function_base.py 152 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786
import collections.abc
import functools
import re
import sys
import warnings

import numpy as np
import numpy.core.numeric as _nx
from numpy.core import transpose
from numpy.core.numeric import (
    ones, zeros, arange, concatenate, array, asarray, asanyarray, empty,
    ndarray, around, floor, ceil, take, dot, where, intp,
    integer, isscalar, absolute
    )
from numpy.core.umath import (
    pi, add, arctan2, frompyfunc, cos, less_equal, sqrt, sin,
    mod, exp, not_equal, subtract
    )
from numpy.core.fromnumeric import (
    ravel, nonzero, partition, mean, any, sum
    )
from numpy.core.numerictypes import typecodes
from numpy.core.overrides import set_module
from numpy.core import overrides
from numpy.core.function_base import add_newdoc
from numpy.lib.twodim_base import diag
from numpy.core.multiarray import (
    _insert, add_docstring, bincount, normalize_axis_index, _monotonicity,
    interp as compiled_interp, interp_complex as compiled_interp_complex
    )
from numpy.core.umath import _add_newdoc_ufunc as add_newdoc_ufunc

import builtins

# needed in this module for compatibility
from numpy.lib.histograms import histogram, histogramdd


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


__all__ = [
    'select', 'piecewise', 'trim_zeros', 'copy', 'iterable', 'percentile',
    'diff', 'gradient', 'angle', 'unwrap', 'sort_complex', 'disp', 'flip',
    'rot90', 'extract', 'place', 'vectorize', 'asarray_chkfinite', 'average',
    'bincount', 'digitize', 'cov', 'corrcoef',
    'msort', 'median', 'sinc', 'hamming', 'hanning', 'bartlett',
    'blackman', 'kaiser', 'trapz', 'i0', 'add_newdoc', 'add_docstring',
    'meshgrid', 'delete', 'insert', 'append', 'interp', 'add_newdoc_ufunc',
    'quantile'
    ]


def _rot90_dispatcher(m, k=None, axes=None):
    return (m,)


@array_function_dispatch(_rot90_dispatcher)
def rot90(m, k=1, axes=(0, 1)):
    """
    Rotate an array by 90 degrees in the plane specified by axes.

    Rotation direction is from the first towards the second axis.

    Parameters
    ----------
    m : array_like
        Array of two or more dimensions.
    k : integer
        Number of times the array is rotated by 90 degrees.
    axes: (2,) array_like
        The array is rotated in the plane defined by the axes.
        Axes must be different.

        .. versionadded:: 1.12.0

    Returns
    -------
    y : ndarray
        A rotated view of `m`.

    See Also
    --------
    flip : Reverse the order of elements in an array along the given axis.
    fliplr : Flip an array horizontally.
    flipud : Flip an array vertically.

    Notes
    -----
    rot90(m, k=1, axes=(1,0)) is the reverse of rot90(m, k=1, axes=(0,1))
    rot90(m, k=1, axes=(1,0)) is equivalent to rot90(m, k=-1, axes=(0,1))

    Examples
    --------
    >>> m = np.array([[1,2],[3,4]], int)
    >>> m
    array([[1, 2],
           [3, 4]])
    >>> np.rot90(m)
    array([[2, 4],
           [1, 3]])
    >>> np.rot90(m, 2)
    array([[4, 3],
           [2, 1]])
    >>> m = np.arange(8).reshape((2,2,2))
    >>> np.rot90(m, 1, (1,2))
    array([[[1, 3],
            [0, 2]],
           [[5, 7],
            [4, 6]]])

    """
    axes = tuple(axes)
    if len(axes) != 2:
        raise ValueError("len(axes) must be 2.")

    m = asanyarray(m)

    if axes[0] == axes[1] or absolute(axes[0] - axes[1]) == m.ndim:
        raise ValueError("Axes must be different.")

    if (axes[0] >= m.ndim or axes[0] < -m.ndim
        or axes[1] >= m.ndim or axes[1] < -m.ndim):
        raise ValueError("Axes={} out of range for array of ndim={}."
            .format(axes, m.ndim))

    k %= 4

    if k == 0:
        return m[:]
    if k == 2:
        return flip(flip(m, axes[0]), axes[1])

    axes_list = arange(0, m.ndim)
    (axes_list[axes[0]], axes_list[axes[1]]) = (axes_list[axes[1]],
                                                axes_list[axes[0]])

    if k == 1:
        return transpose(flip(m, axes[1]), axes_list)
    else:
        # k == 3
        return flip(transpose(m, axes_list), axes[1])


def _flip_dispatcher(m, axis=None):
    return (m,)


@array_function_dispatch(_flip_dispatcher)
def flip(m, axis=None):
    """
    Reverse the order of elements in an array along the given axis.

    The shape of the array is preserved, but the elements are reordered.

    .. versionadded:: 1.12.0

    Parameters
    ----------
    m : array_like
        Input array.
    axis : None or int or tuple of ints, optional
         Axis or axes along which to flip over. The default,
         axis=None, will flip over all of the axes of the input array.
         If axis is negative it counts from the last to the first axis.

         If axis is a tuple of ints, flipping is performed on all of the axes
         specified in the tuple.

         .. versionchanged:: 1.15.0
            None and tuples of axes are supported

    Returns
    -------
    out : array_like
        A view of `m` with the entries of axis reversed.  Since a view is
        returned, this operation is done in constant time.

    See Also
    --------
    flipud : Flip an array vertically (axis=0).
    fliplr : Flip an array horizontally (axis=1).

    Notes
    -----
    flip(m, 0) is equivalent to flipud(m).

    flip(m, 1) is equivalent to fliplr(m).

    flip(m, n) corresponds to ``m[...,::-1,...]`` with ``::-1`` at position n.

    flip(m) corresponds to ``m[::-1,::-1,...,::-1]`` with ``::-1`` at all
    positions.

    flip(m, (0, 1)) corresponds to ``m[::-1,::-1,...]`` with ``::-1`` at
    position 0 and position 1.

    Examples
    --------
    >>> A = np.arange(8).reshape((2,2,2))
    >>> A
    array([[[0, 1],
            [2, 3]],
           [[4, 5],
            [6, 7]]])
    >>> np.flip(A, 0)
    array([[[4, 5],
            [6, 7]],
           [[0, 1],
            [2, 3]]])
    >>> np.flip(A, 1)
    array([[[2, 3],
            [0, 1]],
           [[6, 7],
            [4, 5]]])
    >>> np.flip(A)
    array([[[7, 6],
            [5, 4]],
           [[3, 2],
            [1, 0]]])
    >>> np.flip(A, (0, 2))
    array([[[5, 4],
            [7, 6]],
           [[1, 0],
            [3, 2]]])
    >>> A = np.random.randn(3,4,5)
    >>> np.all(np.flip(A,2) == A[:,:,::-1,...])
    True
    """
    if not hasattr(m, 'ndim'):
        m = asarray(m)
    if axis is None:
        indexer = (np.s_[::-1],) * m.ndim
    else:
        axis = _nx.normalize_axis_tuple(axis, m.ndim)
        indexer = [np.s_[:]] * m.ndim
        for ax in axis:
            indexer[ax] = np.s_[::-1]
        indexer = tuple(indexer)
    return m[indexer]


@set_module('numpy')
def iterable(y):
    """
    Check whether or not an object can be iterated over.

    Parameters
    ----------
    y : object
      Input object.

    Returns
    -------
    b : bool
      Return ``True`` if the object has an iterator method or is a
      sequence and ``False`` otherwise.


    Examples
    --------
    >>> np.iterable([1, 2, 3])
    True
    >>> np.iterable(2)
    False

    """
    try:
        iter(y)
    except TypeError:
        return False
    return True


def _average_dispatcher(a, axis=None, weights=None, returned=None):
    return (a, weights)


@array_function_dispatch(_average_dispatcher)
def average(a, axis=None, weights=None, returned=False):
    """
    Compute the weighted average along the specified axis.

    Parameters
    ----------
    a : array_like
        Array containing data to be averaged. If `a` is not an array, a
        conversion is attempted.
    axis : None or int or tuple of ints, optional
        Axis or axes along which to average `a`.  The default,
        axis=None, will average over all of the elements of the input array.
        If axis is negative it counts from the last to the first axis.

        .. versionadded:: 1.7.0

        If axis is a tuple of ints, averaging is performed on all of the axes
        specified in the tuple instead of a single axis or all the axes as
        before.
    weights : array_like, optional
        An array of weights associated with the values in `a`. Each value in
        `a` contributes to the average according to its associated weight.
        The weights array can either be 1-D (in which case its length must be
        the size of `a` along the given axis) or of the same shape as `a`.
        If `weights=None`, then all data in `a` are assumed to have a
        weight equal to one.  The 1-D calculation is::

            avg = sum(a * weights) / sum(weights)

        The only constraint on `weights` is that `sum(weights)` must not be 0.
    returned : bool, optional
        Default is `False`. If `True`, the tuple (`average`, `sum_of_weights`)
        is returned, otherwise only the average is returned.
        If `weights=None`, `sum_of_weights` is equivalent to the number of
        elements over which the average is taken.

    Returns
    -------
    retval, [sum_of_weights] : array_type or double
        Return the average along the specified axis. When `returned` is `True`,
        return a tuple with the average as the first element and the sum
        of the weights as the second element. `sum_of_weights` is of the
        same type as `retval`. The result dtype follows a genereal pattern.
        If `weights` is None, the result dtype will be that of `a` , or ``float64``
        if `a` is integral. Otherwise, if `weights` is not None and `a` is non-
        integral, the result type will be the type of lowest precision capable of
        representing values of both `a` and `weights`. If `a` happens to be
        integral, the previous rules still applies but the result dtype will
        at least be ``float64``.

    Raises
    ------
    ZeroDivisionError
        When all weights along axis are zero. See `numpy.ma.average` for a
        version robust to this type of error.
    TypeError
        When the length of 1D `weights` is not the same as the shape of `a`
        along axis.

    See Also
    --------
    mean

    ma.average : average for masked arrays -- useful if your data contains
                 "missing" values
    numpy.result_type : Returns the type that results from applying the
                        numpy type promotion rules to the arguments.

    Examples
    --------
    >>> data = np.arange(1, 5)
    >>> data
    array([1, 2, 3, 4])
    >>> np.average(data)
    2.5
    >>> np.average(np.arange(1, 11), weights=np.arange(10, 0, -1))
    4.0

    >>> data = np.arange(6).reshape((3,2))
    >>> data
    array([[0, 1],
           [2, 3],
           [4, 5]])
    >>> np.average(data, axis=1, weights=[1./4, 3./4])
    array([0.75, 2.75, 4.75])
    >>> np.average(data, weights=[1./4, 3./4])
    Traceback (most recent call last):
        ...
    TypeError: Axis must be specified when shapes of a and weights differ.

    >>> a = np.ones(5, dtype=np.float128)
    >>> w = np.ones(5, dtype=np.complex64)
    >>> avg = np.average(a, weights=w)
    >>> print(avg.dtype)
    complex256
    """
    a = np.asanyarray(a)

    if weights is None:
        avg = a.mean(axis)
        scl = avg.dtype.type(a.size/avg.size)
    else:
        wgt = np.asanyarray(weights)

        if issubclass(a.dtype.type, (np.integer, np.bool_)):
            result_dtype = np.result_type(a.dtype, wgt.dtype, 'f8')
        else:
            result_dtype = np.result_type(a.dtype, wgt.dtype)

        # Sanity checks
        if a.shape != wgt.shape:
            if axis is None:
                raise TypeError(
                    "Axis must be specified when shapes of a and weights "
                    "differ.")
            if wgt.ndim != 1:
                raise TypeError(
                    "1D weights expected when shapes of a and weights differ.")
            if wgt.shape[0] != a.shape[axis]:
                raise ValueError(
                    "Length of weights not compatible with specified axis.")

            # setup wgt to broadcast along axis
            wgt = np.broadcast_to(wgt, (a.ndim-1)*(1,) + wgt.shape)
            wgt = wgt.swapaxes(-1, axis)

        scl = wgt.sum(axis=axis, dtype=result_dtype)
        if np.any(scl == 0.0):
            raise ZeroDivisionError(
                "Weights sum to zero, can't be normalized")

        avg = np.multiply(a, wgt, dtype=result_dtype).sum(axis)/scl

    if returned:
        if scl.shape != avg.shape:
            scl = np.broadcast_to(scl, avg.shape).copy()
        return avg, scl
    else:
        return avg


@set_module('numpy')
def asarray_chkfinite(a, dtype=None, order=None):
    """Convert the input to an array, checking for NaNs or Infs.

    Parameters
    ----------
    a : array_like
        Input data, in any form that can be converted to an array.  This
        includes lists, lists of tuples, tuples, tuples of tuples, tuples
        of lists and ndarrays.  Success requires no NaNs or Infs.
    dtype : data-type, optional
        By default, the data-type is inferred from the input data.
    order : {'C', 'F'}, optional
         Whether to use row-major (C-style) or
         column-major (Fortran-style) memory representation.
         Defaults to 'C'.

    Returns
    -------
    out : ndarray
        Array interpretation of `a`.  No copy is performed if the input
        is already an ndarray.  If `a` is a subclass of ndarray, a base
        class ndarray is returned.

    Raises
    ------
    ValueError
        Raises ValueError if `a` contains NaN (Not a Number) or Inf (Infinity).

    See Also
    --------
    asarray : Create and array.
    asanyarray : Similar function which passes through subclasses.
    ascontiguousarray : Convert input to a contiguous array.
    asfarray : Convert input to a floating point ndarray.
    asfortranarray : Convert input to an ndarray with column-major
                     memory order.
    fromiter : Create an array from an iterator.
    fromfunction : Construct an array by executing a function on grid
                   positions.

    Examples
    --------
    Convert a list into an array.  If all elements are finite
    ``asarray_chkfinite`` is identical to ``asarray``.

    >>> a = [1, 2]
    >>> np.asarray_chkfinite(a, dtype=float)
    array([1., 2.])

    Raises ValueError if array_like contains Nans or Infs.

    >>> a = [1, 2, np.inf]
    >>> try:
    ...     np.asarray_chkfinite(a)
    ... except ValueError:
    ...     print('ValueError')
    ...
    ValueError

    """
    a = asarray(a, dtype=dtype, order=order)
    if a.dtype.char in typecodes['AllFloat'] and not np.isfinite(a).all():
        raise ValueError(
            "array must not contain infs or NaNs")
    return a


def _piecewise_dispatcher(x, condlist, funclist, *args, **kw):
    yield x
    # support the undocumented behavior of allowing scalars
    if np.iterable(condlist):
        yield from condlist


@array_function_dispatch(_piecewise_dispatcher)
def piecewise(x, condlist, funclist, *args, **kw):
    """
    Evaluate a piecewise-defined function.

    Given a set of conditions and corresponding functions, evaluate each
    function on the input data wherever its condition is true.

    Parameters
    ----------
    x : ndarray or scalar
        The input domain.
    condlist : list of bool arrays or bool scalars
        Each boolean array corresponds to a function in `funclist`.  Wherever
        `condlist[i]` is True, `funclist[i](x)` is used as the output value.

        Each boolean array in `condlist` selects a piece of `x`,
        and should therefore be of the same shape as `x`.

        The length of `condlist` must correspond to that of `funclist`.
        If one extra function is given, i.e. if
        ``len(funclist) == len(condlist) + 1``, then that extra function
        is the default value, used wherever all conditions are false.
    funclist : list of callables, f(x,*args,**kw), or scalars
        Each function is evaluated over `x` wherever its corresponding
        condition is True.  It should take a 1d array as input and give an 1d
        array or a scalar value as output.  If, instead of a callable,
        a scalar is provided then a constant function (``lambda x: scalar``) is
        assumed.
    args : tuple, optional
        Any further arguments given to `piecewise` are passed to the functions
        upon execution, i.e., if called ``piecewise(..., ..., 1, 'a')``, then
        each function is called as ``f(x, 1, 'a')``.
    kw : dict, optional
        Keyword arguments used in calling `piecewise` are passed to the
        functions upon execution, i.e., if called
        ``piecewise(..., ..., alpha=1)``, then each function is called as
        ``f(x, alpha=1)``.

    Returns
    -------
    out : ndarray
        The output is the same shape and type as x and is found by
        calling the functions in `funclist` on the appropriate portions of `x`,
        as defined by the boolean arrays in `condlist`.  Portions not covered
        by any condition have a default value of 0.


    See Also
    --------
    choose, select, where

    Notes
    -----
    This is similar to choose or select, except that functions are
    evaluated on elements of `x` that satisfy the corresponding condition from
    `condlist`.

    The result is::

            |--
            |funclist[0](x[condlist[0]])
      out = |funclist[1](x[condlist[1]])
            |...
            |funclist[n2](x[condlist[n2]])
            |--

    Examples
    --------
    Define the sigma function, which is -1 for ``x < 0`` and +1 for ``x >= 0``.

    >>> x = np.linspace(-2.5, 2.5, 6)
    >>> np.piecewise(x, [x < 0, x >= 0], [-1, 1])
    array([-1., -1., -1.,  1.,  1.,  1.])

    Define the absolute value, which is ``-x`` for ``x <0`` and ``x`` for
    ``x >= 0``.

    >>> np.piecewise(x, [x < 0, x >= 0], [lambda x: -x, lambda x: x])
    array([2.5,  1.5,  0.5,  0.5,  1.5,  2.5])

    Apply the same function to a scalar value.

    >>> y = -2
    >>> np.piecewise(y, [y < 0, y >= 0], [lambda x: -x, lambda x: x])
    array(2)

    """
    x = asanyarray(x)
    n2 = len(funclist)

    # undocumented: single condition is promoted to a list of one condition
    if isscalar(condlist) or (
            not isinstance(condlist[0], (list, ndarray)) and x.ndim != 0):
        condlist = [condlist]

    condlist = array(condlist, dtype=bool)
    n = len(condlist)

    if n == n2 - 1:  # compute the "otherwise" condition.
        condelse = ~np.any(condlist, axis=0, keepdims=True)
        condlist = np.concatenate([condlist, condelse], axis=0)
        n += 1
    elif n != n2:
        raise ValueError(
            "with {} condition(s), either {} or {} functions are expected"
            .format(n, n, n+1)
        )

    y = zeros(x.shape, x.dtype)
    for k in range(n):
        item = funclist[k]
        if not isinstance(item, collections.abc.Callable):
            y[condlist[k]] = item
        else:
            vals = x[condlist[k]]
            if vals.size > 0:
                y[condlist[k]] = item(vals, *args, **kw)

    return y


def _select_dispatcher(condlist, choicelist, default=None):
    yield from condlist
    yield from choicelist


@array_function_dispatch(_select_dispatcher)
def select(condlist, choicelist, default=0):
    """
    Return an array drawn from elements in choicelist, depending on conditions.

    Parameters
    ----------
    condlist : list of bool ndarrays
        The list of conditions which determine from which array in `choicelist`
        the output elements are taken. When multiple conditions are satisfied,
        the first one encountered in `condlist` is used.
    choicelist : list of ndarrays
        The list of arrays from which the output elements are taken. It has
        to be of the same length as `condlist`.
    default : scalar, optional
        The element inserted in `output` when all conditions evaluate to False.

    Returns
    -------
    output : ndarray
        The output at position m is the m-th element of the array in
        `choicelist` where the m-th element of the corresponding array in
        `condlist` is True.

    See Also
    --------
    where : Return elements from one of two arrays depending on condition.
    take, choose, compress, diag, diagonal

    Examples
    --------
    >>> x = np.arange(10)
    >>> condlist = [x<3, x>5]
    >>> choicelist = [x, x**2]
    >>> np.select(condlist, choicelist)
    array([ 0,  1,  2, ..., 49, 64, 81])

    """
    # Check the size of condlist and choicelist are the same, or abort.
    if len(condlist) != len(choicelist):
        raise ValueError(
            'list of cases must be same length as list of conditions')

    # Now that the dtype is known, handle the deprecated select([], []) case
    if len(condlist) == 0:
        raise ValueError("select with an empty condition list is not possible")

    choicelist = [np.asarray(choice) for choice in choicelist]
    choicelist.append(np.asarray(default))

    # need to get the result type before broadcasting for correct scalar
    # behaviour
    dtype = np.result_type(*choicelist)

    # Convert conditions to arrays and broadcast conditions and choices
    # as the shape is needed for the result. Doing it separately optimizes
    # for example when all choices are scalars.
    condlist = np.broadcast_arrays(*condlist)
    choicelist = np.broadcast_arrays(*choicelist)

    # If cond array is not an ndarray in boolean format or scalar bool, abort.
    for i in range(len(condlist)):
        cond = condlist[i]
        if cond.dtype.type is not np.bool_:
            raise TypeError(
                'invalid entry {} in condlist: should be boolean ndarray'.format(i))

    if choicelist[0].ndim == 0:
        # This may be common, so avoid the call.
        result_shape = condlist[0].shape
    else:
        result_shape = np.broadcast_arrays(condlist[0], choicelist[0])[0].shape

    result = np.full(result_shape, choicelist[-1], dtype)

    # Use np.copyto to burn each choicelist array onto result, using the
    # corresponding condlist as a boolean mask. This is done in reverse
    # order since the first choice should take precedence.
    choicelist = choicelist[-2::-1]
    condlist = condlist[::-1]
    for choice, cond in zip(choicelist, condlist):
        np.copyto(result, choice, where=cond)

    return result


def _copy_dispatcher(a, order=None, subok=None):
    return (a,)


@array_function_dispatch(_copy_dispatcher)
def copy(a, order='K', subok=False):
    """
    Return an array copy of the given object.

    Parameters
    ----------
    a : array_like
        Input data.
    order : {'C', 'F', 'A', 'K'}, optional
        Controls the memory layout of the copy. 'C' means C-order,
        'F' means F-order, 'A' means 'F' if `a` is Fortran contiguous,
        'C' otherwise. 'K' means match the layout of `a` as closely
        as possible. (Note that this function and :meth:`ndarray.copy` are very
        similar, but have different default values for their order=
        arguments.)
    subok : bool, optional
        If True, then sub-classes will be passed-through, otherwise the
        returned array will be forced to be a base-class array (defaults to False).

        .. versionadded:: 1.19.0

    Returns
    -------
    arr : ndarray
        Array interpretation of `a`.

    See Also
    --------
    ndarray.copy : Preferred method for creating an array copy

    Notes
    -----
    This is equivalent to:

    >>> np.array(a, copy=True)  #doctest: +SKIP

    Examples
    --------
    Create an array x, with a reference y and a copy z:

    >>> x = np.array([1, 2, 3])
    >>> y = x
    >>> z = np.copy(x)

    Note that, when we modify x, y changes, but not z:

    >>> x[0] = 10
    >>> x[0] == y[0]
    True
    >>> x[0] == z[0]
    False

    Note that np.copy is a shallow copy and will not copy object
    elements within arrays. This is mainly important for arrays
    containing Python objects. The new array will contain the
    same object which may lead to surprises if that object can
    be modified (is mutable):

    >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
    >>> b = np.copy(a)
    >>> b[2][0] = 10
    >>> a
    array([1, 'm', list([10, 3, 4])], dtype=object)

    To ensure all elements within an ``object`` array are copied,
    use `copy.deepcopy`:

    >>> import copy
    >>> a = np.array([1, 'm', [2, 3, 4]], dtype=object)
    >>> c = copy.deepcopy(a)
    >>> c[2][0] = 10
    >>> c
    array([1, 'm', list([10, 3, 4])], dtype=object)
    >>> a
    array([1, 'm', list([2, 3, 4])], dtype=object)

    """
    return array(a, order=order, subok=subok, copy=True)

# Basic operations


def _gradient_dispatcher(f, *varargs, axis=None, edge_order=None):
    yield f
    yield from varargs


@array_function_dispatch(_gradient_dispatcher)
def gradient(f, *varargs, axis=None, edge_order=1):
    """
    Return the gradient of an N-dimensional array.

    The gradient is computed using second order accurate central differences
    in the interior points and either first or second order accurate one-sides
    (forward or backwards) differences at the boundaries.
    The returned gradient hence has the same shape as the input array.

    Parameters
    ----------
    f : array_like
        An N-dimensional array containing samples of a scalar function.
    varargs : list of scalar or array, optional
        Spacing between f values. Default unitary spacing for all dimensions.
        Spacing can be specified using:

        1. single scalar to specify a sample distance for all dimensions.
        2. N scalars to specify a constant sample distance for each dimension.
           i.e. `dx`, `dy`, `dz`, ...
        3. N arrays to specify the coordinates of the values along each
           dimension of F. The length of the array must match the size of
           the corresponding dimension
        4. Any combination of N scalars/arrays with the meaning of 2. and 3.

        If `axis` is given, the number of varargs must equal the number of axes.
        Default: 1.

    edge_order : {1, 2}, optional
        Gradient is calculated using N-th order accurate differences
        at the boundaries. Default: 1.

        .. versionadded:: 1.9.1

    axis : None or int or tuple of ints, optional
        Gradient is calculated only along the given axis or axes
        The default (axis = None) is to calculate the gradient for all the axes
        of the input array. axis may be negative, in which case it counts from
        the last to the first axis.

        .. versionadded:: 1.11.0

    Returns
    -------
    gradient : ndarray or list of ndarray
        A set of ndarrays (or a single ndarray if there is only one dimension)
        corresponding to the derivatives of f with respect to each dimension.
        Each derivative has the same shape as f.

    Examples
    --------
    >>> f = np.array([1, 2, 4, 7, 11, 16], dtype=float)
    >>> np.gradient(f)
    array([1. , 1.5, 2.5, 3.5, 4.5, 5. ])
    >>> np.gradient(f, 2)
    array([0.5 ,  0.75,  1.25,  1.75,  2.25,  2.5 ])

    Spacing can be also specified with an array that represents the coordinates
    of the values F along the dimensions.
    For instance a uniform spacing:

    >>> x = np.arange(f.size)
    >>> np.gradient(f, x)
    array([1. ,  1.5,  2.5,  3.5,  4.5,  5. ])

    Or a non uniform one:

    >>> x = np.array([0., 1., 1.5, 3.5, 4., 6.], dtype=float)
    >>> np.gradient(f, x)
    array([1. ,  3. ,  3.5,  6.7,  6.9,  2.5])

    For two dimensional arrays, the return will be two arrays ordered by
    axis. In this example the first array stands for the gradient in
    rows and the second one in columns direction:

    >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float))
    [array([[ 2.,  2., -1.],
           [ 2.,  2., -1.]]), array([[1. , 2.5, 4. ],
           [1. , 1. , 1. ]])]

    In this example the spacing is also specified:
    uniform for axis=0 and non uniform for axis=1

    >>> dx = 2.
    >>> y = [1., 1.5, 3.5]
    >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), dx, y)
    [array([[ 1. ,  1. , -0.5],
           [ 1. ,  1. , -0.5]]), array([[2. , 2. , 2. ],
           [2. , 1.7, 0.5]])]

    It is possible to specify how boundaries are treated using `edge_order`

    >>> x = np.array([0, 1, 2, 3, 4])
    >>> f = x**2
    >>> np.gradient(f, edge_order=1)
    array([1.,  2.,  4.,  6.,  7.])
    >>> np.gradient(f, edge_order=2)
    array([0., 2., 4., 6., 8.])

    The `axis` keyword can be used to specify a subset of axes of which the
    gradient is calculated

    >>> np.gradient(np.array([[1, 2, 6], [3, 4, 5]], dtype=float), axis=0)
    array([[ 2.,  2., -1.],
           [ 2.,  2., -1.]])

    Notes
    -----
    Assuming that :math:`f\\in C^{3}` (i.e., :math:`f` has at least 3 continuous
    derivatives) and let :math:`h_{*}` be a non-homogeneous stepsize, we
    minimize the "consistency error" :math:`\\eta_{i}` between the true gradient
    and its estimate from a linear combination of the neighboring grid-points:

    .. math::

        \\eta_{i} = f_{i}^{\\left(1\\right)} -
                    \\left[ \\alpha f\\left(x_{i}\\right) +
                            \\beta f\\left(x_{i} + h_{d}\\right) +
                            \\gamma f\\left(x_{i}-h_{s}\\right)
                    \\right]

    By substituting :math:`f(x_{i} + h_{d})` and :math:`f(x_{i} - h_{s})`
    with their Taylor series expansion, this translates into solving
    the following the linear system:

    .. math::

        \\left\\{
            \\begin{array}{r}
                \\alpha+\\beta+\\gamma=0 \\\\
                \\beta h_{d}-\\gamma h_{s}=1 \\\\
                \\beta h_{d}^{2}+\\gamma h_{s}^{2}=0
            \\end{array}
        \\right.

    The resulting approximation of :math:`f_{i}^{(1)}` is the following:

    .. math::

        \\hat f_{i}^{(1)} =
            \\frac{
                h_{s}^{2}f\\left(x_{i} + h_{d}\\right)
                + \\left(h_{d}^{2} - h_{s}^{2}\\right)f\\left(x_{i}\\right)
                - h_{d}^{2}f\\left(x_{i}-h_{s}\\right)}
                { h_{s}h_{d}\\left(h_{d} + h_{s}\\right)}
            + \\mathcal{O}\\left(\\frac{h_{d}h_{s}^{2}
                                + h_{s}h_{d}^{2}}{h_{d}
                                + h_{s}}\\right)

    It is worth noting that if :math:`h_{s}=h_{d}`
    (i.e., data are evenly spaced)
    we find the standard second order approximation:

    .. math::

        \\hat f_{i}^{(1)}=
            \\frac{f\\left(x_{i+1}\\right) - f\\left(x_{i-1}\\right)}{2h}
            + \\mathcal{O}\\left(h^{2}\\right)

    With a similar procedure the forward/backward approximations used for
    boundaries can be derived.

    References
    ----------
    .. [1]  Quarteroni A., Sacco R., Saleri F. (2007) Numerical Mathematics
            (Texts in Applied Mathematics). New York: Springer.
    .. [2]  Durran D. R. (1999) Numerical Methods for Wave Equations
            in Geophysical Fluid Dynamics. New York: Springer.
    .. [3]  Fornberg B. (1988) Generation of Finite Difference Formulas on
            Arbitrarily Spaced Grids,
            Mathematics of Computation 51, no. 184 : 699-706.
            `PDF <http://www.ams.org/journals/mcom/1988-51-184/
            S0025-5718-1988-0935077-0/S0025-5718-1988-0935077-0.pdf>`_.
    """
    f = np.asanyarray(f)
    N = f.ndim  # number of dimensions

    if axis is None:
        axes = tuple(range(N))
    else:
        axes = _nx.normalize_axis_tuple(axis, N)

    len_axes = len(axes)
    n = len(varargs)
    if n == 0:
        # no spacing argument - use 1 in all axes
        dx = [1.0] * len_axes
    elif n == 1 and np.ndim(varargs[0]) == 0:
        # single scalar for all axes
        dx = varargs * len_axes
    elif n == len_axes:
        # scalar or 1d array for each axis
        dx = list(varargs)
        for i, distances in enumerate(dx):
            distances = np.asanyarray(distances)
            if distances.ndim == 0:
                continue
            elif distances.ndim != 1:
                raise ValueError("distances must be either scalars or 1d")
            if len(distances) != f.shape[axes[i]]:
                raise ValueError("when 1d, distances must match "
                                 "the length of the corresponding dimension")
            if np.issubdtype(distances.dtype, np.integer):
                # Convert numpy integer types to float64 to avoid modular
                # arithmetic in np.diff(distances).
                distances = distances.astype(np.float64)
            diffx = np.diff(distances)
            # if distances are constant reduce to the scalar case
            # since it brings a consistent speedup
            if (diffx == diffx[0]).all():
                diffx = diffx[0]
            dx[i] = diffx
    else:
        raise TypeError("invalid number of arguments")

    if edge_order > 2:
        raise ValueError("'edge_order' greater than 2 not supported")

    # use central differences on interior and one-sided differences on the
    # endpoints. This preserves second order-accuracy over the full domain.

    outvals = []

    # create slice objects --- initially all are [:, :, ..., :]
    slice1 = [slice(None)]*N
    slice2 = [slice(None)]*N
    slice3 = [slice(None)]*N
    slice4 = [slice(None)]*N

    otype = f.dtype
    if otype.type is np.datetime64:
        # the timedelta dtype with the same unit information
        otype = np.dtype(otype.name.replace('datetime', 'timedelta'))
        # view as timedelta to allow addition
        f = f.view(otype)
    elif otype.type is np.timedelta64:
        pass
    elif np.issubdtype(otype, np.inexact):
        pass
    else:
        # All other types convert to floating point.
        # First check if f is a numpy integer type; if so, convert f to float64
        # to avoid modular arithmetic when computing the changes in f.
        if np.issubdtype(otype, np.integer):
            f = f.astype(np.float64)
        otype = np.float64

    for axis, ax_dx in zip(axes, dx):
        if f.shape[axis] < edge_order + 1:
            raise ValueError(
                "Shape of array too small to calculate a numerical gradient, "
                "at least (edge_order + 1) elements are required.")
        # result allocation
        out = np.empty_like(f, dtype=otype)

        # spacing for the current axis
        uniform_spacing = np.ndim(ax_dx) == 0

        # Numerical differentiation: 2nd order interior
        slice1[axis] = slice(1, -1)
        slice2[axis] = slice(None, -2)
        slice3[axis] = slice(1, -1)
        slice4[axis] = slice(2, None)

        if uniform_spacing:
            out[tuple(slice1)] = (f[tuple(slice4)] - f[tuple(slice2)]) / (2. * ax_dx)
        else:
            dx1 = ax_dx[0:-1]
            dx2 = ax_dx[1:]
            a = -(dx2)/(dx1 * (dx1 + dx2))
            b = (dx2 - dx1) / (dx1 * dx2)
            c = dx1 / (dx2 * (dx1 + dx2))
            # fix the shape for broadcasting
            shape = np.ones(N, dtype=int)
            shape[axis] = -1
            a.shape = b.shape = c.shape = shape
            # 1D equivalent -- out[1:-1] = a * f[:-2] + b * f[1:-1] + c * f[2:]
            out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]

        # Numerical differentiation: 1st order edges
        if edge_order == 1:
            slice1[axis] = 0
            slice2[axis] = 1
            slice3[axis] = 0
            dx_0 = ax_dx if uniform_spacing else ax_dx[0]
            # 1D equivalent -- out[0] = (f[1] - f[0]) / (x[1] - x[0])
            out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_0

            slice1[axis] = -1
            slice2[axis] = -1
            slice3[axis] = -2
            dx_n = ax_dx if uniform_spacing else ax_dx[-1]
            # 1D equivalent -- out[-1] = (f[-1] - f[-2]) / (x[-1] - x[-2])
            out[tuple(slice1)] = (f[tuple(slice2)] - f[tuple(slice3)]) / dx_n

        # Numerical differentiation: 2nd order edges
        else:
            slice1[axis] = 0
            slice2[axis] = 0
            slice3[axis] = 1
            slice4[axis] = 2
            if uniform_spacing:
                a = -1.5 / ax_dx
                b = 2. / ax_dx
                c = -0.5 / ax_dx
            else:
                dx1 = ax_dx[0]
                dx2 = ax_dx[1]
                a = -(2. * dx1 + dx2)/(dx1 * (dx1 + dx2))
                b = (dx1 + dx2) / (dx1 * dx2)
                c = - dx1 / (dx2 * (dx1 + dx2))
            # 1D equivalent -- out[0] = a * f[0] + b * f[1] + c * f[2]
            out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]

            slice1[axis] = -1
            slice2[axis] = -3
            slice3[axis] = -2
            slice4[axis] = -1
            if uniform_spacing:
                a = 0.5 / ax_dx
                b = -2. / ax_dx
                c = 1.5 / ax_dx
            else:
                dx1 = ax_dx[-2]
                dx2 = ax_dx[-1]
                a = (dx2) / (dx1 * (dx1 + dx2))
                b = - (dx2 + dx1) / (dx1 * dx2)
                c = (2. * dx2 + dx1) / (dx2 * (dx1 + dx2))
            # 1D equivalent -- out[-1] = a * f[-3] + b * f[-2] + c * f[-1]
            out[tuple(slice1)] = a * f[tuple(slice2)] + b * f[tuple(slice3)] + c * f[tuple(slice4)]

        outvals.append(out)

        # reset the slice object in this dimension to ":"
        slice1[axis] = slice(None)
        slice2[axis] = slice(None)
        slice3[axis] = slice(None)
        slice4[axis] = slice(None)

    if len_axes == 1:
        return outvals[0]
    else:
        return outvals


def _diff_dispatcher(a, n=None, axis=None, prepend=None, append=None):
    return (a, prepend, append)


@array_function_dispatch(_diff_dispatcher)
def diff(a, n=1, axis=-1, prepend=np._NoValue, append=np._NoValue):
    """
    Calculate the n-th discrete difference along the given axis.

    The first difference is given by ``out[i] = a[i+1] - a[i]`` along
    the given axis, higher differences are calculated by using `diff`
    recursively.

    Parameters
    ----------
    a : array_like
        Input array
    n : int, optional
        The number of times values are differenced. If zero, the input
        is returned as-is.
    axis : int, optional
        The axis along which the difference is taken, default is the
        last axis.
    prepend, append : array_like, optional
        Values to prepend or append to `a` along axis prior to
        performing the difference.  Scalar values are expanded to
        arrays with length 1 in the direction of axis and the shape
        of the input array in along all other axes.  Otherwise the
        dimension and shape must match `a` except along axis.

        .. versionadded:: 1.16.0

    Returns
    -------
    diff : ndarray
        The n-th differences. The shape of the output is the same as `a`
        except along `axis` where the dimension is smaller by `n`. The
        type of the output is the same as the type of the difference
        between any two elements of `a`. This is the same as the type of
        `a` in most cases. A notable exception is `datetime64`, which
        results in a `timedelta64` output array.

    See Also
    --------
    gradient, ediff1d, cumsum

    Notes
    -----
    Type is preserved for boolean arrays, so the result will contain
    `False` when consecutive elements are the same and `True` when they
    differ.

    For unsigned integer arrays, the results will also be unsigned. This
    should not be surprising, as the result is consistent with
    calculating the difference directly:

    >>> u8_arr = np.array([1, 0], dtype=np.uint8)
    >>> np.diff(u8_arr)
    array([255], dtype=uint8)
    >>> u8_arr[1,...] - u8_arr[0,...]
    255

    If this is not desirable, then the array should be cast to a larger
    integer type first:

    >>> i16_arr = u8_arr.astype(np.int16)
    >>> np.diff(i16_arr)
    array([-1], dtype=int16)

    Examples
    --------
    >>> x = np.array([1, 2, 4, 7, 0])
    >>> np.diff(x)
    array([ 1,  2,  3, -7])
    >>> np.diff(x, n=2)
    array([  1,   1, -10])

    >>> x = np.array([[1, 3, 6, 10], [0, 5, 6, 8]])
    >>> np.diff(x)
    array([[2, 3, 4],
           [5, 1, 2]])
    >>> np.diff(x, axis=0)
    array([[-1,  2,  0, -2]])

    >>> x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64)
    >>> np.diff(x)
    array([1, 1], dtype='timedelta64[D]')

    """
    if n == 0:
        return a
    if n < 0:
        raise ValueError(
            "order must be non-negative but got " + repr(n))

    a = asanyarray(a)
    nd = a.ndim
    if nd == 0:
        raise ValueError("diff requires input that is at least one dimensional")
    axis = normalize_axis_index(axis, nd)

    combined = []
    if prepend is not np._NoValue:
        prepend = np.asanyarray(prepend)
        if prepend.ndim == 0:
            shape = list(a.shape)
            shape[axis] = 1
            prepend = np.broadcast_to(prepend, tuple(shape))
        combined.append(prepend)

    combined.append(a)

    if append is not np._NoValue:
        append = np.asanyarray(append)
        if append.ndim == 0:
            shape = list(a.shape)
            shape[axis] = 1
            append = np.broadcast_to(append, tuple(shape))
        combined.append(append)

    if len(combined) > 1:
        a = np.concatenate(combined, axis)

    slice1 = [slice(None)] * nd
    slice2 = [slice(None)] * nd
    slice1[axis] = slice(1, None)
    slice2[axis] = slice(None, -1)
    slice1 = tuple(slice1)
    slice2 = tuple(slice2)

    op = not_equal if a.dtype == np.bool_ else subtract
    for _ in range(n):
        a = op(a[slice1], a[slice2])

    return a


def _interp_dispatcher(x, xp, fp, left=None, right=None, period=None):
    return (x, xp, fp)


@array_function_dispatch(_interp_dispatcher)
def interp(x, xp, fp, left=None, right=None, period=None):
    """
    One-dimensional linear interpolation.

    Returns the one-dimensional piecewise linear interpolant to a function
    with given discrete data points (`xp`, `fp`), evaluated at `x`.

    Parameters
    ----------
    x : array_like
        The x-coordinates at which to evaluate the interpolated values.

    xp : 1-D sequence of floats
        The x-coordinates of the data points, must be increasing if argument
        `period` is not specified. Otherwise, `xp` is internally sorted after
        normalizing the periodic boundaries with ``xp = xp % period``.

    fp : 1-D sequence of float or complex
        The y-coordinates of the data points, same length as `xp`.

    left : optional float or complex corresponding to fp
        Value to return for `x < xp[0]`, default is `fp[0]`.

    right : optional float or complex corresponding to fp
        Value to return for `x > xp[-1]`, default is `fp[-1]`.

    period : None or float, optional
        A period for the x-coordinates. This parameter allows the proper
        interpolation of angular x-coordinates. Parameters `left` and `right`
        are ignored if `period` is specified.

        .. versionadded:: 1.10.0

    Returns
    -------
    y : float or complex (corresponding to fp) or ndarray
        The interpolated values, same shape as `x`.

    Raises
    ------
    ValueError
        If `xp` and `fp` have different length
        If `xp` or `fp` are not 1-D sequences
        If `period == 0`

    Notes
    -----
    The x-coordinate sequence is expected to be increasing, but this is not
    explicitly enforced.  However, if the sequence `xp` is non-increasing,
    interpolation results are meaningless.

    Note that, since NaN is unsortable, `xp` also cannot contain NaNs.

    A simple check for `xp` being strictly increasing is::

        np.all(np.diff(xp) > 0)

    Examples
    --------
    >>> xp = [1, 2, 3]
    >>> fp = [3, 2, 0]
    >>> np.interp(2.5, xp, fp)
    1.0
    >>> np.interp([0, 1, 1.5, 2.72, 3.14], xp, fp)
    array([3.  , 3.  , 2.5 , 0.56, 0.  ])
    >>> UNDEF = -99.0
    >>> np.interp(3.14, xp, fp, right=UNDEF)
    -99.0

    Plot an interpolant to the sine function:

    >>> x = np.linspace(0, 2*np.pi, 10)
    >>> y = np.sin(x)
    >>> xvals = np.linspace(0, 2*np.pi, 50)
    >>> yinterp = np.interp(xvals, x, y)
    >>> import matplotlib.pyplot as plt
    >>> plt.plot(x, y, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.plot(xvals, yinterp, '-x')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.show()

    Interpolation with periodic x-coordinates:

    >>> x = [-180, -170, -185, 185, -10, -5, 0, 365]
    >>> xp = [190, -190, 350, -350]
    >>> fp = [5, 10, 3, 4]
    >>> np.interp(x, xp, fp, period=360)
    array([7.5 , 5.  , 8.75, 6.25, 3.  , 3.25, 3.5 , 3.75])

    Complex interpolation:

    >>> x = [1.5, 4.0]
    >>> xp = [2,3,5]
    >>> fp = [1.0j, 0, 2+3j]
    >>> np.interp(x, xp, fp)
    array([0.+1.j , 1.+1.5j])

    """

    fp = np.asarray(fp)

    if np.iscomplexobj(fp):
        interp_func = compiled_interp_complex
        input_dtype = np.complex128
    else:
        interp_func = compiled_interp
        input_dtype = np.float64

    if period is not None:
        if period == 0:
            raise ValueError("period must be a non-zero value")
        period = abs(period)
        left = None
        right = None

        x = np.asarray(x, dtype=np.float64)
        xp = np.asarray(xp, dtype=np.float64)
        fp = np.asarray(fp, dtype=input_dtype)

        if xp.ndim != 1 or fp.ndim != 1:
            raise ValueError("Data points must be 1-D sequences")
        if xp.shape[0] != fp.shape[0]:
            raise ValueError("fp and xp are not of the same length")
        # normalizing periodic boundaries
        x = x % period
        xp = xp % period
        asort_xp = np.argsort(xp)
        xp = xp[asort_xp]
        fp = fp[asort_xp]
        xp = np.concatenate((xp[-1:]-period, xp, xp[0:1]+period))
        fp = np.concatenate((fp[-1:], fp, fp[0:1]))

    return interp_func(x, xp, fp, left, right)


def _angle_dispatcher(z, deg=None):
    return (z,)


@array_function_dispatch(_angle_dispatcher)
def angle(z, deg=False):
    """
    Return the angle of the complex argument.

    Parameters
    ----------
    z : array_like
        A complex number or sequence of complex numbers.
    deg : bool, optional
        Return angle in degrees if True, radians if False (default).

    Returns
    -------
    angle : ndarray or scalar
        The counterclockwise angle from the positive real axis on the complex
        plane in the range ``(-pi, pi]``, with dtype as numpy.float64.

        ..versionchanged:: 1.16.0
            This function works on subclasses of ndarray like `ma.array`.

    See Also
    --------
    arctan2
    absolute

    Notes
    -----
    Although the angle of the complex number 0 is undefined, ``numpy.angle(0)``
    returns the value 0.

    Examples
    --------
    >>> np.angle([1.0, 1.0j, 1+1j])               # in radians
    array([ 0.        ,  1.57079633,  0.78539816]) # may vary
    >>> np.angle(1+1j, deg=True)                  # in degrees
    45.0

    """
    z = asanyarray(z)
    if issubclass(z.dtype.type, _nx.complexfloating):
        zimag = z.imag
        zreal = z.real
    else:
        zimag = 0
        zreal = z

    a = arctan2(zimag, zreal)
    if deg:
        a *= 180/pi
    return a


def _unwrap_dispatcher(p, discont=None, axis=None):
    return (p,)


@array_function_dispatch(_unwrap_dispatcher)
def unwrap(p, discont=pi, axis=-1):
    """
    Unwrap by changing deltas between values to 2*pi complement.

    Unwrap radian phase `p` by changing absolute jumps greater than
    `discont` to their 2*pi complement along the given axis.

    Parameters
    ----------
    p : array_like
        Input array.
    discont : float, optional
        Maximum discontinuity between values, default is ``pi``.
    axis : int, optional
        Axis along which unwrap will operate, default is the last axis.

    Returns
    -------
    out : ndarray
        Output array.

    See Also
    --------
    rad2deg, deg2rad

    Notes
    -----
    If the discontinuity in `p` is smaller than ``pi``, but larger than
    `discont`, no unwrapping is done because taking the 2*pi complement
    would only make the discontinuity larger.

    Examples
    --------
    >>> phase = np.linspace(0, np.pi, num=5)
    >>> phase[3:] += np.pi
    >>> phase
    array([ 0.        ,  0.78539816,  1.57079633,  5.49778714,  6.28318531]) # may vary
    >>> np.unwrap(phase)
    array([ 0.        ,  0.78539816,  1.57079633, -0.78539816,  0.        ]) # may vary

    """
    p = asarray(p)
    nd = p.ndim
    dd = diff(p, axis=axis)
    slice1 = [slice(None, None)]*nd     # full slices
    slice1[axis] = slice(1, None)
    slice1 = tuple(slice1)
    ddmod = mod(dd + pi, 2*pi) - pi
    _nx.copyto(ddmod, pi, where=(ddmod == -pi) & (dd > 0))
    ph_correct = ddmod - dd
    _nx.copyto(ph_correct, 0, where=abs(dd) < discont)
    up = array(p, copy=True, dtype='d')
    up[slice1] = p[slice1] + ph_correct.cumsum(axis)
    return up


def _sort_complex(a):
    return (a,)


@array_function_dispatch(_sort_complex)
def sort_complex(a):
    """
    Sort a complex array using the real part first, then the imaginary part.

    Parameters
    ----------
    a : array_like
        Input array

    Returns
    -------
    out : complex ndarray
        Always returns a sorted complex array.

    Examples
    --------
    >>> np.sort_complex([5, 3, 6, 2, 1])
    array([1.+0.j, 2.+0.j, 3.+0.j, 5.+0.j, 6.+0.j])

    >>> np.sort_complex([1 + 2j, 2 - 1j, 3 - 2j, 3 - 3j, 3 + 5j])
    array([1.+2.j,  2.-1.j,  3.-3.j,  3.-2.j,  3.+5.j])

    """
    b = array(a, copy=True)
    b.sort()
    if not issubclass(b.dtype.type, _nx.complexfloating):
        if b.dtype.char in 'bhBH':
            return b.astype('F')
        elif b.dtype.char == 'g':
            return b.astype('G')
        else:
            return b.astype('D')
    else:
        return b


def _trim_zeros(filt, trim=None):
    return (filt,)


@array_function_dispatch(_trim_zeros)
def trim_zeros(filt, trim='fb'):
    """
    Trim the leading and/or trailing zeros from a 1-D array or sequence.

    Parameters
    ----------
    filt : 1-D array or sequence
        Input array.
    trim : str, optional
        A string with 'f' representing trim from front and 'b' to trim from
        back. Default is 'fb', trim zeros from both front and back of the
        array.

    Returns
    -------
    trimmed : 1-D array or sequence
        The result of trimming the input. The input data type is preserved.

    Examples
    --------
    >>> a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
    >>> np.trim_zeros(a)
    array([1, 2, 3, 0, 2, 1])

    >>> np.trim_zeros(a, 'b')
    array([0, 0, 0, ..., 0, 2, 1])

    The input data type is preserved, list/tuple in means list/tuple out.

    >>> np.trim_zeros([0, 1, 2, 0])
    [1, 2]

    """
    first = 0
    trim = trim.upper()
    if 'F' in trim:
        for i in filt:
            if i != 0.:
                break
            else:
                first = first + 1
    last = len(filt)
    if 'B' in trim:
        for i in filt[::-1]:
            if i != 0.:
                break
            else:
                last = last - 1
    return filt[first:last]


def _extract_dispatcher(condition, arr):
    return (condition, arr)


@array_function_dispatch(_extract_dispatcher)
def extract(condition, arr):
    """
    Return the elements of an array that satisfy some condition.

    This is equivalent to ``np.compress(ravel(condition), ravel(arr))``.  If
    `condition` is boolean ``np.extract`` is equivalent to ``arr[condition]``.

    Note that `place` does the exact opposite of `extract`.

    Parameters
    ----------
    condition : array_like
        An array whose nonzero or True entries indicate the elements of `arr`
        to extract.
    arr : array_like
        Input array of the same size as `condition`.

    Returns
    -------
    extract : ndarray
        Rank 1 array of values from `arr` where `condition` is True.

    See Also
    --------
    take, put, copyto, compress, place

    Examples
    --------
    >>> arr = np.arange(12).reshape((3, 4))
    >>> arr
    array([[ 0,  1,  2,  3],
           [ 4,  5,  6,  7],
           [ 8,  9, 10, 11]])
    >>> condition = np.mod(arr, 3)==0
    >>> condition
    array([[ True, False, False,  True],
           [False, False,  True, False],
           [False,  True, False, False]])
    >>> np.extract(condition, arr)
    array([0, 3, 6, 9])


    If `condition` is boolean:

    >>> arr[condition]
    array([0, 3, 6, 9])

    """
    return _nx.take(ravel(arr), nonzero(ravel(condition))[0])


def _place_dispatcher(arr, mask, vals):
    return (arr, mask, vals)


@array_function_dispatch(_place_dispatcher)
def place(arr, mask, vals):
    """
    Change elements of an array based on conditional and input values.

    Similar to ``np.copyto(arr, vals, where=mask)``, the difference is that
    `place` uses the first N elements of `vals`, where N is the number of
    True values in `mask`, while `copyto` uses the elements where `mask`
    is True.

    Note that `extract` does the exact opposite of `place`.

    Parameters
    ----------
    arr : ndarray
        Array to put data into.
    mask : array_like
        Boolean mask array. Must have the same size as `a`.
    vals : 1-D sequence
        Values to put into `a`. Only the first N elements are used, where
        N is the number of True values in `mask`. If `vals` is smaller
        than N, it will be repeated, and if elements of `a` are to be masked,
        this sequence must be non-empty.

    See Also
    --------
    copyto, put, take, extract

    Examples
    --------
    >>> arr = np.arange(6).reshape(2, 3)
    >>> np.place(arr, arr>2, [44, 55])
    >>> arr
    array([[ 0,  1,  2],
           [44, 55, 44]])

    """
    if not isinstance(arr, np.ndarray):
        raise TypeError("argument 1 must be numpy.ndarray, "
                        "not {name}".format(name=type(arr).__name__))

    return _insert(arr, mask, vals)


def disp(mesg, device=None, linefeed=True):
    """
    Display a message on a device.

    Parameters
    ----------
    mesg : str
        Message to display.
    device : object
        Device to write message. If None, defaults to ``sys.stdout`` which is
        very similar to ``print``. `device` needs to have ``write()`` and
        ``flush()`` methods.
    linefeed : bool, optional
        Option whether to print a line feed or not. Defaults to True.

    Raises
    ------
    AttributeError
        If `device` does not have a ``write()`` or ``flush()`` method.

    Examples
    --------
    Besides ``sys.stdout``, a file-like object can also be used as it has
    both required methods:

    >>> from io import StringIO
    >>> buf = StringIO()
    >>> np.disp(u'"Display" in a file', device=buf)
    >>> buf.getvalue()
    '"Display" in a file\\n'

    """
    if device is None:
        device = sys.stdout
    if linefeed:
        device.write('%s\n' % mesg)
    else:
        device.write('%s' % mesg)
    device.flush()
    return


# See https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html
_DIMENSION_NAME = r'\w+'
_CORE_DIMENSION_LIST = '(?:{0:}(?:,{0:})*)?'.format(_DIMENSION_NAME)
_ARGUMENT = r'\({}\)'.format(_CORE_DIMENSION_LIST)
_ARGUMENT_LIST = '{0:}(?:,{0:})*'.format(_ARGUMENT)
_SIGNATURE = '^{0:}->{0:}$'.format(_ARGUMENT_LIST)


def _parse_gufunc_signature(signature):
    """
    Parse string signatures for a generalized universal function.

    Arguments
    ---------
    signature : string
        Generalized universal function signature, e.g., ``(m,n),(n,p)->(m,p)``
        for ``np.matmul``.

    Returns
    -------
    Tuple of input and output core dimensions parsed from the signature, each
    of the form List[Tuple[str, ...]].
    """
    if not re.match(_SIGNATURE, signature):
        raise ValueError(
            'not a valid gufunc signature: {}'.format(signature))
    return tuple([tuple(re.findall(_DIMENSION_NAME, arg))
                  for arg in re.findall(_ARGUMENT, arg_list)]
                 for arg_list in signature.split('->'))


def _update_dim_sizes(dim_sizes, arg, core_dims):
    """
    Incrementally check and update core dimension sizes for a single argument.

    Arguments
    ---------
    dim_sizes : Dict[str, int]
        Sizes of existing core dimensions. Will be updated in-place.
    arg : ndarray
        Argument to examine.
    core_dims : Tuple[str, ...]
        Core dimensions for this argument.
    """
    if not core_dims:
        return

    num_core_dims = len(core_dims)
    if arg.ndim < num_core_dims:
        raise ValueError(
            '%d-dimensional argument does not have enough '
            'dimensions for all core dimensions %r'
            % (arg.ndim, core_dims))

    core_shape = arg.shape[-num_core_dims:]
    for dim, size in zip(core_dims, core_shape):
        if dim in dim_sizes:
            if size != dim_sizes[dim]:
                raise ValueError(
                    'inconsistent size for core dimension %r: %r vs %r'
                    % (dim, size, dim_sizes[dim]))
        else:
            dim_sizes[dim] = size


def _parse_input_dimensions(args, input_core_dims):
    """
    Parse broadcast and core dimensions for vectorize with a signature.

    Arguments
    ---------
    args : Tuple[ndarray, ...]
        Tuple of input arguments to examine.
    input_core_dims : List[Tuple[str, ...]]
        List of core dimensions corresponding to each input.

    Returns
    -------
    broadcast_shape : Tuple[int, ...]
        Common shape to broadcast all non-core dimensions to.
    dim_sizes : Dict[str, int]
        Common sizes for named core dimensions.
    """
    broadcast_args = []
    dim_sizes = {}
    for arg, core_dims in zip(args, input_core_dims):
        _update_dim_sizes(dim_sizes, arg, core_dims)
        ndim = arg.ndim - len(core_dims)
        dummy_array = np.lib.stride_tricks.as_strided(0, arg.shape[:ndim])
        broadcast_args.append(dummy_array)
    broadcast_shape = np.lib.stride_tricks._broadcast_shape(*broadcast_args)
    return broadcast_shape, dim_sizes


def _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims):
    """Helper for calculating broadcast shapes with core dimensions."""
    return [broadcast_shape + tuple(dim_sizes[dim] for dim in core_dims)
            for core_dims in list_of_core_dims]


def _create_arrays(broadcast_shape, dim_sizes, list_of_core_dims, dtypes):
    """Helper for creating output arrays in vectorize."""
    shapes = _calculate_shapes(broadcast_shape, dim_sizes, list_of_core_dims)
    arrays = tuple(np.empty(shape, dtype=dtype)
                   for shape, dtype in zip(shapes, dtypes))
    return arrays


@set_module('numpy')
class vectorize:
    """
    vectorize(pyfunc, otypes=None, doc=None, excluded=None, cache=False,
              signature=None)

    Generalized function class.

    Define a vectorized function which takes a nested sequence of objects or
    numpy arrays as inputs and returns a single numpy array or a tuple of numpy
    arrays. The vectorized function evaluates `pyfunc` over successive tuples
    of the input arrays like the python map function, except it uses the
    broadcasting rules of numpy.

    The data type of the output of `vectorized` is determined by calling
    the function with the first element of the input.  This can be avoided
    by specifying the `otypes` argument.

    Parameters
    ----------
    pyfunc : callable
        A python function or method.
    otypes : str or list of dtypes, optional
        The output data type. It must be specified as either a string of
        typecode characters or a list of data type specifiers. There should
        be one data type specifier for each output.
    doc : str, optional
        The docstring for the function. If None, the docstring will be the
        ``pyfunc.__doc__``.
    excluded : set, optional
        Set of strings or integers representing the positional or keyword
        arguments for which the function will not be vectorized.  These will be
        passed directly to `pyfunc` unmodified.

        .. versionadded:: 1.7.0

    cache : bool, optional
       If `True`, then cache the first function call that determines the number
       of outputs if `otypes` is not provided.

        .. versionadded:: 1.7.0

    signature : string, optional
        Generalized universal function signature, e.g., ``(m,n),(n)->(m)`` for
        vectorized matrix-vector multiplication. If provided, ``pyfunc`` will
        be called with (and expected to return) arrays with shapes given by the
        size of corresponding core dimensions. By default, ``pyfunc`` is
        assumed to take scalars as input and output.

        .. versionadded:: 1.12.0

    Returns
    -------
    vectorized : callable
        Vectorized function.

    See Also
    --------
    frompyfunc : Takes an arbitrary Python function and returns a ufunc

    Notes
    -----
    The `vectorize` function is provided primarily for convenience, not for
    performance. The implementation is essentially a for loop.

    If `otypes` is not specified, then a call to the function with the
    first argument will be used to determine the number of outputs.  The
    results of this call will be cached if `cache` is `True` to prevent
    calling the function twice.  However, to implement the cache, the
    original function must be wrapped which will slow down subsequent
    calls, so only do this if your function is expensive.

    The new keyword argument interface and `excluded` argument support
    further degrades performance.

    References
    ----------
    .. [1] NumPy Reference, section `Generalized Universal Function API
           <https://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html>`_.

    Examples
    --------
    >>> def myfunc(a, b):
    ...     "Return a-b if a>b, otherwise return a+b"
    ...     if a > b:
    ...         return a - b
    ...     else:
    ...         return a + b

    >>> vfunc = np.vectorize(myfunc)
    >>> vfunc([1, 2, 3, 4], 2)
    array([3, 4, 1, 2])

    The docstring is taken from the input function to `vectorize` unless it
    is specified:

    >>> vfunc.__doc__
    'Return a-b if a>b, otherwise return a+b'
    >>> vfunc = np.vectorize(myfunc, doc='Vectorized `myfunc`')
    >>> vfunc.__doc__
    'Vectorized `myfunc`'

    The output type is determined by evaluating the first element of the input,
    unless it is specified:

    >>> out = vfunc([1, 2, 3, 4], 2)
    >>> type(out[0])
    <class 'numpy.int64'>
    >>> vfunc = np.vectorize(myfunc, otypes=[float])
    >>> out = vfunc([1, 2, 3, 4], 2)
    >>> type(out[0])
    <class 'numpy.float64'>

    The `excluded` argument can be used to prevent vectorizing over certain
    arguments.  This can be useful for array-like arguments of a fixed length
    such as the coefficients for a polynomial as in `polyval`:

    >>> def mypolyval(p, x):
    ...     _p = list(p)
    ...     res = _p.pop(0)
    ...     while _p:
    ...         res = res*x + _p.pop(0)
    ...     return res
    >>> vpolyval = np.vectorize(mypolyval, excluded=['p'])
    >>> vpolyval(p=[1, 2, 3], x=[0, 1])
    array([3, 6])

    Positional arguments may also be excluded by specifying their position:

    >>> vpolyval.excluded.add(0)
    >>> vpolyval([1, 2, 3], x=[0, 1])
    array([3, 6])

    The `signature` argument allows for vectorizing functions that act on
    non-scalar arrays of fixed length. For example, you can use it for a
    vectorized calculation of Pearson correlation coefficient and its p-value:

    >>> import scipy.stats
    >>> pearsonr = np.vectorize(scipy.stats.pearsonr,
    ...                 signature='(n),(n)->(),()')
    >>> pearsonr([[0, 1, 2, 3]], [[1, 2, 3, 4], [4, 3, 2, 1]])
    (array([ 1., -1.]), array([ 0.,  0.]))

    Or for a vectorized convolution:

    >>> convolve = np.vectorize(np.convolve, signature='(n),(m)->(k)')
    >>> convolve(np.eye(4), [1, 2, 1])
    array([[1., 2., 1., 0., 0., 0.],
           [0., 1., 2., 1., 0., 0.],
           [0., 0., 1., 2., 1., 0.],
           [0., 0., 0., 1., 2., 1.]])

    """
    def __init__(self, pyfunc, otypes=None, doc=None, excluded=None,
                 cache=False, signature=None):
        self.pyfunc = pyfunc
        self.cache = cache
        self.signature = signature
        self._ufunc = {}    # Caching to improve default performance

        if doc is None:
            self.__doc__ = pyfunc.__doc__
        else:
            self.__doc__ = doc

        if isinstance(otypes, str):
            for char in otypes:
                if char not in typecodes['All']:
                    raise ValueError("Invalid otype specified: %s" % (char,))
        elif iterable(otypes):
            otypes = ''.join([_nx.dtype(x).char for x in otypes])
        elif otypes is not None:
            raise ValueError("Invalid otype specification")
        self.otypes = otypes

        # Excluded variable support
        if excluded is None:
            excluded = set()
        self.excluded = set(excluded)

        if signature is not None:
            self._in_and_out_core_dims = _parse_gufunc_signature(signature)
        else:
            self._in_and_out_core_dims = None

    def __call__(self, *args, **kwargs):
        """
        Return arrays with the results of `pyfunc` broadcast (vectorized) over
        `args` and `kwargs` not in `excluded`.
        """
        excluded = self.excluded
        if not kwargs and not excluded:
            func = self.pyfunc
            vargs = args
        else:
            # The wrapper accepts only positional arguments: we use `names` and
            # `inds` to mutate `the_args` and `kwargs` to pass to the original
            # function.
            nargs = len(args)

            names = [_n for _n in kwargs if _n not in excluded]
            inds = [_i for _i in range(nargs) if _i not in excluded]
            the_args = list(args)

            def func(*vargs):
                for _n, _i in enumerate(inds):
                    the_args[_i] = vargs[_n]
                kwargs.update(zip(names, vargs[len(inds):]))
                return self.pyfunc(*the_args, **kwargs)

            vargs = [args[_i] for _i in inds]
            vargs.extend([kwargs[_n] for _n in names])

        return self._vectorize_call(func=func, args=vargs)

    def _get_ufunc_and_otypes(self, func, args):
        """Return (ufunc, otypes)."""
        # frompyfunc will fail if args is empty
        if not args:
            raise ValueError('args can not be empty')

        if self.otypes is not None:
            otypes = self.otypes

            # self._ufunc is a dictionary whose keys are the number of
            # arguments (i.e. len(args)) and whose values are ufuncs created
            # by frompyfunc. len(args) can be different for different calls if
            # self.pyfunc has parameters with default values.  We only use the
            # cache when func is self.pyfunc, which occurs when the call uses
            # only positional arguments and no arguments are excluded.

            nin = len(args)
            nout = len(self.otypes)
            if func is not self.pyfunc or nin not in self._ufunc:
                ufunc = frompyfunc(func, nin, nout)
            else:
                ufunc = None  # We'll get it from self._ufunc
            if func is self.pyfunc:
                ufunc = self._ufunc.setdefault(nin, ufunc)
        else:
            # Get number of outputs and output types by calling the function on
            # the first entries of args.  We also cache the result to prevent
            # the subsequent call when the ufunc is evaluated.
            # Assumes that ufunc first evaluates the 0th elements in the input
            # arrays (the input values are not checked to ensure this)
            args = [asarray(arg) for arg in args]
            if builtins.any(arg.size == 0 for arg in args):
                raise ValueError('cannot call `vectorize` on size 0 inputs '
                                 'unless `otypes` is set')

            inputs = [arg.flat[0] for arg in args]
            outputs = func(*inputs)

            # Performance note: profiling indicates that -- for simple
            # functions at least -- this wrapping can almost double the
            # execution time.
            # Hence we make it optional.
            if self.cache:
                _cache = [outputs]

                def _func(*vargs):
                    if _cache:
                        return _cache.pop()
                    else:
                        return func(*vargs)
            else:
                _func = func

            if isinstance(outputs, tuple):
                nout = len(outputs)
            else:
                nout = 1
                outputs = (outputs,)

            otypes = ''.join([asarray(outputs[_k]).dtype.char
                              for _k in range(nout)])

            # Performance note: profiling indicates that creating the ufunc is
            # not a significant cost compared with wrapping so it seems not
            # worth trying to cache this.
            ufunc = frompyfunc(_func, len(args), nout)

        return ufunc, otypes

    def _vectorize_call(self, func, args):
        """Vectorized call to `func` over positional `args`."""
        if self.signature is not None:
            res = self._vectorize_call_with_signature(func, args)
        elif not args:
            res = func()
        else:
            ufunc, otypes = self._get_ufunc_and_otypes(func=func, args=args)

            # Convert args to object arrays first
            inputs = [array(a, copy=False, subok=True, dtype=object)
                      for a in args]

            outputs = ufunc(*inputs)

            if ufunc.nout == 1:
                res = array(outputs, copy=False, subok=True, dtype=otypes[0])
            else:
                res = tuple([array(x, copy=False, subok=True, dtype=t)
                             for x, t in zip(outputs, otypes)])
        return res

    def _vectorize_call_with_signature(self, func, args):
        """Vectorized call over positional arguments with a signature."""
        input_core_dims, output_core_dims = self._in_and_out_core_dims

        if len(args) != len(input_core_dims):
            raise TypeError('wrong number of positional arguments: '
                            'expected %r, got %r'
                            % (len(input_core_dims), len(args)))
        args = tuple(asanyarray(arg) for arg in args)

        broadcast_shape, dim_sizes = _parse_input_dimensions(
            args, input_core_dims)
        input_shapes = _calculate_shapes(broadcast_shape, dim_sizes,
                                         input_core_dims)
        args = [np.broadcast_to(arg, shape, subok=True)
                for arg, shape in zip(args, input_shapes)]

        outputs = None
        otypes = self.otypes
        nout = len(output_core_dims)

        for index in np.ndindex(*broadcast_shape):
            results = func(*(arg[index] for arg in args))

            n_results = len(results) if isinstance(results, tuple) else 1

            if nout != n_results:
                raise ValueError(
                    'wrong number of outputs from pyfunc: expected %r, got %r'
                    % (nout, n_results))

            if nout == 1:
                results = (results,)

            if outputs is None:
                for result, core_dims in zip(results, output_core_dims):
                    _update_dim_sizes(dim_sizes, result, core_dims)

                if otypes is None:
                    otypes = [asarray(result).dtype for result in results]

                outputs = _create_arrays(broadcast_shape, dim_sizes,
                                         output_core_dims, otypes)

            for output, result in zip(outputs, results):
                output[index] = result

        if outputs is None:
            # did not call the function even once
            if otypes is None:
                raise ValueError('cannot call `vectorize` on size 0 inputs '
                                 'unless `otypes` is set')
            if builtins.any(dim not in dim_sizes
                            for dims in output_core_dims
                            for dim in dims):
                raise ValueError('cannot call `vectorize` with a signature '
                                 'including new output dimensions on size 0 '
                                 'inputs')
            outputs = _create_arrays(broadcast_shape, dim_sizes,
                                     output_core_dims, otypes)

        return outputs[0] if nout == 1 else outputs


def _cov_dispatcher(m, y=None, rowvar=None, bias=None, ddof=None,
                    fweights=None, aweights=None):
    return (m, y, fweights, aweights)


@array_function_dispatch(_cov_dispatcher)
def cov(m, y=None, rowvar=True, bias=False, ddof=None, fweights=None,
        aweights=None):
    """
    Estimate a covariance matrix, given data and weights.

    Covariance indicates the level to which two variables vary together.
    If we examine N-dimensional samples, :math:`X = [x_1, x_2, ... x_N]^T`,
    then the covariance matrix element :math:`C_{ij}` is the covariance of
    :math:`x_i` and :math:`x_j`. The element :math:`C_{ii}` is the variance
    of :math:`x_i`.

    See the notes for an outline of the algorithm.

    Parameters
    ----------
    m : array_like
        A 1-D or 2-D array containing multiple variables and observations.
        Each row of `m` represents a variable, and each column a single
        observation of all those variables. Also see `rowvar` below.
    y : array_like, optional
        An additional set of variables and observations. `y` has the same form
        as that of `m`.
    rowvar : bool, optional
        If `rowvar` is True (default), then each row represents a
        variable, with observations in the columns. Otherwise, the relationship
        is transposed: each column represents a variable, while the rows
        contain observations.
    bias : bool, optional
        Default normalization (False) is by ``(N - 1)``, where ``N`` is the
        number of observations given (unbiased estimate). If `bias` is True,
        then normalization is by ``N``. These values can be overridden by using
        the keyword ``ddof`` in numpy versions >= 1.5.
    ddof : int, optional
        If not ``None`` the default value implied by `bias` is overridden.
        Note that ``ddof=1`` will return the unbiased estimate, even if both
        `fweights` and `aweights` are specified, and ``ddof=0`` will return
        the simple average. See the notes for the details. The default value
        is ``None``.

        .. versionadded:: 1.5
    fweights : array_like, int, optional
        1-D array of integer frequency weights; the number of times each
        observation vector should be repeated.

        .. versionadded:: 1.10
    aweights : array_like, optional
        1-D array of observation vector weights. These relative weights are
        typically large for observations considered "important" and smaller for
        observations considered less "important". If ``ddof=0`` the array of
        weights can be used to assign probabilities to observation vectors.

        .. versionadded:: 1.10

    Returns
    -------
    out : ndarray
        The covariance matrix of the variables.

    See Also
    --------
    corrcoef : Normalized covariance matrix

    Notes
    -----
    Assume that the observations are in the columns of the observation
    array `m` and let ``f = fweights`` and ``a = aweights`` for brevity. The
    steps to compute the weighted covariance are as follows::

        >>> m = np.arange(10, dtype=np.float64)
        >>> f = np.arange(10) * 2
        >>> a = np.arange(10) ** 2.
        >>> ddof = 1
        >>> w = f * a
        >>> v1 = np.sum(w)
        >>> v2 = np.sum(w * a)
        >>> m -= np.sum(m * w, axis=None, keepdims=True) / v1
        >>> cov = np.dot(m * w, m.T) * v1 / (v1**2 - ddof * v2)

    Note that when ``a == 1``, the normalization factor
    ``v1 / (v1**2 - ddof * v2)`` goes over to ``1 / (np.sum(f) - ddof)``
    as it should.

    Examples
    --------
    Consider two variables, :math:`x_0` and :math:`x_1`, which
    correlate perfectly, but in opposite directions:

    >>> x = np.array([[0, 2], [1, 1], [2, 0]]).T
    >>> x
    array([[0, 1, 2],
           [2, 1, 0]])

    Note how :math:`x_0` increases while :math:`x_1` decreases. The covariance
    matrix shows this clearly:

    >>> np.cov(x)
    array([[ 1., -1.],
           [-1.,  1.]])

    Note that element :math:`C_{0,1}`, which shows the correlation between
    :math:`x_0` and :math:`x_1`, is negative.

    Further, note how `x` and `y` are combined:

    >>> x = [-2.1, -1,  4.3]
    >>> y = [3,  1.1,  0.12]
    >>> X = np.stack((x, y), axis=0)
    >>> np.cov(X)
    array([[11.71      , -4.286     ], # may vary
           [-4.286     ,  2.144133]])
    >>> np.cov(x, y)
    array([[11.71      , -4.286     ], # may vary
           [-4.286     ,  2.144133]])
    >>> np.cov(x)
    array(11.71)

    """
    # Check inputs
    if ddof is not None and ddof != int(ddof):
        raise ValueError(
            "ddof must be integer")

    # Handles complex arrays too
    m = np.asarray(m)
    if m.ndim > 2:
        raise ValueError("m has more than 2 dimensions")

    if y is None:
        dtype = np.result_type(m, np.float64)
    else:
        y = np.asarray(y)
        if y.ndim > 2:
            raise ValueError("y has more than 2 dimensions")
        dtype = np.result_type(m, y, np.float64)

    X = array(m, ndmin=2, dtype=dtype)
    if not rowvar and X.shape[0] != 1:
        X = X.T
    if X.shape[0] == 0:
        return np.array([]).reshape(0, 0)
    if y is not None:
        y = array(y, copy=False, ndmin=2, dtype=dtype)
        if not rowvar and y.shape[0] != 1:
            y = y.T
        X = np.concatenate((X, y), axis=0)

    if ddof is None:
        if bias == 0:
            ddof = 1
        else:
            ddof = 0

    # Get the product of frequencies and weights
    w = None
    if fweights is not None:
        fweights = np.asarray(fweights, dtype=float)
        if not np.all(fweights == np.around(fweights)):
            raise TypeError(
                "fweights must be integer")
        if fweights.ndim > 1:
            raise RuntimeError(
                "cannot handle multidimensional fweights")
        if fweights.shape[0] != X.shape[1]:
            raise RuntimeError(
                "incompatible numbers of samples and fweights")
        if any(fweights < 0):
            raise ValueError(
                "fweights cannot be negative")
        w = fweights
    if aweights is not None:
        aweights = np.asarray(aweights, dtype=float)
        if aweights.ndim > 1:
            raise RuntimeError(
                "cannot handle multidimensional aweights")
        if aweights.shape[0] != X.shape[1]:
            raise RuntimeError(
                "incompatible numbers of samples and aweights")
        if any(aweights < 0):
            raise ValueError(
                "aweights cannot be negative")
        if w is None:
            w = aweights
        else:
            w *= aweights

    avg, w_sum = average(X, axis=1, weights=w, returned=True)
    w_sum = w_sum[0]

    # Determine the normalization
    if w is None:
        fact = X.shape[1] - ddof
    elif ddof == 0:
        fact = w_sum
    elif aweights is None:
        fact = w_sum - ddof
    else:
        fact = w_sum - ddof*sum(w*aweights)/w_sum

    if fact <= 0:
        warnings.warn("Degrees of freedom <= 0 for slice",
                      RuntimeWarning, stacklevel=3)
        fact = 0.0

    X -= avg[:, None]
    if w is None:
        X_T = X.T
    else:
        X_T = (X*w).T
    c = dot(X, X_T.conj())
    c *= np.true_divide(1, fact)
    return c.squeeze()


def _corrcoef_dispatcher(x, y=None, rowvar=None, bias=None, ddof=None):
    return (x, y)


@array_function_dispatch(_corrcoef_dispatcher)
def corrcoef(x, y=None, rowvar=True, bias=np._NoValue, ddof=np._NoValue):
    """
    Return Pearson product-moment correlation coefficients.

    Please refer to the documentation for `cov` for more detail.  The
    relationship between the correlation coefficient matrix, `R`, and the
    covariance matrix, `C`, is

    .. math:: R_{ij} = \\frac{ C_{ij} } { \\sqrt{ C_{ii} * C_{jj} } }

    The values of `R` are between -1 and 1, inclusive.

    Parameters
    ----------
    x : array_like
        A 1-D or 2-D array containing multiple variables and observations.
        Each row of `x` represents a variable, and each column a single
        observation of all those variables. Also see `rowvar` below.
    y : array_like, optional
        An additional set of variables and observations. `y` has the same
        shape as `x`.
    rowvar : bool, optional
        If `rowvar` is True (default), then each row represents a
        variable, with observations in the columns. Otherwise, the relationship
        is transposed: each column represents a variable, while the rows
        contain observations.
    bias : _NoValue, optional
        Has no effect, do not use.

        .. deprecated:: 1.10.0
    ddof : _NoValue, optional
        Has no effect, do not use.

        .. deprecated:: 1.10.0

    Returns
    -------
    R : ndarray
        The correlation coefficient matrix of the variables.

    See Also
    --------
    cov : Covariance matrix

    Notes
    -----
    Due to floating point rounding the resulting array may not be Hermitian,
    the diagonal elements may not be 1, and the elements may not satisfy the
    inequality abs(a) <= 1. The real and imaginary parts are clipped to the
    interval [-1,  1] in an attempt to improve on that situation but is not
    much help in the complex case.

    This function accepts but discards arguments `bias` and `ddof`.  This is
    for backwards compatibility with previous versions of this function.  These
    arguments had no effect on the return values of the function and can be
    safely ignored in this and previous versions of numpy.

    """
    if bias is not np._NoValue or ddof is not np._NoValue:
        # 2015-03-15, 1.10
        warnings.warn('bias and ddof have no effect and are deprecated',
                      DeprecationWarning, stacklevel=3)
    c = cov(x, y, rowvar)
    try:
        d = diag(c)
    except ValueError:
        # scalar covariance
        # nan if incorrect value (nan, inf, 0), 1 otherwise
        return c / c
    stddev = sqrt(d.real)
    c /= stddev[:, None]
    c /= stddev[None, :]

    # Clip real and imaginary parts to [-1, 1].  This does not guarantee
    # abs(a[i,j]) <= 1 for complex arrays, but is the best we can do without
    # excessive work.
    np.clip(c.real, -1, 1, out=c.real)
    if np.iscomplexobj(c):
        np.clip(c.imag, -1, 1, out=c.imag)

    return c


@set_module('numpy')
def blackman(M):
    """
    Return the Blackman window.

    The Blackman window is a taper formed by using the first three
    terms of a summation of cosines. It was designed to have close to the
    minimal leakage possible.  It is close to optimal, only slightly worse
    than a Kaiser window.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an empty
        array is returned.

    Returns
    -------
    out : ndarray
        The window, with the maximum value normalized to one (the value one
        appears only if the number of samples is odd).

    See Also
    --------
    bartlett, hamming, hanning, kaiser

    Notes
    -----
    The Blackman window is defined as

    .. math::  w(n) = 0.42 - 0.5 \\cos(2\\pi n/M) + 0.08 \\cos(4\\pi n/M)

    Most references to the Blackman window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function. It is known as a
    "near optimal" tapering function, almost as good (by some measures)
    as the kaiser window.

    References
    ----------
    Blackman, R.B. and Tukey, J.W., (1958) The measurement of power spectra,
    Dover Publications, New York.

    Oppenheim, A.V., and R.W. Schafer. Discrete-Time Signal Processing.
    Upper Saddle River, NJ: Prentice-Hall, 1999, pp. 468-471.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> np.blackman(12)
    array([-1.38777878e-17,   3.26064346e-02,   1.59903635e-01, # may vary
            4.14397981e-01,   7.36045180e-01,   9.67046769e-01,
            9.67046769e-01,   7.36045180e-01,   4.14397981e-01,
            1.59903635e-01,   3.26064346e-02,  -1.38777878e-17])

    Plot the window and the frequency response:

    >>> from numpy.fft import fft, fftshift
    >>> window = np.blackman(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Blackman window")
    Text(0.5, 1.0, 'Blackman window')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("Sample")
    Text(0.5, 0, 'Sample')
    >>> plt.show()

    >>> plt.figure()
    <Figure size 640x480 with 0 Axes>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> with np.errstate(divide='ignore', invalid='ignore'):
    ...     response = 20 * np.log10(mag)
    ...
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Blackman window")
    Text(0.5, 1.0, 'Frequency response of Blackman window')
    >>> plt.ylabel("Magnitude [dB]")
    Text(0, 0.5, 'Magnitude [dB]')
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    Text(0.5, 0, 'Normalized frequency [cycles per sample]')
    >>> _ = plt.axis('tight')
    >>> plt.show()

    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1, float)
    n = arange(0, M)
    return 0.42 - 0.5*cos(2.0*pi*n/(M-1)) + 0.08*cos(4.0*pi*n/(M-1))


@set_module('numpy')
def bartlett(M):
    """
    Return the Bartlett window.

    The Bartlett window is very similar to a triangular window, except
    that the end points are at zero.  It is often used in signal
    processing for tapering a signal, without generating too much
    ripple in the frequency domain.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : array
        The triangular window, with the maximum value normalized to one
        (the value one appears only if the number of samples is odd), with
        the first and last samples equal to zero.

    See Also
    --------
    blackman, hamming, hanning, kaiser

    Notes
    -----
    The Bartlett window is defined as

    .. math:: w(n) = \\frac{2}{M-1} \\left(
              \\frac{M-1}{2} - \\left|n - \\frac{M-1}{2}\\right|
              \\right)

    Most references to the Bartlett window come from the signal
    processing literature, where it is used as one of many windowing
    functions for smoothing values.  Note that convolution with this
    window produces linear interpolation.  It is also known as an
    apodization (which means"removing the foot", i.e. smoothing
    discontinuities at the beginning and end of the sampled signal) or
    tapering function. The fourier transform of the Bartlett is the product
    of two sinc functions.
    Note the excellent discussion in Kanasewich.

    References
    ----------
    .. [1] M.S. Bartlett, "Periodogram Analysis and Continuous Spectra",
           Biometrika 37, 1-16, 1950.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
           The University of Alberta Press, 1975, pp. 109-110.
    .. [3] A.V. Oppenheim and R.W. Schafer, "Discrete-Time Signal
           Processing", Prentice-Hall, 1999, pp. 468-471.
    .. [4] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [5] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 429.

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> np.bartlett(12)
    array([ 0.        ,  0.18181818,  0.36363636,  0.54545455,  0.72727273, # may vary
            0.90909091,  0.90909091,  0.72727273,  0.54545455,  0.36363636,
            0.18181818,  0.        ])

    Plot the window and its frequency response (requires SciPy and matplotlib):

    >>> from numpy.fft import fft, fftshift
    >>> window = np.bartlett(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Bartlett window")
    Text(0.5, 1.0, 'Bartlett window')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("Sample")
    Text(0.5, 0, 'Sample')
    >>> plt.show()

    >>> plt.figure()
    <Figure size 640x480 with 0 Axes>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> with np.errstate(divide='ignore', invalid='ignore'):
    ...     response = 20 * np.log10(mag)
    ...
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Bartlett window")
    Text(0.5, 1.0, 'Frequency response of Bartlett window')
    >>> plt.ylabel("Magnitude [dB]")
    Text(0, 0.5, 'Magnitude [dB]')
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    Text(0.5, 0, 'Normalized frequency [cycles per sample]')
    >>> _ = plt.axis('tight')
    >>> plt.show()

    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1, float)
    n = arange(0, M)
    return where(less_equal(n, (M-1)/2.0), 2.0*n/(M-1), 2.0 - 2.0*n/(M-1))


@set_module('numpy')
def hanning(M):
    """
    Return the Hanning window.

    The Hanning window is a taper formed by using a weighted cosine.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : ndarray, shape(M,)
        The window, with the maximum value normalized to one (the value
        one appears only if `M` is odd).

    See Also
    --------
    bartlett, blackman, hamming, kaiser

    Notes
    -----
    The Hanning window is defined as

    .. math::  w(n) = 0.5 - 0.5cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
               \\qquad 0 \\leq n \\leq M-1

    The Hanning was named for Julius von Hann, an Austrian meteorologist.
    It is also known as the Cosine Bell. Some authors prefer that it be
    called a Hann window, to help avoid confusion with the very similar
    Hamming window.

    Most references to the Hanning window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics",
           The University of Alberta Press, 1975, pp. 106-108.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    >>> np.hanning(12)
    array([0.        , 0.07937323, 0.29229249, 0.57115742, 0.82743037,
           0.97974649, 0.97974649, 0.82743037, 0.57115742, 0.29229249,
           0.07937323, 0.        ])

    Plot the window and its frequency response:

    >>> import matplotlib.pyplot as plt
    >>> from numpy.fft import fft, fftshift
    >>> window = np.hanning(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Hann window")
    Text(0.5, 1.0, 'Hann window')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("Sample")
    Text(0.5, 0, 'Sample')
    >>> plt.show()

    >>> plt.figure()
    <Figure size 640x480 with 0 Axes>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> with np.errstate(divide='ignore', invalid='ignore'):
    ...     response = 20 * np.log10(mag)
    ...
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of the Hann window")
    Text(0.5, 1.0, 'Frequency response of the Hann window')
    >>> plt.ylabel("Magnitude [dB]")
    Text(0, 0.5, 'Magnitude [dB]')
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    Text(0.5, 0, 'Normalized frequency [cycles per sample]')
    >>> plt.axis('tight')
    ...
    >>> plt.show()

    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1, float)
    n = arange(0, M)
    return 0.5 - 0.5*cos(2.0*pi*n/(M-1))


@set_module('numpy')
def hamming(M):
    """
    Return the Hamming window.

    The Hamming window is a taper formed by using a weighted cosine.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.

    Returns
    -------
    out : ndarray
        The window, with the maximum value normalized to one (the value
        one appears only if the number of samples is odd).

    See Also
    --------
    bartlett, blackman, hanning, kaiser

    Notes
    -----
    The Hamming window is defined as

    .. math::  w(n) = 0.54 - 0.46cos\\left(\\frac{2\\pi{n}}{M-1}\\right)
               \\qquad 0 \\leq n \\leq M-1

    The Hamming was named for R. W. Hamming, an associate of J. W. Tukey
    and is described in Blackman and Tukey. It was recommended for
    smoothing the truncated autocovariance function in the time domain.
    Most references to the Hamming window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] Blackman, R.B. and Tukey, J.W., (1958) The measurement of power
           spectra, Dover Publications, New York.
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 109-110.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function
    .. [4] W.H. Press,  B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling,
           "Numerical Recipes", Cambridge University Press, 1986, page 425.

    Examples
    --------
    >>> np.hamming(12)
    array([ 0.08      ,  0.15302337,  0.34890909,  0.60546483,  0.84123594, # may vary
            0.98136677,  0.98136677,  0.84123594,  0.60546483,  0.34890909,
            0.15302337,  0.08      ])

    Plot the window and the frequency response:

    >>> import matplotlib.pyplot as plt
    >>> from numpy.fft import fft, fftshift
    >>> window = np.hamming(51)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Hamming window")
    Text(0.5, 1.0, 'Hamming window')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("Sample")
    Text(0.5, 0, 'Sample')
    >>> plt.show()

    >>> plt.figure()
    <Figure size 640x480 with 0 Axes>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Hamming window")
    Text(0.5, 1.0, 'Frequency response of Hamming window')
    >>> plt.ylabel("Magnitude [dB]")
    Text(0, 0.5, 'Magnitude [dB]')
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    Text(0.5, 0, 'Normalized frequency [cycles per sample]')
    >>> plt.axis('tight')
    ...
    >>> plt.show()

    """
    if M < 1:
        return array([])
    if M == 1:
        return ones(1, float)
    n = arange(0, M)
    return 0.54 - 0.46*cos(2.0*pi*n/(M-1))


## Code from cephes for i0

_i0A = [
    -4.41534164647933937950E-18,
    3.33079451882223809783E-17,
    -2.43127984654795469359E-16,
    1.71539128555513303061E-15,
    -1.16853328779934516808E-14,
    7.67618549860493561688E-14,
    -4.85644678311192946090E-13,
    2.95505266312963983461E-12,
    -1.72682629144155570723E-11,
    9.67580903537323691224E-11,
    -5.18979560163526290666E-10,
    2.65982372468238665035E-9,
    -1.30002500998624804212E-8,
    6.04699502254191894932E-8,
    -2.67079385394061173391E-7,
    1.11738753912010371815E-6,
    -4.41673835845875056359E-6,
    1.64484480707288970893E-5,
    -5.75419501008210370398E-5,
    1.88502885095841655729E-4,
    -5.76375574538582365885E-4,
    1.63947561694133579842E-3,
    -4.32430999505057594430E-3,
    1.05464603945949983183E-2,
    -2.37374148058994688156E-2,
    4.93052842396707084878E-2,
    -9.49010970480476444210E-2,
    1.71620901522208775349E-1,
    -3.04682672343198398683E-1,
    6.76795274409476084995E-1
    ]

_i0B = [
    -7.23318048787475395456E-18,
    -4.83050448594418207126E-18,
    4.46562142029675999901E-17,
    3.46122286769746109310E-17,
    -2.82762398051658348494E-16,
    -3.42548561967721913462E-16,
    1.77256013305652638360E-15,
    3.81168066935262242075E-15,
    -9.55484669882830764870E-15,
    -4.15056934728722208663E-14,
    1.54008621752140982691E-14,
    3.85277838274214270114E-13,
    7.18012445138366623367E-13,
    -1.79417853150680611778E-12,
    -1.32158118404477131188E-11,
    -3.14991652796324136454E-11,
    1.18891471078464383424E-11,
    4.94060238822496958910E-10,
    3.39623202570838634515E-9,
    2.26666899049817806459E-8,
    2.04891858946906374183E-7,
    2.89137052083475648297E-6,
    6.88975834691682398426E-5,
    3.36911647825569408990E-3,
    8.04490411014108831608E-1
    ]


def _chbevl(x, vals):
    b0 = vals[0]
    b1 = 0.0

    for i in range(1, len(vals)):
        b2 = b1
        b1 = b0
        b0 = x*b1 - b2 + vals[i]

    return 0.5*(b0 - b2)


def _i0_1(x):
    return exp(x) * _chbevl(x/2.0-2, _i0A)


def _i0_2(x):
    return exp(x) * _chbevl(32.0/x - 2.0, _i0B) / sqrt(x)


def _i0_dispatcher(x):
    return (x,)


@array_function_dispatch(_i0_dispatcher)
def i0(x):
    """
    Modified Bessel function of the first kind, order 0.

    Usually denoted :math:`I_0`.  This function does broadcast, but will *not*
    "up-cast" int dtype arguments unless accompanied by at least one float or
    complex dtype argument (see Raises below).

    Parameters
    ----------
    x : array_like, dtype float or complex
        Argument of the Bessel function.

    Returns
    -------
    out : ndarray, shape = x.shape, dtype = x.dtype
        The modified Bessel function evaluated at each of the elements of `x`.

    Raises
    ------
    TypeError: array cannot be safely cast to required type
        If argument consists exclusively of int dtypes.

    See Also
    --------
    scipy.special.i0, scipy.special.iv, scipy.special.ive

    Notes
    -----
    The scipy implementation is recommended over this function: it is a
    proper ufunc written in C, and more than an order of magnitude faster.

    We use the algorithm published by Clenshaw [1]_ and referenced by
    Abramowitz and Stegun [2]_, for which the function domain is
    partitioned into the two intervals [0,8] and (8,inf), and Chebyshev
    polynomial expansions are employed in each interval. Relative error on
    the domain [0,30] using IEEE arithmetic is documented [3]_ as having a
    peak of 5.8e-16 with an rms of 1.4e-16 (n = 30000).

    References
    ----------
    .. [1] C. W. Clenshaw, "Chebyshev series for mathematical functions", in
           *National Physical Laboratory Mathematical Tables*, vol. 5, London:
           Her Majesty's Stationery Office, 1962.
    .. [2] M. Abramowitz and I. A. Stegun, *Handbook of Mathematical
           Functions*, 10th printing, New York: Dover, 1964, pp. 379.
           http://www.math.sfu.ca/~cbm/aands/page_379.htm
    .. [3] http://kobesearch.cpan.org/htdocs/Math-Cephes/Math/Cephes.html

    Examples
    --------
    >>> np.i0(0.)
    array(1.0)  # may vary
    >>> np.i0([0., 1. + 2j])
    array([ 1.00000000+0.j        ,  0.18785373+0.64616944j])  # may vary

    """
    x = np.asanyarray(x)
    x = np.abs(x)
    return piecewise(x, [x <= 8.0], [_i0_1, _i0_2])

## End of cephes code for i0


@set_module('numpy')
def kaiser(M, beta):
    """
    Return the Kaiser window.

    The Kaiser window is a taper formed by using a Bessel function.

    Parameters
    ----------
    M : int
        Number of points in the output window. If zero or less, an
        empty array is returned.
    beta : float
        Shape parameter for window.

    Returns
    -------
    out : array
        The window, with the maximum value normalized to one (the value
        one appears only if the number of samples is odd).

    See Also
    --------
    bartlett, blackman, hamming, hanning

    Notes
    -----
    The Kaiser window is defined as

    .. math::  w(n) = I_0\\left( \\beta \\sqrt{1-\\frac{4n^2}{(M-1)^2}}
               \\right)/I_0(\\beta)

    with

    .. math:: \\quad -\\frac{M-1}{2} \\leq n \\leq \\frac{M-1}{2},

    where :math:`I_0` is the modified zeroth-order Bessel function.

    The Kaiser was named for Jim Kaiser, who discovered a simple
    approximation to the DPSS window based on Bessel functions.  The Kaiser
    window is a very good approximation to the Digital Prolate Spheroidal
    Sequence, or Slepian window, which is the transform which maximizes the
    energy in the main lobe of the window relative to total energy.

    The Kaiser can approximate many other windows by varying the beta
    parameter.

    ====  =======================
    beta  Window shape
    ====  =======================
    0     Rectangular
    5     Similar to a Hamming
    6     Similar to a Hanning
    8.6   Similar to a Blackman
    ====  =======================

    A beta value of 14 is probably a good starting point. Note that as beta
    gets large, the window narrows, and so the number of samples needs to be
    large enough to sample the increasingly narrow spike, otherwise NaNs will
    get returned.

    Most references to the Kaiser window come from the signal processing
    literature, where it is used as one of many windowing functions for
    smoothing values.  It is also known as an apodization (which means
    "removing the foot", i.e. smoothing discontinuities at the beginning
    and end of the sampled signal) or tapering function.

    References
    ----------
    .. [1] J. F. Kaiser, "Digital Filters" - Ch 7 in "Systems analysis by
           digital computer", Editors: F.F. Kuo and J.F. Kaiser, p 218-285.
           John Wiley and Sons, New York, (1966).
    .. [2] E.R. Kanasewich, "Time Sequence Analysis in Geophysics", The
           University of Alberta Press, 1975, pp. 177-178.
    .. [3] Wikipedia, "Window function",
           https://en.wikipedia.org/wiki/Window_function

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> np.kaiser(12, 14)
     array([7.72686684e-06, 3.46009194e-03, 4.65200189e-02, # may vary
            2.29737120e-01, 5.99885316e-01, 9.45674898e-01,
            9.45674898e-01, 5.99885316e-01, 2.29737120e-01,
            4.65200189e-02, 3.46009194e-03, 7.72686684e-06])


    Plot the window and the frequency response:

    >>> from numpy.fft import fft, fftshift
    >>> window = np.kaiser(51, 14)
    >>> plt.plot(window)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Kaiser window")
    Text(0.5, 1.0, 'Kaiser window')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("Sample")
    Text(0.5, 0, 'Sample')
    >>> plt.show()

    >>> plt.figure()
    <Figure size 640x480 with 0 Axes>
    >>> A = fft(window, 2048) / 25.5
    >>> mag = np.abs(fftshift(A))
    >>> freq = np.linspace(-0.5, 0.5, len(A))
    >>> response = 20 * np.log10(mag)
    >>> response = np.clip(response, -100, 100)
    >>> plt.plot(freq, response)
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Frequency response of Kaiser window")
    Text(0.5, 1.0, 'Frequency response of Kaiser window')
    >>> plt.ylabel("Magnitude [dB]")
    Text(0, 0.5, 'Magnitude [dB]')
    >>> plt.xlabel("Normalized frequency [cycles per sample]")
    Text(0.5, 0, 'Normalized frequency [cycles per sample]')
    >>> plt.axis('tight')
    (-0.5, 0.5, -100.0, ...) # may vary
    >>> plt.show()

    """
    from numpy.dual import i0
    if M == 1:
        return np.array([1.])
    n = arange(0, M)
    alpha = (M-1)/2.0
    return i0(beta * sqrt(1-((n-alpha)/alpha)**2.0))/i0(float(beta))


def _sinc_dispatcher(x):
    return (x,)


@array_function_dispatch(_sinc_dispatcher)
def sinc(x):
    """
    Return the sinc function.

    The sinc function is :math:`\\sin(\\pi x)/(\\pi x)`.

    Parameters
    ----------
    x : ndarray
        Array (possibly multi-dimensional) of values for which to to
        calculate ``sinc(x)``.

    Returns
    -------
    out : ndarray
        ``sinc(x)``, which has the same shape as the input.

    Notes
    -----
    ``sinc(0)`` is the limit value 1.

    The name sinc is short for "sine cardinal" or "sinus cardinalis".

    The sinc function is used in various signal processing applications,
    including in anti-aliasing, in the construction of a Lanczos resampling
    filter, and in interpolation.

    For bandlimited interpolation of discrete-time signals, the ideal
    interpolation kernel is proportional to the sinc function.

    References
    ----------
    .. [1] Weisstein, Eric W. "Sinc Function." From MathWorld--A Wolfram Web
           Resource. http://mathworld.wolfram.com/SincFunction.html
    .. [2] Wikipedia, "Sinc function",
           https://en.wikipedia.org/wiki/Sinc_function

    Examples
    --------
    >>> import matplotlib.pyplot as plt
    >>> x = np.linspace(-4, 4, 41)
    >>> np.sinc(x)
     array([-3.89804309e-17,  -4.92362781e-02,  -8.40918587e-02, # may vary
            -8.90384387e-02,  -5.84680802e-02,   3.89804309e-17,
            6.68206631e-02,   1.16434881e-01,   1.26137788e-01,
            8.50444803e-02,  -3.89804309e-17,  -1.03943254e-01,
            -1.89206682e-01,  -2.16236208e-01,  -1.55914881e-01,
            3.89804309e-17,   2.33872321e-01,   5.04551152e-01,
            7.56826729e-01,   9.35489284e-01,   1.00000000e+00,
            9.35489284e-01,   7.56826729e-01,   5.04551152e-01,
            2.33872321e-01,   3.89804309e-17,  -1.55914881e-01,
           -2.16236208e-01,  -1.89206682e-01,  -1.03943254e-01,
           -3.89804309e-17,   8.50444803e-02,   1.26137788e-01,
            1.16434881e-01,   6.68206631e-02,   3.89804309e-17,
            -5.84680802e-02,  -8.90384387e-02,  -8.40918587e-02,
            -4.92362781e-02,  -3.89804309e-17])

    >>> plt.plot(x, np.sinc(x))
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.title("Sinc Function")
    Text(0.5, 1.0, 'Sinc Function')
    >>> plt.ylabel("Amplitude")
    Text(0, 0.5, 'Amplitude')
    >>> plt.xlabel("X")
    Text(0.5, 0, 'X')
    >>> plt.show()

    """
    x = np.asanyarray(x)
    y = pi * where(x == 0, 1.0e-20, x)
    return sin(y)/y


def _msort_dispatcher(a):
    return (a,)


@array_function_dispatch(_msort_dispatcher)
def msort(a):
    """
    Return a copy of an array sorted along the first axis.

    Parameters
    ----------
    a : array_like
        Array to be sorted.

    Returns
    -------
    sorted_array : ndarray
        Array of the same type and shape as `a`.

    See Also
    --------
    sort

    Notes
    -----
    ``np.msort(a)`` is equivalent to  ``np.sort(a, axis=0)``.

    """
    b = array(a, subok=True, copy=True)
    b.sort(0)
    return b


def _ureduce(a, func, **kwargs):
    """
    Internal Function.
    Call `func` with `a` as first argument swapping the axes to use extended
    axis on functions that don't support it natively.

    Returns result and a.shape with axis dims set to 1.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    func : callable
        Reduction function capable of receiving a single axis argument.
        It is called with `a` as first argument followed by `kwargs`.
    kwargs : keyword arguments
        additional keyword arguments to pass to `func`.

    Returns
    -------
    result : tuple
        Result of func(a, **kwargs) and a.shape with axis dims set to 1
        which can be used to reshape the result to the same shape a ufunc with
        keepdims=True would produce.

    """
    a = np.asanyarray(a)
    axis = kwargs.get('axis', None)
    if axis is not None:
        keepdim = list(a.shape)
        nd = a.ndim
        axis = _nx.normalize_axis_tuple(axis, nd)

        for ax in axis:
            keepdim[ax] = 1

        if len(axis) == 1:
            kwargs['axis'] = axis[0]
        else:
            keep = set(range(nd)) - set(axis)
            nkeep = len(keep)
            # swap axis that should not be reduced to front
            for i, s in enumerate(sorted(keep)):
                a = a.swapaxes(i, s)
            # merge reduced axis
            a = a.reshape(a.shape[:nkeep] + (-1,))
            kwargs['axis'] = -1
        keepdim = tuple(keepdim)
    else:
        keepdim = (1,) * a.ndim

    r = func(a, **kwargs)
    return r, keepdim


def _median_dispatcher(
        a, axis=None, out=None, overwrite_input=None, keepdims=None):
    return (a, out)


@array_function_dispatch(_median_dispatcher)
def median(a, axis=None, out=None, overwrite_input=False, keepdims=False):
    """
    Compute the median along the specified axis.

    Returns the median of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    axis : {int, sequence of int, None}, optional
        Axis or axes along which the medians are computed. The default
        is to compute the median along a flattened version of the array.
        A sequence of axes is supported since version 1.9.0.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
       If True, then allow use of memory of input array `a` for
       calculations. The input array will be modified by the call to
       `median`. This will save memory when you do not need to preserve
       the contents of the input array. Treat the input as undefined,
       but it will probably be fully or partially sorted. Default is
       False. If `overwrite_input` is ``True`` and `a` is not already an
       `ndarray`, an error will be raised.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left
        in the result as dimensions with size one. With this option,
        the result will broadcast correctly against the original `arr`.

        .. versionadded:: 1.9.0

    Returns
    -------
    median : ndarray
        A new array holding the result. If the input contains integers
        or floats smaller than ``float64``, then the output data-type is
        ``np.float64``.  Otherwise, the data-type of the output is the
        same as that of the input. If `out` is specified, that array is
        returned instead.

    See Also
    --------
    mean, percentile

    Notes
    -----
    Given a vector ``V`` of length ``N``, the median of ``V`` is the
    middle value of a sorted copy of ``V``, ``V_sorted`` - i
    e., ``V_sorted[(N-1)/2]``, when ``N`` is odd, and the average of the
    two middle values of ``V_sorted`` when ``N`` is even.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.median(a)
    3.5
    >>> np.median(a, axis=0)
    array([6.5, 4.5, 2.5])
    >>> np.median(a, axis=1)
    array([7.,  2.])
    >>> m = np.median(a, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.median(a, axis=0, out=m)
    array([6.5,  4.5,  2.5])
    >>> m
    array([6.5,  4.5,  2.5])
    >>> b = a.copy()
    >>> np.median(b, axis=1, overwrite_input=True)
    array([7.,  2.])
    >>> assert not np.all(a==b)
    >>> b = a.copy()
    >>> np.median(b, axis=None, overwrite_input=True)
    3.5
    >>> assert not np.all(a==b)

    """
    r, k = _ureduce(a, func=_median, axis=axis, out=out,
                    overwrite_input=overwrite_input)
    if keepdims:
        return r.reshape(k)
    else:
        return r


def _median(a, axis=None, out=None, overwrite_input=False):
    # can't be reasonably be implemented in terms of percentile as we have to
    # call mean to not break astropy
    a = np.asanyarray(a)

    # Set the partition indexes
    if axis is None:
        sz = a.size
    else:
        sz = a.shape[axis]
    if sz % 2 == 0:
        szh = sz // 2
        kth = [szh - 1, szh]
    else:
        kth = [(sz - 1) // 2]
    # Check if the array contains any nan's
    if np.issubdtype(a.dtype, np.inexact):
        kth.append(-1)

    if overwrite_input:
        if axis is None:
            part = a.ravel()
            part.partition(kth)
        else:
            a.partition(kth, axis=axis)
            part = a
    else:
        part = partition(a, kth, axis=axis)

    if part.shape == ():
        # make 0-D arrays work
        return part.item()
    if axis is None:
        axis = 0

    indexer = [slice(None)] * part.ndim
    index = part.shape[axis] // 2
    if part.shape[axis] % 2 == 1:
        # index with slice to allow mean (below) to work
        indexer[axis] = slice(index, index+1)
    else:
        indexer[axis] = slice(index-1, index+1)
    indexer = tuple(indexer)

    # Check if the array contains any nan's
    if np.issubdtype(a.dtype, np.inexact) and sz > 0:
        # warn and return nans like mean would
        rout = mean(part[indexer], axis=axis, out=out)
        return np.lib.utils._median_nancheck(part, rout, axis, out)
    else:
        # if there are no nans
        # Use mean in odd and even case to coerce data type
        # and check, use out array.
        return mean(part[indexer], axis=axis, out=out)


def _percentile_dispatcher(a, q, axis=None, out=None, overwrite_input=None,
                           interpolation=None, keepdims=None):
    return (a, q, out)


@array_function_dispatch(_percentile_dispatcher)
def percentile(a, q, axis=None, out=None,
               overwrite_input=False, interpolation='linear', keepdims=False):
    """
    Compute the q-th percentile of the data along the specified axis.

    Returns the q-th percentile(s) of the array elements.

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    q : array_like of float
        Percentile or sequence of percentiles to compute, which must be between
        0 and 100 inclusive.
    axis : {int, tuple of int, None}, optional
        Axis or axes along which the percentiles are computed. The
        default is to compute the percentile(s) along a flattened
        version of the array.

        .. versionchanged:: 1.9.0
            A tuple of axes is supported
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
        If True, then allow the input array `a` to be modified by intermediate
        calculations, to save memory. In this case, the contents of the input
        `a` after this function completes is undefined.

    interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
        This optional parameter specifies the interpolation method to
        use when the desired percentile lies between two data points
        ``i < j``:

        * 'linear': ``i + (j - i) * fraction``, where ``fraction``
          is the fractional part of the index surrounded by ``i``
          and ``j``.
        * 'lower': ``i``.
        * 'higher': ``j``.
        * 'nearest': ``i`` or ``j``, whichever is nearest.
        * 'midpoint': ``(i + j) / 2``.

        .. versionadded:: 1.9.0
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left in
        the result as dimensions with size one. With this option, the
        result will broadcast correctly against the original array `a`.

        .. versionadded:: 1.9.0

    Returns
    -------
    percentile : scalar or ndarray
        If `q` is a single percentile and `axis=None`, then the result
        is a scalar. If multiple percentiles are given, first axis of
        the result corresponds to the percentiles. The other axes are
        the axes that remain after the reduction of `a`. If the input
        contains integers or floats smaller than ``float64``, the output
        data-type is ``float64``. Otherwise, the output data-type is the
        same as that of the input. If `out` is specified, that array is
        returned instead.

    See Also
    --------
    mean
    median : equivalent to ``percentile(..., 50)``
    nanpercentile
    quantile : equivalent to percentile, except with q in the range [0, 1].

    Notes
    -----
    Given a vector ``V`` of length ``N``, the q-th percentile of
    ``V`` is the value ``q/100`` of the way from the minimum to the
    maximum in a sorted copy of ``V``. The values and distances of
    the two nearest neighbors as well as the `interpolation` parameter
    will determine the percentile if the normalized ranking does not
    match the location of ``q`` exactly. This function is the same as
    the median if ``q=50``, the same as the minimum if ``q=0`` and the
    same as the maximum if ``q=100``.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.percentile(a, 50)
    3.5
    >>> np.percentile(a, 50, axis=0)
    array([6.5, 4.5, 2.5])
    >>> np.percentile(a, 50, axis=1)
    array([7.,  2.])
    >>> np.percentile(a, 50, axis=1, keepdims=True)
    array([[7.],
           [2.]])

    >>> m = np.percentile(a, 50, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.percentile(a, 50, axis=0, out=out)
    array([6.5, 4.5, 2.5])
    >>> m
    array([6.5, 4.5, 2.5])

    >>> b = a.copy()
    >>> np.percentile(b, 50, axis=1, overwrite_input=True)
    array([7.,  2.])
    >>> assert not np.all(a == b)

    The different types of interpolation can be visualized graphically:

    .. plot::

        import matplotlib.pyplot as plt

        a = np.arange(4)
        p = np.linspace(0, 100, 6001)
        ax = plt.gca()
        lines = [
            ('linear', None),
            ('higher', '--'),
            ('lower', '--'),
            ('nearest', '-.'),
            ('midpoint', '-.'),
        ]
        for interpolation, style in lines:
            ax.plot(
                p, np.percentile(a, p, interpolation=interpolation),
                label=interpolation, linestyle=style)
        ax.set(
            title='Interpolation methods for list: ' + str(a),
            xlabel='Percentile',
            ylabel='List item returned',
            yticks=a)
        ax.legend()
        plt.show()

    """
    q = np.true_divide(q, 100)
    q = asanyarray(q)  # undo any decay that the ufunc performed (see gh-13105)
    if not _quantile_is_valid(q):
        raise ValueError("Percentiles must be in the range [0, 100]")
    return _quantile_unchecked(
        a, q, axis, out, overwrite_input, interpolation, keepdims)


def _quantile_dispatcher(a, q, axis=None, out=None, overwrite_input=None,
                         interpolation=None, keepdims=None):
    return (a, q, out)


@array_function_dispatch(_quantile_dispatcher)
def quantile(a, q, axis=None, out=None,
             overwrite_input=False, interpolation='linear', keepdims=False):
    """
    Compute the q-th quantile of the data along the specified axis.

    .. versionadded:: 1.15.0

    Parameters
    ----------
    a : array_like
        Input array or object that can be converted to an array.
    q : array_like of float
        Quantile or sequence of quantiles to compute, which must be between
        0 and 1 inclusive.
    axis : {int, tuple of int, None}, optional
        Axis or axes along which the quantiles are computed. The
        default is to compute the quantile(s) along a flattened
        version of the array.
    out : ndarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output,
        but the type (of the output) will be cast if necessary.
    overwrite_input : bool, optional
        If True, then allow the input array `a` to be modified by intermediate
        calculations, to save memory. In this case, the contents of the input
        `a` after this function completes is undefined.
    interpolation : {'linear', 'lower', 'higher', 'midpoint', 'nearest'}
        This optional parameter specifies the interpolation method to
        use when the desired quantile lies between two data points
        ``i < j``:

            * linear: ``i + (j - i) * fraction``, where ``fraction``
              is the fractional part of the index surrounded by ``i``
              and ``j``.
            * lower: ``i``.
            * higher: ``j``.
            * nearest: ``i`` or ``j``, whichever is nearest.
            * midpoint: ``(i + j) / 2``.
    keepdims : bool, optional
        If this is set to True, the axes which are reduced are left in
        the result as dimensions with size one. With this option, the
        result will broadcast correctly against the original array `a`.

    Returns
    -------
    quantile : scalar or ndarray
        If `q` is a single quantile and `axis=None`, then the result
        is a scalar. If multiple quantiles are given, first axis of
        the result corresponds to the quantiles. The other axes are
        the axes that remain after the reduction of `a`. If the input
        contains integers or floats smaller than ``float64``, the output
        data-type is ``float64``. Otherwise, the output data-type is the
        same as that of the input. If `out` is specified, that array is
        returned instead.

    See Also
    --------
    mean
    percentile : equivalent to quantile, but with q in the range [0, 100].
    median : equivalent to ``quantile(..., 0.5)``
    nanquantile

    Notes
    -----
    Given a vector ``V`` of length ``N``, the q-th quantile of
    ``V`` is the value ``q`` of the way from the minimum to the
    maximum in a sorted copy of ``V``. The values and distances of
    the two nearest neighbors as well as the `interpolation` parameter
    will determine the quantile if the normalized ranking does not
    match the location of ``q`` exactly. This function is the same as
    the median if ``q=0.5``, the same as the minimum if ``q=0.0`` and the
    same as the maximum if ``q=1.0``.

    Examples
    --------
    >>> a = np.array([[10, 7, 4], [3, 2, 1]])
    >>> a
    array([[10,  7,  4],
           [ 3,  2,  1]])
    >>> np.quantile(a, 0.5)
    3.5
    >>> np.quantile(a, 0.5, axis=0)
    array([6.5, 4.5, 2.5])
    >>> np.quantile(a, 0.5, axis=1)
    array([7.,  2.])
    >>> np.quantile(a, 0.5, axis=1, keepdims=True)
    array([[7.],
           [2.]])
    >>> m = np.quantile(a, 0.5, axis=0)
    >>> out = np.zeros_like(m)
    >>> np.quantile(a, 0.5, axis=0, out=out)
    array([6.5, 4.5, 2.5])
    >>> m
    array([6.5, 4.5, 2.5])
    >>> b = a.copy()
    >>> np.quantile(b, 0.5, axis=1, overwrite_input=True)
    array([7.,  2.])
    >>> assert not np.all(a == b)
    """
    q = np.asanyarray(q)
    if not _quantile_is_valid(q):
        raise ValueError("Quantiles must be in the range [0, 1]")
    return _quantile_unchecked(
        a, q, axis, out, overwrite_input, interpolation, keepdims)


def _quantile_unchecked(a, q, axis=None, out=None, overwrite_input=False,
                        interpolation='linear', keepdims=False):
    """Assumes that q is in [0, 1], and is an ndarray"""
    r, k = _ureduce(a, func=_quantile_ureduce_func, q=q, axis=axis, out=out,
                    overwrite_input=overwrite_input,
                    interpolation=interpolation)
    if keepdims:
        return r.reshape(q.shape + k)
    else:
        return r


def _quantile_is_valid(q):
    # avoid expensive reductions, relevant for arrays with < O(1000) elements
    if q.ndim == 1 and q.size < 10:
        for i in range(q.size):
            if q[i] < 0.0 or q[i] > 1.0:
                return False
    else:
        # faster than any()
        if np.count_nonzero(q < 0.0) or np.count_nonzero(q > 1.0):
            return False
    return True


def _quantile_ureduce_func(a, q, axis=None, out=None, overwrite_input=False,
                           interpolation='linear', keepdims=False):
    a = asarray(a)
    if q.ndim == 0:
        # Do not allow 0-d arrays because following code fails for scalar
        zerod = True
        q = q[None]
    else:
        zerod = False

    # prepare a for partitioning
    if overwrite_input:
        if axis is None:
            ap = a.ravel()
        else:
            ap = a
    else:
        if axis is None:
            ap = a.flatten()
        else:
            ap = a.copy()

    if axis is None:
        axis = 0

    Nx = ap.shape[axis]
    indices = q * (Nx - 1)

    # round fractional indices according to interpolation method
    if interpolation == 'lower':
        indices = floor(indices).astype(intp)
    elif interpolation == 'higher':
        indices = ceil(indices).astype(intp)
    elif interpolation == 'midpoint':
        indices = 0.5 * (floor(indices) + ceil(indices))
    elif interpolation == 'nearest':
        indices = around(indices).astype(intp)
    elif interpolation == 'linear':
        pass  # keep index as fraction and interpolate
    else:
        raise ValueError(
            "interpolation can only be 'linear', 'lower' 'higher', "
            "'midpoint', or 'nearest'")

    n = np.array(False, dtype=bool)  # check for nan's flag
    if np.issubdtype(indices.dtype, np.integer):  # take the points along axis
        # Check if the array contains any nan's
        if np.issubdtype(a.dtype, np.inexact):
            indices = concatenate((indices, [-1]))

        ap.partition(indices, axis=axis)
        # ensure axis with q-th is first
        ap = np.moveaxis(ap, axis, 0)
        axis = 0

        # Check if the array contains any nan's
        if np.issubdtype(a.dtype, np.inexact):
            indices = indices[:-1]
            n = np.isnan(ap[-1:, ...])

        if zerod:
            indices = indices[0]
        r = take(ap, indices, axis=axis, out=out)

    else:  # weight the points above and below the indices
        indices_below = floor(indices).astype(intp)
        indices_above = indices_below + 1
        indices_above[indices_above > Nx - 1] = Nx - 1

        # Check if the array contains any nan's
        if np.issubdtype(a.dtype, np.inexact):
            indices_above = concatenate((indices_above, [-1]))

        weights_above = indices - indices_below
        weights_below = 1 - weights_above

        weights_shape = [1, ] * ap.ndim
        weights_shape[axis] = len(indices)
        weights_below.shape = weights_shape
        weights_above.shape = weights_shape

        ap.partition(concatenate((indices_below, indices_above)), axis=axis)

        # ensure axis with q-th is first
        ap = np.moveaxis(ap, axis, 0)
        weights_below = np.moveaxis(weights_below, axis, 0)
        weights_above = np.moveaxis(weights_above, axis, 0)
        axis = 0

        # Check if the array contains any nan's
        if np.issubdtype(a.dtype, np.inexact):
            indices_above = indices_above[:-1]
            n = np.isnan(ap[-1:, ...])

        x1 = take(ap, indices_below, axis=axis) * weights_below
        x2 = take(ap, indices_above, axis=axis) * weights_above

        # ensure axis with q-th is first
        x1 = np.moveaxis(x1, axis, 0)
        x2 = np.moveaxis(x2, axis, 0)

        if zerod:
            x1 = x1.squeeze(0)
            x2 = x2.squeeze(0)

        if out is not None:
            r = add(x1, x2, out=out)
        else:
            r = add(x1, x2)

    if np.any(n):
        if zerod:
            if ap.ndim == 1:
                if out is not None:
                    out[...] = a.dtype.type(np.nan)
                    r = out
                else:
                    r = a.dtype.type(np.nan)
            else:
                r[..., n.squeeze(0)] = a.dtype.type(np.nan)
        else:
            if r.ndim == 1:
                r[:] = a.dtype.type(np.nan)
            else:
                r[..., n.repeat(q.size, 0)] = a.dtype.type(np.nan)

    return r


def _trapz_dispatcher(y, x=None, dx=None, axis=None):
    return (y, x)


@array_function_dispatch(_trapz_dispatcher)
def trapz(y, x=None, dx=1.0, axis=-1):
    """
    Integrate along the given axis using the composite trapezoidal rule.

    Integrate `y` (`x`) along given axis.

    Parameters
    ----------
    y : array_like
        Input array to integrate.
    x : array_like, optional
        The sample points corresponding to the `y` values. If `x` is None,
        the sample points are assumed to be evenly spaced `dx` apart. The
        default is None.
    dx : scalar, optional
        The spacing between sample points when `x` is None. The default is 1.
    axis : int, optional
        The axis along which to integrate.

    Returns
    -------
    trapz : float
        Definite integral as approximated by trapezoidal rule.

    See Also
    --------
    sum, cumsum

    Notes
    -----
    Image [2]_ illustrates trapezoidal rule -- y-axis locations of points
    will be taken from `y` array, by default x-axis distances between
    points will be 1.0, alternatively they can be provided with `x` array
    or with `dx` scalar.  Return value will be equal to combined area under
    the red lines.


    References
    ----------
    .. [1] Wikipedia page: https://en.wikipedia.org/wiki/Trapezoidal_rule

    .. [2] Illustration image:
           https://en.wikipedia.org/wiki/File:Composite_trapezoidal_rule_illustration.png

    Examples
    --------
    >>> np.trapz([1,2,3])
    4.0
    >>> np.trapz([1,2,3], x=[4,6,8])
    8.0
    >>> np.trapz([1,2,3], dx=2)
    8.0
    >>> a = np.arange(6).reshape(2, 3)
    >>> a
    array([[0, 1, 2],
           [3, 4, 5]])
    >>> np.trapz(a, axis=0)
    array([1.5, 2.5, 3.5])
    >>> np.trapz(a, axis=1)
    array([2.,  8.])

    """
    y = asanyarray(y)
    if x is None:
        d = dx
    else:
        x = asanyarray(x)
        if x.ndim == 1:
            d = diff(x)
            # reshape to correct shape
            shape = [1]*y.ndim
            shape[axis] = d.shape[0]
            d = d.reshape(shape)
        else:
            d = diff(x, axis=axis)
    nd = y.ndim
    slice1 = [slice(None)]*nd
    slice2 = [slice(None)]*nd
    slice1[axis] = slice(1, None)
    slice2[axis] = slice(None, -1)
    try:
        ret = (d * (y[tuple(slice1)] + y[tuple(slice2)]) / 2.0).sum(axis)
    except ValueError:
        # Operations didn't work, cast to ndarray
        d = np.asarray(d)
        y = np.asarray(y)
        ret = add.reduce(d * (y[tuple(slice1)]+y[tuple(slice2)])/2.0, axis)
    return ret


def _meshgrid_dispatcher(*xi, copy=None, sparse=None, indexing=None):
    return xi


# Based on scitools meshgrid
@array_function_dispatch(_meshgrid_dispatcher)
def meshgrid(*xi, copy=True, sparse=False, indexing='xy'):
    """
    Return coordinate matrices from coordinate vectors.

    Make N-D coordinate arrays for vectorized evaluations of
    N-D scalar/vector fields over N-D grids, given
    one-dimensional coordinate arrays x1, x2,..., xn.

    .. versionchanged:: 1.9
       1-D and 0-D cases are allowed.

    Parameters
    ----------
    x1, x2,..., xn : array_like
        1-D arrays representing the coordinates of a grid.
    indexing : {'xy', 'ij'}, optional
        Cartesian ('xy', default) or matrix ('ij') indexing of output.
        See Notes for more details.

        .. versionadded:: 1.7.0
    sparse : bool, optional
        If True a sparse grid is returned in order to conserve memory.
        Default is False.

        .. versionadded:: 1.7.0
    copy : bool, optional
        If False, a view into the original arrays are returned in order to
        conserve memory.  Default is True.  Please note that
        ``sparse=False, copy=False`` will likely return non-contiguous
        arrays.  Furthermore, more than one element of a broadcast array
        may refer to a single memory location.  If you need to write to the
        arrays, make copies first.

        .. versionadded:: 1.7.0

    Returns
    -------
    X1, X2,..., XN : ndarray
        For vectors `x1`, `x2`,..., 'xn' with lengths ``Ni=len(xi)`` ,
        return ``(N1, N2, N3,...Nn)`` shaped arrays if indexing='ij'
        or ``(N2, N1, N3,...Nn)`` shaped arrays if indexing='xy'
        with the elements of `xi` repeated to fill the matrix along
        the first dimension for `x1`, the second for `x2` and so on.

    Notes
    -----
    This function supports both indexing conventions through the indexing
    keyword argument.  Giving the string 'ij' returns a meshgrid with
    matrix indexing, while 'xy' returns a meshgrid with Cartesian indexing.
    In the 2-D case with inputs of length M and N, the outputs are of shape
    (N, M) for 'xy' indexing and (M, N) for 'ij' indexing.  In the 3-D case
    with inputs of length M, N and P, outputs are of shape (N, M, P) for
    'xy' indexing and (M, N, P) for 'ij' indexing.  The difference is
    illustrated by the following code snippet::

        xv, yv = np.meshgrid(x, y, sparse=False, indexing='ij')
        for i in range(nx):
            for j in range(ny):
                # treat xv[i,j], yv[i,j]

        xv, yv = np.meshgrid(x, y, sparse=False, indexing='xy')
        for i in range(nx):
            for j in range(ny):
                # treat xv[j,i], yv[j,i]

    In the 1-D and 0-D case, the indexing and sparse keywords have no effect.

    See Also
    --------
    index_tricks.mgrid : Construct a multi-dimensional "meshgrid"
                     using indexing notation.
    index_tricks.ogrid : Construct an open multi-dimensional "meshgrid"
                     using indexing notation.

    Examples
    --------
    >>> nx, ny = (3, 2)
    >>> x = np.linspace(0, 1, nx)
    >>> y = np.linspace(0, 1, ny)
    >>> xv, yv = np.meshgrid(x, y)
    >>> xv
    array([[0. , 0.5, 1. ],
           [0. , 0.5, 1. ]])
    >>> yv
    array([[0.,  0.,  0.],
           [1.,  1.,  1.]])
    >>> xv, yv = np.meshgrid(x, y, sparse=True)  # make sparse output arrays
    >>> xv
    array([[0. ,  0.5,  1. ]])
    >>> yv
    array([[0.],
           [1.]])

    `meshgrid` is very useful to evaluate functions on a grid.

    >>> import matplotlib.pyplot as plt
    >>> x = np.arange(-5, 5, 0.1)
    >>> y = np.arange(-5, 5, 0.1)
    >>> xx, yy = np.meshgrid(x, y, sparse=True)
    >>> z = np.sin(xx**2 + yy**2) / (xx**2 + yy**2)
    >>> h = plt.contourf(x,y,z)
    >>> plt.show()

    """
    ndim = len(xi)

    if indexing not in ['xy', 'ij']:
        raise ValueError(
            "Valid values for `indexing` are 'xy' and 'ij'.")

    s0 = (1,) * ndim
    output = [np.asanyarray(x).reshape(s0[:i] + (-1,) + s0[i + 1:])
              for i, x in enumerate(xi)]

    if indexing == 'xy' and ndim > 1:
        # switch first and second axis
        output[0].shape = (1, -1) + s0[2:]
        output[1].shape = (-1, 1) + s0[2:]

    if not sparse:
        # Return the full N-D matrix (not only the 1-D vector)
        output = np.broadcast_arrays(*output, subok=True)

    if copy:
        output = [x.copy() for x in output]

    return output


def _delete_dispatcher(arr, obj, axis=None):
    return (arr, obj)


@array_function_dispatch(_delete_dispatcher)
def delete(arr, obj, axis=None):
    """
    Return a new array with sub-arrays along an axis deleted. For a one
    dimensional array, this returns those entries not returned by
    `arr[obj]`.

    Parameters
    ----------
    arr : array_like
        Input array.
    obj : slice, int or array of ints
        Indicate indices of sub-arrays to remove along the specified axis.

        .. versionchanged:: 1.19.0
            Boolean indices are now treated as a mask of elements to remove,
            rather than being cast to the integers 0 and 1.

    axis : int, optional
        The axis along which to delete the subarray defined by `obj`.
        If `axis` is None, `obj` is applied to the flattened array.

    Returns
    -------
    out : ndarray
        A copy of `arr` with the elements specified by `obj` removed. Note
        that `delete` does not occur in-place. If `axis` is None, `out` is
        a flattened array.

    See Also
    --------
    insert : Insert elements into an array.
    append : Append elements at the end of an array.

    Notes
    -----
    Often it is preferable to use a boolean mask. For example:

    >>> arr = np.arange(12) + 1
    >>> mask = np.ones(len(arr), dtype=bool)
    >>> mask[[0,2,4]] = False
    >>> result = arr[mask,...]

    Is equivalent to `np.delete(arr, [0,2,4], axis=0)`, but allows further
    use of `mask`.

    Examples
    --------
    >>> arr = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])
    >>> arr
    array([[ 1,  2,  3,  4],
           [ 5,  6,  7,  8],
           [ 9, 10, 11, 12]])
    >>> np.delete(arr, 1, 0)
    array([[ 1,  2,  3,  4],
           [ 9, 10, 11, 12]])

    >>> np.delete(arr, np.s_[::2], 1)
    array([[ 2,  4],
           [ 6,  8],
           [10, 12]])
    >>> np.delete(arr, [1,3,5], None)
    array([ 1,  3,  5,  7,  8,  9, 10, 11, 12])

    """
    wrap = None
    if type(arr) is not ndarray:
        try:
            wrap = arr.__array_wrap__
        except AttributeError:
            pass

    arr = asarray(arr)
    ndim = arr.ndim
    arrorder = 'F' if arr.flags.fnc else 'C'
    if axis is None:
        if ndim != 1:
            arr = arr.ravel()
        # needed for np.matrix, which is still not 1d after being ravelled
        ndim = arr.ndim
        axis = ndim - 1
    else:
        axis = normalize_axis_index(axis, ndim)

    slobj = [slice(None)]*ndim
    N = arr.shape[axis]
    newshape = list(arr.shape)

    if isinstance(obj, slice):
        start, stop, step = obj.indices(N)
        xr = range(start, stop, step)
        numtodel = len(xr)

        if numtodel <= 0:
            if wrap:
                return wrap(arr.copy(order=arrorder))
            else:
                return arr.copy(order=arrorder)

        # Invert if step is negative:
        if step < 0:
            step = -step
            start = xr[-1]
            stop = xr[0] + 1

        newshape[axis] -= numtodel
        new = empty(newshape, arr.dtype, arrorder)
        # copy initial chunk
        if start == 0:
            pass
        else:
            slobj[axis] = slice(None, start)
            new[tuple(slobj)] = arr[tuple(slobj)]
        # copy end chunk
        if stop == N:
            pass
        else:
            slobj[axis] = slice(stop-numtodel, None)
            slobj2 = [slice(None)]*ndim
            slobj2[axis] = slice(stop, None)
            new[tuple(slobj)] = arr[tuple(slobj2)]
        # copy middle pieces
        if step == 1:
            pass
        else:  # use array indexing.
            keep = ones(stop-start, dtype=bool)
            keep[:stop-start:step] = False
            slobj[axis] = slice(start, stop-numtodel)
            slobj2 = [slice(None)]*ndim
            slobj2[axis] = slice(start, stop)
            arr = arr[tuple(slobj2)]
            slobj2[axis] = keep
            new[tuple(slobj)] = arr[tuple(slobj2)]
        if wrap:
            return wrap(new)
        else:
            return new

    if isinstance(obj, (int, integer)) and not isinstance(obj, bool):
        # optimization for a single value
        if (obj < -N or obj >= N):
            raise IndexError(
                "index %i is out of bounds for axis %i with "
                "size %i" % (obj, axis, N))
        if (obj < 0):
            obj += N
        newshape[axis] -= 1
        new = empty(newshape, arr.dtype, arrorder)
        slobj[axis] = slice(None, obj)
        new[tuple(slobj)] = arr[tuple(slobj)]
        slobj[axis] = slice(obj, None)
        slobj2 = [slice(None)]*ndim
        slobj2[axis] = slice(obj+1, None)
        new[tuple(slobj)] = arr[tuple(slobj2)]
    else:
        _obj = obj
        obj = np.asarray(obj)
        if obj.size == 0 and not isinstance(_obj, np.ndarray):
            obj = obj.astype(intp)

        if obj.dtype == bool:
            if obj.shape != (N,):
                raise ValueError('boolean array argument obj to delete '
                                 'must be one dimensional and match the axis '
                                 'length of {}'.format(N))

            # optimization, the other branch is slower
            keep = ~obj
        else:
            keep = ones(N, dtype=bool)
            keep[obj,] = False

        slobj[axis] = keep
        new = arr[tuple(slobj)]

    if wrap:
        return wrap(new)
    else:
        return new


def _insert_dispatcher(arr, obj, values, axis=None):
    return (arr, obj, values)


@array_function_dispatch(_insert_dispatcher)
def insert(arr, obj, values, axis=None):
    """
    Insert values along the given axis before the given indices.

    Parameters
    ----------
    arr : array_like
        Input array.
    obj : int, slice or sequence of ints
        Object that defines the index or indices before which `values` is
        inserted.

        .. versionadded:: 1.8.0

        Support for multiple insertions when `obj` is a single scalar or a
        sequence with one element (similar to calling insert multiple
        times).
    values : array_like
        Values to insert into `arr`. If the type of `values` is different
        from that of `arr`, `values` is converted to the type of `arr`.
        `values` should be shaped so that ``arr[...,obj,...] = values``
        is legal.
    axis : int, optional
        Axis along which to insert `values`.  If `axis` is None then `arr`
        is flattened first.

    Returns
    -------
    out : ndarray
        A copy of `arr` with `values` inserted.  Note that `insert`
        does not occur in-place: a new array is returned. If
        `axis` is None, `out` is a flattened array.

    See Also
    --------
    append : Append elements at the end of an array.
    concatenate : Join a sequence of arrays along an existing axis.
    delete : Delete elements from an array.

    Notes
    -----
    Note that for higher dimensional inserts `obj=0` behaves very different
    from `obj=[0]` just like `arr[:,0,:] = values` is different from
    `arr[:,[0],:] = values`.

    Examples
    --------
    >>> a = np.array([[1, 1], [2, 2], [3, 3]])
    >>> a
    array([[1, 1],
           [2, 2],
           [3, 3]])
    >>> np.insert(a, 1, 5)
    array([1, 5, 1, ..., 2, 3, 3])
    >>> np.insert(a, 1, 5, axis=1)
    array([[1, 5, 1],
           [2, 5, 2],
           [3, 5, 3]])

    Difference between sequence and scalars:

    >>> np.insert(a, [1], [[1],[2],[3]], axis=1)
    array([[1, 1, 1],
           [2, 2, 2],
           [3, 3, 3]])
    >>> np.array_equal(np.insert(a, 1, [1, 2, 3], axis=1),
    ...                np.insert(a, [1], [[1],[2],[3]], axis=1))
    True

    >>> b = a.flatten()
    >>> b
    array([1, 1, 2, 2, 3, 3])
    >>> np.insert(b, [2, 2], [5, 6])
    array([1, 1, 5, ..., 2, 3, 3])

    >>> np.insert(b, slice(2, 4), [5, 6])
    array([1, 1, 5, ..., 2, 3, 3])

    >>> np.insert(b, [2, 2], [7.13, False]) # type casting
    array([1, 1, 7, ..., 2, 3, 3])

    >>> x = np.arange(8).reshape(2, 4)
    >>> idx = (1, 3)
    >>> np.insert(x, idx, 999, axis=1)
    array([[  0, 999,   1,   2, 999,   3],
           [  4, 999,   5,   6, 999,   7]])

    """
    wrap = None
    if type(arr) is not ndarray:
        try:
            wrap = arr.__array_wrap__
        except AttributeError:
            pass

    arr = asarray(arr)
    ndim = arr.ndim
    arrorder = 'F' if arr.flags.fnc else 'C'
    if axis is None:
        if ndim != 1:
            arr = arr.ravel()
        # needed for np.matrix, which is still not 1d after being ravelled
        ndim = arr.ndim
        axis = ndim - 1
    else:
        axis = normalize_axis_index(axis, ndim)
    slobj = [slice(None)]*ndim
    N = arr.shape[axis]
    newshape = list(arr.shape)

    if isinstance(obj, slice):
        # turn it into a range object
        indices = arange(*obj.indices(N), dtype=intp)
    else:
        # need to copy obj, because indices will be changed in-place
        indices = np.array(obj)
        if indices.dtype == bool:
            # See also delete
            # 2012-10-11, NumPy 1.8
            warnings.warn(
                "in the future insert will treat boolean arrays and "
                "array-likes as a boolean index instead of casting it to "
                "integer", FutureWarning, stacklevel=3)
            indices = indices.astype(intp)
            # Code after warning period:
            #if obj.ndim != 1:
            #    raise ValueError('boolean array argument obj to insert '
            #                     'must be one dimensional')
            #indices = np.flatnonzero(obj)
        elif indices.ndim > 1:
            raise ValueError(
                "index array argument obj to insert must be one dimensional "
                "or scalar")
    if indices.size == 1:
        index = indices.item()
        if index < -N or index > N:
            raise IndexError(
                "index %i is out of bounds for axis %i with "
                "size %i" % (obj, axis, N))
        if (index < 0):
            index += N

        # There are some object array corner cases here, but we cannot avoid
        # that:
        values = array(values, copy=False, ndmin=arr.ndim, dtype=arr.dtype)
        if indices.ndim == 0:
            # broadcasting is very different here, since a[:,0,:] = ... behaves
            # very different from a[:,[0],:] = ...! This changes values so that
            # it works likes the second case. (here a[:,0:1,:])
            values = np.moveaxis(values, 0, axis)
        numnew = values.shape[axis]
        newshape[axis] += numnew
        new = empty(newshape, arr.dtype, arrorder)
        slobj[axis] = slice(None, index)
        new[tuple(slobj)] = arr[tuple(slobj)]
        slobj[axis] = slice(index, index+numnew)
        new[tuple(slobj)] = values
        slobj[axis] = slice(index+numnew, None)
        slobj2 = [slice(None)] * ndim
        slobj2[axis] = slice(index, None)
        new[tuple(slobj)] = arr[tuple(slobj2)]
        if wrap:
            return wrap(new)
        return new
    elif indices.size == 0 and not isinstance(obj, np.ndarray):
        # Can safely cast the empty list to intp
        indices = indices.astype(intp)

    indices[indices < 0] += N

    numnew = len(indices)
    order = indices.argsort(kind='mergesort')   # stable sort
    indices[order] += np.arange(numnew)

    newshape[axis] += numnew
    old_mask = ones(newshape[axis], dtype=bool)
    old_mask[indices] = False

    new = empty(newshape, arr.dtype, arrorder)
    slobj2 = [slice(None)]*ndim
    slobj[axis] = indices
    slobj2[axis] = old_mask
    new[tuple(slobj)] = values
    new[tuple(slobj2)] = arr

    if wrap:
        return wrap(new)
    return new


def _append_dispatcher(arr, values, axis=None):
    return (arr, values)


@array_function_dispatch(_append_dispatcher)
def append(arr, values, axis=None):
    """
    Append values to the end of an array.

    Parameters
    ----------
    arr : array_like
        Values are appended to a copy of this array.
    values : array_like
        These values are appended to a copy of `arr`.  It must be of the
        correct shape (the same shape as `arr`, excluding `axis`).  If
        `axis` is not specified, `values` can be any shape and will be
        flattened before use.
    axis : int, optional
        The axis along which `values` are appended.  If `axis` is not
        given, both `arr` and `values` are flattened before use.

    Returns
    -------
    append : ndarray
        A copy of `arr` with `values` appended to `axis`.  Note that
        `append` does not occur in-place: a new array is allocated and
        filled.  If `axis` is None, `out` is a flattened array.

    See Also
    --------
    insert : Insert elements into an array.
    delete : Delete elements from an array.

    Examples
    --------
    >>> np.append([1, 2, 3], [[4, 5, 6], [7, 8, 9]])
    array([1, 2, 3, ..., 7, 8, 9])

    When `axis` is specified, `values` must have the correct shape.

    >>> np.append([[1, 2, 3], [4, 5, 6]], [[7, 8, 9]], axis=0)
    array([[1, 2, 3],
           [4, 5, 6],
           [7, 8, 9]])
    >>> np.append([[1, 2, 3], [4, 5, 6]], [7, 8, 9], axis=0)
    Traceback (most recent call last):
        ...
    ValueError: all the input arrays must have same number of dimensions, but
    the array at index 0 has 2 dimension(s) and the array at index 1 has 1
    dimension(s)

    """
    arr = asanyarray(arr)
    if axis is None:
        if arr.ndim != 1:
            arr = arr.ravel()
        values = ravel(values)
        axis = arr.ndim-1
    return concatenate((arr, values), axis=axis)


def _digitize_dispatcher(x, bins, right=None):
    return (x, bins)


@array_function_dispatch(_digitize_dispatcher)
def digitize(x, bins, right=False):
    """
    Return the indices of the bins to which each value in input array belongs.

    =========  =============  ============================
    `right`    order of bins  returned index `i` satisfies
    =========  =============  ============================
    ``False``  increasing     ``bins[i-1] <= x < bins[i]``
    ``True``   increasing     ``bins[i-1] < x <= bins[i]``
    ``False``  decreasing     ``bins[i-1] > x >= bins[i]``
    ``True``   decreasing     ``bins[i-1] >= x > bins[i]``
    =========  =============  ============================

    If values in `x` are beyond the bounds of `bins`, 0 or ``len(bins)`` is
    returned as appropriate.

    Parameters
    ----------
    x : array_like
        Input array to be binned. Prior to NumPy 1.10.0, this array had to
        be 1-dimensional, but can now have any shape.
    bins : array_like
        Array of bins. It has to be 1-dimensional and monotonic.
    right : bool, optional
        Indicating whether the intervals include the right or the left bin
        edge. Default behavior is (right==False) indicating that the interval
        does not include the right edge. The left bin end is open in this
        case, i.e., bins[i-1] <= x < bins[i] is the default behavior for
        monotonically increasing bins.

    Returns
    -------
    indices : ndarray of ints
        Output array of indices, of same shape as `x`.

    Raises
    ------
    ValueError
        If `bins` is not monotonic.
    TypeError
        If the type of the input is complex.

    See Also
    --------
    bincount, histogram, unique, searchsorted

    Notes
    -----
    If values in `x` are such that they fall outside the bin range,
    attempting to index `bins` with the indices that `digitize` returns
    will result in an IndexError.

    .. versionadded:: 1.10.0

    `np.digitize` is  implemented in terms of `np.searchsorted`. This means
    that a binary search is used to bin the values, which scales much better
    for larger number of bins than the previous linear search. It also removes
    the requirement for the input array to be 1-dimensional.

    For monotonically _increasing_ `bins`, the following are equivalent::

        np.digitize(x, bins, right=True)
        np.searchsorted(bins, x, side='left')

    Note that as the order of the arguments are reversed, the side must be too.
    The `searchsorted` call is marginally faster, as it does not do any
    monotonicity checks. Perhaps more importantly, it supports all dtypes.

    Examples
    --------
    >>> x = np.array([0.2, 6.4, 3.0, 1.6])
    >>> bins = np.array([0.0, 1.0, 2.5, 4.0, 10.0])
    >>> inds = np.digitize(x, bins)
    >>> inds
    array([1, 4, 3, 2])
    >>> for n in range(x.size):
    ...   print(bins[inds[n]-1], "<=", x[n], "<", bins[inds[n]])
    ...
    0.0 <= 0.2 < 1.0
    4.0 <= 6.4 < 10.0
    2.5 <= 3.0 < 4.0
    1.0 <= 1.6 < 2.5

    >>> x = np.array([1.2, 10.0, 12.4, 15.5, 20.])
    >>> bins = np.array([0, 5, 10, 15, 20])
    >>> np.digitize(x,bins,right=True)
    array([1, 2, 3, 4, 4])
    >>> np.digitize(x,bins,right=False)
    array([1, 3, 3, 4, 5])
    """
    x = _nx.asarray(x)
    bins = _nx.asarray(bins)

    # here for compatibility, searchsorted below is happy to take this
    if np.issubdtype(x.dtype, _nx.complexfloating):
        raise TypeError("x may not be complex")

    mono = _monotonicity(bins)
    if mono == 0:
        raise ValueError("bins must be monotonically increasing or decreasing")

    # this is backwards because the arguments below are swapped
    side = 'left' if right else 'right'
    if mono == -1:
        # reverse the bins, and invert the results
        return len(bins) - _nx.searchsorted(bins[::-1], x, side=side)
    else:
        return _nx.searchsorted(bins, x, side=side)