CFG.cpp 200 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060
//===- CFG.cpp - Classes for representing and building CFGs ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//  This file defines the CFG and CFGBuilder classes for representing and
//  building Control-Flow Graphs (CFGs) from ASTs.
//
//===----------------------------------------------------------------------===//

#include "clang/Analysis/CFG.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Attr.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclGroup.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/OperationKinds.h"
#include "clang/AST/PrettyPrinter.h"
#include "clang/AST/Stmt.h"
#include "clang/AST/StmtCXX.h"
#include "clang/AST/StmtObjC.h"
#include "clang/AST/StmtVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Analysis/ConstructionContext.h"
#include "clang/Analysis/Support/BumpVector.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/ExceptionSpecificationType.h"
#include "clang/Basic/JsonSupport.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/LangOptions.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/Specifiers.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/DOTGraphTraits.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/GraphWriter.h"
#include "llvm/Support/SaveAndRestore.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <memory>
#include <string>
#include <tuple>
#include <utility>
#include <vector>

using namespace clang;

static SourceLocation GetEndLoc(Decl *D) {
  if (VarDecl *VD = dyn_cast<VarDecl>(D))
    if (Expr *Ex = VD->getInit())
      return Ex->getSourceRange().getEnd();
  return D->getLocation();
}

/// Returns true on constant values based around a single IntegerLiteral.
/// Allow for use of parentheses, integer casts, and negative signs.
static bool IsIntegerLiteralConstantExpr(const Expr *E) {
  // Allow parentheses
  E = E->IgnoreParens();

  // Allow conversions to different integer kind.
  if (const auto *CE = dyn_cast<CastExpr>(E)) {
    if (CE->getCastKind() != CK_IntegralCast)
      return false;
    E = CE->getSubExpr();
  }

  // Allow negative numbers.
  if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
    if (UO->getOpcode() != UO_Minus)
      return false;
    E = UO->getSubExpr();
  }

  return isa<IntegerLiteral>(E);
}

/// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral
/// constant expression or EnumConstantDecl from the given Expr. If it fails,
/// returns nullptr.
static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) {
  E = E->IgnoreParens();
  if (IsIntegerLiteralConstantExpr(E))
    return E;
  if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
    return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr;
  return nullptr;
}

/// Tries to interpret a binary operator into `Expr Op NumExpr` form, if
/// NumExpr is an integer literal or an enum constant.
///
/// If this fails, at least one of the returned DeclRefExpr or Expr will be
/// null.
static std::tuple<const Expr *, BinaryOperatorKind, const Expr *>
tryNormalizeBinaryOperator(const BinaryOperator *B) {
  BinaryOperatorKind Op = B->getOpcode();

  const Expr *MaybeDecl = B->getLHS();
  const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS());
  // Expr looked like `0 == Foo` instead of `Foo == 0`
  if (Constant == nullptr) {
    // Flip the operator
    if (Op == BO_GT)
      Op = BO_LT;
    else if (Op == BO_GE)
      Op = BO_LE;
    else if (Op == BO_LT)
      Op = BO_GT;
    else if (Op == BO_LE)
      Op = BO_GE;

    MaybeDecl = B->getRHS();
    Constant = tryTransformToIntOrEnumConstant(B->getLHS());
  }

  return std::make_tuple(MaybeDecl, Op, Constant);
}

/// For an expression `x == Foo && x == Bar`, this determines whether the
/// `Foo` and `Bar` are either of the same enumeration type, or both integer
/// literals.
///
/// It's an error to pass this arguments that are not either IntegerLiterals
/// or DeclRefExprs (that have decls of type EnumConstantDecl)
static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) {
  // User intent isn't clear if they're mixing int literals with enum
  // constants.
  if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2))
    return false;

  // Integer literal comparisons, regardless of literal type, are acceptable.
  if (!isa<DeclRefExpr>(E1))
    return true;

  // IntegerLiterals are handled above and only EnumConstantDecls are expected
  // beyond this point
  assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2));
  auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl();
  auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl();

  assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2));
  const DeclContext *DC1 = Decl1->getDeclContext();
  const DeclContext *DC2 = Decl2->getDeclContext();

  assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2));
  return DC1 == DC2;
}

namespace {

class CFGBuilder;

/// The CFG builder uses a recursive algorithm to build the CFG.  When
///  we process an expression, sometimes we know that we must add the
///  subexpressions as block-level expressions.  For example:
///
///    exp1 || exp2
///
///  When processing the '||' expression, we know that exp1 and exp2
///  need to be added as block-level expressions, even though they
///  might not normally need to be.  AddStmtChoice records this
///  contextual information.  If AddStmtChoice is 'NotAlwaysAdd', then
///  the builder has an option not to add a subexpression as a
///  block-level expression.
class AddStmtChoice {
public:
  enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 };

  AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {}

  bool alwaysAdd(CFGBuilder &builder,
                 const Stmt *stmt) const;

  /// Return a copy of this object, except with the 'always-add' bit
  ///  set as specified.
  AddStmtChoice withAlwaysAdd(bool alwaysAdd) const {
    return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd);
  }

private:
  Kind kind;
};

/// LocalScope - Node in tree of local scopes created for C++ implicit
/// destructor calls generation. It contains list of automatic variables
/// declared in the scope and link to position in previous scope this scope
/// began in.
///
/// The process of creating local scopes is as follows:
/// - Init CFGBuilder::ScopePos with invalid position (equivalent for null),
/// - Before processing statements in scope (e.g. CompoundStmt) create
///   LocalScope object using CFGBuilder::ScopePos as link to previous scope
///   and set CFGBuilder::ScopePos to the end of new scope,
/// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points
///   at this VarDecl,
/// - For every normal (without jump) end of scope add to CFGBlock destructors
///   for objects in the current scope,
/// - For every jump add to CFGBlock destructors for objects
///   between CFGBuilder::ScopePos and local scope position saved for jump
///   target. Thanks to C++ restrictions on goto jumps we can be sure that
///   jump target position will be on the path to root from CFGBuilder::ScopePos
///   (adding any variable that doesn't need constructor to be called to
///   LocalScope can break this assumption),
///
class LocalScope {
public:
  using AutomaticVarsTy = BumpVector<VarDecl *>;

  /// const_iterator - Iterates local scope backwards and jumps to previous
  /// scope on reaching the beginning of currently iterated scope.
  class const_iterator {
    const LocalScope* Scope = nullptr;

    /// VarIter is guaranteed to be greater then 0 for every valid iterator.
    /// Invalid iterator (with null Scope) has VarIter equal to 0.
    unsigned VarIter = 0;

  public:
    /// Create invalid iterator. Dereferencing invalid iterator is not allowed.
    /// Incrementing invalid iterator is allowed and will result in invalid
    /// iterator.
    const_iterator() = default;

    /// Create valid iterator. In case when S.Prev is an invalid iterator and
    /// I is equal to 0, this will create invalid iterator.
    const_iterator(const LocalScope& S, unsigned I)
        : Scope(&S), VarIter(I) {
      // Iterator to "end" of scope is not allowed. Handle it by going up
      // in scopes tree possibly up to invalid iterator in the root.
      if (VarIter == 0 && Scope)
        *this = Scope->Prev;
    }

    VarDecl *const* operator->() const {
      assert(Scope && "Dereferencing invalid iterator is not allowed");
      assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
      return &Scope->Vars[VarIter - 1];
    }

    const VarDecl *getFirstVarInScope() const {
      assert(Scope && "Dereferencing invalid iterator is not allowed");
      assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
      return Scope->Vars[0];
    }

    VarDecl *operator*() const {
      return *this->operator->();
    }

    const_iterator &operator++() {
      if (!Scope)
        return *this;

      assert(VarIter != 0 && "Iterator has invalid value of VarIter member");
      --VarIter;
      if (VarIter == 0)
        *this = Scope->Prev;
      return *this;
    }
    const_iterator operator++(int) {
      const_iterator P = *this;
      ++*this;
      return P;
    }

    bool operator==(const const_iterator &rhs) const {
      return Scope == rhs.Scope && VarIter == rhs.VarIter;
    }
    bool operator!=(const const_iterator &rhs) const {
      return !(*this == rhs);
    }

    explicit operator bool() const {
      return *this != const_iterator();
    }

    int distance(const_iterator L);
    const_iterator shared_parent(const_iterator L);
    bool pointsToFirstDeclaredVar() { return VarIter == 1; }
  };

private:
  BumpVectorContext ctx;

  /// Automatic variables in order of declaration.
  AutomaticVarsTy Vars;

  /// Iterator to variable in previous scope that was declared just before
  /// begin of this scope.
  const_iterator Prev;

public:
  /// Constructs empty scope linked to previous scope in specified place.
  LocalScope(BumpVectorContext ctx, const_iterator P)
      : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {}

  /// Begin of scope in direction of CFG building (backwards).
  const_iterator begin() const { return const_iterator(*this, Vars.size()); }

  void addVar(VarDecl *VD) {
    Vars.push_back(VD, ctx);
  }
};

} // namespace

/// distance - Calculates distance from this to L. L must be reachable from this
/// (with use of ++ operator). Cost of calculating the distance is linear w.r.t.
/// number of scopes between this and L.
int LocalScope::const_iterator::distance(LocalScope::const_iterator L) {
  int D = 0;
  const_iterator F = *this;
  while (F.Scope != L.Scope) {
    assert(F != const_iterator() &&
           "L iterator is not reachable from F iterator.");
    D += F.VarIter;
    F = F.Scope->Prev;
  }
  D += F.VarIter - L.VarIter;
  return D;
}

/// Calculates the closest parent of this iterator
/// that is in a scope reachable through the parents of L.
/// I.e. when using 'goto' from this to L, the lifetime of all variables
/// between this and shared_parent(L) end.
LocalScope::const_iterator
LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) {
  llvm::SmallPtrSet<const LocalScope *, 4> ScopesOfL;
  while (true) {
    ScopesOfL.insert(L.Scope);
    if (L == const_iterator())
      break;
    L = L.Scope->Prev;
  }

  const_iterator F = *this;
  while (true) {
    if (ScopesOfL.count(F.Scope))
      return F;
    assert(F != const_iterator() &&
           "L iterator is not reachable from F iterator.");
    F = F.Scope->Prev;
  }
}

namespace {

/// Structure for specifying position in CFG during its build process. It
/// consists of CFGBlock that specifies position in CFG and
/// LocalScope::const_iterator that specifies position in LocalScope graph.
struct BlockScopePosPair {
  CFGBlock *block = nullptr;
  LocalScope::const_iterator scopePosition;

  BlockScopePosPair() = default;
  BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos)
      : block(b), scopePosition(scopePos) {}
};

/// TryResult - a class representing a variant over the values
///  'true', 'false', or 'unknown'.  This is returned by tryEvaluateBool,
///  and is used by the CFGBuilder to decide if a branch condition
///  can be decided up front during CFG construction.
class TryResult {
  int X = -1;

public:
  TryResult() = default;
  TryResult(bool b) : X(b ? 1 : 0) {}

  bool isTrue() const { return X == 1; }
  bool isFalse() const { return X == 0; }
  bool isKnown() const { return X >= 0; }

  void negate() {
    assert(isKnown());
    X ^= 0x1;
  }
};

} // namespace

static TryResult bothKnownTrue(TryResult R1, TryResult R2) {
  if (!R1.isKnown() || !R2.isKnown())
    return TryResult();
  return TryResult(R1.isTrue() && R2.isTrue());
}

namespace {

class reverse_children {
  llvm::SmallVector<Stmt *, 12> childrenBuf;
  ArrayRef<Stmt *> children;

public:
  reverse_children(Stmt *S);

  using iterator = ArrayRef<Stmt *>::reverse_iterator;

  iterator begin() const { return children.rbegin(); }
  iterator end() const { return children.rend(); }
};

} // namespace

reverse_children::reverse_children(Stmt *S) {
  if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
    children = CE->getRawSubExprs();
    return;
  }
  switch (S->getStmtClass()) {
    // Note: Fill in this switch with more cases we want to optimize.
    case Stmt::InitListExprClass: {
      InitListExpr *IE = cast<InitListExpr>(S);
      children = llvm::makeArrayRef(reinterpret_cast<Stmt**>(IE->getInits()),
                                    IE->getNumInits());
      return;
    }
    default:
      break;
  }

  // Default case for all other statements.
  for (Stmt *SubStmt : S->children())
    childrenBuf.push_back(SubStmt);

  // This needs to be done *after* childrenBuf has been populated.
  children = childrenBuf;
}

namespace {

/// CFGBuilder - This class implements CFG construction from an AST.
///   The builder is stateful: an instance of the builder should be used to only
///   construct a single CFG.
///
///   Example usage:
///
///     CFGBuilder builder;
///     std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1);
///
///  CFG construction is done via a recursive walk of an AST.  We actually parse
///  the AST in reverse order so that the successor of a basic block is
///  constructed prior to its predecessor.  This allows us to nicely capture
///  implicit fall-throughs without extra basic blocks.
class CFGBuilder {
  using JumpTarget = BlockScopePosPair;
  using JumpSource = BlockScopePosPair;

  ASTContext *Context;
  std::unique_ptr<CFG> cfg;

  // Current block.
  CFGBlock *Block = nullptr;

  // Block after the current block.
  CFGBlock *Succ = nullptr;

  JumpTarget ContinueJumpTarget;
  JumpTarget BreakJumpTarget;
  JumpTarget SEHLeaveJumpTarget;
  CFGBlock *SwitchTerminatedBlock = nullptr;
  CFGBlock *DefaultCaseBlock = nullptr;

  // This can point either to a try or a __try block. The frontend forbids
  // mixing both kinds in one function, so having one for both is enough.
  CFGBlock *TryTerminatedBlock = nullptr;

  // Current position in local scope.
  LocalScope::const_iterator ScopePos;

  // LabelMap records the mapping from Label expressions to their jump targets.
  using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>;
  LabelMapTy LabelMap;

  // A list of blocks that end with a "goto" that must be backpatched to their
  // resolved targets upon completion of CFG construction.
  using BackpatchBlocksTy = std::vector<JumpSource>;
  BackpatchBlocksTy BackpatchBlocks;

  // A list of labels whose address has been taken (for indirect gotos).
  using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>;
  LabelSetTy AddressTakenLabels;

  // Information about the currently visited C++ object construction site.
  // This is set in the construction trigger and read when the constructor
  // or a function that returns an object by value is being visited.
  llvm::DenseMap<Expr *, const ConstructionContextLayer *>
      ConstructionContextMap;

  using DeclsWithEndedScopeSetTy = llvm::SmallSetVector<VarDecl *, 16>;
  DeclsWithEndedScopeSetTy DeclsWithEndedScope;

  bool badCFG = false;
  const CFG::BuildOptions &BuildOpts;

  // State to track for building switch statements.
  bool switchExclusivelyCovered = false;
  Expr::EvalResult *switchCond = nullptr;

  CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr;
  const Stmt *lastLookup = nullptr;

  // Caches boolean evaluations of expressions to avoid multiple re-evaluations
  // during construction of branches for chained logical operators.
  using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>;
  CachedBoolEvalsTy CachedBoolEvals;

public:
  explicit CFGBuilder(ASTContext *astContext,
                      const CFG::BuildOptions &buildOpts)
      : Context(astContext), cfg(new CFG()), // crew a new CFG
        ConstructionContextMap(), BuildOpts(buildOpts) {}


  // buildCFG - Used by external clients to construct the CFG.
  std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement);

  bool alwaysAdd(const Stmt *stmt);

private:
  // Visitors to walk an AST and construct the CFG.
  CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc);
  CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc);
  CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc);
  CFGBlock *VisitBreakStmt(BreakStmt *B);
  CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCaseStmt(CaseStmt *C);
  CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed);
  CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C,
                                     AddStmtChoice asc);
  CFGBlock *VisitContinueStmt(ContinueStmt *C);
  CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
                                      AddStmtChoice asc);
  CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S);
  CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc);
  CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc);
  CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc);
  CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S);
  CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
                                       AddStmtChoice asc);
  CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
                                        AddStmtChoice asc);
  CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T);
  CFGBlock *VisitCXXTryStmt(CXXTryStmt *S);
  CFGBlock *VisitDeclStmt(DeclStmt *DS);
  CFGBlock *VisitDeclSubExpr(DeclStmt *DS);
  CFGBlock *VisitDefaultStmt(DefaultStmt *D);
  CFGBlock *VisitDoStmt(DoStmt *D);
  CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E,
                                  AddStmtChoice asc, bool ExternallyDestructed);
  CFGBlock *VisitForStmt(ForStmt *F);
  CFGBlock *VisitGotoStmt(GotoStmt *G);
  CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc);
  CFGBlock *VisitIfStmt(IfStmt *I);
  CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc);
  CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc);
  CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I);
  CFGBlock *VisitLabelStmt(LabelStmt *L);
  CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc);
  CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc);
  CFGBlock *VisitLogicalOperator(BinaryOperator *B);
  std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B,
                                                         Stmt *Term,
                                                         CFGBlock *TrueBlock,
                                                         CFGBlock *FalseBlock);
  CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
                                          AddStmtChoice asc);
  CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc);
  CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S);
  CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S);
  CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S);
  CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S);
  CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S);
  CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S);
  CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc);
  CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E);
  CFGBlock *VisitReturnStmt(Stmt *S);
  CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S);
  CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S);
  CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S);
  CFGBlock *VisitSEHTryStmt(SEHTryStmt *S);
  CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc);
  CFGBlock *VisitSwitchStmt(SwitchStmt *S);
  CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
                                          AddStmtChoice asc);
  CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc);
  CFGBlock *VisitWhileStmt(WhileStmt *W);

  CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd,
                  bool ExternallyDestructed = false);
  CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc);
  CFGBlock *VisitChildren(Stmt *S);
  CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc);
  CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D,
                                        AddStmtChoice asc);

  void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD,
                                    const Stmt *S) {
    if (ScopePos && (VD == ScopePos.getFirstVarInScope()))
      appendScopeBegin(B, VD, S);
  }

  /// When creating the CFG for temporary destructors, we want to mirror the
  /// branch structure of the corresponding constructor calls.
  /// Thus, while visiting a statement for temporary destructors, we keep a
  /// context to keep track of the following information:
  /// - whether a subexpression is executed unconditionally
  /// - if a subexpression is executed conditionally, the first
  ///   CXXBindTemporaryExpr we encounter in that subexpression (which
  ///   corresponds to the last temporary destructor we have to call for this
  ///   subexpression) and the CFG block at that point (which will become the
  ///   successor block when inserting the decision point).
  ///
  /// That way, we can build the branch structure for temporary destructors as
  /// follows:
  /// 1. If a subexpression is executed unconditionally, we add the temporary
  ///    destructor calls to the current block.
  /// 2. If a subexpression is executed conditionally, when we encounter a
  ///    CXXBindTemporaryExpr:
  ///    a) If it is the first temporary destructor call in the subexpression,
  ///       we remember the CXXBindTemporaryExpr and the current block in the
  ///       TempDtorContext; we start a new block, and insert the temporary
  ///       destructor call.
  ///    b) Otherwise, add the temporary destructor call to the current block.
  ///  3. When we finished visiting a conditionally executed subexpression,
  ///     and we found at least one temporary constructor during the visitation
  ///     (2.a has executed), we insert a decision block that uses the
  ///     CXXBindTemporaryExpr as terminator, and branches to the current block
  ///     if the CXXBindTemporaryExpr was marked executed, and otherwise
  ///     branches to the stored successor.
  struct TempDtorContext {
    TempDtorContext() = default;
    TempDtorContext(TryResult KnownExecuted)
        : IsConditional(true), KnownExecuted(KnownExecuted) {}

    /// Returns whether we need to start a new branch for a temporary destructor
    /// call. This is the case when the temporary destructor is
    /// conditionally executed, and it is the first one we encounter while
    /// visiting a subexpression - other temporary destructors at the same level
    /// will be added to the same block and are executed under the same
    /// condition.
    bool needsTempDtorBranch() const {
      return IsConditional && !TerminatorExpr;
    }

    /// Remember the successor S of a temporary destructor decision branch for
    /// the corresponding CXXBindTemporaryExpr E.
    void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) {
      Succ = S;
      TerminatorExpr = E;
    }

    const bool IsConditional = false;
    const TryResult KnownExecuted = true;
    CFGBlock *Succ = nullptr;
    CXXBindTemporaryExpr *TerminatorExpr = nullptr;
  };

  // Visitors to walk an AST and generate destructors of temporaries in
  // full expression.
  CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
                                   TempDtorContext &Context);
  CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E,  bool ExternallyDestructed,
                                           TempDtorContext &Context);
  CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E,
                                                 bool ExternallyDestructed,
                                                 TempDtorContext &Context);
  CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors(
      CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context);
  CFGBlock *VisitConditionalOperatorForTemporaryDtors(
      AbstractConditionalOperator *E, bool ExternallyDestructed,
      TempDtorContext &Context);
  void InsertTempDtorDecisionBlock(const TempDtorContext &Context,
                                   CFGBlock *FalseSucc = nullptr);

  // NYS == Not Yet Supported
  CFGBlock *NYS() {
    badCFG = true;
    return Block;
  }

  // Remember to apply the construction context based on the current \p Layer
  // when constructing the CFG element for \p CE.
  void consumeConstructionContext(const ConstructionContextLayer *Layer,
                                  Expr *E);

  // Scan \p Child statement to find constructors in it, while keeping in mind
  // that its parent statement is providing a partial construction context
  // described by \p Layer. If a constructor is found, it would be assigned
  // the context based on the layer. If an additional construction context layer
  // is found, the function recurses into that.
  void findConstructionContexts(const ConstructionContextLayer *Layer,
                                Stmt *Child);

  // Scan all arguments of a call expression for a construction context.
  // These sorts of call expressions don't have a common superclass,
  // hence strict duck-typing.
  template <typename CallLikeExpr,
            typename = std::enable_if_t<
                std::is_base_of<CallExpr, CallLikeExpr>::value ||
                std::is_base_of<CXXConstructExpr, CallLikeExpr>::value ||
                std::is_base_of<ObjCMessageExpr, CallLikeExpr>::value>>
  void findConstructionContextsForArguments(CallLikeExpr *E) {
    for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
      Expr *Arg = E->getArg(i);
      if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue())
        findConstructionContexts(
            ConstructionContextLayer::create(cfg->getBumpVectorContext(),
                                             ConstructionContextItem(E, i)),
            Arg);
    }
  }

  // Unset the construction context after consuming it. This is done immediately
  // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so
  // there's no need to do this manually in every Visit... function.
  void cleanupConstructionContext(Expr *E);

  void autoCreateBlock() { if (!Block) Block = createBlock(); }
  CFGBlock *createBlock(bool add_successor = true);
  CFGBlock *createNoReturnBlock();

  CFGBlock *addStmt(Stmt *S) {
    return Visit(S, AddStmtChoice::AlwaysAdd);
  }

  CFGBlock *addInitializer(CXXCtorInitializer *I);
  void addLoopExit(const Stmt *LoopStmt);
  void addAutomaticObjDtors(LocalScope::const_iterator B,
                            LocalScope::const_iterator E, Stmt *S);
  void addLifetimeEnds(LocalScope::const_iterator B,
                       LocalScope::const_iterator E, Stmt *S);
  void addAutomaticObjHandling(LocalScope::const_iterator B,
                               LocalScope::const_iterator E, Stmt *S);
  void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD);
  void addScopesEnd(LocalScope::const_iterator B, LocalScope::const_iterator E,
                    Stmt *S);

  void getDeclsWithEndedScope(LocalScope::const_iterator B,
                              LocalScope::const_iterator E, Stmt *S);

  // Local scopes creation.
  LocalScope* createOrReuseLocalScope(LocalScope* Scope);

  void addLocalScopeForStmt(Stmt *S);
  LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS,
                                       LocalScope* Scope = nullptr);
  LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr);

  void addLocalScopeAndDtors(Stmt *S);

  const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) {
    if (!BuildOpts.AddRichCXXConstructors)
      return nullptr;

    const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E);
    if (!Layer)
      return nullptr;

    cleanupConstructionContext(E);
    return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(),
                                                 Layer);
  }

  // Interface to CFGBlock - adding CFGElements.

  void appendStmt(CFGBlock *B, const Stmt *S) {
    if (alwaysAdd(S) && cachedEntry)
      cachedEntry->second = B;

    // All block-level expressions should have already been IgnoreParens()ed.
    assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S);
    B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext());
  }

  void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) {
    if (const ConstructionContext *CC =
            retrieveAndCleanupConstructionContext(CE)) {
      B->appendConstructor(CE, CC, cfg->getBumpVectorContext());
      return;
    }

    // No valid construction context found. Fall back to statement.
    B->appendStmt(CE, cfg->getBumpVectorContext());
  }

  void appendCall(CFGBlock *B, CallExpr *CE) {
    if (alwaysAdd(CE) && cachedEntry)
      cachedEntry->second = B;

    if (const ConstructionContext *CC =
            retrieveAndCleanupConstructionContext(CE)) {
      B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext());
      return;
    }

    // No valid construction context found. Fall back to statement.
    B->appendStmt(CE, cfg->getBumpVectorContext());
  }

  void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) {
    B->appendInitializer(I, cfg->getBumpVectorContext());
  }

  void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) {
    B->appendNewAllocator(NE, cfg->getBumpVectorContext());
  }

  void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) {
    B->appendBaseDtor(BS, cfg->getBumpVectorContext());
  }

  void appendMemberDtor(CFGBlock *B, FieldDecl *FD) {
    B->appendMemberDtor(FD, cfg->getBumpVectorContext());
  }

  void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) {
    if (alwaysAdd(ME) && cachedEntry)
      cachedEntry->second = B;

    if (const ConstructionContext *CC =
            retrieveAndCleanupConstructionContext(ME)) {
      B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext());
      return;
    }

    B->appendStmt(const_cast<ObjCMessageExpr *>(ME),
                  cfg->getBumpVectorContext());
  }

  void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) {
    B->appendTemporaryDtor(E, cfg->getBumpVectorContext());
  }

  void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) {
    B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext());
  }

  void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) {
    B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext());
  }

  void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) {
    B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext());
  }

  void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) {
    B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext());
  }

  void prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
      LocalScope::const_iterator B, LocalScope::const_iterator E);

  void prependAutomaticObjLifetimeWithTerminator(CFGBlock *Blk,
                                                 LocalScope::const_iterator B,
                                                 LocalScope::const_iterator E);

  const VarDecl *
  prependAutomaticObjScopeEndWithTerminator(CFGBlock *Blk,
                                            LocalScope::const_iterator B,
                                            LocalScope::const_iterator E);

  void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) {
    B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable),
                    cfg->getBumpVectorContext());
  }

  /// Add a reachable successor to a block, with the alternate variant that is
  /// unreachable.
  void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) {
    B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock),
                    cfg->getBumpVectorContext());
  }

  void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
    if (BuildOpts.AddScopes)
      B->appendScopeBegin(VD, S, cfg->getBumpVectorContext());
  }

  void prependScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
    if (BuildOpts.AddScopes)
      B->prependScopeBegin(VD, S, cfg->getBumpVectorContext());
  }

  void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
    if (BuildOpts.AddScopes)
      B->appendScopeEnd(VD, S, cfg->getBumpVectorContext());
  }

  void prependScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) {
    if (BuildOpts.AddScopes)
      B->prependScopeEnd(VD, S, cfg->getBumpVectorContext());
  }

  /// Find a relational comparison with an expression evaluating to a
  /// boolean and a constant other than 0 and 1.
  /// e.g. if ((x < y) == 10)
  TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) {
    const Expr *LHSExpr = B->getLHS()->IgnoreParens();
    const Expr *RHSExpr = B->getRHS()->IgnoreParens();

    const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
    const Expr *BoolExpr = RHSExpr;
    bool IntFirst = true;
    if (!IntLiteral) {
      IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
      BoolExpr = LHSExpr;
      IntFirst = false;
    }

    if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue())
      return TryResult();

    llvm::APInt IntValue = IntLiteral->getValue();
    if ((IntValue == 1) || (IntValue == 0))
      return TryResult();

    bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() ||
                     !IntValue.isNegative();

    BinaryOperatorKind Bok = B->getOpcode();
    if (Bok == BO_GT || Bok == BO_GE) {
      // Always true for 10 > bool and bool > -1
      // Always false for -1 > bool and bool > 10
      return TryResult(IntFirst == IntLarger);
    } else {
      // Always true for -1 < bool and bool < 10
      // Always false for 10 < bool and bool < -1
      return TryResult(IntFirst != IntLarger);
    }
  }

  /// Find an incorrect equality comparison. Either with an expression
  /// evaluating to a boolean and a constant other than 0 and 1.
  /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to
  /// true/false e.q. (x & 8) == 4.
  TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) {
    const Expr *LHSExpr = B->getLHS()->IgnoreParens();
    const Expr *RHSExpr = B->getRHS()->IgnoreParens();

    const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr);
    const Expr *BoolExpr = RHSExpr;

    if (!IntLiteral) {
      IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr);
      BoolExpr = LHSExpr;
    }

    if (!IntLiteral)
      return TryResult();

    const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr);
    if (BitOp && (BitOp->getOpcode() == BO_And ||
                  BitOp->getOpcode() == BO_Or)) {
      const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens();
      const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens();

      const IntegerLiteral *IntLiteral2 = dyn_cast<IntegerLiteral>(LHSExpr2);

      if (!IntLiteral2)
        IntLiteral2 = dyn_cast<IntegerLiteral>(RHSExpr2);

      if (!IntLiteral2)
        return TryResult();

      llvm::APInt L1 = IntLiteral->getValue();
      llvm::APInt L2 = IntLiteral2->getValue();
      if ((BitOp->getOpcode() == BO_And && (L2 & L1) != L1) ||
          (BitOp->getOpcode() == BO_Or  && (L2 | L1) != L1)) {
        if (BuildOpts.Observer)
          BuildOpts.Observer->compareBitwiseEquality(B,
                                                     B->getOpcode() != BO_EQ);
        TryResult(B->getOpcode() != BO_EQ);
      }
    } else if (BoolExpr->isKnownToHaveBooleanValue()) {
      llvm::APInt IntValue = IntLiteral->getValue();
      if ((IntValue == 1) || (IntValue == 0)) {
        return TryResult();
      }
      return TryResult(B->getOpcode() != BO_EQ);
    }

    return TryResult();
  }

  TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation,
                                          const llvm::APSInt &Value1,
                                          const llvm::APSInt &Value2) {
    assert(Value1.isSigned() == Value2.isSigned());
    switch (Relation) {
      default:
        return TryResult();
      case BO_EQ:
        return TryResult(Value1 == Value2);
      case BO_NE:
        return TryResult(Value1 != Value2);
      case BO_LT:
        return TryResult(Value1 <  Value2);
      case BO_LE:
        return TryResult(Value1 <= Value2);
      case BO_GT:
        return TryResult(Value1 >  Value2);
      case BO_GE:
        return TryResult(Value1 >= Value2);
    }
  }

  /// Find a pair of comparison expressions with or without parentheses
  /// with a shared variable and constants and a logical operator between them
  /// that always evaluates to either true or false.
  /// e.g. if (x != 3 || x != 4)
  TryResult checkIncorrectLogicOperator(const BinaryOperator *B) {
    assert(B->isLogicalOp());
    const BinaryOperator *LHS =
        dyn_cast<BinaryOperator>(B->getLHS()->IgnoreParens());
    const BinaryOperator *RHS =
        dyn_cast<BinaryOperator>(B->getRHS()->IgnoreParens());
    if (!LHS || !RHS)
      return {};

    if (!LHS->isComparisonOp() || !RHS->isComparisonOp())
      return {};

    const Expr *DeclExpr1;
    const Expr *NumExpr1;
    BinaryOperatorKind BO1;
    std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS);

    if (!DeclExpr1 || !NumExpr1)
      return {};

    const Expr *DeclExpr2;
    const Expr *NumExpr2;
    BinaryOperatorKind BO2;
    std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS);

    if (!DeclExpr2 || !NumExpr2)
      return {};

    // Check that it is the same variable on both sides.
    if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2))
      return {};

    // Make sure the user's intent is clear (e.g. they're comparing against two
    // int literals, or two things from the same enum)
    if (!areExprTypesCompatible(NumExpr1, NumExpr2))
      return {};

    Expr::EvalResult L1Result, L2Result;
    if (!NumExpr1->EvaluateAsInt(L1Result, *Context) ||
        !NumExpr2->EvaluateAsInt(L2Result, *Context))
      return {};

    llvm::APSInt L1 = L1Result.Val.getInt();
    llvm::APSInt L2 = L2Result.Val.getInt();

    // Can't compare signed with unsigned or with different bit width.
    if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth())
      return {};

    // Values that will be used to determine if result of logical
    // operator is always true/false
    const llvm::APSInt Values[] = {
      // Value less than both Value1 and Value2
      llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()),
      // L1
      L1,
      // Value between Value1 and Value2
      ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1),
                              L1.isUnsigned()),
      // L2
      L2,
      // Value greater than both Value1 and Value2
      llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()),
    };

    // Check whether expression is always true/false by evaluating the following
    // * variable x is less than the smallest literal.
    // * variable x is equal to the smallest literal.
    // * Variable x is between smallest and largest literal.
    // * Variable x is equal to the largest literal.
    // * Variable x is greater than largest literal.
    bool AlwaysTrue = true, AlwaysFalse = true;
    // Track value of both subexpressions.  If either side is always
    // true/false, another warning should have already been emitted.
    bool LHSAlwaysTrue = true, LHSAlwaysFalse = true;
    bool RHSAlwaysTrue = true, RHSAlwaysFalse = true;
    for (const llvm::APSInt &Value : Values) {
      TryResult Res1, Res2;
      Res1 = analyzeLogicOperatorCondition(BO1, Value, L1);
      Res2 = analyzeLogicOperatorCondition(BO2, Value, L2);

      if (!Res1.isKnown() || !Res2.isKnown())
        return {};

      if (B->getOpcode() == BO_LAnd) {
        AlwaysTrue &= (Res1.isTrue() && Res2.isTrue());
        AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue());
      } else {
        AlwaysTrue &= (Res1.isTrue() || Res2.isTrue());
        AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue());
      }

      LHSAlwaysTrue &= Res1.isTrue();
      LHSAlwaysFalse &= Res1.isFalse();
      RHSAlwaysTrue &= Res2.isTrue();
      RHSAlwaysFalse &= Res2.isFalse();
    }

    if (AlwaysTrue || AlwaysFalse) {
      if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue &&
          !RHSAlwaysFalse && BuildOpts.Observer)
        BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue);
      return TryResult(AlwaysTrue);
    }
    return {};
  }

  /// A bitwise-or with a non-zero constant always evaluates to true.
  TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) {
    const Expr *LHSConstant =
        tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts());
    const Expr *RHSConstant =
        tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts());

    if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant))
      return {};

    const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant;

    Expr::EvalResult Result;
    if (!Constant->EvaluateAsInt(Result, *Context))
      return {};

    if (Result.Val.getInt() == 0)
      return {};

    if (BuildOpts.Observer)
      BuildOpts.Observer->compareBitwiseOr(B);

    return TryResult(true);
  }

  /// Try and evaluate an expression to an integer constant.
  bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) {
    if (!BuildOpts.PruneTriviallyFalseEdges)
      return false;
    return !S->isTypeDependent() &&
           !S->isValueDependent() &&
           S->EvaluateAsRValue(outResult, *Context);
  }

  /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1
  /// if we can evaluate to a known value, otherwise return -1.
  TryResult tryEvaluateBool(Expr *S) {
    if (!BuildOpts.PruneTriviallyFalseEdges ||
        S->isTypeDependent() || S->isValueDependent())
      return {};

    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) {
      if (Bop->isLogicalOp() || Bop->isEqualityOp()) {
        // Check the cache first.
        CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S);
        if (I != CachedBoolEvals.end())
          return I->second; // already in map;

        // Retrieve result at first, or the map might be updated.
        TryResult Result = evaluateAsBooleanConditionNoCache(S);
        CachedBoolEvals[S] = Result; // update or insert
        return Result;
      }
      else {
        switch (Bop->getOpcode()) {
          default: break;
          // For 'x & 0' and 'x * 0', we can determine that
          // the value is always false.
          case BO_Mul:
          case BO_And: {
            // If either operand is zero, we know the value
            // must be false.
            Expr::EvalResult LHSResult;
            if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) {
              llvm::APSInt IntVal = LHSResult.Val.getInt();
              if (!IntVal.getBoolValue()) {
                return TryResult(false);
              }
            }
            Expr::EvalResult RHSResult;
            if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) {
              llvm::APSInt IntVal = RHSResult.Val.getInt();
              if (!IntVal.getBoolValue()) {
                return TryResult(false);
              }
            }
          }
          break;
        }
      }
    }

    return evaluateAsBooleanConditionNoCache(S);
  }

  /// Evaluate as boolean \param E without using the cache.
  TryResult evaluateAsBooleanConditionNoCache(Expr *E) {
    if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) {
      if (Bop->isLogicalOp()) {
        TryResult LHS = tryEvaluateBool(Bop->getLHS());
        if (LHS.isKnown()) {
          // We were able to evaluate the LHS, see if we can get away with not
          // evaluating the RHS: 0 && X -> 0, 1 || X -> 1
          if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr))
            return LHS.isTrue();

          TryResult RHS = tryEvaluateBool(Bop->getRHS());
          if (RHS.isKnown()) {
            if (Bop->getOpcode() == BO_LOr)
              return LHS.isTrue() || RHS.isTrue();
            else
              return LHS.isTrue() && RHS.isTrue();
          }
        } else {
          TryResult RHS = tryEvaluateBool(Bop->getRHS());
          if (RHS.isKnown()) {
            // We can't evaluate the LHS; however, sometimes the result
            // is determined by the RHS: X && 0 -> 0, X || 1 -> 1.
            if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr))
              return RHS.isTrue();
          } else {
            TryResult BopRes = checkIncorrectLogicOperator(Bop);
            if (BopRes.isKnown())
              return BopRes.isTrue();
          }
        }

        return {};
      } else if (Bop->isEqualityOp()) {
          TryResult BopRes = checkIncorrectEqualityOperator(Bop);
          if (BopRes.isKnown())
            return BopRes.isTrue();
      } else if (Bop->isRelationalOp()) {
        TryResult BopRes = checkIncorrectRelationalOperator(Bop);
        if (BopRes.isKnown())
          return BopRes.isTrue();
      } else if (Bop->getOpcode() == BO_Or) {
        TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop);
        if (BopRes.isKnown())
          return BopRes.isTrue();
      }
    }

    bool Result;
    if (E->EvaluateAsBooleanCondition(Result, *Context))
      return Result;

    return {};
  }

  bool hasTrivialDestructor(VarDecl *VD);
};

} // namespace

inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder,
                                     const Stmt *stmt) const {
  return builder.alwaysAdd(stmt) || kind == AlwaysAdd;
}

bool CFGBuilder::alwaysAdd(const Stmt *stmt) {
  bool shouldAdd = BuildOpts.alwaysAdd(stmt);

  if (!BuildOpts.forcedBlkExprs)
    return shouldAdd;

  if (lastLookup == stmt) {
    if (cachedEntry) {
      assert(cachedEntry->first == stmt);
      return true;
    }
    return shouldAdd;
  }

  lastLookup = stmt;

  // Perform the lookup!
  CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs;

  if (!fb) {
    // No need to update 'cachedEntry', since it will always be null.
    assert(!cachedEntry);
    return shouldAdd;
  }

  CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt);
  if (itr == fb->end()) {
    cachedEntry = nullptr;
    return shouldAdd;
  }

  cachedEntry = &*itr;
  return true;
}

// FIXME: Add support for dependent-sized array types in C++?
// Does it even make sense to build a CFG for an uninstantiated template?
static const VariableArrayType *FindVA(const Type *t) {
  while (const ArrayType *vt = dyn_cast<ArrayType>(t)) {
    if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt))
      if (vat->getSizeExpr())
        return vat;

    t = vt->getElementType().getTypePtr();
  }

  return nullptr;
}

void CFGBuilder::consumeConstructionContext(
    const ConstructionContextLayer *Layer, Expr *E) {
  assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) ||
          isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!");
  if (const ConstructionContextLayer *PreviouslyStoredLayer =
          ConstructionContextMap.lookup(E)) {
    (void)PreviouslyStoredLayer;
    // We might have visited this child when we were finding construction
    // contexts within its parents.
    assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) &&
           "Already within a different construction context!");
  } else {
    ConstructionContextMap[E] = Layer;
  }
}

void CFGBuilder::findConstructionContexts(
    const ConstructionContextLayer *Layer, Stmt *Child) {
  if (!BuildOpts.AddRichCXXConstructors)
    return;

  if (!Child)
    return;

  auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) {
    return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item,
                                            Layer);
  };

  switch(Child->getStmtClass()) {
  case Stmt::CXXConstructExprClass:
  case Stmt::CXXTemporaryObjectExprClass: {
    // Support pre-C++17 copy elision AST.
    auto *CE = cast<CXXConstructExpr>(Child);
    if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) {
      findConstructionContexts(withExtraLayer(CE), CE->getArg(0));
    }

    consumeConstructionContext(Layer, CE);
    break;
  }
  // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr.
  // FIXME: An isa<> would look much better but this whole switch is a
  // workaround for an internal compiler error in MSVC 2015 (see r326021).
  case Stmt::CallExprClass:
  case Stmt::CXXMemberCallExprClass:
  case Stmt::CXXOperatorCallExprClass:
  case Stmt::UserDefinedLiteralClass:
  case Stmt::ObjCMessageExprClass: {
    auto *E = cast<Expr>(Child);
    if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E))
      consumeConstructionContext(Layer, E);
    break;
  }
  case Stmt::ExprWithCleanupsClass: {
    auto *Cleanups = cast<ExprWithCleanups>(Child);
    findConstructionContexts(Layer, Cleanups->getSubExpr());
    break;
  }
  case Stmt::CXXFunctionalCastExprClass: {
    auto *Cast = cast<CXXFunctionalCastExpr>(Child);
    findConstructionContexts(Layer, Cast->getSubExpr());
    break;
  }
  case Stmt::ImplicitCastExprClass: {
    auto *Cast = cast<ImplicitCastExpr>(Child);
    // Should we support other implicit cast kinds?
    switch (Cast->getCastKind()) {
    case CK_NoOp:
    case CK_ConstructorConversion:
      findConstructionContexts(Layer, Cast->getSubExpr());
      break;
    default:
      break;
    }
    break;
  }
  case Stmt::CXXBindTemporaryExprClass: {
    auto *BTE = cast<CXXBindTemporaryExpr>(Child);
    findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr());
    break;
  }
  case Stmt::MaterializeTemporaryExprClass: {
    // Normally we don't want to search in MaterializeTemporaryExpr because
    // it indicates the beginning of a temporary object construction context,
    // so it shouldn't be found in the middle. However, if it is the beginning
    // of an elidable copy or move construction context, we need to include it.
    if (Layer->getItem().getKind() ==
        ConstructionContextItem::ElidableConstructorKind) {
      auto *MTE = cast<MaterializeTemporaryExpr>(Child);
      findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr());
    }
    break;
  }
  case Stmt::ConditionalOperatorClass: {
    auto *CO = cast<ConditionalOperator>(Child);
    if (Layer->getItem().getKind() !=
        ConstructionContextItem::MaterializationKind) {
      // If the object returned by the conditional operator is not going to be a
      // temporary object that needs to be immediately materialized, then
      // it must be C++17 with its mandatory copy elision. Do not yet promise
      // to support this case.
      assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() ||
             Context->getLangOpts().CPlusPlus17);
      break;
    }
    findConstructionContexts(Layer, CO->getLHS());
    findConstructionContexts(Layer, CO->getRHS());
    break;
  }
  case Stmt::InitListExprClass: {
    auto *ILE = cast<InitListExpr>(Child);
    if (ILE->isTransparent()) {
      findConstructionContexts(Layer, ILE->getInit(0));
      break;
    }
    // TODO: Handle other cases. For now, fail to find construction contexts.
    break;
  }
  default:
    break;
  }
}

void CFGBuilder::cleanupConstructionContext(Expr *E) {
  assert(BuildOpts.AddRichCXXConstructors &&
         "We should not be managing construction contexts!");
  assert(ConstructionContextMap.count(E) &&
         "Cannot exit construction context without the context!");
  ConstructionContextMap.erase(E);
}


/// BuildCFG - Constructs a CFG from an AST (a Stmt*).  The AST can represent an
///  arbitrary statement.  Examples include a single expression or a function
///  body (compound statement).  The ownership of the returned CFG is
///  transferred to the caller.  If CFG construction fails, this method returns
///  NULL.
std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) {
  assert(cfg.get());
  if (!Statement)
    return nullptr;

  // Create an empty block that will serve as the exit block for the CFG.  Since
  // this is the first block added to the CFG, it will be implicitly registered
  // as the exit block.
  Succ = createBlock();
  assert(Succ == &cfg->getExit());
  Block = nullptr;  // the EXIT block is empty.  Create all other blocks lazily.

  assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
         "AddImplicitDtors and AddLifetime cannot be used at the same time");

  if (BuildOpts.AddImplicitDtors)
    if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D))
      addImplicitDtorsForDestructor(DD);

  // Visit the statements and create the CFG.
  CFGBlock *B = addStmt(Statement);

  if (badCFG)
    return nullptr;

  // For C++ constructor add initializers to CFG. Constructors of virtual bases
  // are ignored unless the object is of the most derived class.
  //   class VBase { VBase() = default; VBase(int) {} };
  //   class A : virtual public VBase { A() : VBase(0) {} };
  //   class B : public A {};
  //   B b; // Constructor calls in order: VBase(), A(), B().
  //        // VBase(0) is ignored because A isn't the most derived class.
  // This may result in the virtual base(s) being already initialized at this
  // point, in which case we should jump right onto non-virtual bases and
  // fields. To handle this, make a CFG branch. We only need to add one such
  // branch per constructor, since the Standard states that all virtual bases
  // shall be initialized before non-virtual bases and direct data members.
  if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) {
    CFGBlock *VBaseSucc = nullptr;
    for (auto *I : llvm::reverse(CD->inits())) {
      if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc &&
          I->isBaseInitializer() && I->isBaseVirtual()) {
        // We've reached the first virtual base init while iterating in reverse
        // order. Make a new block for virtual base initializers so that we
        // could skip them.
        VBaseSucc = Succ = B ? B : &cfg->getExit();
        Block = createBlock();
      }
      B = addInitializer(I);
      if (badCFG)
        return nullptr;
    }
    if (VBaseSucc) {
      // Make a branch block for potentially skipping virtual base initializers.
      Succ = VBaseSucc;
      B = createBlock();
      B->setTerminator(
          CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch));
      addSuccessor(B, Block, true);
    }
  }

  if (B)
    Succ = B;

  // Backpatch the gotos whose label -> block mappings we didn't know when we
  // encountered them.
  for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(),
                                   E = BackpatchBlocks.end(); I != E; ++I ) {

    CFGBlock *B = I->block;
    if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) {
      LabelMapTy::iterator LI = LabelMap.find(G->getLabel());
      // If there is no target for the goto, then we are looking at an
      // incomplete AST.  Handle this by not registering a successor.
      if (LI == LabelMap.end())
        continue;
      JumpTarget JT = LI->second;
      prependAutomaticObjLifetimeWithTerminator(B, I->scopePosition,
                                                JT.scopePosition);
      prependAutomaticObjDtorsWithTerminator(B, I->scopePosition,
                                             JT.scopePosition);
      const VarDecl *VD = prependAutomaticObjScopeEndWithTerminator(
          B, I->scopePosition, JT.scopePosition);
      appendScopeBegin(JT.block, VD, G);
      addSuccessor(B, JT.block);
    };
    if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) {
      CFGBlock *Successor  = (I+1)->block;
      for (auto *L : G->labels()) {
        LabelMapTy::iterator LI = LabelMap.find(L->getLabel());
        // If there is no target for the goto, then we are looking at an
        // incomplete AST.  Handle this by not registering a successor.
        if (LI == LabelMap.end())
          continue;
        JumpTarget JT = LI->second;
        // Successor has been added, so skip it.
        if (JT.block == Successor)
          continue;
        addSuccessor(B, JT.block);
      }
      I++;
    }
  }

  // Add successors to the Indirect Goto Dispatch block (if we have one).
  if (CFGBlock *B = cfg->getIndirectGotoBlock())
    for (LabelSetTy::iterator I = AddressTakenLabels.begin(),
                              E = AddressTakenLabels.end(); I != E; ++I ) {
      // Lookup the target block.
      LabelMapTy::iterator LI = LabelMap.find(*I);

      // If there is no target block that contains label, then we are looking
      // at an incomplete AST.  Handle this by not registering a successor.
      if (LI == LabelMap.end()) continue;

      addSuccessor(B, LI->second.block);
    }

  // Create an empty entry block that has no predecessors.
  cfg->setEntry(createBlock());

  if (BuildOpts.AddRichCXXConstructors)
    assert(ConstructionContextMap.empty() &&
           "Not all construction contexts were cleaned up!");

  return std::move(cfg);
}

/// createBlock - Used to lazily create blocks that are connected
///  to the current (global) succcessor.
CFGBlock *CFGBuilder::createBlock(bool add_successor) {
  CFGBlock *B = cfg->createBlock();
  if (add_successor && Succ)
    addSuccessor(B, Succ);
  return B;
}

/// createNoReturnBlock - Used to create a block is a 'noreturn' point in the
/// CFG. It is *not* connected to the current (global) successor, and instead
/// directly tied to the exit block in order to be reachable.
CFGBlock *CFGBuilder::createNoReturnBlock() {
  CFGBlock *B = createBlock(false);
  B->setHasNoReturnElement();
  addSuccessor(B, &cfg->getExit(), Succ);
  return B;
}

/// addInitializer - Add C++ base or member initializer element to CFG.
CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) {
  if (!BuildOpts.AddInitializers)
    return Block;

  bool HasTemporaries = false;

  // Destructors of temporaries in initialization expression should be called
  // after initialization finishes.
  Expr *Init = I->getInit();
  if (Init) {
    HasTemporaries = isa<ExprWithCleanups>(Init);

    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
      // Generate destructors for temporaries in initialization expression.
      TempDtorContext Context;
      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
                             /*ExternallyDestructed=*/false, Context);
    }
  }

  autoCreateBlock();
  appendInitializer(Block, I);

  if (Init) {
    findConstructionContexts(
        ConstructionContextLayer::create(cfg->getBumpVectorContext(), I),
        Init);

    if (HasTemporaries) {
      // For expression with temporaries go directly to subexpression to omit
      // generating destructors for the second time.
      return Visit(cast<ExprWithCleanups>(Init)->getSubExpr());
    }
    if (BuildOpts.AddCXXDefaultInitExprInCtors) {
      if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) {
        // In general, appending the expression wrapped by a CXXDefaultInitExpr
        // may cause the same Expr to appear more than once in the CFG. Doing it
        // here is safe because there's only one initializer per field.
        autoCreateBlock();
        appendStmt(Block, Default);
        if (Stmt *Child = Default->getExpr())
          if (CFGBlock *R = Visit(Child))
            Block = R;
        return Block;
      }
    }
    return Visit(Init);
  }

  return Block;
}

/// Retrieve the type of the temporary object whose lifetime was
/// extended by a local reference with the given initializer.
static QualType getReferenceInitTemporaryType(const Expr *Init,
                                              bool *FoundMTE = nullptr) {
  while (true) {
    // Skip parentheses.
    Init = Init->IgnoreParens();

    // Skip through cleanups.
    if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) {
      Init = EWC->getSubExpr();
      continue;
    }

    // Skip through the temporary-materialization expression.
    if (const MaterializeTemporaryExpr *MTE
          = dyn_cast<MaterializeTemporaryExpr>(Init)) {
      Init = MTE->getSubExpr();
      if (FoundMTE)
        *FoundMTE = true;
      continue;
    }

    // Skip sub-object accesses into rvalues.
    SmallVector<const Expr *, 2> CommaLHSs;
    SmallVector<SubobjectAdjustment, 2> Adjustments;
    const Expr *SkippedInit =
        Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
    if (SkippedInit != Init) {
      Init = SkippedInit;
      continue;
    }

    break;
  }

  return Init->getType();
}

// TODO: Support adding LoopExit element to the CFG in case where the loop is
// ended by ReturnStmt, GotoStmt or ThrowExpr.
void CFGBuilder::addLoopExit(const Stmt *LoopStmt){
  if(!BuildOpts.AddLoopExit)
    return;
  autoCreateBlock();
  appendLoopExit(Block, LoopStmt);
}

void CFGBuilder::getDeclsWithEndedScope(LocalScope::const_iterator B,
                                        LocalScope::const_iterator E, Stmt *S) {
  if (!BuildOpts.AddScopes)
    return;

  if (B == E)
    return;

  // To go from B to E, one first goes up the scopes from B to P
  // then sideways in one scope from P to P' and then down
  // the scopes from P' to E.
  // The lifetime of all objects between B and P end.
  LocalScope::const_iterator P = B.shared_parent(E);
  int Dist = B.distance(P);
  if (Dist <= 0)
    return;

  for (LocalScope::const_iterator I = B; I != P; ++I)
    if (I.pointsToFirstDeclaredVar())
      DeclsWithEndedScope.insert(*I);
}

void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B,
                                         LocalScope::const_iterator E,
                                         Stmt *S) {
  getDeclsWithEndedScope(B, E, S);
  if (BuildOpts.AddScopes)
    addScopesEnd(B, E, S);
  if (BuildOpts.AddImplicitDtors)
    addAutomaticObjDtors(B, E, S);
  if (BuildOpts.AddLifetime)
    addLifetimeEnds(B, E, S);
}

/// Add to current block automatic objects that leave the scope.
void CFGBuilder::addLifetimeEnds(LocalScope::const_iterator B,
                                 LocalScope::const_iterator E, Stmt *S) {
  if (!BuildOpts.AddLifetime)
    return;

  if (B == E)
    return;

  // To go from B to E, one first goes up the scopes from B to P
  // then sideways in one scope from P to P' and then down
  // the scopes from P' to E.
  // The lifetime of all objects between B and P end.
  LocalScope::const_iterator P = B.shared_parent(E);
  int dist = B.distance(P);
  if (dist <= 0)
    return;

  // We need to perform the scope leaving in reverse order
  SmallVector<VarDecl *, 10> DeclsTrivial;
  SmallVector<VarDecl *, 10> DeclsNonTrivial;
  DeclsTrivial.reserve(dist);
  DeclsNonTrivial.reserve(dist);

  for (LocalScope::const_iterator I = B; I != P; ++I)
    if (hasTrivialDestructor(*I))
      DeclsTrivial.push_back(*I);
    else
      DeclsNonTrivial.push_back(*I);

  autoCreateBlock();
  // object with trivial destructor end their lifetime last (when storage
  // duration ends)
  for (SmallVectorImpl<VarDecl *>::reverse_iterator I = DeclsTrivial.rbegin(),
                                                    E = DeclsTrivial.rend();
       I != E; ++I)
    appendLifetimeEnds(Block, *I, S);

  for (SmallVectorImpl<VarDecl *>::reverse_iterator
           I = DeclsNonTrivial.rbegin(),
           E = DeclsNonTrivial.rend();
       I != E; ++I)
    appendLifetimeEnds(Block, *I, S);
}

/// Add to current block markers for ending scopes.
void CFGBuilder::addScopesEnd(LocalScope::const_iterator B,
                              LocalScope::const_iterator E, Stmt *S) {
  // If implicit destructors are enabled, we'll add scope ends in
  // addAutomaticObjDtors.
  if (BuildOpts.AddImplicitDtors)
    return;

  autoCreateBlock();

  for (auto I = DeclsWithEndedScope.rbegin(), E = DeclsWithEndedScope.rend();
       I != E; ++I)
    appendScopeEnd(Block, *I, S);

  return;
}

/// addAutomaticObjDtors - Add to current block automatic objects destructors
/// for objects in range of local scope positions. Use S as trigger statement
/// for destructors.
void CFGBuilder::addAutomaticObjDtors(LocalScope::const_iterator B,
                                      LocalScope::const_iterator E, Stmt *S) {
  if (!BuildOpts.AddImplicitDtors)
    return;

  if (B == E)
    return;

  // We need to append the destructors in reverse order, but any one of them
  // may be a no-return destructor which changes the CFG. As a result, buffer
  // this sequence up and replay them in reverse order when appending onto the
  // CFGBlock(s).
  SmallVector<VarDecl*, 10> Decls;
  Decls.reserve(B.distance(E));
  for (LocalScope::const_iterator I = B; I != E; ++I)
    Decls.push_back(*I);

  for (SmallVectorImpl<VarDecl*>::reverse_iterator I = Decls.rbegin(),
                                                   E = Decls.rend();
       I != E; ++I) {
    if (hasTrivialDestructor(*I)) {
      // If AddScopes is enabled and *I is a first variable in a scope, add a
      // ScopeEnd marker in a Block.
      if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I)) {
        autoCreateBlock();
        appendScopeEnd(Block, *I, S);
      }
      continue;
    }
    // If this destructor is marked as a no-return destructor, we need to
    // create a new block for the destructor which does not have as a successor
    // anything built thus far: control won't flow out of this block.
    QualType Ty = (*I)->getType();
    if (Ty->isReferenceType()) {
      Ty = getReferenceInitTemporaryType((*I)->getInit());
    }
    Ty = Context->getBaseElementType(Ty);

    if (Ty->getAsCXXRecordDecl()->isAnyDestructorNoReturn())
      Block = createNoReturnBlock();
    else
      autoCreateBlock();

    // Add ScopeEnd just after automatic obj destructor.
    if (BuildOpts.AddScopes && DeclsWithEndedScope.count(*I))
      appendScopeEnd(Block, *I, S);
    appendAutomaticObjDtor(Block, *I, S);
  }
}

/// addImplicitDtorsForDestructor - Add implicit destructors generated for
/// base and member objects in destructor.
void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) {
  assert(BuildOpts.AddImplicitDtors &&
         "Can be called only when dtors should be added");
  const CXXRecordDecl *RD = DD->getParent();

  // At the end destroy virtual base objects.
  for (const auto &VI : RD->vbases()) {
    // TODO: Add a VirtualBaseBranch to see if the most derived class
    // (which is different from the current class) is responsible for
    // destroying them.
    const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl();
    if (!CD->hasTrivialDestructor()) {
      autoCreateBlock();
      appendBaseDtor(Block, &VI);
    }
  }

  // Before virtual bases destroy direct base objects.
  for (const auto &BI : RD->bases()) {
    if (!BI.isVirtual()) {
      const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl();
      if (!CD->hasTrivialDestructor()) {
        autoCreateBlock();
        appendBaseDtor(Block, &BI);
      }
    }
  }

  // First destroy member objects.
  for (auto *FI : RD->fields()) {
    // Check for constant size array. Set type to array element type.
    QualType QT = FI->getType();
    if (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
      if (AT->getSize() == 0)
        continue;
      QT = AT->getElementType();
    }

    if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
      if (!CD->hasTrivialDestructor()) {
        autoCreateBlock();
        appendMemberDtor(Block, FI);
      }
  }
}

/// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either
/// way return valid LocalScope object.
LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) {
  if (Scope)
    return Scope;
  llvm::BumpPtrAllocator &alloc = cfg->getAllocator();
  return new (alloc.Allocate<LocalScope>())
      LocalScope(BumpVectorContext(alloc), ScopePos);
}

/// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement
/// that should create implicit scope (e.g. if/else substatements).
void CFGBuilder::addLocalScopeForStmt(Stmt *S) {
  if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
      !BuildOpts.AddScopes)
    return;

  LocalScope *Scope = nullptr;

  // For compound statement we will be creating explicit scope.
  if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
    for (auto *BI : CS->body()) {
      Stmt *SI = BI->stripLabelLikeStatements();
      if (DeclStmt *DS = dyn_cast<DeclStmt>(SI))
        Scope = addLocalScopeForDeclStmt(DS, Scope);
    }
    return;
  }

  // For any other statement scope will be implicit and as such will be
  // interesting only for DeclStmt.
  if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements()))
    addLocalScopeForDeclStmt(DS);
}

/// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will
/// reuse Scope if not NULL.
LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS,
                                                 LocalScope* Scope) {
  if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
      !BuildOpts.AddScopes)
    return Scope;

  for (auto *DI : DS->decls())
    if (VarDecl *VD = dyn_cast<VarDecl>(DI))
      Scope = addLocalScopeForVarDecl(VD, Scope);
  return Scope;
}

bool CFGBuilder::hasTrivialDestructor(VarDecl *VD) {
  // Check for const references bound to temporary. Set type to pointee.
  QualType QT = VD->getType();
  if (QT->isReferenceType()) {
    // Attempt to determine whether this declaration lifetime-extends a
    // temporary.
    //
    // FIXME: This is incorrect. Non-reference declarations can lifetime-extend
    // temporaries, and a single declaration can extend multiple temporaries.
    // We should look at the storage duration on each nested
    // MaterializeTemporaryExpr instead.

    const Expr *Init = VD->getInit();
    if (!Init) {
      // Probably an exception catch-by-reference variable.
      // FIXME: It doesn't really mean that the object has a trivial destructor.
      // Also are there other cases?
      return true;
    }

    // Lifetime-extending a temporary?
    bool FoundMTE = false;
    QT = getReferenceInitTemporaryType(Init, &FoundMTE);
    if (!FoundMTE)
      return true;
  }

  // Check for constant size array. Set type to array element type.
  while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) {
    if (AT->getSize() == 0)
      return true;
    QT = AT->getElementType();
  }

  // Check if type is a C++ class with non-trivial destructor.
  if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl())
    return !CD->hasDefinition() || CD->hasTrivialDestructor();
  return true;
}

/// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will
/// create add scope for automatic objects and temporary objects bound to
/// const reference. Will reuse Scope if not NULL.
LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD,
                                                LocalScope* Scope) {
  assert(!(BuildOpts.AddImplicitDtors && BuildOpts.AddLifetime) &&
         "AddImplicitDtors and AddLifetime cannot be used at the same time");
  if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime &&
      !BuildOpts.AddScopes)
    return Scope;

  // Check if variable is local.
  switch (VD->getStorageClass()) {
  case SC_None:
  case SC_Auto:
  case SC_Register:
    break;
  default: return Scope;
  }

  if (BuildOpts.AddImplicitDtors) {
    if (!hasTrivialDestructor(VD) || BuildOpts.AddScopes) {
      // Add the variable to scope
      Scope = createOrReuseLocalScope(Scope);
      Scope->addVar(VD);
      ScopePos = Scope->begin();
    }
    return Scope;
  }

  assert(BuildOpts.AddLifetime);
  // Add the variable to scope
  Scope = createOrReuseLocalScope(Scope);
  Scope->addVar(VD);
  ScopePos = Scope->begin();
  return Scope;
}

/// addLocalScopeAndDtors - For given statement add local scope for it and
/// add destructors that will cleanup the scope. Will reuse Scope if not NULL.
void CFGBuilder::addLocalScopeAndDtors(Stmt *S) {
  LocalScope::const_iterator scopeBeginPos = ScopePos;
  addLocalScopeForStmt(S);
  addAutomaticObjHandling(ScopePos, scopeBeginPos, S);
}

/// prependAutomaticObjDtorsWithTerminator - Prepend destructor CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// destructors call site.
/// FIXME: This mechanism for adding automatic destructors doesn't handle
/// no-return destructors properly.
void CFGBuilder::prependAutomaticObjDtorsWithTerminator(CFGBlock *Blk,
    LocalScope::const_iterator B, LocalScope::const_iterator E) {
  if (!BuildOpts.AddImplicitDtors)
    return;
  BumpVectorContext &C = cfg->getBumpVectorContext();
  CFGBlock::iterator InsertPos
    = Blk->beginAutomaticObjDtorsInsert(Blk->end(), B.distance(E), C);
  for (LocalScope::const_iterator I = B; I != E; ++I)
    InsertPos = Blk->insertAutomaticObjDtor(InsertPos, *I,
                                            Blk->getTerminatorStmt());
}

/// prependAutomaticObjLifetimeWithTerminator - Prepend lifetime CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// where lifetime ends.
void CFGBuilder::prependAutomaticObjLifetimeWithTerminator(
    CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
  if (!BuildOpts.AddLifetime)
    return;
  BumpVectorContext &C = cfg->getBumpVectorContext();
  CFGBlock::iterator InsertPos =
      Blk->beginLifetimeEndsInsert(Blk->end(), B.distance(E), C);
  for (LocalScope::const_iterator I = B; I != E; ++I) {
    InsertPos =
        Blk->insertLifetimeEnds(InsertPos, *I, Blk->getTerminatorStmt());
  }
}

/// prependAutomaticObjScopeEndWithTerminator - Prepend scope end CFGElements for
/// variables with automatic storage duration to CFGBlock's elements vector.
/// Elements will be prepended to physical beginning of the vector which
/// happens to be logical end. Use blocks terminator as statement that specifies
/// where scope ends.
const VarDecl *
CFGBuilder::prependAutomaticObjScopeEndWithTerminator(
    CFGBlock *Blk, LocalScope::const_iterator B, LocalScope::const_iterator E) {
  if (!BuildOpts.AddScopes)
    return nullptr;
  BumpVectorContext &C = cfg->getBumpVectorContext();
  CFGBlock::iterator InsertPos =
      Blk->beginScopeEndInsert(Blk->end(), 1, C);
  LocalScope::const_iterator PlaceToInsert = B;
  for (LocalScope::const_iterator I = B; I != E; ++I)
    PlaceToInsert = I;
  Blk->insertScopeEnd(InsertPos, *PlaceToInsert, Blk->getTerminatorStmt());
  return *PlaceToInsert;
}

/// Visit - Walk the subtree of a statement and add extra
///   blocks for ternary operators, &&, and ||.  We also process "," and
///   DeclStmts (which may contain nested control-flow).
CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc,
                            bool ExternallyDestructed) {
  if (!S) {
    badCFG = true;
    return nullptr;
  }

  if (Expr *E = dyn_cast<Expr>(S))
    S = E->IgnoreParens();

  if (Context->getLangOpts().OpenMP)
    if (auto *D = dyn_cast<OMPExecutableDirective>(S))
      return VisitOMPExecutableDirective(D, asc);

  switch (S->getStmtClass()) {
    default:
      return VisitStmt(S, asc);

    case Stmt::ImplicitValueInitExprClass:
      if (BuildOpts.OmitImplicitValueInitializers)
        return Block;
      return VisitStmt(S, asc);

    case Stmt::InitListExprClass:
      return VisitInitListExpr(cast<InitListExpr>(S), asc);

    case Stmt::AddrLabelExprClass:
      return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc);

    case Stmt::BinaryConditionalOperatorClass:
      return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc);

    case Stmt::BinaryOperatorClass:
      return VisitBinaryOperator(cast<BinaryOperator>(S), asc);

    case Stmt::BlockExprClass:
      return VisitBlockExpr(cast<BlockExpr>(S), asc);

    case Stmt::BreakStmtClass:
      return VisitBreakStmt(cast<BreakStmt>(S));

    case Stmt::CallExprClass:
    case Stmt::CXXOperatorCallExprClass:
    case Stmt::CXXMemberCallExprClass:
    case Stmt::UserDefinedLiteralClass:
      return VisitCallExpr(cast<CallExpr>(S), asc);

    case Stmt::CaseStmtClass:
      return VisitCaseStmt(cast<CaseStmt>(S));

    case Stmt::ChooseExprClass:
      return VisitChooseExpr(cast<ChooseExpr>(S), asc);

    case Stmt::CompoundStmtClass:
      return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed);

    case Stmt::ConditionalOperatorClass:
      return VisitConditionalOperator(cast<ConditionalOperator>(S), asc);

    case Stmt::ContinueStmtClass:
      return VisitContinueStmt(cast<ContinueStmt>(S));

    case Stmt::CXXCatchStmtClass:
      return VisitCXXCatchStmt(cast<CXXCatchStmt>(S));

    case Stmt::ExprWithCleanupsClass:
      return VisitExprWithCleanups(cast<ExprWithCleanups>(S),
                                   asc, ExternallyDestructed);

    case Stmt::CXXDefaultArgExprClass:
    case Stmt::CXXDefaultInitExprClass:
      // FIXME: The expression inside a CXXDefaultArgExpr is owned by the
      // called function's declaration, not by the caller. If we simply add
      // this expression to the CFG, we could end up with the same Expr
      // appearing multiple times.
      // PR13385 / <rdar://problem/12156507>
      //
      // It's likewise possible for multiple CXXDefaultInitExprs for the same
      // expression to be used in the same function (through aggregate
      // initialization).
      return VisitStmt(S, asc);

    case Stmt::CXXBindTemporaryExprClass:
      return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc);

    case Stmt::CXXConstructExprClass:
      return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc);

    case Stmt::CXXNewExprClass:
      return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc);

    case Stmt::CXXDeleteExprClass:
      return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc);

    case Stmt::CXXFunctionalCastExprClass:
      return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc);

    case Stmt::CXXTemporaryObjectExprClass:
      return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc);

    case Stmt::CXXThrowExprClass:
      return VisitCXXThrowExpr(cast<CXXThrowExpr>(S));

    case Stmt::CXXTryStmtClass:
      return VisitCXXTryStmt(cast<CXXTryStmt>(S));

    case Stmt::CXXForRangeStmtClass:
      return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S));

    case Stmt::DeclStmtClass:
      return VisitDeclStmt(cast<DeclStmt>(S));

    case Stmt::DefaultStmtClass:
      return VisitDefaultStmt(cast<DefaultStmt>(S));

    case Stmt::DoStmtClass:
      return VisitDoStmt(cast<DoStmt>(S));

    case Stmt::ForStmtClass:
      return VisitForStmt(cast<ForStmt>(S));

    case Stmt::GotoStmtClass:
      return VisitGotoStmt(cast<GotoStmt>(S));

    case Stmt::GCCAsmStmtClass:
      return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc);

    case Stmt::IfStmtClass:
      return VisitIfStmt(cast<IfStmt>(S));

    case Stmt::ImplicitCastExprClass:
      return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc);

    case Stmt::ConstantExprClass:
      return VisitConstantExpr(cast<ConstantExpr>(S), asc);

    case Stmt::IndirectGotoStmtClass:
      return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S));

    case Stmt::LabelStmtClass:
      return VisitLabelStmt(cast<LabelStmt>(S));

    case Stmt::LambdaExprClass:
      return VisitLambdaExpr(cast<LambdaExpr>(S), asc);

    case Stmt::MaterializeTemporaryExprClass:
      return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S),
                                           asc);

    case Stmt::MemberExprClass:
      return VisitMemberExpr(cast<MemberExpr>(S), asc);

    case Stmt::NullStmtClass:
      return Block;

    case Stmt::ObjCAtCatchStmtClass:
      return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S));

    case Stmt::ObjCAutoreleasePoolStmtClass:
    return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S));

    case Stmt::ObjCAtSynchronizedStmtClass:
      return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S));

    case Stmt::ObjCAtThrowStmtClass:
      return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S));

    case Stmt::ObjCAtTryStmtClass:
      return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S));

    case Stmt::ObjCForCollectionStmtClass:
      return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S));

    case Stmt::ObjCMessageExprClass:
      return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc);

    case Stmt::OpaqueValueExprClass:
      return Block;

    case Stmt::PseudoObjectExprClass:
      return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S));

    case Stmt::ReturnStmtClass:
    case Stmt::CoreturnStmtClass:
      return VisitReturnStmt(S);

    case Stmt::SEHExceptStmtClass:
      return VisitSEHExceptStmt(cast<SEHExceptStmt>(S));

    case Stmt::SEHFinallyStmtClass:
      return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S));

    case Stmt::SEHLeaveStmtClass:
      return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S));

    case Stmt::SEHTryStmtClass:
      return VisitSEHTryStmt(cast<SEHTryStmt>(S));

    case Stmt::UnaryExprOrTypeTraitExprClass:
      return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S),
                                           asc);

    case Stmt::StmtExprClass:
      return VisitStmtExpr(cast<StmtExpr>(S), asc);

    case Stmt::SwitchStmtClass:
      return VisitSwitchStmt(cast<SwitchStmt>(S));

    case Stmt::UnaryOperatorClass:
      return VisitUnaryOperator(cast<UnaryOperator>(S), asc);

    case Stmt::WhileStmtClass:
      return VisitWhileStmt(cast<WhileStmt>(S));
  }
}

CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, S)) {
    autoCreateBlock();
    appendStmt(Block, S);
  }

  return VisitChildren(S);
}

/// VisitChildren - Visit the children of a Stmt.
CFGBlock *CFGBuilder::VisitChildren(Stmt *S) {
  CFGBlock *B = Block;

  // Visit the children in their reverse order so that they appear in
  // left-to-right (natural) order in the CFG.
  reverse_children RChildren(S);
  for (Stmt *Child : RChildren) {
    if (Child)
      if (CFGBlock *R = Visit(Child))
        B = R;
  }
  return B;
}

CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, ILE)) {
    autoCreateBlock();
    appendStmt(Block, ILE);
  }
  CFGBlock *B = Block;

  reverse_children RChildren(ILE);
  for (Stmt *Child : RChildren) {
    if (!Child)
      continue;
    if (CFGBlock *R = Visit(Child))
      B = R;
    if (BuildOpts.AddCXXDefaultInitExprInAggregates) {
      if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child))
        if (Stmt *Child = DIE->getExpr())
          if (CFGBlock *R = Visit(Child))
            B = R;
    }
  }
  return B;
}

CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A,
                                         AddStmtChoice asc) {
  AddressTakenLabels.insert(A->getLabel());

  if (asc.alwaysAdd(*this, A)) {
    autoCreateBlock();
    appendStmt(Block, A);
  }

  return Block;
}

CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U,
           AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, U)) {
    autoCreateBlock();
    appendStmt(Block, U);
  }

  if (U->getOpcode() == UO_LNot)
    tryEvaluateBool(U->getSubExpr()->IgnoreParens());

  return Visit(U->getSubExpr(), AddStmtChoice());
}

CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) {
  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
  appendStmt(ConfluenceBlock, B);

  if (badCFG)
    return nullptr;

  return VisitLogicalOperator(B, nullptr, ConfluenceBlock,
                              ConfluenceBlock).first;
}

std::pair<CFGBlock*, CFGBlock*>
CFGBuilder::VisitLogicalOperator(BinaryOperator *B,
                                 Stmt *Term,
                                 CFGBlock *TrueBlock,
                                 CFGBlock *FalseBlock) {
  // Introspect the RHS.  If it is a nested logical operation, we recursively
  // build the CFG using this function.  Otherwise, resort to default
  // CFG construction behavior.
  Expr *RHS = B->getRHS()->IgnoreParens();
  CFGBlock *RHSBlock, *ExitBlock;

  do {
    if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS))
      if (B_RHS->isLogicalOp()) {
        std::tie(RHSBlock, ExitBlock) =
          VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock);
        break;
      }

    // The RHS is not a nested logical operation.  Don't push the terminator
    // down further, but instead visit RHS and construct the respective
    // pieces of the CFG, and link up the RHSBlock with the terminator
    // we have been provided.
    ExitBlock = RHSBlock = createBlock(false);

    // Even though KnownVal is only used in the else branch of the next
    // conditional, tryEvaluateBool performs additional checking on the
    // Expr, so it should be called unconditionally.
    TryResult KnownVal = tryEvaluateBool(RHS);
    if (!KnownVal.isKnown())
      KnownVal = tryEvaluateBool(B);

    if (!Term) {
      assert(TrueBlock == FalseBlock);
      addSuccessor(RHSBlock, TrueBlock);
    }
    else {
      RHSBlock->setTerminator(Term);
      addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse());
      addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue());
    }

    Block = RHSBlock;
    RHSBlock = addStmt(RHS);
  }
  while (false);

  if (badCFG)
    return std::make_pair(nullptr, nullptr);

  // Generate the blocks for evaluating the LHS.
  Expr *LHS = B->getLHS()->IgnoreParens();

  if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS))
    if (B_LHS->isLogicalOp()) {
      if (B->getOpcode() == BO_LOr)
        FalseBlock = RHSBlock;
      else
        TrueBlock = RHSBlock;

      // For the LHS, treat 'B' as the terminator that we want to sink
      // into the nested branch.  The RHS always gets the top-most
      // terminator.
      return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock);
    }

  // Create the block evaluating the LHS.
  // This contains the '&&' or '||' as the terminator.
  CFGBlock *LHSBlock = createBlock(false);
  LHSBlock->setTerminator(B);

  Block = LHSBlock;
  CFGBlock *EntryLHSBlock = addStmt(LHS);

  if (badCFG)
    return std::make_pair(nullptr, nullptr);

  // See if this is a known constant.
  TryResult KnownVal = tryEvaluateBool(LHS);

  // Now link the LHSBlock with RHSBlock.
  if (B->getOpcode() == BO_LOr) {
    addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse());
    addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue());
  } else {
    assert(B->getOpcode() == BO_LAnd);
    addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse());
    addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue());
  }

  return std::make_pair(EntryLHSBlock, ExitBlock);
}

CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B,
                                          AddStmtChoice asc) {
   // && or ||
  if (B->isLogicalOp())
    return VisitLogicalOperator(B);

  if (B->getOpcode() == BO_Comma) { // ,
    autoCreateBlock();
    appendStmt(Block, B);
    addStmt(B->getRHS());
    return addStmt(B->getLHS());
  }

  if (B->isAssignmentOp()) {
    if (asc.alwaysAdd(*this, B)) {
      autoCreateBlock();
      appendStmt(Block, B);
    }
    Visit(B->getLHS());
    return Visit(B->getRHS());
  }

  if (asc.alwaysAdd(*this, B)) {
    autoCreateBlock();
    appendStmt(Block, B);
  }

  if (B->isEqualityOp() || B->isRelationalOp())
    tryEvaluateBool(B);

  CFGBlock *RBlock = Visit(B->getRHS());
  CFGBlock *LBlock = Visit(B->getLHS());
  // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr
  // containing a DoStmt, and the LHS doesn't create a new block, then we should
  // return RBlock.  Otherwise we'll incorrectly return NULL.
  return (LBlock ? LBlock : RBlock);
}

CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, E)) {
    autoCreateBlock();
    appendStmt(Block, E);
  }
  return Block;
}

CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) {
  // "break" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (badCFG)
    return nullptr;

  // Now create a new block that ends with the break statement.
  Block = createBlock(false);
  Block->setTerminator(B);

  // If there is no target for the break, then we are looking at an incomplete
  // AST.  This means that the CFG cannot be constructed.
  if (BreakJumpTarget.block) {
    addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B);
    addSuccessor(Block, BreakJumpTarget.block);
  } else
    badCFG = true;

  return Block;
}

static bool CanThrow(Expr *E, ASTContext &Ctx) {
  QualType Ty = E->getType();
  if (Ty->isFunctionPointerType() || Ty->isBlockPointerType())
    Ty = Ty->getPointeeType();

  const FunctionType *FT = Ty->getAs<FunctionType>();
  if (FT) {
    if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT))
      if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) &&
          Proto->isNothrow())
        return false;
  }
  return true;
}

CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) {
  // Compute the callee type.
  QualType calleeType = C->getCallee()->getType();
  if (calleeType == Context->BoundMemberTy) {
    QualType boundType = Expr::findBoundMemberType(C->getCallee());

    // We should only get a null bound type if processing a dependent
    // CFG.  Recover by assuming nothing.
    if (!boundType.isNull()) calleeType = boundType;
  }

  // If this is a call to a no-return function, this stops the block here.
  bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn();

  bool AddEHEdge = false;

  // Languages without exceptions are assumed to not throw.
  if (Context->getLangOpts().Exceptions) {
    if (BuildOpts.AddEHEdges)
      AddEHEdge = true;
  }

  // If this is a call to a builtin function, it might not actually evaluate
  // its arguments. Don't add them to the CFG if this is the case.
  bool OmitArguments = false;

  if (FunctionDecl *FD = C->getDirectCallee()) {
    // TODO: Support construction contexts for variadic function arguments.
    // These are a bit problematic and not very useful because passing
    // C++ objects as C-style variadic arguments doesn't work in general
    // (see [expr.call]).
    if (!FD->isVariadic())
      findConstructionContextsForArguments(C);

    if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context))
      NoReturn = true;
    if (FD->hasAttr<NoThrowAttr>())
      AddEHEdge = false;
    if (FD->getBuiltinID() == Builtin::BI__builtin_object_size ||
        FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size)
      OmitArguments = true;
  }

  if (!CanThrow(C->getCallee(), *Context))
    AddEHEdge = false;

  if (OmitArguments) {
    assert(!NoReturn && "noreturn calls with unevaluated args not implemented");
    assert(!AddEHEdge && "EH calls with unevaluated args not implemented");
    autoCreateBlock();
    appendStmt(Block, C);
    return Visit(C->getCallee());
  }

  if (!NoReturn && !AddEHEdge) {
    autoCreateBlock();
    appendCall(Block, C);

    return VisitChildren(C);
  }

  if (Block) {
    Succ = Block;
    if (badCFG)
      return nullptr;
  }

  if (NoReturn)
    Block = createNoReturnBlock();
  else
    Block = createBlock();

  appendCall(Block, C);

  if (AddEHEdge) {
    // Add exceptional edges.
    if (TryTerminatedBlock)
      addSuccessor(Block, TryTerminatedBlock);
    else
      addSuccessor(Block, &cfg->getExit());
  }

  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C,
                                      AddStmtChoice asc) {
  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
  appendStmt(ConfluenceBlock, C);
  if (badCFG)
    return nullptr;

  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);
  Succ = ConfluenceBlock;
  Block = nullptr;
  CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd);
  if (badCFG)
    return nullptr;

  Succ = ConfluenceBlock;
  Block = nullptr;
  CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd);
  if (badCFG)
    return nullptr;

  Block = createBlock(false);
  // See if this is a known constant.
  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
  addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock);
  addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock);
  Block->setTerminator(C);
  return addStmt(C->getCond());
}

CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed) {
  LocalScope::const_iterator scopeBeginPos = ScopePos;
  addLocalScopeForStmt(C);

  if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) {
    // If the body ends with a ReturnStmt, the dtors will be added in
    // VisitReturnStmt.
    addAutomaticObjHandling(ScopePos, scopeBeginPos, C);
  }

  CFGBlock *LastBlock = Block;

  for (CompoundStmt::reverse_body_iterator I=C->body_rbegin(), E=C->body_rend();
       I != E; ++I ) {
    // If we hit a segment of code just containing ';' (NullStmts), we can
    // get a null block back.  In such cases, just use the LastBlock
    CFGBlock *newBlock = Visit(*I, AddStmtChoice::AlwaysAdd,
                               ExternallyDestructed);

    if (newBlock)
      LastBlock = newBlock;

    if (badCFG)
      return nullptr;

    ExternallyDestructed = false;
  }

  return LastBlock;
}

CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C,
                                               AddStmtChoice asc) {
  const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C);
  const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr);

  // Create the confluence block that will "merge" the results of the ternary
  // expression.
  CFGBlock *ConfluenceBlock = Block ? Block : createBlock();
  appendStmt(ConfluenceBlock, C);
  if (badCFG)
    return nullptr;

  AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true);

  // Create a block for the LHS expression if there is an LHS expression.  A
  // GCC extension allows LHS to be NULL, causing the condition to be the
  // value that is returned instead.
  //  e.g: x ?: y is shorthand for: x ? x : y;
  Succ = ConfluenceBlock;
  Block = nullptr;
  CFGBlock *LHSBlock = nullptr;
  const Expr *trueExpr = C->getTrueExpr();
  if (trueExpr != opaqueValue) {
    LHSBlock = Visit(C->getTrueExpr(), alwaysAdd);
    if (badCFG)
      return nullptr;
    Block = nullptr;
  }
  else
    LHSBlock = ConfluenceBlock;

  // Create the block for the RHS expression.
  Succ = ConfluenceBlock;
  CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd);
  if (badCFG)
    return nullptr;

  // If the condition is a logical '&&' or '||', build a more accurate CFG.
  if (BinaryOperator *Cond =
        dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens()))
    if (Cond->isLogicalOp())
      return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first;

  // Create the block that will contain the condition.
  Block = createBlock(false);

  // See if this is a known constant.
  const TryResult& KnownVal = tryEvaluateBool(C->getCond());
  addSuccessor(Block, LHSBlock, !KnownVal.isFalse());
  addSuccessor(Block, RHSBlock, !KnownVal.isTrue());
  Block->setTerminator(C);
  Expr *condExpr = C->getCond();

  if (opaqueValue) {
    // Run the condition expression if it's not trivially expressed in
    // terms of the opaque value (or if there is no opaque value).
    if (condExpr != opaqueValue)
      addStmt(condExpr);

    // Before that, run the common subexpression if there was one.
    // At least one of this or the above will be run.
    return addStmt(BCO->getCommon());
  }

  return addStmt(condExpr);
}

CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) {
  // Check if the Decl is for an __label__.  If so, elide it from the
  // CFG entirely.
  if (isa<LabelDecl>(*DS->decl_begin()))
    return Block;

  // This case also handles static_asserts.
  if (DS->isSingleDecl())
    return VisitDeclSubExpr(DS);

  CFGBlock *B = nullptr;

  // Build an individual DeclStmt for each decl.
  for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(),
                                       E = DS->decl_rend();
       I != E; ++I) {

    // Allocate the DeclStmt using the BumpPtrAllocator.  It will get
    // automatically freed with the CFG.
    DeclGroupRef DG(*I);
    Decl *D = *I;
    DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D));
    cfg->addSyntheticDeclStmt(DSNew, DS);

    // Append the fake DeclStmt to block.
    B = VisitDeclSubExpr(DSNew);
  }

  return B;
}

/// VisitDeclSubExpr - Utility method to add block-level expressions for
/// DeclStmts and initializers in them.
CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) {
  assert(DS->isSingleDecl() && "Can handle single declarations only.");

  if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) {
    // If we encounter a VLA, process its size expressions.
    const Type *T = TND->getUnderlyingType().getTypePtr();
    if (!T->isVariablyModifiedType())
      return Block;

    autoCreateBlock();
    appendStmt(Block, DS);

    CFGBlock *LastBlock = Block;
    for (const VariableArrayType *VA = FindVA(T); VA != nullptr;
         VA = FindVA(VA->getElementType().getTypePtr())) {
      if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr()))
        LastBlock = NewBlock;
    }
    return LastBlock;
  }

  VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl());

  if (!VD) {
    // Of everything that can be declared in a DeclStmt, only VarDecls and the
    // exceptions above impact runtime semantics.
    return Block;
  }

  bool HasTemporaries = false;

  // Guard static initializers under a branch.
  CFGBlock *blockAfterStaticInit = nullptr;

  if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) {
    // For static variables, we need to create a branch to track
    // whether or not they are initialized.
    if (Block) {
      Succ = Block;
      Block = nullptr;
      if (badCFG)
        return nullptr;
    }
    blockAfterStaticInit = Succ;
  }

  // Destructors of temporaries in initialization expression should be called
  // after initialization finishes.
  Expr *Init = VD->getInit();
  if (Init) {
    HasTemporaries = isa<ExprWithCleanups>(Init);

    if (BuildOpts.AddTemporaryDtors && HasTemporaries) {
      // Generate destructors for temporaries in initialization expression.
      TempDtorContext Context;
      VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(),
                             /*ExternallyDestructed=*/true, Context);
    }
  }

  autoCreateBlock();
  appendStmt(Block, DS);

  findConstructionContexts(
      ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
      Init);

  // Keep track of the last non-null block, as 'Block' can be nulled out
  // if the initializer expression is something like a 'while' in a
  // statement-expression.
  CFGBlock *LastBlock = Block;

  if (Init) {
    if (HasTemporaries) {
      // For expression with temporaries go directly to subexpression to omit
      // generating destructors for the second time.
      ExprWithCleanups *EC = cast<ExprWithCleanups>(Init);
      if (CFGBlock *newBlock = Visit(EC->getSubExpr()))
        LastBlock = newBlock;
    }
    else {
      if (CFGBlock *newBlock = Visit(Init))
        LastBlock = newBlock;
    }
  }

  // If the type of VD is a VLA, then we must process its size expressions.
  // FIXME: This does not find the VLA if it is embedded in other types,
  // like here: `int (*p_vla)[x];`
  for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr());
       VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) {
    if (CFGBlock *newBlock = addStmt(VA->getSizeExpr()))
      LastBlock = newBlock;
  }

  maybeAddScopeBeginForVarDecl(Block, VD, DS);

  // Remove variable from local scope.
  if (ScopePos && VD == *ScopePos)
    ++ScopePos;

  CFGBlock *B = LastBlock;
  if (blockAfterStaticInit) {
    Succ = B;
    Block = createBlock(false);
    Block->setTerminator(DS);
    addSuccessor(Block, blockAfterStaticInit);
    addSuccessor(Block, B);
    B = Block;
  }

  return B;
}

CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) {
  // We may see an if statement in the middle of a basic block, or it may be the
  // first statement we are processing.  In either case, we create a new basic
  // block.  First, we create the blocks for the then...else statements, and
  // then we create the block containing the if statement.  If we were in the
  // middle of a block, we stop processing that block.  That block is then the
  // implicit successor for the "then" and "else" clauses.

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for C++17 if init-stmt if one exists.
  if (Stmt *Init = I->getInit())
    addLocalScopeForStmt(Init);

  // Create local scope for possible condition variable.
  // Store scope position. Add implicit destructor.
  if (VarDecl *VD = I->getConditionVariable())
    addLocalScopeForVarDecl(VD);

  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I);

  // The block we were processing is now finished.  Make it the successor
  // block.
  if (Block) {
    Succ = Block;
    if (badCFG)
      return nullptr;
  }

  // Process the false branch.
  CFGBlock *ElseBlock = Succ;

  if (Stmt *Else = I->getElse()) {
    SaveAndRestore<CFGBlock*> sv(Succ);

    // NULL out Block so that the recursive call to Visit will
    // create a new basic block.
    Block = nullptr;

    // If branch is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(Else))
      addLocalScopeAndDtors(Else);

    ElseBlock = addStmt(Else);

    if (!ElseBlock) // Can occur when the Else body has all NullStmts.
      ElseBlock = sv.get();
    else if (Block) {
      if (badCFG)
        return nullptr;
    }
  }

  // Process the true branch.
  CFGBlock *ThenBlock;
  {
    Stmt *Then = I->getThen();
    assert(Then);
    SaveAndRestore<CFGBlock*> sv(Succ);
    Block = nullptr;

    // If branch is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(Then))
      addLocalScopeAndDtors(Then);

    ThenBlock = addStmt(Then);

    if (!ThenBlock) {
      // We can reach here if the "then" body has all NullStmts.
      // Create an empty block so we can distinguish between true and false
      // branches in path-sensitive analyses.
      ThenBlock = createBlock(false);
      addSuccessor(ThenBlock, sv.get());
    } else if (Block) {
      if (badCFG)
        return nullptr;
    }
  }

  // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by
  // having these handle the actual control-flow jump.  Note that
  // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)"
  // we resort to the old control-flow behavior.  This special handling
  // removes infeasible paths from the control-flow graph by having the
  // control-flow transfer of '&&' or '||' go directly into the then/else
  // blocks directly.
  BinaryOperator *Cond =
      I->getConditionVariable()
          ? nullptr
          : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens());
  CFGBlock *LastBlock;
  if (Cond && Cond->isLogicalOp())
    LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first;
  else {
    // Now create a new block containing the if statement.
    Block = createBlock(false);

    // Set the terminator of the new block to the If statement.
    Block->setTerminator(I);

    // See if this is a known constant.
    const TryResult &KnownVal = tryEvaluateBool(I->getCond());

    // Add the successors.  If we know that specific branches are
    // unreachable, inform addSuccessor() of that knowledge.
    addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse());
    addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue());

    // Add the condition as the last statement in the new block.  This may
    // create new blocks as the condition may contain control-flow.  Any newly
    // created blocks will be pointed to be "Block".
    LastBlock = addStmt(I->getCond());

    // If the IfStmt contains a condition variable, add it and its
    // initializer to the CFG.
    if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) {
      autoCreateBlock();
      LastBlock = addStmt(const_cast<DeclStmt *>(DS));
    }
  }

  // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG.
  if (Stmt *Init = I->getInit()) {
    autoCreateBlock();
    LastBlock = addStmt(Init);
  }

  return LastBlock;
}

CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) {
  // If we were in the middle of a block we stop processing that block.
  //
  // NOTE: If a "return" or "co_return" appears in the middle of a block, this
  //       means that the code afterwards is DEAD (unreachable).  We still keep
  //       a basic block for that code; a simple "mark-and-sweep" from the entry
  //       block will be able to report such dead blocks.
  assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S));

  // Create the new block.
  Block = createBlock(false);

  addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S);

  if (auto *R = dyn_cast<ReturnStmt>(S))
    findConstructionContexts(
        ConstructionContextLayer::create(cfg->getBumpVectorContext(), R),
        R->getRetValue());

  // If the one of the destructors does not return, we already have the Exit
  // block as a successor.
  if (!Block->hasNoReturnElement())
    addSuccessor(Block, &cfg->getExit());

  // Add the return statement to the block.
  appendStmt(Block, S);

  // Visit children
  if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) {
    if (Expr *O = RS->getRetValue())
      return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true);
    return Block;
  } else { // co_return
    return VisitChildren(S);
  }
}

CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) {
  // SEHExceptStmt are treated like labels, so they are the first statement in a
  // block.

  // Save local scope position because in case of exception variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  addStmt(ES->getBlock());
  CFGBlock *SEHExceptBlock = Block;
  if (!SEHExceptBlock)
    SEHExceptBlock = createBlock();

  appendStmt(SEHExceptBlock, ES);

  // Also add the SEHExceptBlock as a label, like with regular labels.
  SEHExceptBlock->setLabel(ES);

  // Bail out if the CFG is bad.
  if (badCFG)
    return nullptr;

  // We set Block to NULL to allow lazy creation of a new block (if necessary).
  Block = nullptr;

  return SEHExceptBlock;
}

CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) {
  return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false);
}

CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) {
  // "__leave" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (badCFG)
    return nullptr;

  // Now create a new block that ends with the __leave statement.
  Block = createBlock(false);
  Block->setTerminator(LS);

  // If there is no target for the __leave, then we are looking at an incomplete
  // AST.  This means that the CFG cannot be constructed.
  if (SEHLeaveJumpTarget.block) {
    addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS);
    addSuccessor(Block, SEHLeaveJumpTarget.block);
  } else
    badCFG = true;

  return Block;
}

CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) {
  // "__try"/"__except"/"__finally" is a control-flow statement.  Thus we stop
  // processing the current block.
  CFGBlock *SEHTrySuccessor = nullptr;

  if (Block) {
    if (badCFG)
      return nullptr;
    SEHTrySuccessor = Block;
  } else SEHTrySuccessor = Succ;

  // FIXME: Implement __finally support.
  if (Terminator->getFinallyHandler())
    return NYS();

  CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock;

  // Create a new block that will contain the __try statement.
  CFGBlock *NewTryTerminatedBlock = createBlock(false);

  // Add the terminator in the __try block.
  NewTryTerminatedBlock->setTerminator(Terminator);

  if (SEHExceptStmt *Except = Terminator->getExceptHandler()) {
    // The code after the try is the implicit successor if there's an __except.
    Succ = SEHTrySuccessor;
    Block = nullptr;
    CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except);
    if (!ExceptBlock)
      return nullptr;
    // Add this block to the list of successors for the block with the try
    // statement.
    addSuccessor(NewTryTerminatedBlock, ExceptBlock);
  }
  if (PrevSEHTryTerminatedBlock)
    addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock);
  else
    addSuccessor(NewTryTerminatedBlock, &cfg->getExit());

  // The code after the try is the implicit successor.
  Succ = SEHTrySuccessor;

  // Save the current "__try" context.
  SaveAndRestore<CFGBlock *> save_try(TryTerminatedBlock,
                                      NewTryTerminatedBlock);
  cfg->addTryDispatchBlock(TryTerminatedBlock);

  // Save the current value for the __leave target.
  // All __leaves should go to the code following the __try
  // (FIXME: or if the __try has a __finally, to the __finally.)
  SaveAndRestore<JumpTarget> save_break(SEHLeaveJumpTarget);
  SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos);

  assert(Terminator->getTryBlock() && "__try must contain a non-NULL body");
  Block = nullptr;
  return addStmt(Terminator->getTryBlock());
}

CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) {
  // Get the block of the labeled statement.  Add it to our map.
  addStmt(L->getSubStmt());
  CFGBlock *LabelBlock = Block;

  if (!LabelBlock)              // This can happen when the body is empty, i.e.
    LabelBlock = createBlock(); // scopes that only contains NullStmts.

  assert(LabelMap.find(L->getDecl()) == LabelMap.end() &&
         "label already in map");
  LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos);

  // Labels partition blocks, so this is the end of the basic block we were
  // processing (L is the block's label).  Because this is label (and we have
  // already processed the substatement) there is no extra control-flow to worry
  // about.
  LabelBlock->setLabel(L);
  if (badCFG)
    return nullptr;

  // We set Block to NULL to allow lazy creation of a new block (if necessary);
  Block = nullptr;

  // This block is now the implicit successor of other blocks.
  Succ = LabelBlock;

  return LabelBlock;
}

CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) {
  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
  for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) {
    if (Expr *CopyExpr = CI.getCopyExpr()) {
      CFGBlock *Tmp = Visit(CopyExpr);
      if (Tmp)
        LastBlock = Tmp;
    }
  }
  return LastBlock;
}

CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) {
  CFGBlock *LastBlock = VisitNoRecurse(E, asc);
  for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(),
       et = E->capture_init_end(); it != et; ++it) {
    if (Expr *Init = *it) {
      CFGBlock *Tmp = Visit(Init);
      if (Tmp)
        LastBlock = Tmp;
    }
  }
  return LastBlock;
}

CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) {
  // Goto is a control-flow statement.  Thus we stop processing the current
  // block and create a new one.

  Block = createBlock(false);
  Block->setTerminator(G);

  // If we already know the mapping to the label block add the successor now.
  LabelMapTy::iterator I = LabelMap.find(G->getLabel());

  if (I == LabelMap.end())
    // We will need to backpatch this block later.
    BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
  else {
    JumpTarget JT = I->second;
    addAutomaticObjHandling(ScopePos, JT.scopePosition, G);
    addSuccessor(Block, JT.block);
  }

  return Block;
}

CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) {
  // Goto is a control-flow statement.  Thus we stop processing the current
  // block and create a new one.

  if (!G->isAsmGoto())
    return VisitStmt(G, asc);

  if (Block) {
    Succ = Block;
    if (badCFG)
      return nullptr;
  }
  Block = createBlock();
  Block->setTerminator(G);
  // We will backpatch this block later for all the labels.
  BackpatchBlocks.push_back(JumpSource(Block, ScopePos));
  // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is
  // used to avoid adding "Succ" again.
  BackpatchBlocks.push_back(JumpSource(Succ, ScopePos));
  return Block;
}

CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) {
  CFGBlock *LoopSuccessor = nullptr;

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for init statement and possible condition variable.
  // Add destructor for init statement and condition variable.
  // Store scope position for continue statement.
  if (Stmt *Init = F->getInit())
    addLocalScopeForStmt(Init);
  LocalScope::const_iterator LoopBeginScopePos = ScopePos;

  if (VarDecl *VD = F->getConditionVariable())
    addLocalScopeForVarDecl(VD);
  LocalScope::const_iterator ContinueScopePos = ScopePos;

  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F);

  addLoopExit(F);

  // "for" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (Block) {
    if (badCFG)
      return nullptr;
    LoopSuccessor = Block;
  } else
    LoopSuccessor = Succ;

  // Save the current value for the break targets.
  // All breaks should go to the code following the loop.
  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

  CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;

  // Now create the loop body.
  {
    assert(F->getBody());

    // Save the current values for Block, Succ, continue and break targets.
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);

    // Create an empty block to represent the transition block for looping back
    // to the head of the loop.  If we have increment code, it will
    // go in this block as well.
    Block = Succ = TransitionBlock = createBlock(false);
    TransitionBlock->setLoopTarget(F);

    if (Stmt *I = F->getInc()) {
      // Generate increment code in its own basic block.  This is the target of
      // continue statements.
      Succ = addStmt(I);
    }

    // Finish up the increment (or empty) block if it hasn't been already.
    if (Block) {
      assert(Block == Succ);
      if (badCFG)
        return nullptr;
      Block = nullptr;
    }

   // The starting block for the loop increment is the block that should
   // represent the 'loop target' for looping back to the start of the loop.
   ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);
   ContinueJumpTarget.block->setLoopTarget(F);

    // Loop body should end with destructor of Condition variable (if any).
   addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F);

    // If body is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(F->getBody()))
      addLocalScopeAndDtors(F->getBody());

    // Now populate the body block, and in the process create new blocks as we
    // walk the body of the loop.
    BodyBlock = addStmt(F->getBody());

    if (!BodyBlock) {
      // In the case of "for (...;...;...);" we can have a null BodyBlock.
      // Use the continue jump target as the proxy for the body.
      BodyBlock = ContinueJumpTarget.block;
    }
    else if (badCFG)
      return nullptr;
  }

  // Because of short-circuit evaluation, the condition of the loop can span
  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
  // evaluate the condition.
  CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;

  do {
    Expr *C = F->getCond();
    SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

    // Specially handle logical operators, which have a slightly
    // more optimal CFG representation.
    if (BinaryOperator *Cond =
            dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr))
      if (Cond->isLogicalOp()) {
        std::tie(EntryConditionBlock, ExitConditionBlock) =
          VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor);
        break;
      }

    // The default case when not handling logical operators.
    EntryConditionBlock = ExitConditionBlock = createBlock(false);
    ExitConditionBlock->setTerminator(F);

    // See if this is a known constant.
    TryResult KnownVal(true);

    if (C) {
      // Now add the actual condition to the condition block.
      // Because the condition itself may contain control-flow, new blocks may
      // be created.  Thus we update "Succ" after adding the condition.
      Block = ExitConditionBlock;
      EntryConditionBlock = addStmt(C);

      // If this block contains a condition variable, add both the condition
      // variable and initializer to the CFG.
      if (VarDecl *VD = F->getConditionVariable()) {
        if (Expr *Init = VD->getInit()) {
          autoCreateBlock();
          const DeclStmt *DS = F->getConditionVariableDeclStmt();
          assert(DS->isSingleDecl());
          findConstructionContexts(
              ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS),
              Init);
          appendStmt(Block, DS);
          EntryConditionBlock = addStmt(Init);
          assert(Block == EntryConditionBlock);
          maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
        }
      }

      if (Block && badCFG)
        return nullptr;

      KnownVal = tryEvaluateBool(C);
    }

    // Add the loop body entry as a successor to the condition.
    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
    // Link up the condition block with the code that follows the loop.  (the
    // false branch).
    addSuccessor(ExitConditionBlock,
                 KnownVal.isTrue() ? nullptr : LoopSuccessor);
  } while (false);

  // Link up the loop-back block to the entry condition block.
  addSuccessor(TransitionBlock, EntryConditionBlock);

  // The condition block is the implicit successor for any code above the loop.
  Succ = EntryConditionBlock;

  // If the loop contains initialization, create a new block for those
  // statements.  This block can also contain statements that precede the loop.
  if (Stmt *I = F->getInit()) {
    SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);
    ScopePos = LoopBeginScopePos;
    Block = createBlock();
    return addStmt(I);
  }

  // There is no loop initialization.  We are thus basically a while loop.
  // NULL out Block to force lazy block construction.
  Block = nullptr;
  Succ = EntryConditionBlock;
  return EntryConditionBlock;
}

CFGBlock *
CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE,
                                          AddStmtChoice asc) {
  findConstructionContexts(
      ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE),
      MTE->getSubExpr());

  return VisitStmt(MTE, asc);
}

CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, M)) {
    autoCreateBlock();
    appendStmt(Block, M);
  }
  return Visit(M->getBase());
}

CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) {
  // Objective-C fast enumeration 'for' statements:
  //  http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC
  //
  //  for ( Type newVariable in collection_expression ) { statements }
  //
  //  becomes:
  //
  //   prologue:
  //     1. collection_expression
  //     T. jump to loop_entry
  //   loop_entry:
  //     1. side-effects of element expression
  //     1. ObjCForCollectionStmt [performs binding to newVariable]
  //     T. ObjCForCollectionStmt  TB, FB  [jumps to TB if newVariable != nil]
  //   TB:
  //     statements
  //     T. jump to loop_entry
  //   FB:
  //     what comes after
  //
  //  and
  //
  //  Type existingItem;
  //  for ( existingItem in expression ) { statements }
  //
  //  becomes:
  //
  //   the same with newVariable replaced with existingItem; the binding works
  //   the same except that for one ObjCForCollectionStmt::getElement() returns
  //   a DeclStmt and the other returns a DeclRefExpr.

  CFGBlock *LoopSuccessor = nullptr;

  if (Block) {
    if (badCFG)
      return nullptr;
    LoopSuccessor = Block;
    Block = nullptr;
  } else
    LoopSuccessor = Succ;

  // Build the condition blocks.
  CFGBlock *ExitConditionBlock = createBlock(false);

  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(S);

  // The last statement in the block should be the ObjCForCollectionStmt, which
  // performs the actual binding to 'element' and determines if there are any
  // more items in the collection.
  appendStmt(ExitConditionBlock, S);
  Block = ExitConditionBlock;

  // Walk the 'element' expression to see if there are any side-effects.  We
  // generate new blocks as necessary.  We DON'T add the statement by default to
  // the CFG unless it contains control-flow.
  CFGBlock *EntryConditionBlock = Visit(S->getElement(),
                                        AddStmtChoice::NotAlwaysAdd);
  if (Block) {
    if (badCFG)
      return nullptr;
    Block = nullptr;
  }

  // The condition block is the implicit successor for the loop body as well as
  // any code above the loop.
  Succ = EntryConditionBlock;

  // Now create the true branch.
  {
    // Save the current values for Succ, continue and break targets.
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
                               save_break(BreakJumpTarget);

    // Add an intermediate block between the BodyBlock and the
    // EntryConditionBlock to represent the "loop back" transition, for looping
    // back to the head of the loop.
    CFGBlock *LoopBackBlock = nullptr;
    Succ = LoopBackBlock = createBlock();
    LoopBackBlock->setLoopTarget(S);

    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);
    ContinueJumpTarget = JumpTarget(Succ, ScopePos);

    CFGBlock *BodyBlock = addStmt(S->getBody());

    if (!BodyBlock)
      BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;"
    else if (Block) {
      if (badCFG)
        return nullptr;
    }

    // This new body block is a successor to our "exit" condition block.
    addSuccessor(ExitConditionBlock, BodyBlock);
  }

  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  addSuccessor(ExitConditionBlock, LoopSuccessor);

  // Now create a prologue block to contain the collection expression.
  Block = createBlock();
  return addStmt(S->getCollection());
}

CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) {
  // Inline the body.
  return addStmt(S->getSubStmt());
  // TODO: consider adding cleanups for the end of @autoreleasepool scope.
}

CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) {
  // FIXME: Add locking 'primitives' to CFG for @synchronized.

  // Inline the body.
  CFGBlock *SyncBlock = addStmt(S->getSynchBody());

  // The sync body starts its own basic block.  This makes it a little easier
  // for diagnostic clients.
  if (SyncBlock) {
    if (badCFG)
      return nullptr;

    Block = nullptr;
    Succ = SyncBlock;
  }

  // Add the @synchronized to the CFG.
  autoCreateBlock();
  appendStmt(Block, S);

  // Inline the sync expression.
  return addStmt(S->getSynchExpr());
}

CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *S) {
  // FIXME
  return NYS();
}

CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) {
  autoCreateBlock();

  // Add the PseudoObject as the last thing.
  appendStmt(Block, E);

  CFGBlock *lastBlock = Block;

  // Before that, evaluate all of the semantics in order.  In
  // CFG-land, that means appending them in reverse order.
  for (unsigned i = E->getNumSemanticExprs(); i != 0; ) {
    Expr *Semantic = E->getSemanticExpr(--i);

    // If the semantic is an opaque value, we're being asked to bind
    // it to its source expression.
    if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic))
      Semantic = OVE->getSourceExpr();

    if (CFGBlock *B = Visit(Semantic))
      lastBlock = B;
  }

  return lastBlock;
}

CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) {
  CFGBlock *LoopSuccessor = nullptr;

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for possible condition variable.
  // Store scope position for continue statement.
  LocalScope::const_iterator LoopBeginScopePos = ScopePos;
  if (VarDecl *VD = W->getConditionVariable()) {
    addLocalScopeForVarDecl(VD);
    addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);
  }
  addLoopExit(W);

  // "while" is a control-flow statement.  Thus we stop processing the current
  // block.
  if (Block) {
    if (badCFG)
      return nullptr;
    LoopSuccessor = Block;
    Block = nullptr;
  } else {
    LoopSuccessor = Succ;
  }

  CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr;

  // Process the loop body.
  {
    assert(W->getBody());

    // Save the current values for Block, Succ, continue and break targets.
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
                               save_break(BreakJumpTarget);

    // Create an empty block to represent the transition block for looping back
    // to the head of the loop.
    Succ = TransitionBlock = createBlock(false);
    TransitionBlock->setLoopTarget(W);
    ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos);

    // All breaks should go to the code following the loop.
    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

    // Loop body should end with destructor of Condition variable (if any).
    addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W);

    // If body is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(W->getBody()))
      addLocalScopeAndDtors(W->getBody());

    // Create the body.  The returned block is the entry to the loop body.
    BodyBlock = addStmt(W->getBody());

    if (!BodyBlock)
      BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;"
    else if (Block && badCFG)
      return nullptr;
  }

  // Because of short-circuit evaluation, the condition of the loop can span
  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
  // evaluate the condition.
  CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr;

  do {
    Expr *C = W->getCond();

    // Specially handle logical operators, which have a slightly
    // more optimal CFG representation.
    if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens()))
      if (Cond->isLogicalOp()) {
        std::tie(EntryConditionBlock, ExitConditionBlock) =
            VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor);
        break;
      }

    // The default case when not handling logical operators.
    ExitConditionBlock = createBlock(false);
    ExitConditionBlock->setTerminator(W);

    // Now add the actual condition to the condition block.
    // Because the condition itself may contain control-flow, new blocks may
    // be created.  Thus we update "Succ" after adding the condition.
    Block = ExitConditionBlock;
    Block = EntryConditionBlock = addStmt(C);

    // If this block contains a condition variable, add both the condition
    // variable and initializer to the CFG.
    if (VarDecl *VD = W->getConditionVariable()) {
      if (Expr *Init = VD->getInit()) {
        autoCreateBlock();
        const DeclStmt *DS = W->getConditionVariableDeclStmt();
        assert(DS->isSingleDecl());
        findConstructionContexts(
            ConstructionContextLayer::create(cfg->getBumpVectorContext(),
                                             const_cast<DeclStmt *>(DS)),
            Init);
        appendStmt(Block, DS);
        EntryConditionBlock = addStmt(Init);
        assert(Block == EntryConditionBlock);
        maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C);
      }
    }

    if (Block && badCFG)
      return nullptr;

    // See if this is a known constant.
    const TryResult& KnownVal = tryEvaluateBool(C);

    // Add the loop body entry as a successor to the condition.
    addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock);
    // Link up the condition block with the code that follows the loop.  (the
    // false branch).
    addSuccessor(ExitConditionBlock,
                 KnownVal.isTrue() ? nullptr : LoopSuccessor);
  } while(false);

  // Link up the loop-back block to the entry condition block.
  addSuccessor(TransitionBlock, EntryConditionBlock);

  // There can be no more statements in the condition block since we loop back
  // to this block.  NULL out Block to force lazy creation of another block.
  Block = nullptr;

  // Return the condition block, which is the dominating block for the loop.
  Succ = EntryConditionBlock;
  return EntryConditionBlock;
}

CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *S) {
  // FIXME: For now we pretend that @catch and the code it contains does not
  //  exit.
  return Block;
}

CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) {
  // FIXME: This isn't complete.  We basically treat @throw like a return
  //  statement.

  // If we were in the middle of a block we stop processing that block.
  if (badCFG)
    return nullptr;

  // Create the new block.
  Block = createBlock(false);

  // The Exit block is the only successor.
  addSuccessor(Block, &cfg->getExit());

  // Add the statement to the block.  This may create new blocks if S contains
  // control-flow (short-circuit operations).
  return VisitStmt(S, AddStmtChoice::AlwaysAdd);
}

CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME,
                                           AddStmtChoice asc) {
  findConstructionContextsForArguments(ME);

  autoCreateBlock();
  appendObjCMessage(Block, ME);

  return VisitChildren(ME);
}

CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) {
  // If we were in the middle of a block we stop processing that block.
  if (badCFG)
    return nullptr;

  // Create the new block.
  Block = createBlock(false);

  if (TryTerminatedBlock)
    // The current try statement is the only successor.
    addSuccessor(Block, TryTerminatedBlock);
  else
    // otherwise the Exit block is the only successor.
    addSuccessor(Block, &cfg->getExit());

  // Add the statement to the block.  This may create new blocks if S contains
  // control-flow (short-circuit operations).
  return VisitStmt(T, AddStmtChoice::AlwaysAdd);
}

CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) {
  CFGBlock *LoopSuccessor = nullptr;

  addLoopExit(D);

  // "do...while" is a control-flow statement.  Thus we stop processing the
  // current block.
  if (Block) {
    if (badCFG)
      return nullptr;
    LoopSuccessor = Block;
  } else
    LoopSuccessor = Succ;

  // Because of short-circuit evaluation, the condition of the loop can span
  // multiple basic blocks.  Thus we need the "Entry" and "Exit" blocks that
  // evaluate the condition.
  CFGBlock *ExitConditionBlock = createBlock(false);
  CFGBlock *EntryConditionBlock = ExitConditionBlock;

  // Set the terminator for the "exit" condition block.
  ExitConditionBlock->setTerminator(D);

  // Now add the actual condition to the condition block.  Because the condition
  // itself may contain control-flow, new blocks may be created.
  if (Stmt *C = D->getCond()) {
    Block = ExitConditionBlock;
    EntryConditionBlock = addStmt(C);
    if (Block) {
      if (badCFG)
        return nullptr;
    }
  }

  // The condition block is the implicit successor for the loop body.
  Succ = EntryConditionBlock;

  // See if this is a known constant.
  const TryResult &KnownVal = tryEvaluateBool(D->getCond());

  // Process the loop body.
  CFGBlock *BodyBlock = nullptr;
  {
    assert(D->getBody());

    // Save the current values for Block, Succ, and continue and break targets
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget),
        save_break(BreakJumpTarget);

    // All continues within this loop should go to the condition block
    ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos);

    // All breaks should go to the code following the loop.
    BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

    // NULL out Block to force lazy instantiation of blocks for the body.
    Block = nullptr;

    // If body is not a compound statement create implicit scope
    // and add destructors.
    if (!isa<CompoundStmt>(D->getBody()))
      addLocalScopeAndDtors(D->getBody());

    // Create the body.  The returned block is the entry to the loop body.
    BodyBlock = addStmt(D->getBody());

    if (!BodyBlock)
      BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)"
    else if (Block) {
      if (badCFG)
        return nullptr;
    }

    // Add an intermediate block between the BodyBlock and the
    // ExitConditionBlock to represent the "loop back" transition.  Create an
    // empty block to represent the transition block for looping back to the
    // head of the loop.
    // FIXME: Can we do this more efficiently without adding another block?
    Block = nullptr;
    Succ = BodyBlock;
    CFGBlock *LoopBackBlock = createBlock();
    LoopBackBlock->setLoopTarget(D);

    if (!KnownVal.isFalse())
      // Add the loop body entry as a successor to the condition.
      addSuccessor(ExitConditionBlock, LoopBackBlock);
    else
      addSuccessor(ExitConditionBlock, nullptr);
  }

  // Link up the condition block with the code that follows the loop.
  // (the false branch).
  addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);

  // There can be no more statements in the body block(s) since we loop back to
  // the body.  NULL out Block to force lazy creation of another block.
  Block = nullptr;

  // Return the loop body, which is the dominating block for the loop.
  Succ = BodyBlock;
  return BodyBlock;
}

CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) {
  // "continue" is a control-flow statement.  Thus we stop processing the
  // current block.
  if (badCFG)
    return nullptr;

  // Now create a new block that ends with the continue statement.
  Block = createBlock(false);
  Block->setTerminator(C);

  // If there is no target for the continue, then we are looking at an
  // incomplete AST.  This means the CFG cannot be constructed.
  if (ContinueJumpTarget.block) {
    addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C);
    addSuccessor(Block, ContinueJumpTarget.block);
  } else
    badCFG = true;

  return Block;
}

CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E,
                                                    AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, E)) {
    autoCreateBlock();
    appendStmt(Block, E);
  }

  // VLA types have expressions that must be evaluated.
  // Evaluation is done only for `sizeof`.

  if (E->getKind() != UETT_SizeOf)
    return Block;

  CFGBlock *lastBlock = Block;

  if (E->isArgumentType()) {
    for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr());
         VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr()))
      lastBlock = addStmt(VA->getSizeExpr());
  }
  return lastBlock;
}

/// VisitStmtExpr - Utility method to handle (nested) statement
///  expressions (a GCC extension).
CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, SE)) {
    autoCreateBlock();
    appendStmt(Block, SE);
  }
  return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true);
}

CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) {
  // "switch" is a control-flow statement.  Thus we stop processing the current
  // block.
  CFGBlock *SwitchSuccessor = nullptr;

  // Save local scope position because in case of condition variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for C++17 switch init-stmt if one exists.
  if (Stmt *Init = Terminator->getInit())
    addLocalScopeForStmt(Init);

  // Create local scope for possible condition variable.
  // Store scope position. Add implicit destructor.
  if (VarDecl *VD = Terminator->getConditionVariable())
    addLocalScopeForVarDecl(VD);

  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator);

  if (Block) {
    if (badCFG)
      return nullptr;
    SwitchSuccessor = Block;
  } else SwitchSuccessor = Succ;

  // Save the current "switch" context.
  SaveAndRestore<CFGBlock*> save_switch(SwitchTerminatedBlock),
                            save_default(DefaultCaseBlock);
  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);

  // Set the "default" case to be the block after the switch statement.  If the
  // switch statement contains a "default:", this value will be overwritten with
  // the block for that code.
  DefaultCaseBlock = SwitchSuccessor;

  // Create a new block that will contain the switch statement.
  SwitchTerminatedBlock = createBlock(false);

  // Now process the switch body.  The code after the switch is the implicit
  // successor.
  Succ = SwitchSuccessor;
  BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos);

  // When visiting the body, the case statements should automatically get linked
  // up to the switch.  We also don't keep a pointer to the body, since all
  // control-flow from the switch goes to case/default statements.
  assert(Terminator->getBody() && "switch must contain a non-NULL body");
  Block = nullptr;

  // For pruning unreachable case statements, save the current state
  // for tracking the condition value.
  SaveAndRestore<bool> save_switchExclusivelyCovered(switchExclusivelyCovered,
                                                     false);

  // Determine if the switch condition can be explicitly evaluated.
  assert(Terminator->getCond() && "switch condition must be non-NULL");
  Expr::EvalResult result;
  bool b = tryEvaluate(Terminator->getCond(), result);
  SaveAndRestore<Expr::EvalResult*> save_switchCond(switchCond,
                                                    b ? &result : nullptr);

  // If body is not a compound statement create implicit scope
  // and add destructors.
  if (!isa<CompoundStmt>(Terminator->getBody()))
    addLocalScopeAndDtors(Terminator->getBody());

  addStmt(Terminator->getBody());
  if (Block) {
    if (badCFG)
      return nullptr;
  }

  // If we have no "default:" case, the default transition is to the code
  // following the switch body.  Moreover, take into account if all the
  // cases of a switch are covered (e.g., switching on an enum value).
  //
  // Note: We add a successor to a switch that is considered covered yet has no
  //       case statements if the enumeration has no enumerators.
  bool SwitchAlwaysHasSuccessor = false;
  SwitchAlwaysHasSuccessor |= switchExclusivelyCovered;
  SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() &&
                              Terminator->getSwitchCaseList();
  addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock,
               !SwitchAlwaysHasSuccessor);

  // Add the terminator and condition in the switch block.
  SwitchTerminatedBlock->setTerminator(Terminator);
  Block = SwitchTerminatedBlock;
  CFGBlock *LastBlock = addStmt(Terminator->getCond());

  // If the SwitchStmt contains a condition variable, add both the
  // SwitchStmt and the condition variable initialization to the CFG.
  if (VarDecl *VD = Terminator->getConditionVariable()) {
    if (Expr *Init = VD->getInit()) {
      autoCreateBlock();
      appendStmt(Block, Terminator->getConditionVariableDeclStmt());
      LastBlock = addStmt(Init);
      maybeAddScopeBeginForVarDecl(LastBlock, VD, Init);
    }
  }

  // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG.
  if (Stmt *Init = Terminator->getInit()) {
    autoCreateBlock();
    LastBlock = addStmt(Init);
  }

  return LastBlock;
}

static bool shouldAddCase(bool &switchExclusivelyCovered,
                          const Expr::EvalResult *switchCond,
                          const CaseStmt *CS,
                          ASTContext &Ctx) {
  if (!switchCond)
    return true;

  bool addCase = false;

  if (!switchExclusivelyCovered) {
    if (switchCond->Val.isInt()) {
      // Evaluate the LHS of the case value.
      const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx);
      const llvm::APSInt &condInt = switchCond->Val.getInt();

      if (condInt == lhsInt) {
        addCase = true;
        switchExclusivelyCovered = true;
      }
      else if (condInt > lhsInt) {
        if (const Expr *RHS = CS->getRHS()) {
          // Evaluate the RHS of the case value.
          const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx);
          if (V2 >= condInt) {
            addCase = true;
            switchExclusivelyCovered = true;
          }
        }
      }
    }
    else
      addCase = true;
  }
  return addCase;
}

CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) {
  // CaseStmts are essentially labels, so they are the first statement in a
  // block.
  CFGBlock *TopBlock = nullptr, *LastBlock = nullptr;

  if (Stmt *Sub = CS->getSubStmt()) {
    // For deeply nested chains of CaseStmts, instead of doing a recursion
    // (which can blow out the stack), manually unroll and create blocks
    // along the way.
    while (isa<CaseStmt>(Sub)) {
      CFGBlock *currentBlock = createBlock(false);
      currentBlock->setLabel(CS);

      if (TopBlock)
        addSuccessor(LastBlock, currentBlock);
      else
        TopBlock = currentBlock;

      addSuccessor(SwitchTerminatedBlock,
                   shouldAddCase(switchExclusivelyCovered, switchCond,
                                 CS, *Context)
                   ? currentBlock : nullptr);

      LastBlock = currentBlock;
      CS = cast<CaseStmt>(Sub);
      Sub = CS->getSubStmt();
    }

    addStmt(Sub);
  }

  CFGBlock *CaseBlock = Block;
  if (!CaseBlock)
    CaseBlock = createBlock();

  // Cases statements partition blocks, so this is the top of the basic block we
  // were processing (the "case XXX:" is the label).
  CaseBlock->setLabel(CS);

  if (badCFG)
    return nullptr;

  // Add this block to the list of successors for the block with the switch
  // statement.
  assert(SwitchTerminatedBlock);
  addSuccessor(SwitchTerminatedBlock, CaseBlock,
               shouldAddCase(switchExclusivelyCovered, switchCond,
                             CS, *Context));

  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = nullptr;

  if (TopBlock) {
    addSuccessor(LastBlock, CaseBlock);
    Succ = TopBlock;
  } else {
    // This block is now the implicit successor of other blocks.
    Succ = CaseBlock;
  }

  return Succ;
}

CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) {
  if (Terminator->getSubStmt())
    addStmt(Terminator->getSubStmt());

  DefaultCaseBlock = Block;

  if (!DefaultCaseBlock)
    DefaultCaseBlock = createBlock();

  // Default statements partition blocks, so this is the top of the basic block
  // we were processing (the "default:" is the label).
  DefaultCaseBlock->setLabel(Terminator);

  if (badCFG)
    return nullptr;

  // Unlike case statements, we don't add the default block to the successors
  // for the switch statement immediately.  This is done when we finish
  // processing the switch statement.  This allows for the default case
  // (including a fall-through to the code after the switch statement) to always
  // be the last successor of a switch-terminated block.

  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = nullptr;

  // This block is now the implicit successor of other blocks.
  Succ = DefaultCaseBlock;

  return DefaultCaseBlock;
}

CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) {
  // "try"/"catch" is a control-flow statement.  Thus we stop processing the
  // current block.
  CFGBlock *TrySuccessor = nullptr;

  if (Block) {
    if (badCFG)
      return nullptr;
    TrySuccessor = Block;
  } else TrySuccessor = Succ;

  CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock;

  // Create a new block that will contain the try statement.
  CFGBlock *NewTryTerminatedBlock = createBlock(false);
  // Add the terminator in the try block.
  NewTryTerminatedBlock->setTerminator(Terminator);

  bool HasCatchAll = false;
  for (unsigned h = 0; h <Terminator->getNumHandlers(); ++h) {
    // The code after the try is the implicit successor.
    Succ = TrySuccessor;
    CXXCatchStmt *CS = Terminator->getHandler(h);
    if (CS->getExceptionDecl() == nullptr) {
      HasCatchAll = true;
    }
    Block = nullptr;
    CFGBlock *CatchBlock = VisitCXXCatchStmt(CS);
    if (!CatchBlock)
      return nullptr;
    // Add this block to the list of successors for the block with the try
    // statement.
    addSuccessor(NewTryTerminatedBlock, CatchBlock);
  }
  if (!HasCatchAll) {
    if (PrevTryTerminatedBlock)
      addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock);
    else
      addSuccessor(NewTryTerminatedBlock, &cfg->getExit());
  }

  // The code after the try is the implicit successor.
  Succ = TrySuccessor;

  // Save the current "try" context.
  SaveAndRestore<CFGBlock*> save_try(TryTerminatedBlock, NewTryTerminatedBlock);
  cfg->addTryDispatchBlock(TryTerminatedBlock);

  assert(Terminator->getTryBlock() && "try must contain a non-NULL body");
  Block = nullptr;
  return addStmt(Terminator->getTryBlock());
}

CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) {
  // CXXCatchStmt are treated like labels, so they are the first statement in a
  // block.

  // Save local scope position because in case of exception variable ScopePos
  // won't be restored when traversing AST.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scope for possible exception variable.
  // Store scope position. Add implicit destructor.
  if (VarDecl *VD = CS->getExceptionDecl()) {
    LocalScope::const_iterator BeginScopePos = ScopePos;
    addLocalScopeForVarDecl(VD);
    addAutomaticObjHandling(ScopePos, BeginScopePos, CS);
  }

  if (CS->getHandlerBlock())
    addStmt(CS->getHandlerBlock());

  CFGBlock *CatchBlock = Block;
  if (!CatchBlock)
    CatchBlock = createBlock();

  // CXXCatchStmt is more than just a label.  They have semantic meaning
  // as well, as they implicitly "initialize" the catch variable.  Add
  // it to the CFG as a CFGElement so that the control-flow of these
  // semantics gets captured.
  appendStmt(CatchBlock, CS);

  // Also add the CXXCatchStmt as a label, to mirror handling of regular
  // labels.
  CatchBlock->setLabel(CS);

  // Bail out if the CFG is bad.
  if (badCFG)
    return nullptr;

  // We set Block to NULL to allow lazy creation of a new block (if necessary)
  Block = nullptr;

  return CatchBlock;
}

CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) {
  // C++0x for-range statements are specified as [stmt.ranged]:
  //
  // {
  //   auto && __range = range-init;
  //   for ( auto __begin = begin-expr,
  //         __end = end-expr;
  //         __begin != __end;
  //         ++__begin ) {
  //     for-range-declaration = *__begin;
  //     statement
  //   }
  // }

  // Save local scope position before the addition of the implicit variables.
  SaveAndRestore<LocalScope::const_iterator> save_scope_pos(ScopePos);

  // Create local scopes and destructors for range, begin and end variables.
  if (Stmt *Range = S->getRangeStmt())
    addLocalScopeForStmt(Range);
  if (Stmt *Begin = S->getBeginStmt())
    addLocalScopeForStmt(Begin);
  if (Stmt *End = S->getEndStmt())
    addLocalScopeForStmt(End);
  addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S);

  LocalScope::const_iterator ContinueScopePos = ScopePos;

  // "for" is a control-flow statement.  Thus we stop processing the current
  // block.
  CFGBlock *LoopSuccessor = nullptr;
  if (Block) {
    if (badCFG)
      return nullptr;
    LoopSuccessor = Block;
  } else
    LoopSuccessor = Succ;

  // Save the current value for the break targets.
  // All breaks should go to the code following the loop.
  SaveAndRestore<JumpTarget> save_break(BreakJumpTarget);
  BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos);

  // The block for the __begin != __end expression.
  CFGBlock *ConditionBlock = createBlock(false);
  ConditionBlock->setTerminator(S);

  // Now add the actual condition to the condition block.
  if (Expr *C = S->getCond()) {
    Block = ConditionBlock;
    CFGBlock *BeginConditionBlock = addStmt(C);
    if (badCFG)
      return nullptr;
    assert(BeginConditionBlock == ConditionBlock &&
           "condition block in for-range was unexpectedly complex");
    (void)BeginConditionBlock;
  }

  // The condition block is the implicit successor for the loop body as well as
  // any code above the loop.
  Succ = ConditionBlock;

  // See if this is a known constant.
  TryResult KnownVal(true);

  if (S->getCond())
    KnownVal = tryEvaluateBool(S->getCond());

  // Now create the loop body.
  {
    assert(S->getBody());

    // Save the current values for Block, Succ, and continue targets.
    SaveAndRestore<CFGBlock*> save_Block(Block), save_Succ(Succ);
    SaveAndRestore<JumpTarget> save_continue(ContinueJumpTarget);

    // Generate increment code in its own basic block.  This is the target of
    // continue statements.
    Block = nullptr;
    Succ = addStmt(S->getInc());
    if (badCFG)
      return nullptr;
    ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos);

    // The starting block for the loop increment is the block that should
    // represent the 'loop target' for looping back to the start of the loop.
    ContinueJumpTarget.block->setLoopTarget(S);

    // Finish up the increment block and prepare to start the loop body.
    assert(Block);
    if (badCFG)
      return nullptr;
    Block = nullptr;

    // Add implicit scope and dtors for loop variable.
    addLocalScopeAndDtors(S->getLoopVarStmt());

    // Populate a new block to contain the loop body and loop variable.
    addStmt(S->getBody());
    if (badCFG)
      return nullptr;
    CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt());
    if (badCFG)
      return nullptr;

    // This new body block is a successor to our condition block.
    addSuccessor(ConditionBlock,
                 KnownVal.isFalse() ? nullptr : LoopVarStmtBlock);
  }

  // Link up the condition block with the code that follows the loop (the
  // false branch).
  addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor);

  // Add the initialization statements.
  Block = createBlock();
  addStmt(S->getBeginStmt());
  addStmt(S->getEndStmt());
  CFGBlock *Head = addStmt(S->getRangeStmt());
  if (S->getInit())
    Head = addStmt(S->getInit());
  return Head;
}

CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E,
    AddStmtChoice asc, bool ExternallyDestructed) {
  if (BuildOpts.AddTemporaryDtors) {
    // If adding implicit destructors visit the full expression for adding
    // destructors of temporaries.
    TempDtorContext Context;
    VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context);

    // Full expression has to be added as CFGStmt so it will be sequenced
    // before destructors of it's temporaries.
    asc = asc.withAlwaysAdd(true);
  }
  return Visit(E->getSubExpr(), asc);
}

CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E,
                                                AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, E)) {
    autoCreateBlock();
    appendStmt(Block, E);

    findConstructionContexts(
        ConstructionContextLayer::create(cfg->getBumpVectorContext(), E),
        E->getSubExpr());

    // We do not want to propagate the AlwaysAdd property.
    asc = asc.withAlwaysAdd(false);
  }
  return Visit(E->getSubExpr(), asc);
}

CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C,
                                            AddStmtChoice asc) {
  // If the constructor takes objects as arguments by value, we need to properly
  // construct these objects. Construction contexts we find here aren't for the
  // constructor C, they're for its arguments only.
  findConstructionContextsForArguments(C);

  autoCreateBlock();
  appendConstructor(Block, C);

  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE,
                                      AddStmtChoice asc) {
  autoCreateBlock();
  appendStmt(Block, NE);

  findConstructionContexts(
      ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE),
      const_cast<CXXConstructExpr *>(NE->getConstructExpr()));

  if (NE->getInitializer())
    Block = Visit(NE->getInitializer());

  if (BuildOpts.AddCXXNewAllocator)
    appendNewAllocator(Block, NE);

  if (NE->isArray() && *NE->getArraySize())
    Block = Visit(*NE->getArraySize());

  for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(),
       E = NE->placement_arg_end(); I != E; ++I)
    Block = Visit(*I);

  return Block;
}

CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE,
                                         AddStmtChoice asc) {
  autoCreateBlock();
  appendStmt(Block, DE);
  QualType DTy = DE->getDestroyedType();
  if (!DTy.isNull()) {
    DTy = DTy.getNonReferenceType();
    CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl();
    if (RD) {
      if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor())
        appendDeleteDtor(Block, RD, DE);
    }
  }

  return VisitChildren(DE);
}

CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E,
                                                 AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, E)) {
    autoCreateBlock();
    appendStmt(Block, E);
    // We do not want to propagate the AlwaysAdd property.
    asc = asc.withAlwaysAdd(false);
  }
  return Visit(E->getSubExpr(), asc);
}

CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C,
                                                  AddStmtChoice asc) {
  // If the constructor takes objects as arguments by value, we need to properly
  // construct these objects. Construction contexts we find here aren't for the
  // constructor C, they're for its arguments only.
  findConstructionContextsForArguments(C);

  autoCreateBlock();
  appendConstructor(Block, C);
  return VisitChildren(C);
}

CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E,
                                            AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, E)) {
    autoCreateBlock();
    appendStmt(Block, E);
  }

  if (E->getCastKind() == CK_IntegralToBoolean)
    tryEvaluateBool(E->getSubExpr()->IgnoreParens());

  return Visit(E->getSubExpr(), AddStmtChoice());
}

CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) {
  return Visit(E->getSubExpr(), AddStmtChoice());
}

CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) {
  // Lazily create the indirect-goto dispatch block if there isn't one already.
  CFGBlock *IBlock = cfg->getIndirectGotoBlock();

  if (!IBlock) {
    IBlock = createBlock(false);
    cfg->setIndirectGotoBlock(IBlock);
  }

  // IndirectGoto is a control-flow statement.  Thus we stop processing the
  // current block and create a new one.
  if (badCFG)
    return nullptr;

  Block = createBlock(false);
  Block->setTerminator(I);
  addSuccessor(Block, IBlock);
  return addStmt(I->getTarget());
}

CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed,
                                             TempDtorContext &Context) {
  assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors);

tryAgain:
  if (!E) {
    badCFG = true;
    return nullptr;
  }
  switch (E->getStmtClass()) {
    default:
      return VisitChildrenForTemporaryDtors(E, false, Context);

    case Stmt::InitListExprClass:
      return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);

    case Stmt::BinaryOperatorClass:
      return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E),
                                                  ExternallyDestructed,
                                                  Context);

    case Stmt::CXXBindTemporaryExprClass:
      return VisitCXXBindTemporaryExprForTemporaryDtors(
          cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context);

    case Stmt::BinaryConditionalOperatorClass:
    case Stmt::ConditionalOperatorClass:
      return VisitConditionalOperatorForTemporaryDtors(
          cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context);

    case Stmt::ImplicitCastExprClass:
      // For implicit cast we want ExternallyDestructed to be passed further.
      E = cast<CastExpr>(E)->getSubExpr();
      goto tryAgain;

    case Stmt::CXXFunctionalCastExprClass:
      // For functional cast we want ExternallyDestructed to be passed further.
      E = cast<CXXFunctionalCastExpr>(E)->getSubExpr();
      goto tryAgain;

    case Stmt::ConstantExprClass:
      E = cast<ConstantExpr>(E)->getSubExpr();
      goto tryAgain;

    case Stmt::ParenExprClass:
      E = cast<ParenExpr>(E)->getSubExpr();
      goto tryAgain;

    case Stmt::MaterializeTemporaryExprClass: {
      const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E);
      ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression);
      SmallVector<const Expr *, 2> CommaLHSs;
      SmallVector<SubobjectAdjustment, 2> Adjustments;
      // Find the expression whose lifetime needs to be extended.
      E = const_cast<Expr *>(
          cast<MaterializeTemporaryExpr>(E)
              ->getSubExpr()
              ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments));
      // Visit the skipped comma operator left-hand sides for other temporaries.
      for (const Expr *CommaLHS : CommaLHSs) {
        VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS),
                               /*ExternallyDestructed=*/false, Context);
      }
      goto tryAgain;
    }

    case Stmt::BlockExprClass:
      // Don't recurse into blocks; their subexpressions don't get evaluated
      // here.
      return Block;

    case Stmt::LambdaExprClass: {
      // For lambda expressions, only recurse into the capture initializers,
      // and not the body.
      auto *LE = cast<LambdaExpr>(E);
      CFGBlock *B = Block;
      for (Expr *Init : LE->capture_inits()) {
        if (Init) {
          if (CFGBlock *R = VisitForTemporaryDtors(
                  Init, /*ExternallyDestructed=*/true, Context))
            B = R;
        }
      }
      return B;
    }

    case Stmt::StmtExprClass:
      // Don't recurse into statement expressions; any cleanups inside them
      // will be wrapped in their own ExprWithCleanups.
      return Block;

    case Stmt::CXXDefaultArgExprClass:
      E = cast<CXXDefaultArgExpr>(E)->getExpr();
      goto tryAgain;

    case Stmt::CXXDefaultInitExprClass:
      E = cast<CXXDefaultInitExpr>(E)->getExpr();
      goto tryAgain;
  }
}

CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E,
                                                     bool ExternallyDestructed,
                                                     TempDtorContext &Context) {
  if (isa<LambdaExpr>(E)) {
    // Do not visit the children of lambdas; they have their own CFGs.
    return Block;
  }

  // When visiting children for destructors we want to visit them in reverse
  // order that they will appear in the CFG.  Because the CFG is built
  // bottom-up, this means we visit them in their natural order, which
  // reverses them in the CFG.
  CFGBlock *B = Block;
  for (Stmt *Child : E->children())
    if (Child)
      if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context))
        B = R;

  return B;
}

CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors(
    BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) {
  if (E->isCommaOp()) {
    // For the comma operator, the LHS expression is evaluated before the RHS
    // expression, so prepend temporary destructors for the LHS first.
    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context);
    return RHSBlock ? RHSBlock : LHSBlock;
  }

  if (E->isLogicalOp()) {
    VisitForTemporaryDtors(E->getLHS(), false, Context);
    TryResult RHSExecuted = tryEvaluateBool(E->getLHS());
    if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr)
      RHSExecuted.negate();

    // We do not know at CFG-construction time whether the right-hand-side was
    // executed, thus we add a branch node that depends on the temporary
    // constructor call.
    TempDtorContext RHSContext(
        bothKnownTrue(Context.KnownExecuted, RHSExecuted));
    VisitForTemporaryDtors(E->getRHS(), false, RHSContext);
    InsertTempDtorDecisionBlock(RHSContext);

    return Block;
  }

  if (E->isAssignmentOp()) {
    // For assignment operators, the RHS expression is evaluated before the LHS
    // expression, so prepend temporary destructors for the RHS first.
    CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context);
    CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context);
    return LHSBlock ? LHSBlock : RHSBlock;
  }

  // Any other operator is visited normally.
  return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context);
}

CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors(
    CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) {
  // First add destructors for temporaries in subexpression.
  // Because VisitCXXBindTemporaryExpr calls setDestructed:
  CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context);
  if (!ExternallyDestructed) {
    // If lifetime of temporary is not prolonged (by assigning to constant
    // reference) add destructor for it.

    const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor();

    if (Dtor->getParent()->isAnyDestructorNoReturn()) {
      // If the destructor is marked as a no-return destructor, we need to
      // create a new block for the destructor which does not have as a
      // successor anything built thus far. Control won't flow out of this
      // block.
      if (B) Succ = B;
      Block = createNoReturnBlock();
    } else if (Context.needsTempDtorBranch()) {
      // If we need to introduce a branch, we add a new block that we will hook
      // up to a decision block later.
      if (B) Succ = B;
      Block = createBlock();
    } else {
      autoCreateBlock();
    }
    if (Context.needsTempDtorBranch()) {
      Context.setDecisionPoint(Succ, E);
    }
    appendTemporaryDtor(Block, E);

    B = Block;
  }
  return B;
}

void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context,
                                             CFGBlock *FalseSucc) {
  if (!Context.TerminatorExpr) {
    // If no temporary was found, we do not need to insert a decision point.
    return;
  }
  assert(Context.TerminatorExpr);
  CFGBlock *Decision = createBlock(false);
  Decision->setTerminator(CFGTerminator(Context.TerminatorExpr,
                                        CFGTerminator::TemporaryDtorsBranch));
  addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse());
  addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ,
               !Context.KnownExecuted.isTrue());
  Block = Decision;
}

CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors(
    AbstractConditionalOperator *E, bool ExternallyDestructed,
    TempDtorContext &Context) {
  VisitForTemporaryDtors(E->getCond(), false, Context);
  CFGBlock *ConditionBlock = Block;
  CFGBlock *ConditionSucc = Succ;
  TryResult ConditionVal = tryEvaluateBool(E->getCond());
  TryResult NegatedVal = ConditionVal;
  if (NegatedVal.isKnown()) NegatedVal.negate();

  TempDtorContext TrueContext(
      bothKnownTrue(Context.KnownExecuted, ConditionVal));
  VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext);
  CFGBlock *TrueBlock = Block;

  Block = ConditionBlock;
  Succ = ConditionSucc;
  TempDtorContext FalseContext(
      bothKnownTrue(Context.KnownExecuted, NegatedVal));
  VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext);

  if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) {
    InsertTempDtorDecisionBlock(FalseContext, TrueBlock);
  } else if (TrueContext.TerminatorExpr) {
    Block = TrueBlock;
    InsertTempDtorDecisionBlock(TrueContext);
  } else {
    InsertTempDtorDecisionBlock(FalseContext);
  }
  return Block;
}

CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D,
                                                  AddStmtChoice asc) {
  if (asc.alwaysAdd(*this, D)) {
    autoCreateBlock();
    appendStmt(Block, D);
  }

  // Iterate over all used expression in clauses.
  CFGBlock *B = Block;

  // Reverse the elements to process them in natural order. Iterators are not
  // bidirectional, so we need to create temp vector.
  SmallVector<Stmt *, 8> Used(
      OMPExecutableDirective::used_clauses_children(D->clauses()));
  for (Stmt *S : llvm::reverse(Used)) {
    assert(S && "Expected non-null used-in-clause child.");
    if (CFGBlock *R = Visit(S))
      B = R;
  }
  // Visit associated structured block if any.
  if (!D->isStandaloneDirective()) {
    Stmt *S = D->getRawStmt();
    if (!isa<CompoundStmt>(S))
      addLocalScopeAndDtors(S);
    if (CFGBlock *R = addStmt(S))
      B = R;
  }

  return B;
}

/// createBlock - Constructs and adds a new CFGBlock to the CFG.  The block has
///  no successors or predecessors.  If this is the first block created in the
///  CFG, it is automatically set to be the Entry and Exit of the CFG.
CFGBlock *CFG::createBlock() {
  bool first_block = begin() == end();

  // Create the block.
  CFGBlock *Mem = getAllocator().Allocate<CFGBlock>();
  new (Mem) CFGBlock(NumBlockIDs++, BlkBVC, this);
  Blocks.push_back(Mem, BlkBVC);

  // If this is the first block, set it as the Entry and Exit.
  if (first_block)
    Entry = Exit = &back();

  // Return the block.
  return &back();
}

/// buildCFG - Constructs a CFG from an AST.
std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement,
                                   ASTContext *C, const BuildOptions &BO) {
  CFGBuilder Builder(C, BO);
  return Builder.buildCFG(D, Statement);
}

bool CFG::isLinear() const {
  // Quick path: if we only have the ENTRY block, the EXIT block, and some code
  // in between, then we have no room for control flow.
  if (size() <= 3)
    return true;

  // Traverse the CFG until we find a branch.
  // TODO: While this should still be very fast,
  // maybe we should cache the answer.
  llvm::SmallPtrSet<const CFGBlock *, 4> Visited;
  const CFGBlock *B = Entry;
  while (B != Exit) {
    auto IteratorAndFlag = Visited.insert(B);
    if (!IteratorAndFlag.second) {
      // We looped back to a block that we've already visited. Not linear.
      return false;
    }

    // Iterate over reachable successors.
    const CFGBlock *FirstReachableB = nullptr;
    for (const CFGBlock::AdjacentBlock &AB : B->succs()) {
      if (!AB.isReachable())
        continue;

      if (FirstReachableB == nullptr) {
        FirstReachableB = &*AB;
      } else {
        // We've encountered a branch. It's not a linear CFG.
        return false;
      }
    }

    if (!FirstReachableB) {
      // We reached a dead end. EXIT is unreachable. This is linear enough.
      return true;
    }

    // There's only one way to move forward. Proceed.
    B = FirstReachableB;
  }

  // We reached EXIT and found no branches.
  return true;
}

const CXXDestructorDecl *
CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const {
  switch (getKind()) {
    case CFGElement::Initializer:
    case CFGElement::NewAllocator:
    case CFGElement::LoopExit:
    case CFGElement::LifetimeEnds:
    case CFGElement::Statement:
    case CFGElement::Constructor:
    case CFGElement::CXXRecordTypedCall:
    case CFGElement::ScopeBegin:
    case CFGElement::ScopeEnd:
      llvm_unreachable("getDestructorDecl should only be used with "
                       "ImplicitDtors");
    case CFGElement::AutomaticObjectDtor: {
      const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl();
      QualType ty = var->getType();

      // FIXME: See CFGBuilder::addLocalScopeForVarDecl.
      //
      // Lifetime-extending constructs are handled here. This works for a single
      // temporary in an initializer expression.
      if (ty->isReferenceType()) {
        if (const Expr *Init = var->getInit()) {
          ty = getReferenceInitTemporaryType(Init);
        }
      }

      while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) {
        ty = arrayType->getElementType();
      }

      // The situation when the type of the lifetime-extending reference
      // does not correspond to the type of the object is supposed
      // to be handled by now. In particular, 'ty' is now the unwrapped
      // record type.
      const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl();
      assert(classDecl);
      return classDecl->getDestructor();
    }
    case CFGElement::DeleteDtor: {
      const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr();
      QualType DTy = DE->getDestroyedType();
      DTy = DTy.getNonReferenceType();
      const CXXRecordDecl *classDecl =
          astContext.getBaseElementType(DTy)->getAsCXXRecordDecl();
      return classDecl->getDestructor();
    }
    case CFGElement::TemporaryDtor: {
      const CXXBindTemporaryExpr *bindExpr =
        castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
      const CXXTemporary *temp = bindExpr->getTemporary();
      return temp->getDestructor();
    }
    case CFGElement::BaseDtor:
    case CFGElement::MemberDtor:
      // Not yet supported.
      return nullptr;
  }
  llvm_unreachable("getKind() returned bogus value");
}

//===----------------------------------------------------------------------===//
// CFGBlock operations.
//===----------------------------------------------------------------------===//

CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable)
    : ReachableBlock(IsReachable ? B : nullptr),
      UnreachableBlock(!IsReachable ? B : nullptr,
                       B && IsReachable ? AB_Normal : AB_Unreachable) {}

CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock)
    : ReachableBlock(B),
      UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock,
                       B == AlternateBlock ? AB_Alternate : AB_Normal) {}

void CFGBlock::addSuccessor(AdjacentBlock Succ,
                            BumpVectorContext &C) {
  if (CFGBlock *B = Succ.getReachableBlock())
    B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C);

  if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock())
    UnreachableB->Preds.push_back(AdjacentBlock(this, false), C);

  Succs.push_back(Succ, C);
}

bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F,
        const CFGBlock *From, const CFGBlock *To) {
  if (F.IgnoreNullPredecessors && !From)
    return true;

  if (To && From && F.IgnoreDefaultsWithCoveredEnums) {
    // If the 'To' has no label or is labeled but the label isn't a
    // CaseStmt then filter this edge.
    if (const SwitchStmt *S =
        dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) {
      if (S->isAllEnumCasesCovered()) {
        const Stmt *L = To->getLabel();
        if (!L || !isa<CaseStmt>(L))
          return true;
      }
    }
  }

  return false;
}

//===----------------------------------------------------------------------===//
// CFG pretty printing
//===----------------------------------------------------------------------===//

namespace {

class StmtPrinterHelper : public PrinterHelper  {
  using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>;
  using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>;

  StmtMapTy StmtMap;
  DeclMapTy DeclMap;
  signed currentBlock = 0;
  unsigned currStmt = 0;
  const LangOptions &LangOpts;

public:
  StmtPrinterHelper(const CFG* cfg, const LangOptions &LO)
      : LangOpts(LO) {
    if (!cfg)
      return;
    for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) {
      unsigned j = 1;
      for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ;
           BI != BEnd; ++BI, ++j ) {
        if (Optional<CFGStmt> SE = BI->getAs<CFGStmt>()) {
          const Stmt *stmt= SE->getStmt();
          std::pair<unsigned, unsigned> P((*I)->getBlockID(), j);
          StmtMap[stmt] = P;

          switch (stmt->getStmtClass()) {
            case Stmt::DeclStmtClass:
              DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P;
              break;
            case Stmt::IfStmtClass: {
              const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::ForStmtClass: {
              const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::WhileStmtClass: {
              const VarDecl *var =
                cast<WhileStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::SwitchStmtClass: {
              const VarDecl *var =
                cast<SwitchStmt>(stmt)->getConditionVariable();
              if (var)
                DeclMap[var] = P;
              break;
            }
            case Stmt::CXXCatchStmtClass: {
              const VarDecl *var =
                cast<CXXCatchStmt>(stmt)->getExceptionDecl();
              if (var)
                DeclMap[var] = P;
              break;
            }
            default:
              break;
          }
        }
      }
    }
  }

  ~StmtPrinterHelper() override = default;

  const LangOptions &getLangOpts() const { return LangOpts; }
  void setBlockID(signed i) { currentBlock = i; }
  void setStmtID(unsigned i) { currStmt = i; }

  bool handledStmt(Stmt *S, raw_ostream &OS) override {
    StmtMapTy::iterator I = StmtMap.find(S);

    if (I == StmtMap.end())
      return false;

    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
                          && I->second.second == currStmt) {
      return false;
    }

    OS << "[B" << I->second.first << "." << I->second.second << "]";
    return true;
  }

  bool handleDecl(const Decl *D, raw_ostream &OS) {
    DeclMapTy::iterator I = DeclMap.find(D);

    if (I == DeclMap.end())
      return false;

    if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock
                          && I->second.second == currStmt) {
      return false;
    }

    OS << "[B" << I->second.first << "." << I->second.second << "]";
    return true;
  }
};

class CFGBlockTerminatorPrint
    : public StmtVisitor<CFGBlockTerminatorPrint,void> {
  raw_ostream &OS;
  StmtPrinterHelper* Helper;
  PrintingPolicy Policy;

public:
  CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper,
                          const PrintingPolicy &Policy)
      : OS(os), Helper(helper), Policy(Policy) {
    this->Policy.IncludeNewlines = false;
  }

  void VisitIfStmt(IfStmt *I) {
    OS << "if ";
    if (Stmt *C = I->getCond())
      C->printPretty(OS, Helper, Policy);
  }

  // Default case.
  void VisitStmt(Stmt *Terminator) {
    Terminator->printPretty(OS, Helper, Policy);
  }

  void VisitDeclStmt(DeclStmt *DS) {
    VarDecl *VD = cast<VarDecl>(DS->getSingleDecl());
    OS << "static init " << VD->getName();
  }

  void VisitForStmt(ForStmt *F) {
    OS << "for (" ;
    if (F->getInit())
      OS << "...";
    OS << "; ";
    if (Stmt *C = F->getCond())
      C->printPretty(OS, Helper, Policy);
    OS << "; ";
    if (F->getInc())
      OS << "...";
    OS << ")";
  }

  void VisitWhileStmt(WhileStmt *W) {
    OS << "while " ;
    if (Stmt *C = W->getCond())
      C->printPretty(OS, Helper, Policy);
  }

  void VisitDoStmt(DoStmt *D) {
    OS << "do ... while ";
    if (Stmt *C = D->getCond())
      C->printPretty(OS, Helper, Policy);
  }

  void VisitSwitchStmt(SwitchStmt *Terminator) {
    OS << "switch ";
    Terminator->getCond()->printPretty(OS, Helper, Policy);
  }

  void VisitCXXTryStmt(CXXTryStmt *CS) {
    OS << "try ...";
  }

  void VisitSEHTryStmt(SEHTryStmt *CS) {
    OS << "__try ...";
  }

  void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) {
    if (Stmt *Cond = C->getCond())
      Cond->printPretty(OS, Helper, Policy);
    OS << " ? ... : ...";
  }

  void VisitChooseExpr(ChooseExpr *C) {
    OS << "__builtin_choose_expr( ";
    if (Stmt *Cond = C->getCond())
      Cond->printPretty(OS, Helper, Policy);
    OS << " )";
  }

  void VisitIndirectGotoStmt(IndirectGotoStmt *I) {
    OS << "goto *";
    if (Stmt *T = I->getTarget())
      T->printPretty(OS, Helper, Policy);
  }

  void VisitBinaryOperator(BinaryOperator* B) {
    if (!B->isLogicalOp()) {
      VisitExpr(B);
      return;
    }

    if (B->getLHS())
      B->getLHS()->printPretty(OS, Helper, Policy);

    switch (B->getOpcode()) {
      case BO_LOr:
        OS << " || ...";
        return;
      case BO_LAnd:
        OS << " && ...";
        return;
      default:
        llvm_unreachable("Invalid logical operator.");
    }
  }

  void VisitExpr(Expr *E) {
    E->printPretty(OS, Helper, Policy);
  }

public:
  void print(CFGTerminator T) {
    switch (T.getKind()) {
    case CFGTerminator::StmtBranch:
      Visit(T.getStmt());
      break;
    case CFGTerminator::TemporaryDtorsBranch:
      OS << "(Temp Dtor) ";
      Visit(T.getStmt());
      break;
    case CFGTerminator::VirtualBaseBranch:
      OS << "(See if most derived ctor has already initialized vbases)";
      break;
    }
  }
};

} // namespace

static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper,
                              const CXXCtorInitializer *I) {
  if (I->isBaseInitializer())
    OS << I->getBaseClass()->getAsCXXRecordDecl()->getName();
  else if (I->isDelegatingInitializer())
    OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName();
  else
    OS << I->getAnyMember()->getName();
  OS << "(";
  if (Expr *IE = I->getInit())
    IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));
  OS << ")";

  if (I->isBaseInitializer())
    OS << " (Base initializer)";
  else if (I->isDelegatingInitializer())
    OS << " (Delegating initializer)";
  else
    OS << " (Member initializer)";
}

static void print_construction_context(raw_ostream &OS,
                                       StmtPrinterHelper &Helper,
                                       const ConstructionContext *CC) {
  SmallVector<const Stmt *, 3> Stmts;
  switch (CC->getKind()) {
  case ConstructionContext::SimpleConstructorInitializerKind: {
    OS << ", ";
    const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC);
    print_initializer(OS, Helper, SICC->getCXXCtorInitializer());
    return;
  }
  case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: {
    OS << ", ";
    const auto *CICC =
        cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC);
    print_initializer(OS, Helper, CICC->getCXXCtorInitializer());
    Stmts.push_back(CICC->getCXXBindTemporaryExpr());
    break;
  }
  case ConstructionContext::SimpleVariableKind: {
    const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC);
    Stmts.push_back(SDSCC->getDeclStmt());
    break;
  }
  case ConstructionContext::CXX17ElidedCopyVariableKind: {
    const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC);
    Stmts.push_back(CDSCC->getDeclStmt());
    Stmts.push_back(CDSCC->getCXXBindTemporaryExpr());
    break;
  }
  case ConstructionContext::NewAllocatedObjectKind: {
    const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC);
    Stmts.push_back(NECC->getCXXNewExpr());
    break;
  }
  case ConstructionContext::SimpleReturnedValueKind: {
    const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC);
    Stmts.push_back(RSCC->getReturnStmt());
    break;
  }
  case ConstructionContext::CXX17ElidedCopyReturnedValueKind: {
    const auto *RSCC =
        cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC);
    Stmts.push_back(RSCC->getReturnStmt());
    Stmts.push_back(RSCC->getCXXBindTemporaryExpr());
    break;
  }
  case ConstructionContext::SimpleTemporaryObjectKind: {
    const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC);
    Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
    Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
    break;
  }
  case ConstructionContext::ElidedTemporaryObjectKind: {
    const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC);
    Stmts.push_back(TOCC->getCXXBindTemporaryExpr());
    Stmts.push_back(TOCC->getMaterializedTemporaryExpr());
    Stmts.push_back(TOCC->getConstructorAfterElision());
    break;
  }
  case ConstructionContext::ArgumentKind: {
    const auto *ACC = cast<ArgumentConstructionContext>(CC);
    if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) {
      OS << ", ";
      Helper.handledStmt(const_cast<Stmt *>(BTE), OS);
    }
    OS << ", ";
    Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS);
    OS << "+" << ACC->getIndex();
    return;
  }
  }
  for (auto I: Stmts)
    if (I) {
      OS << ", ";
      Helper.handledStmt(const_cast<Stmt *>(I), OS);
    }
}

static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
                       const CFGElement &E);

void CFGElement::dumpToStream(llvm::raw_ostream &OS) const {
  StmtPrinterHelper Helper(nullptr, {});
  print_elem(OS, Helper, *this);
}

static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper,
                       const CFGElement &E) {
  switch (E.getKind()) {
  case CFGElement::Kind::Statement:
  case CFGElement::Kind::CXXRecordTypedCall:
  case CFGElement::Kind::Constructor: {
    CFGStmt CS = E.castAs<CFGStmt>();
    const Stmt *S = CS.getStmt();
    assert(S != nullptr && "Expecting non-null Stmt");

    // special printing for statement-expressions.
    if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) {
      const CompoundStmt *Sub = SE->getSubStmt();

      auto Children = Sub->children();
      if (Children.begin() != Children.end()) {
        OS << "({ ... ; ";
        Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS);
        OS << " })\n";
        return;
      }
    }
    // special printing for comma expressions.
    if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) {
      if (B->getOpcode() == BO_Comma) {
        OS << "... , ";
        Helper.handledStmt(B->getRHS(),OS);
        OS << '\n';
        return;
      }
    }
    S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts()));

    if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) {
      if (isa<CXXOperatorCallExpr>(S))
        OS << " (OperatorCall)";
      OS << " (CXXRecordTypedCall";
      print_construction_context(OS, Helper, VTC->getConstructionContext());
      OS << ")";
    } else if (isa<CXXOperatorCallExpr>(S)) {
      OS << " (OperatorCall)";
    } else if (isa<CXXBindTemporaryExpr>(S)) {
      OS << " (BindTemporary)";
    } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) {
      OS << " (CXXConstructExpr";
      if (Optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) {
        print_construction_context(OS, Helper, CE->getConstructionContext());
      }
      OS << ", " << CCE->getType().getAsString() << ")";
    } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) {
      OS << " (" << CE->getStmtClassName() << ", "
         << CE->getCastKindName()
         << ", " << CE->getType().getAsString()
         << ")";
    }

    // Expressions need a newline.
    if (isa<Expr>(S))
      OS << '\n';

    break;
  }

  case CFGElement::Kind::Initializer:
    print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer());
    OS << '\n';
    break;

  case CFGElement::Kind::AutomaticObjectDtor: {
    CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>();
    const VarDecl *VD = DE.getVarDecl();
    Helper.handleDecl(VD, OS);

    QualType T = VD->getType();
    if (T->isReferenceType())
      T = getReferenceInitTemporaryType(VD->getInit(), nullptr);

    OS << ".~";
    T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts()));
    OS << "() (Implicit destructor)\n";
    break;
  }

  case CFGElement::Kind::LifetimeEnds:
    Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS);
    OS << " (Lifetime ends)\n";
    break;

  case CFGElement::Kind::LoopExit:
    OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n";
    break;

  case CFGElement::Kind::ScopeBegin:
    OS << "CFGScopeBegin(";
    if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl())
      OS << VD->getQualifiedNameAsString();
    OS << ")\n";
    break;

  case CFGElement::Kind::ScopeEnd:
    OS << "CFGScopeEnd(";
    if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl())
      OS << VD->getQualifiedNameAsString();
    OS << ")\n";
    break;

  case CFGElement::Kind::NewAllocator:
    OS << "CFGNewAllocator(";
    if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr())
      AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
    OS << ")\n";
    break;

  case CFGElement::Kind::DeleteDtor: {
    CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>();
    const CXXRecordDecl *RD = DE.getCXXRecordDecl();
    if (!RD)
      return;
    CXXDeleteExpr *DelExpr =
        const_cast<CXXDeleteExpr*>(DE.getDeleteExpr());
    Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS);
    OS << "->~" << RD->getName().str() << "()";
    OS << " (Implicit destructor)\n";
    break;
  }

  case CFGElement::Kind::BaseDtor: {
    const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier();
    OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()";
    OS << " (Base object destructor)\n";
    break;
  }

  case CFGElement::Kind::MemberDtor: {
    const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl();
    const Type *T = FD->getType()->getBaseElementTypeUnsafe();
    OS << "this->" << FD->getName();
    OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()";
    OS << " (Member object destructor)\n";
    break;
  }

  case CFGElement::Kind::TemporaryDtor: {
    const CXXBindTemporaryExpr *BT = E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr();
    OS << "~";
    BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts()));
    OS << "() (Temporary object destructor)\n";
    break;
  }
  }
}

static void print_block(raw_ostream &OS, const CFG* cfg,
                        const CFGBlock &B,
                        StmtPrinterHelper &Helper, bool print_edges,
                        bool ShowColors) {
  Helper.setBlockID(B.getBlockID());

  // Print the header.
  if (ShowColors)
    OS.changeColor(raw_ostream::YELLOW, true);

  OS << "\n [B" << B.getBlockID();

  if (&B == &cfg->getEntry())
    OS << " (ENTRY)]\n";
  else if (&B == &cfg->getExit())
    OS << " (EXIT)]\n";
  else if (&B == cfg->getIndirectGotoBlock())
    OS << " (INDIRECT GOTO DISPATCH)]\n";
  else if (B.hasNoReturnElement())
    OS << " (NORETURN)]\n";
  else
    OS << "]\n";

  if (ShowColors)
    OS.resetColor();

  // Print the label of this block.
  if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) {
    if (print_edges)
      OS << "  ";

    if (LabelStmt *L = dyn_cast<LabelStmt>(Label))
      OS << L->getName();
    else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) {
      OS << "case ";
      if (C->getLHS())
        C->getLHS()->printPretty(OS, &Helper,
                                 PrintingPolicy(Helper.getLangOpts()));
      if (C->getRHS()) {
        OS << " ... ";
        C->getRHS()->printPretty(OS, &Helper,
                                 PrintingPolicy(Helper.getLangOpts()));
      }
    } else if (isa<DefaultStmt>(Label))
      OS << "default";
    else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) {
      OS << "catch (";
      if (CS->getExceptionDecl())
        CS->getExceptionDecl()->print(OS, PrintingPolicy(Helper.getLangOpts()),
                                      0);
      else
        OS << "...";
      OS << ")";
    } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) {
      OS << "__except (";
      ES->getFilterExpr()->printPretty(OS, &Helper,
                                       PrintingPolicy(Helper.getLangOpts()), 0);
      OS << ")";
    } else
      llvm_unreachable("Invalid label statement in CFGBlock.");

    OS << ":\n";
  }

  // Iterate through the statements in the block and print them.
  unsigned j = 1;

  for (CFGBlock::const_iterator I = B.begin(), E = B.end() ;
       I != E ; ++I, ++j ) {
    // Print the statement # in the basic block and the statement itself.
    if (print_edges)
      OS << " ";

    OS << llvm::format("%3d", j) << ": ";

    Helper.setStmtID(j);

    print_elem(OS, Helper, *I);
  }

  // Print the terminator of this block.
  if (B.getTerminator().isValid()) {
    if (ShowColors)
      OS.changeColor(raw_ostream::GREEN);

    OS << "   T: ";

    Helper.setBlockID(-1);

    PrintingPolicy PP(Helper.getLangOpts());
    CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP);
    TPrinter.print(B.getTerminator());
    OS << '\n';

    if (ShowColors)
      OS.resetColor();
  }

  if (print_edges) {
    // Print the predecessors of this block.
    if (!B.pred_empty()) {
      const raw_ostream::Colors Color = raw_ostream::BLUE;
      if (ShowColors)
        OS.changeColor(Color);
      OS << "   Preds " ;
      if (ShowColors)
        OS.resetColor();
      OS << '(' << B.pred_size() << "):";
      unsigned i = 0;

      if (ShowColors)
        OS.changeColor(Color);

      for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end();
           I != E; ++I, ++i) {
        if (i % 10 == 8)
          OS << "\n     ";

        CFGBlock *B = *I;
        bool Reachable = true;
        if (!B) {
          Reachable = false;
          B = I->getPossiblyUnreachableBlock();
        }

        OS << " B" << B->getBlockID();
        if (!Reachable)
          OS << "(Unreachable)";
      }

      if (ShowColors)
        OS.resetColor();

      OS << '\n';
    }

    // Print the successors of this block.
    if (!B.succ_empty()) {
      const raw_ostream::Colors Color = raw_ostream::MAGENTA;
      if (ShowColors)
        OS.changeColor(Color);
      OS << "   Succs ";
      if (ShowColors)
        OS.resetColor();
      OS << '(' << B.succ_size() << "):";
      unsigned i = 0;

      if (ShowColors)
        OS.changeColor(Color);

      for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end();
           I != E; ++I, ++i) {
        if (i % 10 == 8)
          OS << "\n    ";

        CFGBlock *B = *I;

        bool Reachable = true;
        if (!B) {
          Reachable = false;
          B = I->getPossiblyUnreachableBlock();
        }

        if (B) {
          OS << " B" << B->getBlockID();
          if (!Reachable)
            OS << "(Unreachable)";
        }
        else {
          OS << " NULL";
        }
      }

      if (ShowColors)
        OS.resetColor();
      OS << '\n';
    }
  }
}

/// dump - A simple pretty printer of a CFG that outputs to stderr.
void CFG::dump(const LangOptions &LO, bool ShowColors) const {
  print(llvm::errs(), LO, ShowColors);
}

/// print - A simple pretty printer of a CFG that outputs to an ostream.
void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const {
  StmtPrinterHelper Helper(this, LO);

  // Print the entry block.
  print_block(OS, this, getEntry(), Helper, true, ShowColors);

  // Iterate through the CFGBlocks and print them one by one.
  for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) {
    // Skip the entry block, because we already printed it.
    if (&(**I) == &getEntry() || &(**I) == &getExit())
      continue;

    print_block(OS, this, **I, Helper, true, ShowColors);
  }

  // Print the exit block.
  print_block(OS, this, getExit(), Helper, true, ShowColors);
  OS << '\n';
  OS.flush();
}

size_t CFGBlock::getIndexInCFG() const {
  return llvm::find(*getParent(), this) - getParent()->begin();
}

/// dump - A simply pretty printer of a CFGBlock that outputs to stderr.
void CFGBlock::dump(const CFG* cfg, const LangOptions &LO,
                    bool ShowColors) const {
  print(llvm::errs(), cfg, LO, ShowColors);
}

LLVM_DUMP_METHOD void CFGBlock::dump() const {
  dump(getParent(), LangOptions(), false);
}

/// print - A simple pretty printer of a CFGBlock that outputs to an ostream.
///   Generally this will only be called from CFG::print.
void CFGBlock::print(raw_ostream &OS, const CFG* cfg,
                     const LangOptions &LO, bool ShowColors) const {
  StmtPrinterHelper Helper(cfg, LO);
  print_block(OS, cfg, *this, Helper, true, ShowColors);
  OS << '\n';
}

/// printTerminator - A simple pretty printer of the terminator of a CFGBlock.
void CFGBlock::printTerminator(raw_ostream &OS,
                               const LangOptions &LO) const {
  CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO));
  TPrinter.print(getTerminator());
}

/// printTerminatorJson - Pretty-prints the terminator in JSON format.
void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO,
                                   bool AddQuotes) const {
  std::string Buf;
  llvm::raw_string_ostream TempOut(Buf);

  printTerminator(TempOut, LO);

  Out << JsonFormat(TempOut.str(), AddQuotes);
}

// Returns true if by simply looking at the block, we can be sure that it
// results in a sink during analysis. This is useful to know when the analysis
// was interrupted, and we try to figure out if it would sink eventually.
// There may be many more reasons why a sink would appear during analysis
// (eg. checkers may generate sinks arbitrarily), but here we only consider
// sinks that would be obvious by looking at the CFG.
static bool isImmediateSinkBlock(const CFGBlock *Blk) {
  if (Blk->hasNoReturnElement())
    return true;

  // FIXME: Throw-expressions are currently generating sinks during analysis:
  // they're not supported yet, and also often used for actually terminating
  // the program. So we should treat them as sinks in this analysis as well,
  // at least for now, but once we have better support for exceptions,
  // we'd need to carefully handle the case when the throw is being
  // immediately caught.
  if (std::any_of(Blk->begin(), Blk->end(), [](const CFGElement &Elm) {
        if (Optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>())
          if (isa<CXXThrowExpr>(StmtElm->getStmt()))
            return true;
        return false;
      }))
    return true;

  return false;
}

bool CFGBlock::isInevitablySinking() const {
  const CFG &Cfg = *getParent();

  const CFGBlock *StartBlk = this;
  if (isImmediateSinkBlock(StartBlk))
    return true;

  llvm::SmallVector<const CFGBlock *, 32> DFSWorkList;
  llvm::SmallPtrSet<const CFGBlock *, 32> Visited;

  DFSWorkList.push_back(StartBlk);
  while (!DFSWorkList.empty()) {
    const CFGBlock *Blk = DFSWorkList.back();
    DFSWorkList.pop_back();
    Visited.insert(Blk);

    // If at least one path reaches the CFG exit, it means that control is
    // returned to the caller. For now, say that we are not sure what
    // happens next. If necessary, this can be improved to analyze
    // the parent StackFrameContext's call site in a similar manner.
    if (Blk == &Cfg.getExit())
      return false;

    for (const auto &Succ : Blk->succs()) {
      if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) {
        if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) {
          // If the block has reachable child blocks that aren't no-return,
          // add them to the worklist.
          DFSWorkList.push_back(SuccBlk);
        }
      }
    }
  }

  // Nothing reached the exit. It can only mean one thing: there's no return.
  return true;
}

const Expr *CFGBlock::getLastCondition() const {
  // If the terminator is a temporary dtor or a virtual base, etc, we can't
  // retrieve a meaningful condition, bail out.
  if (Terminator.getKind() != CFGTerminator::StmtBranch)
    return nullptr;

  // Also, if this method was called on a block that doesn't have 2 successors,
  // this block doesn't have retrievable condition.
  if (succ_size() < 2)
    return nullptr;

  // FIXME: Is there a better condition expression we can return in this case?
  if (size() == 0)
    return nullptr;

  auto StmtElem = rbegin()->getAs<CFGStmt>();
  if (!StmtElem)
    return nullptr;

  const Stmt *Cond = StmtElem->getStmt();
  if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond))
    return nullptr;

  // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence
  // the cast<>.
  return cast<Expr>(Cond)->IgnoreParens();
}

Stmt *CFGBlock::getTerminatorCondition(bool StripParens) {
  Stmt *Terminator = getTerminatorStmt();
  if (!Terminator)
    return nullptr;

  Expr *E = nullptr;

  switch (Terminator->getStmtClass()) {
    default:
      break;

    case Stmt::CXXForRangeStmtClass:
      E = cast<CXXForRangeStmt>(Terminator)->getCond();
      break;

    case Stmt::ForStmtClass:
      E = cast<ForStmt>(Terminator)->getCond();
      break;

    case Stmt::WhileStmtClass:
      E = cast<WhileStmt>(Terminator)->getCond();
      break;

    case Stmt::DoStmtClass:
      E = cast<DoStmt>(Terminator)->getCond();
      break;

    case Stmt::IfStmtClass:
      E = cast<IfStmt>(Terminator)->getCond();
      break;

    case Stmt::ChooseExprClass:
      E = cast<ChooseExpr>(Terminator)->getCond();
      break;

    case Stmt::IndirectGotoStmtClass:
      E = cast<IndirectGotoStmt>(Terminator)->getTarget();
      break;

    case Stmt::SwitchStmtClass:
      E = cast<SwitchStmt>(Terminator)->getCond();
      break;

    case Stmt::BinaryConditionalOperatorClass:
      E = cast<BinaryConditionalOperator>(Terminator)->getCond();
      break;

    case Stmt::ConditionalOperatorClass:
      E = cast<ConditionalOperator>(Terminator)->getCond();
      break;

    case Stmt::BinaryOperatorClass: // '&&' and '||'
      E = cast<BinaryOperator>(Terminator)->getLHS();
      break;

    case Stmt::ObjCForCollectionStmtClass:
      return Terminator;
  }

  if (!StripParens)
    return E;

  return E ? E->IgnoreParens() : nullptr;
}

//===----------------------------------------------------------------------===//
// CFG Graphviz Visualization
//===----------------------------------------------------------------------===//

#ifndef NDEBUG
static StmtPrinterHelper* GraphHelper;
#endif

void CFG::viewCFG(const LangOptions &LO) const {
#ifndef NDEBUG
  StmtPrinterHelper H(this, LO);
  GraphHelper = &H;
  llvm::ViewGraph(this,"CFG");
  GraphHelper = nullptr;
#endif
}

namespace llvm {

template<>
struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits {
  DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}

  static std::string getNodeLabel(const CFGBlock *Node, const CFG* Graph) {
#ifndef NDEBUG
    std::string OutSStr;
    llvm::raw_string_ostream Out(OutSStr);
    print_block(Out,Graph, *Node, *GraphHelper, false, false);
    std::string& OutStr = Out.str();

    if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());

    // Process string output to make it nicer...
    for (unsigned i = 0; i != OutStr.length(); ++i)
      if (OutStr[i] == '\n') {                            // Left justify
        OutStr[i] = '\\';
        OutStr.insert(OutStr.begin()+i+1, 'l');
      }

    return OutStr;
#else
    return {};
#endif
  }
};

} // namespace llvm