FuzzerDataFlowTrace.cpp
9.92 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
//===- FuzzerDataFlowTrace.cpp - DataFlowTrace ---*- C++ -* ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// fuzzer::DataFlowTrace
//===----------------------------------------------------------------------===//
#include "FuzzerDataFlowTrace.h"
#include "FuzzerCommand.h"
#include "FuzzerIO.h"
#include "FuzzerRandom.h"
#include "FuzzerSHA1.h"
#include "FuzzerUtil.h"
#include <cstdlib>
#include <fstream>
#include <numeric>
#include <queue>
#include <sstream>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
namespace fuzzer {
static const char *kFunctionsTxt = "functions.txt";
bool BlockCoverage::AppendCoverage(const std::string &S) {
std::stringstream SS(S);
return AppendCoverage(SS);
}
// Coverage lines have this form:
// CN X Y Z T
// where N is the number of the function, T is the total number of instrumented
// BBs, and X,Y,Z, if present, are the indecies of covered BB.
// BB #0, which is the entry block, is not explicitly listed.
bool BlockCoverage::AppendCoverage(std::istream &IN) {
std::string L;
while (std::getline(IN, L, '\n')) {
if (L.empty())
continue;
std::stringstream SS(L.c_str() + 1);
size_t FunctionId = 0;
SS >> FunctionId;
if (L[0] == 'F') {
FunctionsWithDFT.insert(FunctionId);
continue;
}
if (L[0] != 'C') continue;
Vector<uint32_t> CoveredBlocks;
while (true) {
uint32_t BB = 0;
SS >> BB;
if (!SS) break;
CoveredBlocks.push_back(BB);
}
if (CoveredBlocks.empty()) return false;
uint32_t NumBlocks = CoveredBlocks.back();
CoveredBlocks.pop_back();
for (auto BB : CoveredBlocks)
if (BB >= NumBlocks) return false;
auto It = Functions.find(FunctionId);
auto &Counters =
It == Functions.end()
? Functions.insert({FunctionId, Vector<uint32_t>(NumBlocks)})
.first->second
: It->second;
if (Counters.size() != NumBlocks) return false; // wrong number of blocks.
Counters[0]++;
for (auto BB : CoveredBlocks)
Counters[BB]++;
}
return true;
}
// Assign weights to each function.
// General principles:
// * any uncovered function gets weight 0.
// * a function with lots of uncovered blocks gets bigger weight.
// * a function with a less frequently executed code gets bigger weight.
Vector<double> BlockCoverage::FunctionWeights(size_t NumFunctions) const {
Vector<double> Res(NumFunctions);
for (auto It : Functions) {
auto FunctionID = It.first;
auto Counters = It.second;
assert(FunctionID < NumFunctions);
auto &Weight = Res[FunctionID];
// Give higher weight if the function has a DFT.
Weight = FunctionsWithDFT.count(FunctionID) ? 1000. : 1;
// Give higher weight to functions with less frequently seen basic blocks.
Weight /= SmallestNonZeroCounter(Counters);
// Give higher weight to functions with the most uncovered basic blocks.
Weight *= NumberOfUncoveredBlocks(Counters) + 1;
}
return Res;
}
void DataFlowTrace::ReadCoverage(const std::string &DirPath) {
Vector<SizedFile> Files;
GetSizedFilesFromDir(DirPath, &Files);
for (auto &SF : Files) {
auto Name = Basename(SF.File);
if (Name == kFunctionsTxt) continue;
if (!CorporaHashes.count(Name)) continue;
std::ifstream IF(SF.File);
Coverage.AppendCoverage(IF);
}
}
static void DFTStringAppendToVector(Vector<uint8_t> *DFT,
const std::string &DFTString) {
assert(DFT->size() == DFTString.size());
for (size_t I = 0, Len = DFT->size(); I < Len; I++)
(*DFT)[I] = DFTString[I] == '1';
}
// converts a string of '0' and '1' into a Vector<uint8_t>
static Vector<uint8_t> DFTStringToVector(const std::string &DFTString) {
Vector<uint8_t> DFT(DFTString.size());
DFTStringAppendToVector(&DFT, DFTString);
return DFT;
}
static bool ParseError(const char *Err, const std::string &Line) {
Printf("DataFlowTrace: parse error: %s: Line: %s\n", Err, Line.c_str());
return false;
}
// TODO(metzman): replace std::string with std::string_view for
// better performance. Need to figure our how to use string_view on Windows.
static bool ParseDFTLine(const std::string &Line, size_t *FunctionNum,
std::string *DFTString) {
if (!Line.empty() && Line[0] != 'F')
return false; // Ignore coverage.
size_t SpacePos = Line.find(' ');
if (SpacePos == std::string::npos)
return ParseError("no space in the trace line", Line);
if (Line.empty() || Line[0] != 'F')
return ParseError("the trace line doesn't start with 'F'", Line);
*FunctionNum = std::atol(Line.c_str() + 1);
const char *Beg = Line.c_str() + SpacePos + 1;
const char *End = Line.c_str() + Line.size();
assert(Beg < End);
size_t Len = End - Beg;
for (size_t I = 0; I < Len; I++) {
if (Beg[I] != '0' && Beg[I] != '1')
return ParseError("the trace should contain only 0 or 1", Line);
}
*DFTString = Beg;
return true;
}
bool DataFlowTrace::Init(const std::string &DirPath, std::string *FocusFunction,
Vector<SizedFile> &CorporaFiles, Random &Rand) {
if (DirPath.empty()) return false;
Printf("INFO: DataFlowTrace: reading from '%s'\n", DirPath.c_str());
Vector<SizedFile> Files;
GetSizedFilesFromDir(DirPath, &Files);
std::string L;
size_t FocusFuncIdx = SIZE_MAX;
Vector<std::string> FunctionNames;
// Collect the hashes of the corpus files.
for (auto &SF : CorporaFiles)
CorporaHashes.insert(Hash(FileToVector(SF.File)));
// Read functions.txt
std::ifstream IF(DirPlusFile(DirPath, kFunctionsTxt));
size_t NumFunctions = 0;
while (std::getline(IF, L, '\n')) {
FunctionNames.push_back(L);
NumFunctions++;
if (*FocusFunction == L)
FocusFuncIdx = NumFunctions - 1;
}
if (!NumFunctions)
return false;
if (*FocusFunction == "auto") {
// AUTOFOCUS works like this:
// * reads the coverage data from the DFT files.
// * assigns weights to functions based on coverage.
// * chooses a random function according to the weights.
ReadCoverage(DirPath);
auto Weights = Coverage.FunctionWeights(NumFunctions);
Vector<double> Intervals(NumFunctions + 1);
std::iota(Intervals.begin(), Intervals.end(), 0);
auto Distribution = std::piecewise_constant_distribution<double>(
Intervals.begin(), Intervals.end(), Weights.begin());
FocusFuncIdx = static_cast<size_t>(Distribution(Rand));
*FocusFunction = FunctionNames[FocusFuncIdx];
assert(FocusFuncIdx < NumFunctions);
Printf("INFO: AUTOFOCUS: %zd %s\n", FocusFuncIdx,
FunctionNames[FocusFuncIdx].c_str());
for (size_t i = 0; i < NumFunctions; i++) {
if (!Weights[i]) continue;
Printf(" [%zd] W %g\tBB-tot %u\tBB-cov %u\tEntryFreq %u:\t%s\n", i,
Weights[i], Coverage.GetNumberOfBlocks(i),
Coverage.GetNumberOfCoveredBlocks(i), Coverage.GetCounter(i, 0),
FunctionNames[i].c_str());
}
}
if (!NumFunctions || FocusFuncIdx == SIZE_MAX || Files.size() <= 1)
return false;
// Read traces.
size_t NumTraceFiles = 0;
size_t NumTracesWithFocusFunction = 0;
for (auto &SF : Files) {
auto Name = Basename(SF.File);
if (Name == kFunctionsTxt) continue;
if (!CorporaHashes.count(Name)) continue; // not in the corpus.
NumTraceFiles++;
// Printf("=== %s\n", Name.c_str());
std::ifstream IF(SF.File);
while (std::getline(IF, L, '\n')) {
size_t FunctionNum = 0;
std::string DFTString;
if (ParseDFTLine(L, &FunctionNum, &DFTString) &&
FunctionNum == FocusFuncIdx) {
NumTracesWithFocusFunction++;
if (FunctionNum >= NumFunctions)
return ParseError("N is greater than the number of functions", L);
Traces[Name] = DFTStringToVector(DFTString);
// Print just a few small traces.
if (NumTracesWithFocusFunction <= 3 && DFTString.size() <= 16)
Printf("%s => |%s|\n", Name.c_str(), std::string(DFTString).c_str());
break; // No need to parse the following lines.
}
}
}
Printf("INFO: DataFlowTrace: %zd trace files, %zd functions, "
"%zd traces with focus function\n",
NumTraceFiles, NumFunctions, NumTracesWithFocusFunction);
return NumTraceFiles > 0;
}
int CollectDataFlow(const std::string &DFTBinary, const std::string &DirPath,
const Vector<SizedFile> &CorporaFiles) {
Printf("INFO: collecting data flow: bin: %s dir: %s files: %zd\n",
DFTBinary.c_str(), DirPath.c_str(), CorporaFiles.size());
if (CorporaFiles.empty()) {
Printf("ERROR: can't collect data flow without corpus provided.");
return 1;
}
static char DFSanEnv[] = "DFSAN_OPTIONS=warn_unimplemented=0";
putenv(DFSanEnv);
MkDir(DirPath);
for (auto &F : CorporaFiles) {
// For every input F we need to collect the data flow and the coverage.
// Data flow collection may fail if we request too many DFSan tags at once.
// So, we start from requesting all tags in range [0,Size) and if that fails
// we then request tags in [0,Size/2) and [Size/2, Size), and so on.
// Function number => DFT.
auto OutPath = DirPlusFile(DirPath, Hash(FileToVector(F.File)));
std::unordered_map<size_t, Vector<uint8_t>> DFTMap;
std::unordered_set<std::string> Cov;
Command Cmd;
Cmd.addArgument(DFTBinary);
Cmd.addArgument(F.File);
Cmd.addArgument(OutPath);
Printf("CMD: %s\n", Cmd.toString().c_str());
ExecuteCommand(Cmd);
}
// Write functions.txt if it's currently empty or doesn't exist.
auto FunctionsTxtPath = DirPlusFile(DirPath, kFunctionsTxt);
if (FileToString(FunctionsTxtPath).empty()) {
Command Cmd;
Cmd.addArgument(DFTBinary);
Cmd.setOutputFile(FunctionsTxtPath);
ExecuteCommand(Cmd);
}
return 0;
}
} // namespace fuzzer