index_tricks.py
28.9 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
import functools
import sys
import math
import numpy.core.numeric as _nx
from numpy.core.numeric import (
asarray, ScalarType, array, alltrue, cumprod, arange, ndim
)
from numpy.core.numerictypes import find_common_type, issubdtype
import numpy.matrixlib as matrixlib
from .function_base import diff
from numpy.core.multiarray import ravel_multi_index, unravel_index
from numpy.core.overrides import set_module
from numpy.core import overrides, linspace
from numpy.lib.stride_tricks import as_strided
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = [
'ravel_multi_index', 'unravel_index', 'mgrid', 'ogrid', 'r_', 'c_',
's_', 'index_exp', 'ix_', 'ndenumerate', 'ndindex', 'fill_diagonal',
'diag_indices', 'diag_indices_from'
]
def _ix__dispatcher(*args):
return args
@array_function_dispatch(_ix__dispatcher)
def ix_(*args):
"""
Construct an open mesh from multiple sequences.
This function takes N 1-D sequences and returns N outputs with N
dimensions each, such that the shape is 1 in all but one dimension
and the dimension with the non-unit shape value cycles through all
N dimensions.
Using `ix_` one can quickly construct index arrays that will index
the cross product. ``a[np.ix_([1,3],[2,5])]`` returns the array
``[[a[1,2] a[1,5]], [a[3,2] a[3,5]]]``.
Parameters
----------
args : 1-D sequences
Each sequence should be of integer or boolean type.
Boolean sequences will be interpreted as boolean masks for the
corresponding dimension (equivalent to passing in
``np.nonzero(boolean_sequence)``).
Returns
-------
out : tuple of ndarrays
N arrays with N dimensions each, with N the number of input
sequences. Together these arrays form an open mesh.
See Also
--------
ogrid, mgrid, meshgrid
Examples
--------
>>> a = np.arange(10).reshape(2, 5)
>>> a
array([[0, 1, 2, 3, 4],
[5, 6, 7, 8, 9]])
>>> ixgrid = np.ix_([0, 1], [2, 4])
>>> ixgrid
(array([[0],
[1]]), array([[2, 4]]))
>>> ixgrid[0].shape, ixgrid[1].shape
((2, 1), (1, 2))
>>> a[ixgrid]
array([[2, 4],
[7, 9]])
>>> ixgrid = np.ix_([True, True], [2, 4])
>>> a[ixgrid]
array([[2, 4],
[7, 9]])
>>> ixgrid = np.ix_([True, True], [False, False, True, False, True])
>>> a[ixgrid]
array([[2, 4],
[7, 9]])
"""
out = []
nd = len(args)
for k, new in enumerate(args):
if not isinstance(new, _nx.ndarray):
new = asarray(new)
if new.size == 0:
# Explicitly type empty arrays to avoid float default
new = new.astype(_nx.intp)
if new.ndim != 1:
raise ValueError("Cross index must be 1 dimensional")
if issubdtype(new.dtype, _nx.bool_):
new, = new.nonzero()
new = new.reshape((1,)*k + (new.size,) + (1,)*(nd-k-1))
out.append(new)
return tuple(out)
class nd_grid:
"""
Construct a multi-dimensional "meshgrid".
``grid = nd_grid()`` creates an instance which will return a mesh-grid
when indexed. The dimension and number of the output arrays are equal
to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then the
integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
If instantiated with an argument of ``sparse=True``, the mesh-grid is
open (or not fleshed out) so that only one-dimension of each returned
argument is greater than 1.
Parameters
----------
sparse : bool, optional
Whether the grid is sparse or not. Default is False.
Notes
-----
Two instances of `nd_grid` are made available in the NumPy namespace,
`mgrid` and `ogrid`, approximately defined as::
mgrid = nd_grid(sparse=False)
ogrid = nd_grid(sparse=True)
Users should use these pre-defined instances instead of using `nd_grid`
directly.
"""
def __init__(self, sparse=False):
self.sparse = sparse
def __getitem__(self, key):
try:
size = []
typ = int
for k in range(len(key)):
step = key[k].step
start = key[k].start
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size.append(int(abs(step)))
typ = float
else:
size.append(
int(math.ceil((key[k].stop - start)/(step*1.0))))
if (isinstance(step, float) or
isinstance(start, float) or
isinstance(key[k].stop, float)):
typ = float
if self.sparse:
nn = [_nx.arange(_x, dtype=_t)
for _x, _t in zip(size, (typ,)*len(size))]
else:
nn = _nx.indices(size, typ)
for k in range(len(size)):
step = key[k].step
start = key[k].start
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
step = int(abs(step))
if step != 1:
step = (key[k].stop - start)/float(step-1)
nn[k] = (nn[k]*step+start)
if self.sparse:
slobj = [_nx.newaxis]*len(size)
for k in range(len(size)):
slobj[k] = slice(None, None)
nn[k] = nn[k][tuple(slobj)]
slobj[k] = _nx.newaxis
return nn
except (IndexError, TypeError):
step = key.step
stop = key.stop
start = key.start
if start is None:
start = 0
if isinstance(step, complex):
step = abs(step)
length = int(step)
if step != 1:
step = (key.stop-start)/float(step-1)
stop = key.stop + step
return _nx.arange(0, length, 1, float)*step + start
else:
return _nx.arange(start, stop, step)
class MGridClass(nd_grid):
"""
`nd_grid` instance which returns a dense multi-dimensional "meshgrid".
An instance of `numpy.lib.index_tricks.nd_grid` which returns an dense
(or fleshed out) mesh-grid when indexed, so that each returned argument
has the same shape. The dimensions and number of the output arrays are
equal to the number of indexing dimensions. If the step length is not a
complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
Returns
----------
mesh-grid `ndarrays` all of the same dimensions
See Also
--------
numpy.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects
ogrid : like mgrid but returns open (not fleshed out) mesh grids
r_ : array concatenator
Examples
--------
>>> np.mgrid[0:5,0:5]
array([[[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]],
[[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4],
[0, 1, 2, 3, 4]]])
>>> np.mgrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
"""
def __init__(self):
super(MGridClass, self).__init__(sparse=False)
mgrid = MGridClass()
class OGridClass(nd_grid):
"""
`nd_grid` instance which returns an open multi-dimensional "meshgrid".
An instance of `numpy.lib.index_tricks.nd_grid` which returns an open
(i.e. not fleshed out) mesh-grid when indexed, so that only one dimension
of each returned array is greater than 1. The dimension and number of the
output arrays are equal to the number of indexing dimensions. If the step
length is not a complex number, then the stop is not inclusive.
However, if the step length is a **complex number** (e.g. 5j), then
the integer part of its magnitude is interpreted as specifying the
number of points to create between the start and stop values, where
the stop value **is inclusive**.
Returns
-------
mesh-grid
`ndarrays` with only one dimension not equal to 1
See Also
--------
np.lib.index_tricks.nd_grid : class of `ogrid` and `mgrid` objects
mgrid : like `ogrid` but returns dense (or fleshed out) mesh grids
r_ : array concatenator
Examples
--------
>>> from numpy import ogrid
>>> ogrid[-1:1:5j]
array([-1. , -0.5, 0. , 0.5, 1. ])
>>> ogrid[0:5,0:5]
[array([[0],
[1],
[2],
[3],
[4]]), array([[0, 1, 2, 3, 4]])]
"""
def __init__(self):
super(OGridClass, self).__init__(sparse=True)
ogrid = OGridClass()
class AxisConcatenator:
"""
Translates slice objects to concatenation along an axis.
For detailed documentation on usage, see `r_`.
"""
# allow ma.mr_ to override this
concatenate = staticmethod(_nx.concatenate)
makemat = staticmethod(matrixlib.matrix)
def __init__(self, axis=0, matrix=False, ndmin=1, trans1d=-1):
self.axis = axis
self.matrix = matrix
self.trans1d = trans1d
self.ndmin = ndmin
def __getitem__(self, key):
# handle matrix builder syntax
if isinstance(key, str):
frame = sys._getframe().f_back
mymat = matrixlib.bmat(key, frame.f_globals, frame.f_locals)
return mymat
if not isinstance(key, tuple):
key = (key,)
# copy attributes, since they can be overridden in the first argument
trans1d = self.trans1d
ndmin = self.ndmin
matrix = self.matrix
axis = self.axis
objs = []
scalars = []
arraytypes = []
scalartypes = []
for k, item in enumerate(key):
scalar = False
if isinstance(item, slice):
step = item.step
start = item.start
stop = item.stop
if start is None:
start = 0
if step is None:
step = 1
if isinstance(step, complex):
size = int(abs(step))
newobj = linspace(start, stop, num=size)
else:
newobj = _nx.arange(start, stop, step)
if ndmin > 1:
newobj = array(newobj, copy=False, ndmin=ndmin)
if trans1d != -1:
newobj = newobj.swapaxes(-1, trans1d)
elif isinstance(item, str):
if k != 0:
raise ValueError("special directives must be the "
"first entry.")
if item in ('r', 'c'):
matrix = True
col = (item == 'c')
continue
if ',' in item:
vec = item.split(',')
try:
axis, ndmin = [int(x) for x in vec[:2]]
if len(vec) == 3:
trans1d = int(vec[2])
continue
except Exception as e:
raise ValueError(
"unknown special directive {!r}".format(item)
) from e
try:
axis = int(item)
continue
except (ValueError, TypeError):
raise ValueError("unknown special directive")
elif type(item) in ScalarType:
newobj = array(item, ndmin=ndmin)
scalars.append(len(objs))
scalar = True
scalartypes.append(newobj.dtype)
else:
item_ndim = ndim(item)
newobj = array(item, copy=False, subok=True, ndmin=ndmin)
if trans1d != -1 and item_ndim < ndmin:
k2 = ndmin - item_ndim
k1 = trans1d
if k1 < 0:
k1 += k2 + 1
defaxes = list(range(ndmin))
axes = defaxes[:k1] + defaxes[k2:] + defaxes[k1:k2]
newobj = newobj.transpose(axes)
objs.append(newobj)
if not scalar and isinstance(newobj, _nx.ndarray):
arraytypes.append(newobj.dtype)
# Ensure that scalars won't up-cast unless warranted
final_dtype = find_common_type(arraytypes, scalartypes)
if final_dtype is not None:
for k in scalars:
objs[k] = objs[k].astype(final_dtype)
res = self.concatenate(tuple(objs), axis=axis)
if matrix:
oldndim = res.ndim
res = self.makemat(res)
if oldndim == 1 and col:
res = res.T
return res
def __len__(self):
return 0
# separate classes are used here instead of just making r_ = concatentor(0),
# etc. because otherwise we couldn't get the doc string to come out right
# in help(r_)
class RClass(AxisConcatenator):
"""
Translates slice objects to concatenation along the first axis.
This is a simple way to build up arrays quickly. There are two use cases.
1. If the index expression contains comma separated arrays, then stack
them along their first axis.
2. If the index expression contains slice notation or scalars then create
a 1-D array with a range indicated by the slice notation.
If slice notation is used, the syntax ``start:stop:step`` is equivalent
to ``np.arange(start, stop, step)`` inside of the brackets. However, if
``step`` is an imaginary number (i.e. 100j) then its integer portion is
interpreted as a number-of-points desired and the start and stop are
inclusive. In other words ``start:stop:stepj`` is interpreted as
``np.linspace(start, stop, step, endpoint=1)`` inside of the brackets.
After expansion of slice notation, all comma separated sequences are
concatenated together.
Optional character strings placed as the first element of the index
expression can be used to change the output. The strings 'r' or 'c' result
in matrix output. If the result is 1-D and 'r' is specified a 1 x N (row)
matrix is produced. If the result is 1-D and 'c' is specified, then a N x 1
(column) matrix is produced. If the result is 2-D then both provide the
same matrix result.
A string integer specifies which axis to stack multiple comma separated
arrays along. A string of two comma-separated integers allows indication
of the minimum number of dimensions to force each entry into as the
second integer (the axis to concatenate along is still the first integer).
A string with three comma-separated integers allows specification of the
axis to concatenate along, the minimum number of dimensions to force the
entries to, and which axis should contain the start of the arrays which
are less than the specified number of dimensions. In other words the third
integer allows you to specify where the 1's should be placed in the shape
of the arrays that have their shapes upgraded. By default, they are placed
in the front of the shape tuple. The third argument allows you to specify
where the start of the array should be instead. Thus, a third argument of
'0' would place the 1's at the end of the array shape. Negative integers
specify where in the new shape tuple the last dimension of upgraded arrays
should be placed, so the default is '-1'.
Parameters
----------
Not a function, so takes no parameters
Returns
-------
A concatenated ndarray or matrix.
See Also
--------
concatenate : Join a sequence of arrays along an existing axis.
c_ : Translates slice objects to concatenation along the second axis.
Examples
--------
>>> np.r_[np.array([1,2,3]), 0, 0, np.array([4,5,6])]
array([1, 2, 3, ..., 4, 5, 6])
>>> np.r_[-1:1:6j, [0]*3, 5, 6]
array([-1. , -0.6, -0.2, 0.2, 0.6, 1. , 0. , 0. , 0. , 5. , 6. ])
String integers specify the axis to concatenate along or the minimum
number of dimensions to force entries into.
>>> a = np.array([[0, 1, 2], [3, 4, 5]])
>>> np.r_['-1', a, a] # concatenate along last axis
array([[0, 1, 2, 0, 1, 2],
[3, 4, 5, 3, 4, 5]])
>>> np.r_['0,2', [1,2,3], [4,5,6]] # concatenate along first axis, dim>=2
array([[1, 2, 3],
[4, 5, 6]])
>>> np.r_['0,2,0', [1,2,3], [4,5,6]]
array([[1],
[2],
[3],
[4],
[5],
[6]])
>>> np.r_['1,2,0', [1,2,3], [4,5,6]]
array([[1, 4],
[2, 5],
[3, 6]])
Using 'r' or 'c' as a first string argument creates a matrix.
>>> np.r_['r',[1,2,3], [4,5,6]]
matrix([[1, 2, 3, 4, 5, 6]])
"""
def __init__(self):
AxisConcatenator.__init__(self, 0)
r_ = RClass()
class CClass(AxisConcatenator):
"""
Translates slice objects to concatenation along the second axis.
This is short-hand for ``np.r_['-1,2,0', index expression]``, which is
useful because of its common occurrence. In particular, arrays will be
stacked along their last axis after being upgraded to at least 2-D with
1's post-pended to the shape (column vectors made out of 1-D arrays).
See Also
--------
column_stack : Stack 1-D arrays as columns into a 2-D array.
r_ : For more detailed documentation.
Examples
--------
>>> np.c_[np.array([1,2,3]), np.array([4,5,6])]
array([[1, 4],
[2, 5],
[3, 6]])
>>> np.c_[np.array([[1,2,3]]), 0, 0, np.array([[4,5,6]])]
array([[1, 2, 3, ..., 4, 5, 6]])
"""
def __init__(self):
AxisConcatenator.__init__(self, -1, ndmin=2, trans1d=0)
c_ = CClass()
@set_module('numpy')
class ndenumerate:
"""
Multidimensional index iterator.
Return an iterator yielding pairs of array coordinates and values.
Parameters
----------
arr : ndarray
Input array.
See Also
--------
ndindex, flatiter
Examples
--------
>>> a = np.array([[1, 2], [3, 4]])
>>> for index, x in np.ndenumerate(a):
... print(index, x)
(0, 0) 1
(0, 1) 2
(1, 0) 3
(1, 1) 4
"""
def __init__(self, arr):
self.iter = asarray(arr).flat
def __next__(self):
"""
Standard iterator method, returns the index tuple and array value.
Returns
-------
coords : tuple of ints
The indices of the current iteration.
val : scalar
The array element of the current iteration.
"""
return self.iter.coords, next(self.iter)
def __iter__(self):
return self
@set_module('numpy')
class ndindex:
"""
An N-dimensional iterator object to index arrays.
Given the shape of an array, an `ndindex` instance iterates over
the N-dimensional index of the array. At each iteration a tuple
of indices is returned, the last dimension is iterated over first.
Parameters
----------
`*args` : ints
The size of each dimension of the array.
See Also
--------
ndenumerate, flatiter
Examples
--------
>>> for index in np.ndindex(3, 2, 1):
... print(index)
(0, 0, 0)
(0, 1, 0)
(1, 0, 0)
(1, 1, 0)
(2, 0, 0)
(2, 1, 0)
"""
def __init__(self, *shape):
if len(shape) == 1 and isinstance(shape[0], tuple):
shape = shape[0]
x = as_strided(_nx.zeros(1), shape=shape,
strides=_nx.zeros_like(shape))
self._it = _nx.nditer(x, flags=['multi_index', 'zerosize_ok'],
order='C')
def __iter__(self):
return self
def ndincr(self):
"""
Increment the multi-dimensional index by one.
This method is for backward compatibility only: do not use.
"""
next(self)
def __next__(self):
"""
Standard iterator method, updates the index and returns the index
tuple.
Returns
-------
val : tuple of ints
Returns a tuple containing the indices of the current
iteration.
"""
next(self._it)
return self._it.multi_index
# You can do all this with slice() plus a few special objects,
# but there's a lot to remember. This version is simpler because
# it uses the standard array indexing syntax.
#
# Written by Konrad Hinsen <hinsen@cnrs-orleans.fr>
# last revision: 1999-7-23
#
# Cosmetic changes by T. Oliphant 2001
#
#
class IndexExpression:
"""
A nicer way to build up index tuples for arrays.
.. note::
Use one of the two predefined instances `index_exp` or `s_`
rather than directly using `IndexExpression`.
For any index combination, including slicing and axis insertion,
``a[indices]`` is the same as ``a[np.index_exp[indices]]`` for any
array `a`. However, ``np.index_exp[indices]`` can be used anywhere
in Python code and returns a tuple of slice objects that can be
used in the construction of complex index expressions.
Parameters
----------
maketuple : bool
If True, always returns a tuple.
See Also
--------
index_exp : Predefined instance that always returns a tuple:
`index_exp = IndexExpression(maketuple=True)`.
s_ : Predefined instance without tuple conversion:
`s_ = IndexExpression(maketuple=False)`.
Notes
-----
You can do all this with `slice()` plus a few special objects,
but there's a lot to remember and this version is simpler because
it uses the standard array indexing syntax.
Examples
--------
>>> np.s_[2::2]
slice(2, None, 2)
>>> np.index_exp[2::2]
(slice(2, None, 2),)
>>> np.array([0, 1, 2, 3, 4])[np.s_[2::2]]
array([2, 4])
"""
def __init__(self, maketuple):
self.maketuple = maketuple
def __getitem__(self, item):
if self.maketuple and not isinstance(item, tuple):
return (item,)
else:
return item
index_exp = IndexExpression(maketuple=True)
s_ = IndexExpression(maketuple=False)
# End contribution from Konrad.
# The following functions complement those in twodim_base, but are
# applicable to N-dimensions.
def _fill_diagonal_dispatcher(a, val, wrap=None):
return (a,)
@array_function_dispatch(_fill_diagonal_dispatcher)
def fill_diagonal(a, val, wrap=False):
"""Fill the main diagonal of the given array of any dimensionality.
For an array `a` with ``a.ndim >= 2``, the diagonal is the list of
locations with indices ``a[i, ..., i]`` all identical. This function
modifies the input array in-place, it does not return a value.
Parameters
----------
a : array, at least 2-D.
Array whose diagonal is to be filled, it gets modified in-place.
val : scalar
Value to be written on the diagonal, its type must be compatible with
that of the array a.
wrap : bool
For tall matrices in NumPy version up to 1.6.2, the
diagonal "wrapped" after N columns. You can have this behavior
with this option. This affects only tall matrices.
See also
--------
diag_indices, diag_indices_from
Notes
-----
.. versionadded:: 1.4.0
This functionality can be obtained via `diag_indices`, but internally
this version uses a much faster implementation that never constructs the
indices and uses simple slicing.
Examples
--------
>>> a = np.zeros((3, 3), int)
>>> np.fill_diagonal(a, 5)
>>> a
array([[5, 0, 0],
[0, 5, 0],
[0, 0, 5]])
The same function can operate on a 4-D array:
>>> a = np.zeros((3, 3, 3, 3), int)
>>> np.fill_diagonal(a, 4)
We only show a few blocks for clarity:
>>> a[0, 0]
array([[4, 0, 0],
[0, 0, 0],
[0, 0, 0]])
>>> a[1, 1]
array([[0, 0, 0],
[0, 4, 0],
[0, 0, 0]])
>>> a[2, 2]
array([[0, 0, 0],
[0, 0, 0],
[0, 0, 4]])
The wrap option affects only tall matrices:
>>> # tall matrices no wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4)
>>> a
array([[4, 0, 0],
[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[0, 0, 0]])
>>> # tall matrices wrap
>>> a = np.zeros((5, 3), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0],
[0, 4, 0],
[0, 0, 4],
[0, 0, 0],
[4, 0, 0]])
>>> # wide matrices
>>> a = np.zeros((3, 5), int)
>>> np.fill_diagonal(a, 4, wrap=True)
>>> a
array([[4, 0, 0, 0, 0],
[0, 4, 0, 0, 0],
[0, 0, 4, 0, 0]])
The anti-diagonal can be filled by reversing the order of elements
using either `numpy.flipud` or `numpy.fliplr`.
>>> a = np.zeros((3, 3), int);
>>> np.fill_diagonal(np.fliplr(a), [1,2,3]) # Horizontal flip
>>> a
array([[0, 0, 1],
[0, 2, 0],
[3, 0, 0]])
>>> np.fill_diagonal(np.flipud(a), [1,2,3]) # Vertical flip
>>> a
array([[0, 0, 3],
[0, 2, 0],
[1, 0, 0]])
Note that the order in which the diagonal is filled varies depending
on the flip function.
"""
if a.ndim < 2:
raise ValueError("array must be at least 2-d")
end = None
if a.ndim == 2:
# Explicit, fast formula for the common case. For 2-d arrays, we
# accept rectangular ones.
step = a.shape[1] + 1
#This is needed to don't have tall matrix have the diagonal wrap.
if not wrap:
end = a.shape[1] * a.shape[1]
else:
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
if not alltrue(diff(a.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
step = 1 + (cumprod(a.shape[:-1])).sum()
# Write the value out into the diagonal.
a.flat[:end:step] = val
@set_module('numpy')
def diag_indices(n, ndim=2):
"""
Return the indices to access the main diagonal of an array.
This returns a tuple of indices that can be used to access the main
diagonal of an array `a` with ``a.ndim >= 2`` dimensions and shape
(n, n, ..., n). For ``a.ndim = 2`` this is the usual diagonal, for
``a.ndim > 2`` this is the set of indices to access ``a[i, i, ..., i]``
for ``i = [0..n-1]``.
Parameters
----------
n : int
The size, along each dimension, of the arrays for which the returned
indices can be used.
ndim : int, optional
The number of dimensions.
See also
--------
diag_indices_from
Notes
-----
.. versionadded:: 1.4.0
Examples
--------
Create a set of indices to access the diagonal of a (4, 4) array:
>>> di = np.diag_indices(4)
>>> di
(array([0, 1, 2, 3]), array([0, 1, 2, 3]))
>>> a = np.arange(16).reshape(4, 4)
>>> a
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15]])
>>> a[di] = 100
>>> a
array([[100, 1, 2, 3],
[ 4, 100, 6, 7],
[ 8, 9, 100, 11],
[ 12, 13, 14, 100]])
Now, we create indices to manipulate a 3-D array:
>>> d3 = np.diag_indices(2, 3)
>>> d3
(array([0, 1]), array([0, 1]), array([0, 1]))
And use it to set the diagonal of an array of zeros to 1:
>>> a = np.zeros((2, 2, 2), dtype=int)
>>> a[d3] = 1
>>> a
array([[[1, 0],
[0, 0]],
[[0, 0],
[0, 1]]])
"""
idx = arange(n)
return (idx,) * ndim
def _diag_indices_from(arr):
return (arr,)
@array_function_dispatch(_diag_indices_from)
def diag_indices_from(arr):
"""
Return the indices to access the main diagonal of an n-dimensional array.
See `diag_indices` for full details.
Parameters
----------
arr : array, at least 2-D
See Also
--------
diag_indices
Notes
-----
.. versionadded:: 1.4.0
"""
if not arr.ndim >= 2:
raise ValueError("input array must be at least 2-d")
# For more than d=2, the strided formula is only valid for arrays with
# all dimensions equal, so we check first.
if not alltrue(diff(arr.shape) == 0):
raise ValueError("All dimensions of input must be of equal length")
return diag_indices(arr.shape[0], arr.ndim)