이재빈

send to edge cloud

......@@ -7,24 +7,33 @@ from keras.models import load_model
from keras.preprocessing import image
# import queue
import datetime
import numpy as np
from queue import Full, Empty
from multiprocessing import Process, Queue
import cv2
fname = 'croppedimg/{}.png'
save_imgs = False
HOST = '192.168.35.87'
PORT = 9999
class LabelingModule:
def __init__(self):
# self.model1 = load_model('svhn_model.h5')
self.model1 = load_model('checker_model.h5')
self.model2 = load_model('svhn_model.h5')
self.image_queue = Queue(maxsize=3000)
self.label_queue = Queue(maxsize=10)
self.signal_queue = Queue()
self.predict_process = Process(target=_predict, args=(self.model2, self.image_queue, self.label_queue, self.signal_queue))
self.predict_process = Process(target=_predict, \
args=(
self.model1, self.model2, self.image_queue, self.label_queue, self.signal_queue))
def run(self):
self.predict_process.start()
def close(self):
self.signal_queue.put_nowait('stop')
self.image_queue.close()
self.label_queue.close()
......@@ -49,9 +58,26 @@ class LabelingModule:
img_tensor = img_tensor - img_tensor.mean()
return img_tensor
def decode(output):
if(output[0]==0):
return 'Noise'
else:
if(output[1] == 3):
return str(output[2])+str(output[3])+str(output[4])
elif (output[1] == 4):
return str(output[2]) + str(output[3]) + str(output[4])+'-'+ str(output[5])
def _predict(model, input_queue, output_queue, signal_queue):
def send_predict_result(HOST, PORT,message):
# (address family) IPv4, TCP
client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
# raspberry pi addr
client_socket.connect((HOST, PORT))
client_socket.sendall('Door Plate Detected : '+message.encode('utf-8'))
def _predict(model1, model2, input_queue, output_queue, signal_queue):
print('predict process started.')
index = 0
while True:
try:
signal = signal_queue.get_nowait()
......@@ -60,13 +86,28 @@ def _predict(model, input_queue, output_queue, signal_queue):
except Empty:
pass
try:
tensor = input_queue.get(timeout=-1)
dat = model.predict(np.array([tensor]))
o1 = np.argmax(dat[0])
o2 = np.argmax(dat[1])
o3 = np.argmax(dat[2])
o4 = np.argmax(dat[3])
o5 = np.argmax(dat[4])
o6 = np.argmax(dat[5])
except Empty:
continue
tensor = np.array([tensor])
has_number = model1.predict(tensor)[0]
if int(has_number[0]) == 1:
continue
if save_imgs:
img = cv2.cvtColor(tensor[0], cv2.COLOR_RGB2BGR)
cv2.imwrite(fname.format(index), img)
index += 1
label_data = model2.predict(tensor)
o1 = np.argmax(label_data[0])
o2 = np.argmax(label_data[1])
o3 = np.argmax(label_data[2])
o4 = np.argmax(label_data[3])
o5 = np.argmax(label_data[4])
o6 = np.argmax(label_data[5])
output = [o1, o2, o3, o4, o5, o6]
print('[LabelingModule] predict result :', output)
print('[LabelingModule] predict result :', decode(output))
send_predict_result(HOST,PORT)
print(decode(output)+" : Sended To Edge")
......