Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-2-capstone-design2
/
2015102747
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
이재빈
2020-12-02 18:20:25 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
613c2f8912cab6d39007109c2b795d2e54f76aaf
613c2f89
1 parent
cb9f3351
send to edge cloud
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
52 additions
and
11 deletions
Modules/labeling_module.py
Modules/labeling_module.py
View file @
613c2f8
...
...
@@ -7,24 +7,33 @@ from keras.models import load_model
from
keras.preprocessing
import
image
# import queue
import
datetime
import
numpy
as
np
from
queue
import
Full
,
Empty
from
multiprocessing
import
Process
,
Queue
import
cv2
fname
=
'croppedimg/{}.png'
save_imgs
=
False
HOST
=
'192.168.35.87'
PORT
=
9999
class
LabelingModule
:
def
__init__
(
self
):
# self.model1 = load_model('svhn
_model.h5')
self
.
model1
=
load_model
(
'checker
_model.h5'
)
self
.
model2
=
load_model
(
'svhn_model.h5'
)
self
.
image_queue
=
Queue
(
maxsize
=
3000
)
self
.
label_queue
=
Queue
(
maxsize
=
10
)
self
.
signal_queue
=
Queue
()
self
.
predict_process
=
Process
(
target
=
_predict
,
args
=
(
self
.
model2
,
self
.
image_queue
,
self
.
label_queue
,
self
.
signal_queue
))
self
.
predict_process
=
Process
(
target
=
_predict
,
\
args
=
(
self
.
model1
,
self
.
model2
,
self
.
image_queue
,
self
.
label_queue
,
self
.
signal_queue
))
def
run
(
self
):
self
.
predict_process
.
start
()
def
close
(
self
):
self
.
signal_queue
.
put_nowait
(
'stop'
)
self
.
image_queue
.
close
()
self
.
label_queue
.
close
()
...
...
@@ -49,9 +58,26 @@ class LabelingModule:
img_tensor
=
img_tensor
-
img_tensor
.
mean
()
return
img_tensor
def
decode
(
output
):
if
(
output
[
0
]
==
0
):
return
'Noise'
else
:
if
(
output
[
1
]
==
3
):
return
str
(
output
[
2
])
+
str
(
output
[
3
])
+
str
(
output
[
4
])
elif
(
output
[
1
]
==
4
):
return
str
(
output
[
2
])
+
str
(
output
[
3
])
+
str
(
output
[
4
])
+
'-'
+
str
(
output
[
5
])
def
_predict
(
model
,
input_queue
,
output_queue
,
signal_queue
):
def
send_predict_result
(
HOST
,
PORT
,
message
):
# (address family) IPv4, TCP
client_socket
=
socket
.
socket
(
socket
.
AF_INET
,
socket
.
SOCK_STREAM
)
# raspberry pi addr
client_socket
.
connect
((
HOST
,
PORT
))
client_socket
.
sendall
(
'Door Plate Detected : '
+
message
.
encode
(
'utf-8'
))
def
_predict
(
model1
,
model2
,
input_queue
,
output_queue
,
signal_queue
):
print
(
'predict process started.'
)
index
=
0
while
True
:
try
:
signal
=
signal_queue
.
get_nowait
()
...
...
@@ -60,13 +86,28 @@ def _predict(model, input_queue, output_queue, signal_queue):
except
Empty
:
pass
try
:
tensor
=
input_queue
.
get
(
timeout
=-
1
)
dat
=
model
.
predict
(
np
.
array
([
tensor
]))
o1
=
np
.
argmax
(
dat
[
0
])
o2
=
np
.
argmax
(
dat
[
1
])
o3
=
np
.
argmax
(
dat
[
2
])
o4
=
np
.
argmax
(
dat
[
3
])
o5
=
np
.
argmax
(
dat
[
4
])
o6
=
np
.
argmax
(
dat
[
5
])
except
Empty
:
continue
tensor
=
np
.
array
([
tensor
])
has_number
=
model1
.
predict
(
tensor
)[
0
]
if
int
(
has_number
[
0
])
==
1
:
continue
if
save_imgs
:
img
=
cv2
.
cvtColor
(
tensor
[
0
],
cv2
.
COLOR_RGB2BGR
)
cv2
.
imwrite
(
fname
.
format
(
index
),
img
)
index
+=
1
label_data
=
model2
.
predict
(
tensor
)
o1
=
np
.
argmax
(
label_data
[
0
])
o2
=
np
.
argmax
(
label_data
[
1
])
o3
=
np
.
argmax
(
label_data
[
2
])
o4
=
np
.
argmax
(
label_data
[
3
])
o5
=
np
.
argmax
(
label_data
[
4
])
o6
=
np
.
argmax
(
label_data
[
5
])
output
=
[
o1
,
o2
,
o3
,
o4
,
o5
,
o6
]
print
(
'[LabelingModule] predict result :'
,
output
)
print
(
'[LabelingModule] predict result :'
,
decode
(
output
))
send_predict_result
(
HOST
,
PORT
)
print
(
decode
(
output
)
+
" : Sended To Edge"
)
...
...
Please
register
or
login
to post a comment