ExplodedGraph.cpp 17.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
//===- ExplodedGraph.cpp - Local, Path-Sens. "Exploded Graph" -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines the template classes ExplodedNode and ExplodedGraph,
//  which represent a path-sensitive, intra-procedural "exploded graph."
//
//===----------------------------------------------------------------------===//

#include "clang/StaticAnalyzer/Core/PathSensitive/ExplodedGraph.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/ParentMap.h"
#include "clang/AST/Stmt.h"
#include "clang/Analysis/CFGStmtMap.h"
#include "clang/Analysis/ProgramPoint.h"
#include "clang/Analysis/Support/BumpVector.h"
#include "clang/Basic/LLVM.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/CallEvent.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState.h"
#include "clang/StaticAnalyzer/Core/PathSensitive/ProgramState_Fwd.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PointerUnion.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <memory>

using namespace clang;
using namespace ento;

//===----------------------------------------------------------------------===//
// Cleanup.
//===----------------------------------------------------------------------===//

ExplodedGraph::ExplodedGraph() = default;

ExplodedGraph::~ExplodedGraph() = default;

//===----------------------------------------------------------------------===//
// Node reclamation.
//===----------------------------------------------------------------------===//

bool ExplodedGraph::isInterestingLValueExpr(const Expr *Ex) {
  if (!Ex->isLValue())
    return false;
  return isa<DeclRefExpr>(Ex) || isa<MemberExpr>(Ex) ||
         isa<ObjCIvarRefExpr>(Ex) || isa<ArraySubscriptExpr>(Ex);
}

bool ExplodedGraph::shouldCollect(const ExplodedNode *node) {
  // First, we only consider nodes for reclamation of the following
  // conditions apply:
  //
  // (1) 1 predecessor (that has one successor)
  // (2) 1 successor (that has one predecessor)
  //
  // If a node has no successor it is on the "frontier", while a node
  // with no predecessor is a root.
  //
  // After these prerequisites, we discard all "filler" nodes that
  // are used only for intermediate processing, and are not essential
  // for analyzer history:
  //
  // (a) PreStmtPurgeDeadSymbols
  //
  // We then discard all other nodes where *all* of the following conditions
  // apply:
  //
  // (3) The ProgramPoint is for a PostStmt, but not a PostStore.
  // (4) There is no 'tag' for the ProgramPoint.
  // (5) The 'store' is the same as the predecessor.
  // (6) The 'GDM' is the same as the predecessor.
  // (7) The LocationContext is the same as the predecessor.
  // (8) Expressions that are *not* lvalue expressions.
  // (9) The PostStmt isn't for a non-consumed Stmt or Expr.
  // (10) The successor is neither a CallExpr StmtPoint nor a CallEnter or
  //      PreImplicitCall (so that we would be able to find it when retrying a
  //      call with no inlining).
  // FIXME: It may be safe to reclaim PreCall and PostCall nodes as well.

  // Conditions 1 and 2.
  if (node->pred_size() != 1 || node->succ_size() != 1)
    return false;

  const ExplodedNode *pred = *(node->pred_begin());
  if (pred->succ_size() != 1)
    return false;

  const ExplodedNode *succ = *(node->succ_begin());
  if (succ->pred_size() != 1)
    return false;

  // Now reclaim any nodes that are (by definition) not essential to
  // analysis history and are not consulted by any client code.
  ProgramPoint progPoint = node->getLocation();
  if (progPoint.getAs<PreStmtPurgeDeadSymbols>())
    return !progPoint.getTag();

  // Condition 3.
  if (!progPoint.getAs<PostStmt>() || progPoint.getAs<PostStore>())
    return false;

  // Condition 4.
  if (progPoint.getTag())
    return false;

  // Conditions 5, 6, and 7.
  ProgramStateRef state = node->getState();
  ProgramStateRef pred_state = pred->getState();
  if (state->store != pred_state->store || state->GDM != pred_state->GDM ||
      progPoint.getLocationContext() != pred->getLocationContext())
    return false;

  // All further checks require expressions. As per #3, we know that we have
  // a PostStmt.
  const Expr *Ex = dyn_cast<Expr>(progPoint.castAs<PostStmt>().getStmt());
  if (!Ex)
    return false;

  // Condition 8.
  // Do not collect nodes for "interesting" lvalue expressions since they are
  // used extensively for generating path diagnostics.
  if (isInterestingLValueExpr(Ex))
    return false;

  // Condition 9.
  // Do not collect nodes for non-consumed Stmt or Expr to ensure precise
  // diagnostic generation; specifically, so that we could anchor arrows
  // pointing to the beginning of statements (as written in code).
  const ParentMap &PM = progPoint.getLocationContext()->getParentMap();
  if (!PM.isConsumedExpr(Ex))
    return false;

  // Condition 10.
  const ProgramPoint SuccLoc = succ->getLocation();
  if (Optional<StmtPoint> SP = SuccLoc.getAs<StmtPoint>())
    if (CallEvent::isCallStmt(SP->getStmt()))
      return false;

  // Condition 10, continuation.
  if (SuccLoc.getAs<CallEnter>() || SuccLoc.getAs<PreImplicitCall>())
    return false;

  return true;
}

void ExplodedGraph::collectNode(ExplodedNode *node) {
  // Removing a node means:
  // (a) changing the predecessors successor to the successor of this node
  // (b) changing the successors predecessor to the predecessor of this node
  // (c) Putting 'node' onto freeNodes.
  assert(node->pred_size() == 1 || node->succ_size() == 1);
  ExplodedNode *pred = *(node->pred_begin());
  ExplodedNode *succ = *(node->succ_begin());
  pred->replaceSuccessor(succ);
  succ->replacePredecessor(pred);
  FreeNodes.push_back(node);
  Nodes.RemoveNode(node);
  --NumNodes;
  node->~ExplodedNode();
}

void ExplodedGraph::reclaimRecentlyAllocatedNodes() {
  if (ChangedNodes.empty())
    return;

  // Only periodically reclaim nodes so that we can build up a set of
  // nodes that meet the reclamation criteria.  Freshly created nodes
  // by definition have no successor, and thus cannot be reclaimed (see below).
  assert(ReclaimCounter > 0);
  if (--ReclaimCounter != 0)
    return;
  ReclaimCounter = ReclaimNodeInterval;

  for (const auto node : ChangedNodes)
    if (shouldCollect(node))
      collectNode(node);
  ChangedNodes.clear();
}

//===----------------------------------------------------------------------===//
// ExplodedNode.
//===----------------------------------------------------------------------===//

// An NodeGroup's storage type is actually very much like a TinyPtrVector:
// it can be either a pointer to a single ExplodedNode, or a pointer to a
// BumpVector allocated with the ExplodedGraph's allocator. This allows the
// common case of single-node NodeGroups to be implemented with no extra memory.
//
// Consequently, each of the NodeGroup methods have up to four cases to handle:
// 1. The flag is set and this group does not actually contain any nodes.
// 2. The group is empty, in which case the storage value is null.
// 3. The group contains a single node.
// 4. The group contains more than one node.
using ExplodedNodeVector = BumpVector<ExplodedNode *>;
using GroupStorage = llvm::PointerUnion<ExplodedNode *, ExplodedNodeVector *>;

void ExplodedNode::addPredecessor(ExplodedNode *V, ExplodedGraph &G) {
  assert(!V->isSink());
  Preds.addNode(V, G);
  V->Succs.addNode(this, G);
}

void ExplodedNode::NodeGroup::replaceNode(ExplodedNode *node) {
  assert(!getFlag());

  GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
  assert(Storage.is<ExplodedNode *>());
  Storage = node;
  assert(Storage.is<ExplodedNode *>());
}

void ExplodedNode::NodeGroup::addNode(ExplodedNode *N, ExplodedGraph &G) {
  assert(!getFlag());

  GroupStorage &Storage = reinterpret_cast<GroupStorage&>(P);
  if (Storage.isNull()) {
    Storage = N;
    assert(Storage.is<ExplodedNode *>());
    return;
  }

  ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>();

  if (!V) {
    // Switch from single-node to multi-node representation.
    ExplodedNode *Old = Storage.get<ExplodedNode *>();

    BumpVectorContext &Ctx = G.getNodeAllocator();
    V = G.getAllocator().Allocate<ExplodedNodeVector>();
    new (V) ExplodedNodeVector(Ctx, 4);
    V->push_back(Old, Ctx);

    Storage = V;
    assert(!getFlag());
    assert(Storage.is<ExplodedNodeVector *>());
  }

  V->push_back(N, G.getNodeAllocator());
}

unsigned ExplodedNode::NodeGroup::size() const {
  if (getFlag())
    return 0;

  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
  if (Storage.isNull())
    return 0;
  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
    return V->size();
  return 1;
}

ExplodedNode * const *ExplodedNode::NodeGroup::begin() const {
  if (getFlag())
    return nullptr;

  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
  if (Storage.isNull())
    return nullptr;
  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
    return V->begin();
  return Storage.getAddrOfPtr1();
}

ExplodedNode * const *ExplodedNode::NodeGroup::end() const {
  if (getFlag())
    return nullptr;

  const GroupStorage &Storage = reinterpret_cast<const GroupStorage &>(P);
  if (Storage.isNull())
    return nullptr;
  if (ExplodedNodeVector *V = Storage.dyn_cast<ExplodedNodeVector *>())
    return V->end();
  return Storage.getAddrOfPtr1() + 1;
}

bool ExplodedNode::isTrivial() const {
  return pred_size() == 1 && succ_size() == 1 &&
         getFirstPred()->getState()->getID() == getState()->getID() &&
         getFirstPred()->succ_size() == 1;
}

const CFGBlock *ExplodedNode::getCFGBlock() const {
  ProgramPoint P = getLocation();
  if (auto BEP = P.getAs<BlockEntrance>())
    return BEP->getBlock();

  // Find the node's current statement in the CFG.
  // FIXME: getStmtForDiagnostics() does nasty things in order to provide
  // a valid statement for body farms, do we need this behavior here?
  if (const Stmt *S = getStmtForDiagnostics())
    return getLocationContext()
        ->getAnalysisDeclContext()
        ->getCFGStmtMap()
        ->getBlock(S);

  return nullptr;
}

static const LocationContext *
findTopAutosynthesizedParentContext(const LocationContext *LC) {
  assert(LC->getAnalysisDeclContext()->isBodyAutosynthesized());
  const LocationContext *ParentLC = LC->getParent();
  assert(ParentLC && "We don't start analysis from autosynthesized code");
  while (ParentLC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
    LC = ParentLC;
    ParentLC = LC->getParent();
    assert(ParentLC && "We don't start analysis from autosynthesized code");
  }
  return LC;
}

const Stmt *ExplodedNode::getStmtForDiagnostics() const {
  // We cannot place diagnostics on autosynthesized code.
  // Put them onto the call site through which we jumped into autosynthesized
  // code for the first time.
  const LocationContext *LC = getLocationContext();
  if (LC->getAnalysisDeclContext()->isBodyAutosynthesized()) {
    // It must be a stack frame because we only autosynthesize functions.
    return cast<StackFrameContext>(findTopAutosynthesizedParentContext(LC))
        ->getCallSite();
  }
  // Otherwise, see if the node's program point directly points to a statement.
  // FIXME: Refactor into a ProgramPoint method?
  ProgramPoint P = getLocation();
  if (auto SP = P.getAs<StmtPoint>())
    return SP->getStmt();
  if (auto BE = P.getAs<BlockEdge>())
    return BE->getSrc()->getTerminatorStmt();
  if (auto CE = P.getAs<CallEnter>())
    return CE->getCallExpr();
  if (auto CEE = P.getAs<CallExitEnd>())
    return CEE->getCalleeContext()->getCallSite();
  if (auto PIPP = P.getAs<PostInitializer>())
    return PIPP->getInitializer()->getInit();
  if (auto CEB = P.getAs<CallExitBegin>())
    return CEB->getReturnStmt();
  if (auto FEP = P.getAs<FunctionExitPoint>())
    return FEP->getStmt();

  return nullptr;
}

const Stmt *ExplodedNode::getNextStmtForDiagnostics() const {
  for (const ExplodedNode *N = getFirstSucc(); N; N = N->getFirstSucc()) {
    if (const Stmt *S = N->getStmtForDiagnostics()) {
      // Check if the statement is '?' or '&&'/'||'.  These are "merges",
      // not actual statement points.
      switch (S->getStmtClass()) {
        case Stmt::ChooseExprClass:
        case Stmt::BinaryConditionalOperatorClass:
        case Stmt::ConditionalOperatorClass:
          continue;
        case Stmt::BinaryOperatorClass: {
          BinaryOperatorKind Op = cast<BinaryOperator>(S)->getOpcode();
          if (Op == BO_LAnd || Op == BO_LOr)
            continue;
          break;
        }
        default:
          break;
      }
      // We found the statement, so return it.
      return S;
    }
  }

  return nullptr;
}

const Stmt *ExplodedNode::getPreviousStmtForDiagnostics() const {
  for (const ExplodedNode *N = getFirstPred(); N; N = N->getFirstPred())
    if (const Stmt *S = N->getStmtForDiagnostics())
      return S;

  return nullptr;
}

const Stmt *ExplodedNode::getCurrentOrPreviousStmtForDiagnostics() const {
  if (const Stmt *S = getStmtForDiagnostics())
    return S;

  return getPreviousStmtForDiagnostics();
}

ExplodedNode *ExplodedGraph::getNode(const ProgramPoint &L,
                                     ProgramStateRef State,
                                     bool IsSink,
                                     bool* IsNew) {
  // Profile 'State' to determine if we already have an existing node.
  llvm::FoldingSetNodeID profile;
  void *InsertPos = nullptr;

  NodeTy::Profile(profile, L, State, IsSink);
  NodeTy* V = Nodes.FindNodeOrInsertPos(profile, InsertPos);

  if (!V) {
    if (!FreeNodes.empty()) {
      V = FreeNodes.back();
      FreeNodes.pop_back();
    }
    else {
      // Allocate a new node.
      V = (NodeTy*) getAllocator().Allocate<NodeTy>();
    }

    ++NumNodes;
    new (V) NodeTy(L, State, NumNodes, IsSink);

    if (ReclaimNodeInterval)
      ChangedNodes.push_back(V);

    // Insert the node into the node set and return it.
    Nodes.InsertNode(V, InsertPos);

    if (IsNew) *IsNew = true;
  }
  else
    if (IsNew) *IsNew = false;

  return V;
}

ExplodedNode *ExplodedGraph::createUncachedNode(const ProgramPoint &L,
                                                ProgramStateRef State,
                                                int64_t Id,
                                                bool IsSink) {
  NodeTy *V = (NodeTy *) getAllocator().Allocate<NodeTy>();
  new (V) NodeTy(L, State, Id, IsSink);
  return V;
}

std::unique_ptr<ExplodedGraph>
ExplodedGraph::trim(ArrayRef<const NodeTy *> Sinks,
                    InterExplodedGraphMap *ForwardMap,
                    InterExplodedGraphMap *InverseMap) const {
  if (Nodes.empty())
    return nullptr;

  using Pass1Ty = llvm::DenseSet<const ExplodedNode *>;
  Pass1Ty Pass1;

  using Pass2Ty = InterExplodedGraphMap;
  InterExplodedGraphMap Pass2Scratch;
  Pass2Ty &Pass2 = ForwardMap ? *ForwardMap : Pass2Scratch;

  SmallVector<const ExplodedNode*, 10> WL1, WL2;

  // ===- Pass 1 (reverse DFS) -===
  for (const auto Sink : Sinks)
    if (Sink)
      WL1.push_back(Sink);

  // Process the first worklist until it is empty.
  while (!WL1.empty()) {
    const ExplodedNode *N = WL1.pop_back_val();

    // Have we already visited this node?  If so, continue to the next one.
    if (!Pass1.insert(N).second)
      continue;

    // If this is a root enqueue it to the second worklist.
    if (N->Preds.empty()) {
      WL2.push_back(N);
      continue;
    }

    // Visit our predecessors and enqueue them.
    WL1.append(N->Preds.begin(), N->Preds.end());
  }

  // We didn't hit a root? Return with a null pointer for the new graph.
  if (WL2.empty())
    return nullptr;

  // Create an empty graph.
  std::unique_ptr<ExplodedGraph> G = MakeEmptyGraph();

  // ===- Pass 2 (forward DFS to construct the new graph) -===
  while (!WL2.empty()) {
    const ExplodedNode *N = WL2.pop_back_val();

    // Skip this node if we have already processed it.
    if (Pass2.find(N) != Pass2.end())
      continue;

    // Create the corresponding node in the new graph and record the mapping
    // from the old node to the new node.
    ExplodedNode *NewN = G->createUncachedNode(N->getLocation(), N->State,
                                               N->getID(), N->isSink());
    Pass2[N] = NewN;

    // Also record the reverse mapping from the new node to the old node.
    if (InverseMap) (*InverseMap)[NewN] = N;

    // If this node is a root, designate it as such in the graph.
    if (N->Preds.empty())
      G->addRoot(NewN);

    // In the case that some of the intended predecessors of NewN have already
    // been created, we should hook them up as predecessors.

    // Walk through the predecessors of 'N' and hook up their corresponding
    // nodes in the new graph (if any) to the freshly created node.
    for (ExplodedNode::pred_iterator I = N->Preds.begin(), E = N->Preds.end();
         I != E; ++I) {
      Pass2Ty::iterator PI = Pass2.find(*I);
      if (PI == Pass2.end())
        continue;

      NewN->addPredecessor(const_cast<ExplodedNode *>(PI->second), *G);
    }

    // In the case that some of the intended successors of NewN have already
    // been created, we should hook them up as successors.  Otherwise, enqueue
    // the new nodes from the original graph that should have nodes created
    // in the new graph.
    for (ExplodedNode::succ_iterator I = N->Succs.begin(), E = N->Succs.end();
         I != E; ++I) {
      Pass2Ty::iterator PI = Pass2.find(*I);
      if (PI != Pass2.end()) {
        const_cast<ExplodedNode *>(PI->second)->addPredecessor(NewN, *G);
        continue;
      }

      // Enqueue nodes to the worklist that were marked during pass 1.
      if (Pass1.count(*I))
        WL2.push_back(*I);
    }
  }

  return G;
}