basic-parsers.h
30.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
//===-- lib/Parser/basic-parsers.h ------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef FORTRAN_PARSER_BASIC_PARSERS_H_
#define FORTRAN_PARSER_BASIC_PARSERS_H_
// Let a "parser" be an instance of any class that supports this
// type definition and member (or static) function:
//
// using resultType = ...;
// std::optional<resultType> Parse(ParseState &) const;
//
// which either returns a value to signify a successful recognition or else
// returns {} to signify failure. On failure, the state cannot be assumed
// to still be valid, in general -- see below for exceptions.
//
// This header defines the fundamental parser class templates and helper
// template functions. See parser-combinators.txt for documentation.
#include "flang/Common/Fortran-features.h"
#include "flang/Common/idioms.h"
#include "flang/Common/indirection.h"
#include "flang/Parser/char-block.h"
#include "flang/Parser/message.h"
#include "flang/Parser/parse-state.h"
#include "flang/Parser/provenance.h"
#include "flang/Parser/user-state.h"
#include <cstring>
#include <functional>
#include <list>
#include <memory>
#include <optional>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
namespace Fortran::parser {
// fail<A>("..."_err_en_US) returns a parser that never succeeds. It reports an
// error message at the current position. The result type is unused,
// but might have to be specified at the point of call to satisfy
// the type checker. The state remains valid.
template <typename A> class FailParser {
public:
using resultType = A;
constexpr FailParser(const FailParser &) = default;
constexpr explicit FailParser(MessageFixedText t) : text_{t} {}
std::optional<A> Parse(ParseState &state) const {
state.Say(text_);
return std::nullopt;
}
private:
const MessageFixedText text_;
};
template <typename A = Success> inline constexpr auto fail(MessageFixedText t) {
return FailParser<A>{t};
}
// pure(x) returns a parser that always succeeds, does not advance the
// parse, and returns a captured value x whose type must be copy-constructible.
//
// pure<A>() is essentially pure(A{}); it returns a default-constructed A{},
// and works even when A is not copy-constructible.
template <typename A> class PureParser {
public:
using resultType = A;
constexpr PureParser(const PureParser &) = default;
constexpr explicit PureParser(A &&x) : value_(std::move(x)) {}
std::optional<A> Parse(ParseState &) const { return value_; }
private:
const A value_;
};
template <typename A> inline constexpr auto pure(A x) {
return PureParser<A>(std::move(x));
}
template <typename A> class PureDefaultParser {
public:
using resultType = A;
constexpr PureDefaultParser(const PureDefaultParser &) = default;
constexpr PureDefaultParser() {}
std::optional<A> Parse(ParseState &) const { return std::make_optional<A>(); }
};
template <typename A> inline constexpr auto pure() {
return PureDefaultParser<A>();
}
// If a is a parser, attempt(a) is the same parser, but on failure
// the ParseState is guaranteed to have been restored to its initial value.
template <typename A> class BacktrackingParser {
public:
using resultType = typename A::resultType;
constexpr BacktrackingParser(const BacktrackingParser &) = default;
constexpr BacktrackingParser(const A &parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
Messages messages{std::move(state.messages())};
ParseState backtrack{state};
std::optional<resultType> result{parser_.Parse(state)};
if (result) {
state.messages().Restore(std::move(messages));
} else {
state = std::move(backtrack);
state.messages() = std::move(messages);
}
return result;
}
private:
const A parser_;
};
template <typename A> inline constexpr auto attempt(const A &parser) {
return BacktrackingParser<A>{parser};
}
// For any parser x, the parser returned by !x is one that succeeds when
// x fails, returning a useless (but present) result. !x fails when x succeeds.
template <typename PA> class NegatedParser {
public:
using resultType = Success;
constexpr NegatedParser(const NegatedParser &) = default;
constexpr NegatedParser(PA p) : parser_{p} {}
std::optional<Success> Parse(ParseState &state) const {
ParseState forked{state};
forked.set_deferMessages(true);
if (parser_.Parse(forked)) {
return std::nullopt;
}
return Success{};
}
private:
const PA parser_;
};
template <typename PA, typename = typename PA::resultType>
constexpr auto operator!(PA p) {
return NegatedParser<PA>(p);
}
// For any parser x, the parser returned by lookAhead(x) is one that succeeds
// or fails if x does, but the state is not modified.
template <typename PA> class LookAheadParser {
public:
using resultType = Success;
constexpr LookAheadParser(const LookAheadParser &) = default;
constexpr LookAheadParser(PA p) : parser_{p} {}
std::optional<Success> Parse(ParseState &state) const {
ParseState forked{state};
forked.set_deferMessages(true);
if (parser_.Parse(forked)) {
return Success{};
}
return std::nullopt;
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto lookAhead(PA p) {
return LookAheadParser<PA>{p};
}
// If a is a parser, inContext("..."_en_US, a) runs it in a nested message
// context.
template <typename PA> class MessageContextParser {
public:
using resultType = typename PA::resultType;
constexpr MessageContextParser(const MessageContextParser &) = default;
constexpr MessageContextParser(MessageFixedText t, PA p)
: text_{t}, parser_{p} {}
std::optional<resultType> Parse(ParseState &state) const {
state.PushContext(text_);
std::optional<resultType> result{parser_.Parse(state)};
state.PopContext();
return result;
}
private:
const MessageFixedText text_;
const PA parser_;
};
template <typename PA>
inline constexpr auto inContext(MessageFixedText context, PA parser) {
return MessageContextParser{context, parser};
}
// If a is a parser, withMessage("..."_en_US, a) runs it unchanged if it
// succeeds, and overrides its messages with a specific one if it fails and
// has matched no tokens.
template <typename PA> class WithMessageParser {
public:
using resultType = typename PA::resultType;
constexpr WithMessageParser(const WithMessageParser &) = default;
constexpr WithMessageParser(MessageFixedText t, PA p)
: text_{t}, parser_{p} {}
std::optional<resultType> Parse(ParseState &state) const {
Messages messages{std::move(state.messages())};
ParseState backtrack{state};
state.set_anyTokenMatched(false);
std::optional<resultType> result{parser_.Parse(state)};
bool emitMessage{false};
if (result) {
messages.Annex(std::move(state.messages()));
if (backtrack.anyTokenMatched()) {
state.set_anyTokenMatched();
}
} else if (state.anyTokenMatched()) {
emitMessage = state.messages().empty();
messages.Annex(std::move(state.messages()));
backtrack.set_anyTokenMatched();
if (state.anyDeferredMessages()) {
backtrack.set_anyDeferredMessages(true);
}
state = std::move(backtrack);
} else {
emitMessage = true;
}
state.messages() = std::move(messages);
if (emitMessage) {
state.Say(text_);
}
return result;
}
private:
const MessageFixedText text_;
const PA parser_;
};
template <typename PA>
inline constexpr auto withMessage(MessageFixedText msg, PA parser) {
return WithMessageParser{msg, parser};
}
// If a and b are parsers, then a >> b returns a parser that succeeds when
// b succeeds after a does so, but fails when either a or b does. The
// result is taken from b. Similarly, a / b also succeeds if both a and b
// do so, but the result is that returned by a.
template <typename PA, typename PB> class SequenceParser {
public:
using resultType = typename PB::resultType;
constexpr SequenceParser(const SequenceParser &) = default;
constexpr SequenceParser(PA pa, PB pb) : pa_{pa}, pb2_{pb} {}
std::optional<resultType> Parse(ParseState &state) const {
if (pa_.Parse(state)) {
return pb2_.Parse(state);
} else {
return std::nullopt;
}
}
private:
const PA pa_;
const PB pb2_;
};
template <typename PA, typename PB>
inline constexpr auto operator>>(PA pa, PB pb) {
return SequenceParser<PA, PB>{pa, pb};
}
template <typename PA, typename PB> class FollowParser {
public:
using resultType = typename PA::resultType;
constexpr FollowParser(const FollowParser &) = default;
constexpr FollowParser(PA pa, PB pb) : pa_{pa}, pb_{pb} {}
std::optional<resultType> Parse(ParseState &state) const {
if (std::optional<resultType> ax{pa_.Parse(state)}) {
if (pb_.Parse(state)) {
return ax;
}
}
return std::nullopt;
}
private:
const PA pa_;
const PB pb_;
};
template <typename PA, typename PB>
inline constexpr auto operator/(PA pa, PB pb) {
return FollowParser<PA, PB>{pa, pb};
}
template <typename PA, typename... Ps> class AlternativesParser {
public:
using resultType = typename PA::resultType;
constexpr AlternativesParser(PA pa, Ps... ps) : ps_{pa, ps...} {}
constexpr AlternativesParser(const AlternativesParser &) = default;
std::optional<resultType> Parse(ParseState &state) const {
Messages messages{std::move(state.messages())};
ParseState backtrack{state};
std::optional<resultType> result{std::get<0>(ps_).Parse(state)};
if constexpr (sizeof...(Ps) > 0) {
if (!result) {
ParseRest<1>(result, state, backtrack);
}
}
state.messages().Restore(std::move(messages));
return result;
}
private:
template <int J>
void ParseRest(std::optional<resultType> &result, ParseState &state,
ParseState &backtrack) const {
ParseState prevState{std::move(state)};
state = backtrack;
result = std::get<J>(ps_).Parse(state);
if (!result) {
state.CombineFailedParses(std::move(prevState));
if constexpr (J < sizeof...(Ps)) {
ParseRest<J + 1>(result, state, backtrack);
}
}
}
const std::tuple<PA, Ps...> ps_;
};
template <typename... Ps> inline constexpr auto first(Ps... ps) {
return AlternativesParser<Ps...>{ps...};
}
template <typename PA, typename PB>
inline constexpr auto operator||(PA pa, PB pb) {
return AlternativesParser<PA, PB>{pa, pb};
}
// If a and b are parsers, then recovery(a,b) returns a parser that succeeds if
// a does so, or if a fails and b succeeds. If a succeeds, b is not attempted.
// All messages from the first parse are retained.
// The two parsers must return values of the same type.
template <typename PA, typename PB> class RecoveryParser {
public:
using resultType = typename PA::resultType;
static_assert(std::is_same_v<resultType, typename PB::resultType>);
constexpr RecoveryParser(const RecoveryParser &) = default;
constexpr RecoveryParser(PA pa, PB pb) : pa_{pa}, pb3_{pb} {}
std::optional<resultType> Parse(ParseState &state) const {
bool originallyDeferred{state.deferMessages()};
ParseState backtrack{state};
if (!originallyDeferred && state.messages().empty() &&
!state.anyErrorRecovery()) {
// Fast path. There are no messages or recovered errors in the incoming
// state. Attempt to parse with messages deferred, expecting that the
// parse will succeed silently.
state.set_deferMessages(true);
if (std::optional<resultType> ax{pa_.Parse(state)}) {
if (!state.anyDeferredMessages() && !state.anyErrorRecovery()) {
state.set_deferMessages(false);
return ax;
}
}
state = backtrack;
}
Messages messages{std::move(state.messages())};
if (std::optional<resultType> ax{pa_.Parse(state)}) {
state.messages().Restore(std::move(messages));
return ax;
}
messages.Annex(std::move(state.messages()));
bool hadDeferredMessages{state.anyDeferredMessages()};
bool anyTokenMatched{state.anyTokenMatched()};
state = std::move(backtrack);
state.set_deferMessages(true);
std::optional<resultType> bx{pb3_.Parse(state)};
state.messages() = std::move(messages);
state.set_deferMessages(originallyDeferred);
if (anyTokenMatched) {
state.set_anyTokenMatched();
}
if (hadDeferredMessages) {
state.set_anyDeferredMessages();
}
if (bx) {
// Error recovery situations must also produce messages.
CHECK(state.anyDeferredMessages() || state.messages().AnyFatalError());
state.set_anyErrorRecovery();
}
return bx;
}
private:
const PA pa_;
const PB pb3_;
};
template <typename PA, typename PB>
inline constexpr auto recovery(PA pa, PB pb) {
return RecoveryParser<PA, PB>{pa, pb};
}
// If x is a parser, then many(x) returns a parser that always succeeds
// and whose value is a list, possibly empty, of the values returned from
// repeated application of x until it fails or does not advance the parse.
template <typename PA> class ManyParser {
using paType = typename PA::resultType;
public:
using resultType = std::list<paType>;
constexpr ManyParser(const ManyParser &) = default;
constexpr ManyParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
resultType result;
auto at{state.GetLocation()};
while (std::optional<paType> x{parser_.Parse(state)}) {
result.emplace_back(std::move(*x));
if (state.GetLocation() <= at) {
break; // no forward progress, don't loop
}
at = state.GetLocation();
}
return {std::move(result)};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto many(PA parser) {
return ManyParser<PA>{parser};
}
// If x is a parser, then some(x) returns a parser that succeeds if x does
// and whose value is a nonempty list of the values returned from repeated
// application of x until it fails or does not advance the parse. In other
// words, some(x) is a variant of many(x) that has to succeed at least once.
template <typename PA> class SomeParser {
using paType = typename PA::resultType;
public:
using resultType = std::list<paType>;
constexpr SomeParser(const SomeParser &) = default;
constexpr SomeParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
auto start{state.GetLocation()};
if (std::optional<paType> first{parser_.Parse(state)}) {
resultType result;
result.emplace_back(std::move(*first));
if (state.GetLocation() > start) {
result.splice(result.end(), many(parser_).Parse(state).value());
}
return {std::move(result)};
}
return std::nullopt;
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto some(PA parser) {
return SomeParser<PA>{parser};
}
// If x is a parser, skipMany(x) is equivalent to many(x) but with no result.
template <typename PA> class SkipManyParser {
public:
using resultType = Success;
constexpr SkipManyParser(const SkipManyParser &) = default;
constexpr SkipManyParser(PA parser) : parser_{parser} {}
std::optional<Success> Parse(ParseState &state) const {
for (auto at{state.GetLocation()};
parser_.Parse(state) && state.GetLocation() > at;
at = state.GetLocation()) {
}
return Success{};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto skipMany(PA parser) {
return SkipManyParser<PA>{parser};
}
// If x is a parser, skipManyFast(x) is equivalent to skipMany(x).
// The parser x must always advance on success and never invalidate the
// state on failure.
template <typename PA> class SkipManyFastParser {
public:
using resultType = Success;
constexpr SkipManyFastParser(const SkipManyFastParser &) = default;
constexpr SkipManyFastParser(PA parser) : parser_{parser} {}
std::optional<Success> Parse(ParseState &state) const {
while (parser_.Parse(state)) {
}
return Success{};
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto skipManyFast(PA parser) {
return SkipManyFastParser<PA>{parser};
}
// If x is a parser returning some type A, then maybe(x) returns a
// parser that returns std::optional<A>, always succeeding.
template <typename PA> class MaybeParser {
using paType = typename PA::resultType;
public:
using resultType = std::optional<paType>;
constexpr MaybeParser(const MaybeParser &) = default;
constexpr MaybeParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
if (resultType result{parser_.Parse(state)}) {
// permit optional<optional<...>>
return {std::move(result)};
}
return resultType{};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto maybe(PA parser) {
return MaybeParser<PA>{parser};
}
// If x is a parser, then defaulted(x) returns a parser that always
// succeeds. When x succeeds, its result is that of x; otherwise, its
// result is a default-constructed value of x's result type.
template <typename PA> class DefaultedParser {
public:
using resultType = typename PA::resultType;
constexpr DefaultedParser(const DefaultedParser &) = default;
constexpr DefaultedParser(PA p) : parser_{p} {}
std::optional<resultType> Parse(ParseState &state) const {
std::optional<std::optional<resultType>> ax{maybe(parser_).Parse(state)};
if (ax.value()) { // maybe() always succeeds
return std::move(*ax);
}
return resultType{};
}
private:
const BacktrackingParser<PA> parser_;
};
template <typename PA> inline constexpr auto defaulted(PA p) {
return DefaultedParser<PA>(p);
}
// If a is a parser, and f is a function mapping an rvalue of a's result type
// to some other type T, then applyFunction(f, a) returns a parser that succeeds
// iff a does, and whose result value ax has been passed through the function;
// the final result is that returned by the call f(std::move(ax)).
//
// Function application is generalized to functions with more than one
// argument with applyFunction(f, a, b, ...) succeeding if all of the parsers
// a, b, &c. do so, and the result is the value of applying f to their
// results.
//
// applyLambda(f, ...) is the same concept extended to std::function<> functors.
// It is not constexpr.
//
// Member function application is supported by applyMem(f, a). If the
// parser a succeeds and returns some value ax, the result is that returned
// by ax.f(). Additional parser arguments can be specified to supply their
// results to the member function call, so applyMem(f, a, b) succeeds if
// both a and b do so and returns the result of calling ax.f(std::move(bx)).
// Runs a sequence of parsers until one fails or all have succeeded.
// Collects their results in a std::tuple<std::optional<>...>.
template <typename... PARSER>
using ApplyArgs = std::tuple<std::optional<typename PARSER::resultType>...>;
template <typename... PARSER, std::size_t... J>
inline bool ApplyHelperArgs(const std::tuple<PARSER...> &parsers,
ApplyArgs<PARSER...> &args, ParseState &state, std::index_sequence<J...>) {
return (... &&
(std::get<J>(args) = std::get<J>(parsers).Parse(state),
std::get<J>(args).has_value()));
}
// Applies a function to the arguments collected by ApplyHelperArgs.
template <typename RESULT, typename... PARSER>
using ApplicableFunctionPointer = RESULT (*)(typename PARSER::resultType &&...);
template <typename RESULT, typename... PARSER>
using ApplicableFunctionObject =
const std::function<RESULT(typename PARSER::resultType &&...)> &;
template <template <typename...> class FUNCTION, typename RESULT,
typename... PARSER, std::size_t... J>
inline RESULT ApplyHelperFunction(FUNCTION<RESULT, PARSER...> f,
ApplyArgs<PARSER...> &&args, std::index_sequence<J...>) {
return f(std::move(*std::get<J>(args))...);
}
template <template <typename...> class FUNCTION, typename RESULT,
typename... PARSER>
class ApplyFunction {
using funcType = FUNCTION<RESULT, PARSER...>;
public:
using resultType = RESULT;
constexpr ApplyFunction(const ApplyFunction &) = default;
constexpr ApplyFunction(funcType f, PARSER... p)
: function_{f}, parsers_{p...} {}
std::optional<resultType> Parse(ParseState &state) const {
ApplyArgs<PARSER...> results;
using Sequence = std::index_sequence_for<PARSER...>;
if (ApplyHelperArgs(parsers_, results, state, Sequence{})) {
return ApplyHelperFunction<FUNCTION, RESULT, PARSER...>(
function_, std::move(results), Sequence{});
} else {
return std::nullopt;
}
}
private:
const funcType function_;
const std::tuple<PARSER...> parsers_;
};
template <typename RESULT, typename... PARSER>
inline constexpr auto applyFunction(
ApplicableFunctionPointer<RESULT, PARSER...> f, const PARSER &...parser) {
return ApplyFunction<ApplicableFunctionPointer, RESULT, PARSER...>{
f, parser...};
}
template <typename RESULT, typename... PARSER>
inline /* not constexpr */ auto applyLambda(
ApplicableFunctionObject<RESULT, PARSER...> f, const PARSER &...parser) {
return ApplyFunction<ApplicableFunctionObject, RESULT, PARSER...>{
f, parser...};
}
// Member function application
template <typename OBJPARSER, typename... PARSER> class AMFPHelper {
using resultType = typename OBJPARSER::resultType;
public:
using type = void (resultType::*)(typename PARSER::resultType &&...);
};
template <typename OBJPARSER, typename... PARSER>
using ApplicableMemberFunctionPointer =
typename AMFPHelper<OBJPARSER, PARSER...>::type;
template <typename OBJPARSER, typename... PARSER, std::size_t... J>
inline auto ApplyHelperMember(
ApplicableMemberFunctionPointer<OBJPARSER, PARSER...> mfp,
ApplyArgs<OBJPARSER, PARSER...> &&args, std::index_sequence<J...>) ->
typename OBJPARSER::resultType {
((*std::get<0>(args)).*mfp)(std::move(*std::get<J + 1>(args))...);
return std::get<0>(std::move(args));
}
template <typename OBJPARSER, typename... PARSER> class ApplyMemberFunction {
using funcType = ApplicableMemberFunctionPointer<OBJPARSER, PARSER...>;
public:
using resultType = typename OBJPARSER::resultType;
constexpr ApplyMemberFunction(const ApplyMemberFunction &) = default;
constexpr ApplyMemberFunction(funcType f, OBJPARSER o, PARSER... p)
: function_{f}, parsers_{o, p...} {}
std::optional<resultType> Parse(ParseState &state) const {
ApplyArgs<OBJPARSER, PARSER...> results;
using Sequence1 = std::index_sequence_for<OBJPARSER, PARSER...>;
using Sequence2 = std::index_sequence_for<PARSER...>;
if (ApplyHelperArgs(parsers_, results, state, Sequence1{})) {
return ApplyHelperMember<OBJPARSER, PARSER...>(
function_, std::move(results), Sequence2{});
} else {
return std::nullopt;
}
}
private:
const funcType function_;
const std::tuple<OBJPARSER, PARSER...> parsers_;
};
template <typename OBJPARSER, typename... PARSER>
inline constexpr auto applyMem(
ApplicableMemberFunctionPointer<OBJPARSER, PARSER...> mfp,
const OBJPARSER &objParser, PARSER... parser) {
return ApplyMemberFunction<OBJPARSER, PARSER...>{mfp, objParser, parser...};
}
// As is done with function application via applyFunction() above, class
// instance construction can also be based upon the results of successful
// parses. For some type T and zero or more parsers a, b, &c., the call
// construct<T>(a, b, ...) returns a parser that succeeds if all of
// its argument parsers do so in succession, and whose result is an
// instance of T constructed upon the values they returned.
// With a single argument that is a parser with no usable value,
// construct<T>(p) invokes T's default nullary constructor (T(){}).
// (This means that "construct<T>(Foo >> Bar >> ok)" is functionally
// equivalent to "Foo >> Bar >> construct<T>()", but I'd like to hold open
// the opportunity to make construct<> capture source provenance all of the
// time, and the first form will then lead to better error positioning.)
template <typename RESULT, typename... PARSER, std::size_t... J>
inline RESULT ApplyHelperConstructor(
ApplyArgs<PARSER...> &&args, std::index_sequence<J...>) {
return RESULT{std::move(*std::get<J>(args))...};
}
template <typename RESULT, typename... PARSER> class ApplyConstructor {
public:
using resultType = RESULT;
constexpr ApplyConstructor(const ApplyConstructor &) = default;
constexpr explicit ApplyConstructor(PARSER... p) : parsers_{p...} {}
std::optional<resultType> Parse(ParseState &state) const {
if constexpr (sizeof...(PARSER) == 0) {
return RESULT{};
} else {
if constexpr (sizeof...(PARSER) == 1) {
return ParseOne(state);
} else {
ApplyArgs<PARSER...> results;
using Sequence = std::index_sequence_for<PARSER...>;
if (ApplyHelperArgs(parsers_, results, state, Sequence{})) {
return ApplyHelperConstructor<RESULT, PARSER...>(
std::move(results), Sequence{});
}
}
return std::nullopt;
}
}
private:
std::optional<resultType> ParseOne(ParseState &state) const {
if constexpr (std::is_same_v<Success, typename PARSER::resultType...>) {
if (std::get<0>(parsers_).Parse(state)) {
return RESULT{};
}
} else if (auto arg{std::get<0>(parsers_).Parse(state)}) {
return RESULT{std::move(*arg)};
}
return std::nullopt;
}
const std::tuple<PARSER...> parsers_;
};
template <typename RESULT, typename... PARSER>
inline constexpr auto construct(PARSER... p) {
return ApplyConstructor<RESULT, PARSER...>{p...};
}
// For a parser p, indirect(p) returns a parser that builds an indirect
// reference to p's return type.
template <typename PA> inline constexpr auto indirect(PA p) {
return construct<common::Indirection<typename PA::resultType>>(p);
}
// If a and b are parsers, then nonemptySeparated(a, b) returns a parser
// that succeeds if a does. If a succeeds, it then applies many(b >> a).
// The result is the list of the values returned from all of the applications
// of a.
template <typename T>
common::IfNoLvalue<std::list<T>, T> prepend(T &&head, std::list<T> &&rest) {
rest.push_front(std::move(head));
return std::move(rest);
}
template <typename PA, typename PB> class NonemptySeparated {
private:
using paType = typename PA::resultType;
public:
using resultType = std::list<paType>;
constexpr NonemptySeparated(const NonemptySeparated &) = default;
constexpr NonemptySeparated(PA p, PB sep) : parser_{p}, separator_{sep} {}
std::optional<resultType> Parse(ParseState &state) const {
return applyFunction<std::list<paType>>(
prepend<paType>, parser_, many(separator_ >> parser_))
.Parse(state);
}
private:
const PA parser_;
const PB separator_;
};
template <typename PA, typename PB>
inline constexpr auto nonemptySeparated(PA p, PB sep) {
return NonemptySeparated<PA, PB>{p, sep};
}
// ok is a parser that always succeeds. It is useful when a parser
// must discard its result in order to be compatible in type with other
// parsers in an alternative, e.g. "x >> ok || y >> ok" is type-safe even
// when x and y have distinct result types.
struct OkParser {
using resultType = Success;
constexpr OkParser() {}
static constexpr std::optional<Success> Parse(ParseState &) {
return Success{};
}
};
constexpr OkParser ok;
// A variant of recovery() above for convenience.
template <typename PA, typename PB>
inline constexpr auto localRecovery(MessageFixedText msg, PA pa, PB pb) {
return recovery(withMessage(msg, pa), pb >> pure<typename PA::resultType>());
}
// nextCh is a parser that succeeds if the parsing state is not
// at the end of its input, returning the next character location and
// advancing the parse when it does so.
struct NextCh {
using resultType = const char *;
constexpr NextCh() {}
std::optional<const char *> Parse(ParseState &state) const {
if (std::optional<const char *> result{state.GetNextChar()}) {
return result;
}
state.Say("end of file"_err_en_US);
return std::nullopt;
}
};
constexpr NextCh nextCh;
// If a is a parser for some nonstandard language feature LF, extension<LF>(a)
// is a parser that optionally enabled, sets a strict conformance violation
// flag, and may emit a warning message, if those are enabled.
template <LanguageFeature LF, typename PA> class NonstandardParser {
public:
using resultType = typename PA::resultType;
constexpr NonstandardParser(const NonstandardParser &) = default;
constexpr NonstandardParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
if (UserState * ustate{state.userState()}) {
if (!ustate->features().IsEnabled(LF)) {
return std::nullopt;
}
}
auto at{state.GetLocation()};
auto result{parser_.Parse(state)};
if (result) {
state.Nonstandard(
CharBlock{at, state.GetLocation()}, LF, "nonstandard usage"_en_US);
}
return result;
}
private:
const PA parser_;
};
template <LanguageFeature LF, typename PA>
inline constexpr auto extension(PA parser) {
return NonstandardParser<LF, PA>(parser);
}
// If a is a parser for some deprecated or deleted language feature LF,
// deprecated<LF>(a) is a parser that is optionally enabled, sets a strict
// conformance violation flag, and may emit a warning message, if enabled.
template <LanguageFeature LF, typename PA> class DeprecatedParser {
public:
using resultType = typename PA::resultType;
constexpr DeprecatedParser(const DeprecatedParser &) = default;
constexpr DeprecatedParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
if (UserState * ustate{state.userState()}) {
if (!ustate->features().IsEnabled(LF)) {
return std::nullopt;
}
}
auto at{state.GetLocation()};
auto result{parser_.Parse(state)};
if (result) {
state.Nonstandard(
CharBlock{at, state.GetLocation()}, LF, "deprecated usage"_en_US);
}
return result;
}
private:
const PA parser_;
};
template <LanguageFeature LF, typename PA>
inline constexpr auto deprecated(PA parser) {
return DeprecatedParser<LF, PA>(parser);
}
// Parsing objects with "source" members.
template <typename PA> class SourcedParser {
public:
using resultType = typename PA::resultType;
constexpr SourcedParser(const SourcedParser &) = default;
constexpr SourcedParser(PA parser) : parser_{parser} {}
std::optional<resultType> Parse(ParseState &state) const {
const char *start{state.GetLocation()};
auto result{parser_.Parse(state)};
if (result) {
const char *end{state.GetLocation()};
for (; start < end && start[0] == ' '; ++start) {
}
for (; start < end && end[-1] == ' '; --end) {
}
result->source = CharBlock{start, end};
}
return result;
}
private:
const PA parser_;
};
template <typename PA> inline constexpr auto sourced(PA parser) {
return SourcedParser<PA>{parser};
}
} // namespace Fortran::parser
#endif // FORTRAN_PARSER_BASIC_PARSERS_H_