Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-2-capstone-design1
/
HCG_project
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
GyuhoLee
2020-11-08 21:02:18 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Commit
3ee4628f3a24b863580679d1c02a9e8a4023d031
3ee4628f
1 parent
b7114cfd
[Add] 문자열 처리를 다루는 함수들
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
195 additions
and
0 deletions
src/textrank/sentence.py
src/textrank/sentence.py
0 → 100644
View file @
3ee4628
from
collections
import
Counter
import
math
import
numpy
as
np
import
scipy
as
sp
from
scipy.sparse
import
csr_matrix
from
sklearn.metrics
import
pairwise_distances
from
.utils
import
scan_vocabulary
from
.utils
import
tokenize_sents
def
sent_graph
(
sents
,
tokenize
=
None
,
min_count
=
2
,
min_sim
=
0.3
,
similarity
=
None
,
vocab_to_idx
=
None
,
verbose
=
False
):
"""
Arguments
---------
sents : list of str
Sentence list
tokenize : callable
tokenize(sent) return list of str
min_count : int
Minimum term frequency
min_sim : float
Minimum similarity between sentences
similarity : callable or str
similarity(s1, s2) returns float
s1 and s2 are list of str.
available similarity = [callable, 'cosine', 'textrank']
vocab_to_idx : dict
Vocabulary to index mapper.
If None, this function scan vocabulary first.
verbose : Boolean
If True, verbose mode on
Returns
-------
sentence similarity graph : scipy.sparse.csr_matrix
shape = (n sents, n sents)
"""
if
vocab_to_idx
is
None
:
idx_to_vocab
,
vocab_to_idx
=
scan_vocabulary
(
sents
,
tokenize
,
min_count
)
else
:
idx_to_vocab
=
[
vocab
for
vocab
,
_
in
sorted
(
vocab_to_idx
.
items
(),
key
=
lambda
x
:
x
[
1
])]
x
=
vectorize_sents
(
sents
,
tokenize
,
vocab_to_idx
)
if
similarity
==
'cosine'
:
x
=
numpy_cosine_similarity_matrix
(
x
,
min_sim
,
verbose
,
batch_size
=
1000
)
else
:
x
=
numpy_textrank_similarity_matrix
(
x
,
min_sim
,
verbose
,
batch_size
=
1000
)
return
x
def
vectorize_sents
(
sents
,
tokenize
,
vocab_to_idx
):
rows
,
cols
,
data
=
[],
[],
[]
for
i
,
sent
in
enumerate
(
sents
):
counter
=
Counter
(
tokenize
(
sent
))
for
token
,
count
in
counter
.
items
():
j
=
vocab_to_idx
.
get
(
token
,
-
1
)
if
j
==
-
1
:
continue
rows
.
append
(
i
)
cols
.
append
(
j
)
data
.
append
(
count
)
n_rows
=
len
(
sents
)
n_cols
=
len
(
vocab_to_idx
)
return
csr_matrix
((
data
,
(
rows
,
cols
)),
shape
=
(
n_rows
,
n_cols
))
def
numpy_cosine_similarity_matrix
(
x
,
min_sim
=
0.3
,
verbose
=
True
,
batch_size
=
1000
):
n_rows
=
x
.
shape
[
0
]
mat
=
[]
for
bidx
in
range
(
math
.
ceil
(
n_rows
/
batch_size
)):
b
=
int
(
bidx
*
batch_size
)
e
=
min
(
n_rows
,
int
((
bidx
+
1
)
*
batch_size
))
psim
=
1
-
pairwise_distances
(
x
[
b
:
e
],
x
,
metric
=
'cosine'
)
rows
,
cols
=
np
.
where
(
psim
>=
min_sim
)
data
=
psim
[
rows
,
cols
]
mat
.
append
(
csr_matrix
((
data
,
(
rows
,
cols
)),
shape
=
(
e
-
b
,
n_rows
)))
if
verbose
:
print
(
'
\r
calculating cosine sentence similarity {} / {}'
.
format
(
b
,
n_rows
),
end
=
''
)
mat
=
sp
.
sparse
.
vstack
(
mat
)
if
verbose
:
print
(
'
\r
calculating cosine sentence similarity was done with {} sents'
.
format
(
n_rows
))
return
mat
def
numpy_textrank_similarity_matrix
(
x
,
min_sim
=
0.3
,
verbose
=
True
,
min_length
=
1
,
batch_size
=
1000
):
n_rows
,
n_cols
=
x
.
shape
# Boolean matrix
rows
,
cols
=
x
.
nonzero
()
data
=
np
.
ones
(
rows
.
shape
[
0
])
z
=
csr_matrix
((
data
,
(
rows
,
cols
)),
shape
=
(
n_rows
,
n_cols
))
# Inverse sentence length
size
=
np
.
asarray
(
x
.
sum
(
axis
=
1
))
.
reshape
(
-
1
)
size
[
np
.
where
(
size
<=
min_length
)]
=
10000
size
=
np
.
log
(
size
)
mat
=
[]
for
bidx
in
range
(
math
.
ceil
(
n_rows
/
batch_size
)):
# slicing
b
=
int
(
bidx
*
batch_size
)
e
=
min
(
n_rows
,
int
((
bidx
+
1
)
*
batch_size
))
# dot product
inner
=
z
[
b
:
e
,:]
*
z
.
transpose
()
# sentence len[i,j] = size[i] + size[j]
norm
=
size
[
b
:
e
]
.
reshape
(
-
1
,
1
)
+
size
.
reshape
(
1
,
-
1
)
norm
=
norm
**
(
-
1
)
norm
[
np
.
where
(
norm
==
np
.
inf
)]
=
0
# normalize
sim
=
inner
.
multiply
(
norm
)
.
tocsr
()
rows
,
cols
=
(
sim
>=
min_sim
)
.
nonzero
()
data
=
np
.
asarray
(
sim
[
rows
,
cols
])
.
reshape
(
-
1
)
# append
mat
.
append
(
csr_matrix
((
data
,
(
rows
,
cols
)),
shape
=
(
e
-
b
,
n_rows
)))
if
verbose
:
print
(
'
\r
calculating textrank sentence similarity {} / {}'
.
format
(
b
,
n_rows
),
end
=
''
)
mat
=
sp
.
sparse
.
vstack
(
mat
)
if
verbose
:
print
(
'
\r
calculating textrank sentence similarity was done with {} sents'
.
format
(
n_rows
))
return
mat
def
graph_with_python_sim
(
tokens
,
verbose
,
similarity
,
min_sim
):
if
similarity
==
'cosine'
:
similarity
=
cosine_sent_sim
elif
callable
(
similarity
):
similarity
=
similarity
else
:
similarity
=
textrank_sent_sim
rows
,
cols
,
data
=
[],
[],
[]
n_sents
=
len
(
tokens
)
for
i
,
tokens_i
in
enumerate
(
tokens
):
if
verbose
and
i
%
1000
==
0
:
print
(
'
\r
constructing sentence graph {} / {} ...'
.
format
(
i
,
n_sents
),
end
=
''
)
for
j
,
tokens_j
in
enumerate
(
tokens
):
if
i
>=
j
:
continue
sim
=
similarity
(
tokens_i
,
tokens_j
)
if
sim
<
min_sim
:
continue
rows
.
append
(
i
)
cols
.
append
(
j
)
data
.
append
(
sim
)
if
verbose
:
print
(
'
\r
constructing sentence graph was constructed from {} sents'
.
format
(
n_sents
))
return
csr_matrix
((
data
,
(
rows
,
cols
)),
shape
=
(
n_sents
,
n_sents
))
def
textrank_sent_sim
(
s1
,
s2
):
"""
Arguments
---------
s1, s2 : list of str
Tokenized sentences
Returns
-------
Sentence similarity : float
Non-negative number
"""
n1
=
len
(
s1
)
n2
=
len
(
s2
)
if
(
n1
<=
1
)
or
(
n2
<=
1
):
return
0
common
=
len
(
set
(
s1
)
.
intersection
(
set
(
s2
)))
base
=
math
.
log
(
n1
)
+
math
.
log
(
n2
)
return
common
/
base
def
cosine_sent_sim
(
s1
,
s2
):
"""
Arguments
---------
s1, s2 : list of str
Tokenized sentences
Returns
-------
Sentence similarity : float
Non-negative number
"""
if
(
not
s1
)
or
(
not
s2
):
return
0
s1
=
Counter
(
s1
)
s2
=
Counter
(
s2
)
norm1
=
math
.
sqrt
(
sum
(
v
**
2
for
v
in
s1
.
values
()))
norm2
=
math
.
sqrt
(
sum
(
v
**
2
for
v
in
s2
.
values
()))
prod
=
0
for
k
,
v
in
s1
.
items
():
prod
+=
v
*
s2
.
get
(
k
,
0
)
return
prod
/
(
norm1
*
norm2
)
\ No newline at end of file
Please
register
or
login
to post a comment