *ExecModeName = ExecModeNameStr.c_str();
void *ExecModePtr;
uint32_t varsize;
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
ExecModeName, &ExecModePtr, &varsize);
if (err == ATMI_STATUS_SUCCESS) {
if ((size_t)varsize != sizeof(int8_t)) {
DP("Loading global computation properties '%s' - size mismatch(%u != "
"%lu)\n",
ExecModeName, varsize, sizeof(int8_t));
return NULL;
}
memcpy(&ExecModeVal, ExecModePtr, (size_t)varsize);
DP("After loading global for %s ExecMode = %d\n", ExecModeName,
ExecModeVal);
if (ExecModeVal < 0 || ExecModeVal > 1) {
DP("Error wrong exec_mode value specified in HSA code object file: "
"%d\n",
ExecModeVal);
return NULL;
}
} else {
DP("Loading global exec_mode '%s' - symbol missing, using default "
"value "
"GENERIC (1)\n",
ExecModeName);
}
check("Loading computation property", err);
// Flat group size
std::string WGSizeNameStr(e->name);
WGSizeNameStr += "_wg_size";
const char *WGSizeName = WGSizeNameStr.c_str();
void *WGSizePtr;
uint32_t WGSize;
err = interop_get_symbol_info((char *)image->ImageStart, img_size,
WGSizeName, &WGSizePtr, &WGSize);
if (err == ATMI_STATUS_SUCCESS) {
if ((size_t)WGSize != sizeof(int16_t)) {
DP("Loading global computation properties '%s' - size mismatch (%u "
"!= "
"%lu)\n",
WGSizeName, WGSize, sizeof(int16_t));
return NULL;
}
memcpy(&WGSizeVal, WGSizePtr, (size_t)WGSize);
DP("After loading global for %s WGSize = %d\n", WGSizeName, WGSizeVal);
if (WGSizeVal < RTLDeviceInfoTy::Default_WG_Size ||
WGSizeVal > RTLDeviceInfoTy::Max_WG_Size) {
DP("Error wrong WGSize value specified in HSA code object file: "
"%d\n",
WGSizeVal);
WGSizeVal = RTLDeviceInfoTy::Default_WG_Size;
}
} else {
DP("Warning: Loading WGSize '%s' - symbol not found, "
"using default value %d\n",
WGSizeName, WGSizeVal);
}
check("Loading WGSize computation property", err);
}
KernelsList.push_back(KernelTy(ExecModeVal, WGSizeVal, MaxParLevVal,
device_id, CallStackAddr, e->name,
kernarg_segment_size));
__tgt_offload_entry entry = *e;
entry.addr = (void *)&KernelsList.back();
DeviceInfo.addOffloadEntry(device_id, entry);
DP("Entry point %ld maps to %s\n", e - HostBegin, e->name);
}
return DeviceInfo.getOffloadEntriesTable(device_id);
}
void *__tgt_rtl_data_alloc(int device_id, int64_t size, void *) {
void *ptr = NULL;
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
atmi_status_t err = atmi_malloc(&ptr, size, get_gpu_mem_place(device_id));
DP("Tgt alloc data %ld bytes, (tgt:%016llx).\n", size,
(long long unsigned)(Elf64_Addr)ptr);
ptr = (err == ATMI_STATUS_SUCCESS) ? ptr : NULL;
return ptr;
}
int32_t __tgt_rtl_data_submit(int device_id, void *tgt_ptr, void *hst_ptr,
int64_t size) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
__tgt_async_info async_info;
int32_t rc = dataSubmit(device_id, tgt_ptr, hst_ptr, size, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &async_info);
}
int32_t __tgt_rtl_data_submit_async(int device_id, void *tgt_ptr, void *hst_ptr,
int64_t size,
__tgt_async_info *async_info_ptr) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
if (async_info_ptr) {
initAsyncInfoPtr(async_info_ptr);
return dataSubmit(device_id, tgt_ptr, hst_ptr, size, async_info_ptr);
} else {
return __tgt_rtl_data_submit(device_id, tgt_ptr, hst_ptr, size);
}
}
int32_t __tgt_rtl_data_retrieve(int device_id, void *hst_ptr, void *tgt_ptr,
int64_t size) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
__tgt_async_info async_info;
int32_t rc = dataRetrieve(device_id, hst_ptr, tgt_ptr, size, &async_info);
if (rc != OFFLOAD_SUCCESS)
return OFFLOAD_FAIL;
return __tgt_rtl_synchronize(device_id, &async_info);
}
int32_t __tgt_rtl_data_retrieve_async(int device_id, void *hst_ptr,
void *tgt_ptr, int64_t size,
__tgt_async_info *async_info_ptr) {
assert(async_info_ptr && "async_info is nullptr");
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
initAsyncInfoPtr(async_info_ptr);
return dataRetrieve(device_id, hst_ptr, tgt_ptr, size, async_info_ptr);
}
int32_t __tgt_rtl_data_delete(int device_id, void *tgt_ptr) {
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
atmi_status_t err;
DP("Tgt free data (tgt:%016llx).\n", (long long unsigned)(Elf64_Addr)tgt_ptr);
err = atmi_free(tgt_ptr);
if (err != ATMI_STATUS_SUCCESS) {
DP("Error when freeing CUDA memory\n");
return OFFLOAD_FAIL;
}
return OFFLOAD_SUCCESS;
}
// Determine launch values for threadsPerGroup and num_groups.
// Outputs: treadsPerGroup, num_groups
// Inputs: Max_Teams, Max_WG_Size, Warp_Size, ExecutionMode,
// EnvTeamLimit, EnvNumTeams, num_teams, thread_limit,
// loop_tripcount.
void getLaunchVals(int &threadsPerGroup, int &num_groups, int ConstWGSize,
int ExecutionMode, int EnvTeamLimit, int EnvNumTeams,
int num_teams, int thread_limit, uint64_t loop_tripcount) {
int Max_Teams = DeviceInfo.EnvMaxTeamsDefault > 0
? DeviceInfo.EnvMaxTeamsDefault
: DeviceInfo.Max_Teams;
if (Max_Teams > DeviceInfo.HardTeamLimit)
Max_Teams = DeviceInfo.HardTeamLimit;
if (print_kernel_trace > 1) {
fprintf(stderr, "RTLDeviceInfoTy::Max_Teams: %d\n",
RTLDeviceInfoTy::Max_Teams);
fprintf(stderr, "Max_Teams: %d\n", Max_Teams);
fprintf(stderr, "RTLDeviceInfoTy::Warp_Size: %d\n",
RTLDeviceInfoTy::Warp_Size);
fprintf(stderr, "RTLDeviceInfoTy::Max_WG_Size: %d\n",
RTLDeviceInfoTy::Max_WG_Size);
fprintf(stderr, "RTLDeviceInfoTy::Default_WG_Size: %d\n",
RTLDeviceInfoTy::Default_WG_Size);
fprintf(stderr, "thread_limit: %d\n", thread_limit);
fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
fprintf(stderr, "ConstWGSize: %d\n", ConstWGSize);
}
// check for thread_limit() clause
if (thread_limit > 0) {
threadsPerGroup = thread_limit;
DP("Setting threads per block to requested %d\n", thread_limit);
if (ExecutionMode == GENERIC) { // Add master warp for GENERIC
threadsPerGroup += RTLDeviceInfoTy::Warp_Size;
DP("Adding master wavefront: +%d threads\n", RTLDeviceInfoTy::Warp_Size);
}
if (threadsPerGroup > RTLDeviceInfoTy::Max_WG_Size) { // limit to max
threadsPerGroup = RTLDeviceInfoTy::Max_WG_Size;
DP("Setting threads per block to maximum %d\n", threadsPerGroup);
}
}
// check flat_max_work_group_size attr here
if (threadsPerGroup > ConstWGSize) {
threadsPerGroup = ConstWGSize;
DP("Reduced threadsPerGroup to flat-attr-group-size limit %d\n",
threadsPerGroup);
}
if (print_kernel_trace > 1)
fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
DP("Preparing %d threads\n", threadsPerGroup);
// Set default num_groups (teams)
if (DeviceInfo.EnvTeamLimit > 0)
num_groups = (Max_Teams < DeviceInfo.EnvTeamLimit)
? Max_Teams
: DeviceInfo.EnvTeamLimit;
else
num_groups = Max_Teams;
DP("Set default num of groups %d\n", num_groups);
if (print_kernel_trace > 1) {
fprintf(stderr, "num_groups: %d\n", num_groups);
fprintf(stderr, "num_teams: %d\n", num_teams);
}
// Reduce num_groups if threadsPerGroup exceeds RTLDeviceInfoTy::Max_WG_Size
// This reduction is typical for default case (no thread_limit clause).
// or when user goes crazy with num_teams clause.
// FIXME: We cant distinguish between a constant or variable thread limit.
// So we only handle constant thread_limits.
if (threadsPerGroup >
RTLDeviceInfoTy::Default_WG_Size) // 256 < threadsPerGroup <= 1024
// Should we round threadsPerGroup up to nearest RTLDeviceInfoTy::Warp_Size
// here?
num_groups = (Max_Teams * RTLDeviceInfoTy::Max_WG_Size) / threadsPerGroup;
// check for num_teams() clause
if (num_teams > 0) {
num_groups = (num_teams < num_groups) ? num_teams : num_groups;
}
if (print_kernel_trace > 1) {
fprintf(stderr, "num_groups: %d\n", num_groups);
fprintf(stderr, "DeviceInfo.EnvNumTeams %d\n", DeviceInfo.EnvNumTeams);
fprintf(stderr, "DeviceInfo.EnvTeamLimit %d\n", DeviceInfo.EnvTeamLimit);
}
if (DeviceInfo.EnvNumTeams > 0) {
num_groups = (DeviceInfo.EnvNumTeams < num_groups) ? DeviceInfo.EnvNumTeams
: num_groups;
DP("Modifying teams based on EnvNumTeams %d\n", DeviceInfo.EnvNumTeams);
} else if (DeviceInfo.EnvTeamLimit > 0) {
num_groups = (DeviceInfo.EnvTeamLimit < num_groups)
? DeviceInfo.EnvTeamLimit
: num_groups;
DP("Modifying teams based on EnvTeamLimit%d\n", DeviceInfo.EnvTeamLimit);
} else {
if (num_teams <= 0) {
if (loop_tripcount > 0) {
if (ExecutionMode == SPMD) {
// round up to the nearest integer
num_groups = ((loop_tripcount - 1) / threadsPerGroup) + 1;
} else {
num_groups = loop_tripcount;
}
DP("Using %d teams due to loop trip count %" PRIu64 " and number of "
"threads per block %d\n",
num_groups, loop_tripcount, threadsPerGroup);
}
} else {
num_groups = num_teams;
}
if (num_groups > Max_Teams) {
num_groups = Max_Teams;
if (print_kernel_trace > 1)
fprintf(stderr, "Limiting num_groups %d to Max_Teams %d \n", num_groups,
Max_Teams);
}
if (num_groups > num_teams && num_teams > 0) {
num_groups = num_teams;
if (print_kernel_trace > 1)
fprintf(stderr, "Limiting num_groups %d to clause num_teams %d \n",
num_groups, num_teams);
}
}
// num_teams clause always honored, no matter what, unless DEFAULT is active.
if (num_teams > 0) {
num_groups = num_teams;
// Cap num_groups to EnvMaxTeamsDefault if set.
if (DeviceInfo.EnvMaxTeamsDefault > 0 &&
num_groups > DeviceInfo.EnvMaxTeamsDefault)
num_groups = DeviceInfo.EnvMaxTeamsDefault;
}
if (print_kernel_trace > 1) {
fprintf(stderr, "threadsPerGroup: %d\n", threadsPerGroup);
fprintf(stderr, "num_groups: %d\n", num_groups);
fprintf(stderr, "loop_tripcount: %ld\n", loop_tripcount);
}
DP("Final %d num_groups and %d threadsPerGroup\n", num_groups,
threadsPerGroup);
}
static void *AllocateNestedParallelCallMemory(int MaxParLevel, int NumGroups,
int ThreadsPerGroup,
int device_id,
void *CallStackAddr, int SPMD) {
if (print_kernel_trace > 1)
fprintf(stderr, "MaxParLevel %d SPMD %d NumGroups %d NumThrds %d\n",
MaxParLevel, SPMD, NumGroups, ThreadsPerGroup);
// Total memory needed is Teams * Threads * ParLevels
size_t NestedMemSize =
MaxParLevel * NumGroups * ThreadsPerGroup * TgtStackItemSize * 4;
if (print_kernel_trace > 1)
fprintf(stderr, "NestedMemSize %ld \n", NestedMemSize);
assert(device_id < DeviceInfo.NumberOfDevices && "Device ID too large");
void *TgtPtr = NULL;
atmi_status_t err =
atmi_malloc(&TgtPtr, NestedMemSize, get_gpu_mem_place(device_id));
err =
DeviceInfo.freesignalpool_memcpy(CallStackAddr, &TgtPtr, sizeof(void *));
if (print_kernel_trace > 2)
fprintf(stderr, "CallSck %lx TgtPtr %lx *TgtPtr %lx \n",
(long)CallStackAddr, (long)&TgtPtr, (long)TgtPtr);
if (err != ATMI_STATUS_SUCCESS) {
fprintf(stderr, "Mem not wrtten to target, err %d\n", err);
}
return TgtPtr; // we need to free this after kernel.
}
static uint64_t acquire_available_packet_id(hsa_queue_t *queue) {
uint64_t packet_id = hsa_queue_add_write_index_relaxed(queue, 1);
bool full = true;
while (full) {
full =
packet_id >= (queue->size + hsa_queue_load_read_index_scacquire(queue));
}
return packet_id;
}
static int32_t __tgt_rtl_run_target_team_region_locked(
int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
int32_t thread_limit, uint64_t loop_tripcount);
int32_t __tgt_rtl_run_target_team_region(int32_t device_id, void *tgt_entry_ptr,
void **tgt_args,
ptrdiff_t *tgt_offsets,
int32_t arg_num, int32_t num_teams,
int32_t thread_limit,
uint64_t loop_tripcount) {
DeviceInfo.load_run_lock.lock_shared();
int32_t res = __tgt_rtl_run_target_team_region_locked(
device_id, tgt_entry_ptr, tgt_args, tgt_offsets, arg_num, num_teams,
thread_limit, loop_tripcount);
DeviceInfo.load_run_lock.unlock_shared();
return res;
}
int32_t __tgt_rtl_run_target_team_region_locked(
int32_t device_id, void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets, int32_t arg_num, int32_t num_teams,
int32_t thread_limit, uint64_t loop_tripcount) {
static pthread_mutex_t nested_parallel_mutex = PTHREAD_MUTEX_INITIALIZER;
// Set the context we are using
// update thread limit content in gpu memory if un-initialized or specified
// from host
DP("Run target team region thread_limit %d\n", thread_limit);
// All args are references.
std::vector<void *> args(arg_num);
std::vector<void *> ptrs(arg_num);
DP("Arg_num: %d\n", arg_num);
for (int32_t i = 0; i < arg_num; ++i) {
ptrs[i] = (void *)((intptr_t)tgt_args[i] + tgt_offsets[i]);
args[i] = &ptrs[i];
DP("Offseted base: arg[%d]:" DPxMOD "\n", i, DPxPTR(ptrs[i]));
}
KernelTy *KernelInfo = (KernelTy *)tgt_entry_ptr;
/*
* Set limit based on ThreadsPerGroup and GroupsPerDevice
*/
int num_groups = 0;
int threadsPerGroup = RTLDeviceInfoTy::Default_WG_Size;
getLaunchVals(threadsPerGroup, num_groups, KernelInfo->ConstWGSize,
KernelInfo->ExecutionMode, DeviceInfo.EnvTeamLimit,
DeviceInfo.EnvNumTeams,
num_teams, // From run_region arg
thread_limit, // From run_region arg
loop_tripcount // From run_region arg
);
void *TgtCallStack = NULL;
if (KernelInfo->MaxParLevel > 0) {
pthread_mutex_lock(&nested_parallel_mutex);
TgtCallStack = AllocateNestedParallelCallMemory(
KernelInfo->MaxParLevel, num_groups, threadsPerGroup,
KernelInfo->device_id, KernelInfo->CallStackAddr,
KernelInfo->ExecutionMode);
}
if (print_kernel_trace > 0)
// enum modes are SPMD, GENERIC, NONE 0,1,2
fprintf(stderr,
"DEVID:%2d SGN:%1d ConstWGSize:%-4d args:%2d teamsXthrds:(%4dX%4d) "
"reqd:(%4dX%4d) n:%s\n",
device_id, KernelInfo->ExecutionMode, KernelInfo->ConstWGSize,
arg_num, num_groups, threadsPerGroup, num_teams, thread_limit,
KernelInfo->Name);
// Run on the device.
{
hsa_queue_t *queue = DeviceInfo.HSAQueues[device_id];
uint64_t packet_id = acquire_available_packet_id(queue);
const uint32_t mask = queue->size - 1; // size is a power of 2
hsa_kernel_dispatch_packet_t *packet =
(hsa_kernel_dispatch_packet_t *)queue->base_address +
(packet_id & mask);
// packet->header is written last
packet->setup = UINT16_C(1) << HSA_KERNEL_DISPATCH_PACKET_SETUP_DIMENSIONS;
packet->workgroup_size_x = threadsPerGroup;
packet->workgroup_size_y = 1;
packet->workgroup_size_z = 1;
packet->reserved0 = 0;
packet->grid_size_x = num_groups * threadsPerGroup;
packet->grid_size_y = 1;
packet->grid_size_z = 1;
packet->private_segment_size = 0;
packet->group_segment_size = 0;
packet->kernel_object = 0;
packet->kernarg_address = 0; // use the block allocator
packet->reserved2 = 0; // atmi writes id_ here
packet->completion_signal = {0}; // may want a pool of signals
std::string kernel_name = std::string(KernelInfo->Name);
{
assert(KernelInfoTable[device_id].find(kernel_name) !=
KernelInfoTable[device_id].end());
auto it = KernelInfoTable[device_id][kernel_name];
packet->kernel_object = it.kernel_object;
packet->private_segment_size = it.private_segment_size;
packet->group_segment_size = it.group_segment_size;
assert(arg_num == (int)it.num_args);
}
KernelArgPool *ArgPool = nullptr;
{
auto it = KernelArgPoolMap.find(std::string(KernelInfo->Name));
if (it != KernelArgPoolMap.end()) {
ArgPool = (it->second).get();
}
}
if (!ArgPool) {
fprintf(stderr, "Warning: No ArgPool for %s on device %d\n",
KernelInfo->Name, device_id);
}
{
void *kernarg = nullptr;
if (ArgPool) {
assert(ArgPool->kernarg_segment_size == (arg_num * sizeof(void *)));
kernarg = ArgPool->allocate(arg_num);
}
if (!kernarg) {
printf("Allocate kernarg failed\n");
exit(1);
}
// Copy explicit arguments
for (int i = 0; i < arg_num; i++) {
memcpy((char *)kernarg + sizeof(void *) * i, args[i], sizeof(void *));
}
// Initialize implicit arguments. ATMI seems to leave most fields
// uninitialized
atmi_implicit_args_t *impl_args =
reinterpret_cast<atmi_implicit_args_t *>(
static_cast<char *>(kernarg) + ArgPool->kernarg_segment_size);
memset(impl_args, 0,
sizeof(atmi_implicit_args_t)); // may not be necessary
impl_args->offset_x = 0;
impl_args->offset_y = 0;
impl_args->offset_z = 0;
packet->kernarg_address = kernarg;
}
{
hsa_signal_t s = DeviceInfo.FreeSignalPool.pop();
if (s.handle == 0) {
printf("Failed to get signal instance\n");
exit(1);
}
packet->completion_signal = s;
hsa_signal_store_relaxed(packet->completion_signal, 1);
}
core::packet_store_release(
reinterpret_cast<uint32_t *>(packet),
core::create_header(HSA_PACKET_TYPE_KERNEL_DISPATCH, 0,
ATMI_FENCE_SCOPE_SYSTEM, ATMI_FENCE_SCOPE_SYSTEM),
packet->setup);
hsa_signal_store_relaxed(queue->doorbell_signal, packet_id);
while (hsa_signal_wait_scacquire(packet->completion_signal,
HSA_SIGNAL_CONDITION_EQ, 0, UINT64_MAX,
HSA_WAIT_STATE_BLOCKED) != 0)
;
assert(ArgPool);
ArgPool->deallocate(packet->kernarg_address);
DeviceInfo.FreeSignalPool.push(packet->completion_signal);
}
DP("Kernel completed\n");
// Free call stack for nested
if (TgtCallStack) {
pthread_mutex_unlock(&nested_parallel_mutex);
atmi_free(TgtCallStack);
}
return OFFLOAD_SUCCESS;
}
int32_t __tgt_rtl_run_target_region(int32_t device_id, void *tgt_entry_ptr,
void **tgt_args, ptrdiff_t *tgt_offsets,
int32_t arg_num) {
// use one team and one thread
// fix thread num
int32_t team_num = 1;
int32_t thread_limit = 0; // use default
return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
tgt_offsets, arg_num, team_num,
thread_limit, 0);
}
int32_t __tgt_rtl_run_target_region_async(int32_t device_id,
void *tgt_entry_ptr, void **tgt_args,
ptrdiff_t *tgt_offsets,
int32_t arg_num,
__tgt_async_info *async_info_ptr) {
assert(async_info_ptr && "async_info is nullptr");
initAsyncInfoPtr(async_info_ptr);
// use one team and one thread
// fix thread num
int32_t team_num = 1;
int32_t thread_limit = 0; // use default
return __tgt_rtl_run_target_team_region(device_id, tgt_entry_ptr, tgt_args,
tgt_offsets, arg_num, team_num,
thread_limit, 0);
}
int32_t __tgt_rtl_synchronize(int32_t device_id,
__tgt_async_info *async_info_ptr) {
assert(async_info_ptr && "async_info is nullptr");
// Cuda asserts that async_info_ptr->Queue is non-null, but this invariant
// is not ensured by devices.cpp for amdgcn
// assert(async_info_ptr->Queue && "async_info_ptr->Queue is nullptr");
if (async_info_ptr->Queue) {
finiAsyncInfoPtr(async_info_ptr);
}
return OFFLOAD_SUCCESS;
}