financial.py 30.8 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
"""Some simple financial calculations

patterned after spreadsheet computations.

There is some complexity in each function
so that the functions behave like ufuncs with
broadcasting and being able to be called with scalars
or arrays (or other sequences).

Functions support the :class:`decimal.Decimal` type unless
otherwise stated.
"""
import warnings
from decimal import Decimal
import functools

import numpy as np
from numpy.core import overrides


_depmsg = ("numpy.{name} is deprecated and will be removed from NumPy 1.20. "
           "Use numpy_financial.{name} instead "
           "(https://pypi.org/project/numpy-financial/).")

array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate',
           'irr', 'npv', 'mirr']

_when_to_num = {'end':0, 'begin':1,
                'e':0, 'b':1,
                0:0, 1:1,
                'beginning':1,
                'start':1,
                'finish':0}

def _convert_when(when):
    #Test to see if when has already been converted to ndarray
    #This will happen if one function calls another, for example ppmt
    if isinstance(when, np.ndarray):
        return when
    try:
        return _when_to_num[when]
    except (KeyError, TypeError):
        return [_when_to_num[x] for x in when]


def _fv_dispatcher(rate, nper, pmt, pv, when=None):
    warnings.warn(_depmsg.format(name='fv'),
                  DeprecationWarning, stacklevel=3)
    return (rate, nper, pmt, pv)


@array_function_dispatch(_fv_dispatcher)
def fv(rate, nper, pmt, pv, when='end'):
    """
    Compute the future value.

    .. deprecated:: 1.18

       `fv` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Given:
     * a present value, `pv`
     * an interest `rate` compounded once per period, of which
       there are
     * `nper` total
     * a (fixed) payment, `pmt`, paid either
     * at the beginning (`when` = {'begin', 1}) or the end
       (`when` = {'end', 0}) of each period

    Return:
       the value at the end of the `nper` periods

    Parameters
    ----------
    rate : scalar or array_like of shape(M, )
        Rate of interest as decimal (not per cent) per period
    nper : scalar or array_like of shape(M, )
        Number of compounding periods
    pmt : scalar or array_like of shape(M, )
        Payment
    pv : scalar or array_like of shape(M, )
        Present value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0)).
        Defaults to {'end', 0}.

    Returns
    -------
    out : ndarray
        Future values.  If all input is scalar, returns a scalar float.  If
        any input is array_like, returns future values for each input element.
        If multiple inputs are array_like, they all must have the same shape.

    Notes
    -----
    The future value is computed by solving the equation::

     fv +
     pv*(1+rate)**nper +
     pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

    or, when ``rate == 0``::

     fv + pv + pmt * nper == 0

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    .. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
       OpenDocument-formula-20090508.odt


    Examples
    --------
    What is the future value after 10 years of saving $100 now, with
    an additional monthly savings of $100.  Assume the interest rate is
    5% (annually) compounded monthly?

    >>> np.fv(0.05/12, 10*12, -100, -100)
    15692.928894335748

    By convention, the negative sign represents cash flow out (i.e. money not
    available today).  Thus, saving $100 a month at 5% annual interest leads
    to $15,692.93 available to spend in 10 years.

    If any input is array_like, returns an array of equal shape.  Let's
    compare different interest rates from the example above.

    >>> a = np.array((0.05, 0.06, 0.07))/12
    >>> np.fv(a, 10*12, -100, -100)
    array([ 15692.92889434,  16569.87435405,  17509.44688102]) # may vary

    """
    when = _convert_when(when)
    (rate, nper, pmt, pv, when) = map(np.asarray, [rate, nper, pmt, pv, when])
    temp = (1+rate)**nper
    fact = np.where(rate == 0, nper,
                    (1 + rate*when)*(temp - 1)/rate)
    return -(pv*temp + pmt*fact)


def _pmt_dispatcher(rate, nper, pv, fv=None, when=None):
    warnings.warn(_depmsg.format(name='pmt'),
                  DeprecationWarning, stacklevel=3)
    return (rate, nper, pv, fv)


@array_function_dispatch(_pmt_dispatcher)
def pmt(rate, nper, pv, fv=0, when='end'):
    """
    Compute the payment against loan principal plus interest.

    .. deprecated:: 1.18

       `pmt` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Given:
     * a present value, `pv` (e.g., an amount borrowed)
     * a future value, `fv` (e.g., 0)
     * an interest `rate` compounded once per period, of which
       there are
     * `nper` total
     * and (optional) specification of whether payment is made
       at the beginning (`when` = {'begin', 1}) or the end
       (`when` = {'end', 0}) of each period

    Return:
       the (fixed) periodic payment.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like,  optional
        Future value (default = 0)
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    Returns
    -------
    out : ndarray
        Payment against loan plus interest.  If all input is scalar, returns a
        scalar float.  If any input is array_like, returns payment for each
        input element. If multiple inputs are array_like, they all must have
        the same shape.

    Notes
    -----
    The payment is computed by solving the equation::

     fv +
     pv*(1 + rate)**nper +
     pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0

    or, when ``rate == 0``::

      fv + pv + pmt * nper == 0

    for ``pmt``.

    Note that computing a monthly mortgage payment is only
    one use for this function.  For example, pmt returns the
    periodic deposit one must make to achieve a specified
    future balance given an initial deposit, a fixed,
    periodically compounded interest rate, and the total
    number of periods.

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    .. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php
       ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt

    Examples
    --------
    What is the monthly payment needed to pay off a $200,000 loan in 15
    years at an annual interest rate of 7.5%?

    >>> np.pmt(0.075/12, 12*15, 200000)
    -1854.0247200054619

    In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
    today, a monthly payment of $1,854.02 would be required.  Note that this
    example illustrates usage of `fv` having a default value of 0.

    """
    when = _convert_when(when)
    (rate, nper, pv, fv, when) = map(np.array, [rate, nper, pv, fv, when])
    temp = (1 + rate)**nper
    mask = (rate == 0)
    masked_rate = np.where(mask, 1, rate)
    fact = np.where(mask != 0, nper,
                    (1 + masked_rate*when)*(temp - 1)/masked_rate)
    return -(fv + pv*temp) / fact


def _nper_dispatcher(rate, pmt, pv, fv=None, when=None):
    warnings.warn(_depmsg.format(name='nper'),
                  DeprecationWarning, stacklevel=3)
    return (rate, pmt, pv, fv)


@array_function_dispatch(_nper_dispatcher)
def nper(rate, pmt, pv, fv=0, when='end'):
    """
    Compute the number of periodic payments.

    .. deprecated:: 1.18

       `nper` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    :class:`decimal.Decimal` type is not supported.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))

    Notes
    -----
    The number of periods ``nper`` is computed by solving the equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0

    but if ``rate = 0`` then::

     fv + pv + pmt*nper = 0

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html

    Examples
    --------
    If you only had $150/month to pay towards the loan, how long would it take
    to pay-off a loan of $8,000 at 7% annual interest?

    >>> print(np.round(np.nper(0.07/12, -150, 8000), 5))
    64.07335

    So, over 64 months would be required to pay off the loan.

    The same analysis could be done with several different interest rates
    and/or payments and/or total amounts to produce an entire table.

    >>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
    ...                    -150   : -99     : 50    ,
    ...                    8000   : 9001    : 1000]))
    array([[[ 64.07334877,  74.06368256],
            [108.07548412, 127.99022654]],
           [[ 66.12443902,  76.87897353],
            [114.70165583, 137.90124779]]])

    """
    when = _convert_when(when)
    (rate, pmt, pv, fv, when) = map(np.asarray, [rate, pmt, pv, fv, when])

    use_zero_rate = False
    with np.errstate(divide="raise"):
        try:
            z = pmt*(1+rate*when)/rate
        except FloatingPointError:
            use_zero_rate = True

    if use_zero_rate:
        return (-fv + pv) / pmt
    else:
        A = -(fv + pv)/(pmt+0)
        B = np.log((-fv+z) / (pv+z))/np.log(1+rate)
        return np.where(rate == 0, A, B)


def _ipmt_dispatcher(rate, per, nper, pv, fv=None, when=None):
    warnings.warn(_depmsg.format(name='ipmt'),
                  DeprecationWarning, stacklevel=3)
    return (rate, per, nper, pv, fv)


@array_function_dispatch(_ipmt_dispatcher)
def ipmt(rate, per, nper, pv, fv=0, when='end'):
    """
    Compute the interest portion of a payment.

    .. deprecated:: 1.18

       `ipmt` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Parameters
    ----------
    rate : scalar or array_like of shape(M, )
        Rate of interest as decimal (not per cent) per period
    per : scalar or array_like of shape(M, )
        Interest paid against the loan changes during the life or the loan.
        The `per` is the payment period to calculate the interest amount.
    nper : scalar or array_like of shape(M, )
        Number of compounding periods
    pv : scalar or array_like of shape(M, )
        Present value
    fv : scalar or array_like of shape(M, ), optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0)).
        Defaults to {'end', 0}.

    Returns
    -------
    out : ndarray
        Interest portion of payment.  If all input is scalar, returns a scalar
        float.  If any input is array_like, returns interest payment for each
        input element. If multiple inputs are array_like, they all must have
        the same shape.

    See Also
    --------
    ppmt, pmt, pv

    Notes
    -----
    The total payment is made up of payment against principal plus interest.

    ``pmt = ppmt + ipmt``

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html

    Examples
    --------
    What is the amortization schedule for a 1 year loan of $2500 at
    8.24% interest per year compounded monthly?

    >>> principal = 2500.00

    The 'per' variable represents the periods of the loan.  Remember that
    financial equations start the period count at 1!

    >>> per = np.arange(1*12) + 1
    >>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
    >>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)

    Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal
    'pmt'.

    >>> pmt = np.pmt(0.0824/12, 1*12, principal)
    >>> np.allclose(ipmt + ppmt, pmt)
    True

    >>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
    >>> for payment in per:
    ...     index = payment - 1
    ...     principal = principal + ppmt[index]
    ...     print(fmt.format(payment, ppmt[index], ipmt[index], principal))
     1  -200.58   -17.17  2299.42
     2  -201.96   -15.79  2097.46
     3  -203.35   -14.40  1894.11
     4  -204.74   -13.01  1689.37
     5  -206.15   -11.60  1483.22
     6  -207.56   -10.18  1275.66
     7  -208.99    -8.76  1066.67
     8  -210.42    -7.32   856.25
     9  -211.87    -5.88   644.38
    10  -213.32    -4.42   431.05
    11  -214.79    -2.96   216.26
    12  -216.26    -1.49    -0.00

    >>> interestpd = np.sum(ipmt)
    >>> np.round(interestpd, 2)
    -112.98

    """
    when = _convert_when(when)
    rate, per, nper, pv, fv, when = np.broadcast_arrays(rate, per, nper,
                                                        pv, fv, when)
    total_pmt = pmt(rate, nper, pv, fv, when)
    ipmt = _rbl(rate, per, total_pmt, pv, when)*rate
    try:
        ipmt = np.where(when == 1, ipmt/(1 + rate), ipmt)
        ipmt = np.where(np.logical_and(when == 1, per == 1), 0, ipmt)
    except IndexError:
        pass
    return ipmt


def _rbl(rate, per, pmt, pv, when):
    """
    This function is here to simply have a different name for the 'fv'
    function to not interfere with the 'fv' keyword argument within the 'ipmt'
    function.  It is the 'remaining balance on loan' which might be useful as
    its own function, but is easily calculated with the 'fv' function.
    """
    return fv(rate, (per - 1), pmt, pv, when)


def _ppmt_dispatcher(rate, per, nper, pv, fv=None, when=None):
    warnings.warn(_depmsg.format(name='ppmt'),
                  DeprecationWarning, stacklevel=3)
    return (rate, per, nper, pv, fv)


@array_function_dispatch(_ppmt_dispatcher)
def ppmt(rate, per, nper, pv, fv=0, when='end'):
    """
    Compute the payment against loan principal.

    .. deprecated:: 1.18

       `ppmt` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    per : array_like, int
        Amount paid against the loan changes.  The `per` is the period of
        interest.
    nper : array_like
        Number of compounding periods
    pv : array_like
        Present value
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}
        When payments are due ('begin' (1) or 'end' (0))

    See Also
    --------
    pmt, pv, ipmt

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html

    """
    total = pmt(rate, nper, pv, fv, when)
    return total - ipmt(rate, per, nper, pv, fv, when)


def _pv_dispatcher(rate, nper, pmt, fv=None, when=None):
    warnings.warn(_depmsg.format(name='pv'),
                  DeprecationWarning, stacklevel=3)
    return (rate, nper, nper, pv, fv)


@array_function_dispatch(_pv_dispatcher)
def pv(rate, nper, pmt, fv=0, when='end'):
    """
    Compute the present value.

    .. deprecated:: 1.18

       `pv` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Given:
     * a future value, `fv`
     * an interest `rate` compounded once per period, of which
       there are
     * `nper` total
     * a (fixed) payment, `pmt`, paid either
     * at the beginning (`when` = {'begin', 1}) or the end
       (`when` = {'end', 0}) of each period

    Return:
       the value now

    Parameters
    ----------
    rate : array_like
        Rate of interest (per period)
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    fv : array_like, optional
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))

    Returns
    -------
    out : ndarray, float
        Present value of a series of payments or investments.

    Notes
    -----
    The present value is computed by solving the equation::

     fv +
     pv*(1 + rate)**nper +
     pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0

    or, when ``rate = 0``::

     fv + pv + pmt * nper = 0

    for `pv`, which is then returned.

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    .. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
       OpenDocument-formula-20090508.odt

    Examples
    --------
    What is the present value (e.g., the initial investment)
    of an investment that needs to total $15692.93
    after 10 years of saving $100 every month?  Assume the
    interest rate is 5% (annually) compounded monthly.

    >>> np.pv(0.05/12, 10*12, -100, 15692.93)
    -100.00067131625819

    By convention, the negative sign represents cash flow out
    (i.e., money not available today).  Thus, to end up with
    $15,692.93 in 10 years saving $100 a month at 5% annual
    interest, one's initial deposit should also be $100.

    If any input is array_like, ``pv`` returns an array of equal shape.
    Let's compare different interest rates in the example above:

    >>> a = np.array((0.05, 0.04, 0.03))/12
    >>> np.pv(a, 10*12, -100, 15692.93)
    array([ -100.00067132,  -649.26771385, -1273.78633713]) # may vary

    So, to end up with the same $15692.93 under the same $100 per month
    "savings plan," for annual interest rates of 4% and 3%, one would
    need initial investments of $649.27 and $1273.79, respectively.

    """
    when = _convert_when(when)
    (rate, nper, pmt, fv, when) = map(np.asarray, [rate, nper, pmt, fv, when])
    temp = (1+rate)**nper
    fact = np.where(rate == 0, nper, (1+rate*when)*(temp-1)/rate)
    return -(fv + pmt*fact)/temp

# Computed with Sage
#  (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x -
#  p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r +
#  p*((r + 1)^n - 1)*w/r)

def _g_div_gp(r, n, p, x, y, w):
    t1 = (r+1)**n
    t2 = (r+1)**(n-1)
    return ((y + t1*x + p*(t1 - 1)*(r*w + 1)/r) /
                (n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r +
                 p*(t1 - 1)*w/r))


def _rate_dispatcher(nper, pmt, pv, fv, when=None, guess=None, tol=None,
                     maxiter=None):
    warnings.warn(_depmsg.format(name='rate'),
                  DeprecationWarning, stacklevel=3)
    return (nper, pmt, pv, fv)


# Use Newton's iteration until the change is less than 1e-6
#  for all values or a maximum of 100 iterations is reached.
#  Newton's rule is
#  r_{n+1} = r_{n} - g(r_n)/g'(r_n)
#     where
#  g(r) is the formula
#  g'(r) is the derivative with respect to r.
@array_function_dispatch(_rate_dispatcher)
def rate(nper, pmt, pv, fv, when='end', guess=None, tol=None, maxiter=100):
    """
    Compute the rate of interest per period.

    .. deprecated:: 1.18

       `rate` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Parameters
    ----------
    nper : array_like
        Number of compounding periods
    pmt : array_like
        Payment
    pv : array_like
        Present value
    fv : array_like
        Future value
    when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
        When payments are due ('begin' (1) or 'end' (0))
    guess : Number, optional
        Starting guess for solving the rate of interest, default 0.1
    tol : Number, optional
        Required tolerance for the solution, default 1e-6
    maxiter : int, optional
        Maximum iterations in finding the solution

    Notes
    -----
    The rate of interest is computed by iteratively solving the
    (non-linear) equation::

     fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0

    for ``rate``.

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    .. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
       Open Document Format for Office Applications (OpenDocument)v1.2,
       Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
       Pre-Draft 12. Organization for the Advancement of Structured Information
       Standards (OASIS). Billerica, MA, USA. [ODT Document].
       Available:
       http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
       OpenDocument-formula-20090508.odt

    """
    when = _convert_when(when)
    default_type = Decimal if isinstance(pmt, Decimal) else float

    # Handle casting defaults to Decimal if/when pmt is a Decimal and
    # guess and/or tol are not given default values
    if guess is None:
        guess = default_type('0.1')

    if tol is None:
        tol = default_type('1e-6')

    (nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])

    rn = guess
    iterator = 0
    close = False
    while (iterator < maxiter) and not close:
        rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
        diff = abs(rnp1-rn)
        close = np.all(diff < tol)
        iterator += 1
        rn = rnp1
    if not close:
        # Return nan's in array of the same shape as rn
        return np.nan + rn
    else:
        return rn


def _irr_dispatcher(values):
    warnings.warn(_depmsg.format(name='irr'),
                  DeprecationWarning, stacklevel=3)
    return (values,)


@array_function_dispatch(_irr_dispatcher)
def irr(values):
    """
    Return the Internal Rate of Return (IRR).

    .. deprecated:: 1.18

       `irr` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    This is the "average" periodically compounded rate of return
    that gives a net present value of 0.0; for a more complete explanation,
    see Notes below.

    :class:`decimal.Decimal` type is not supported.

    Parameters
    ----------
    values : array_like, shape(N,)
        Input cash flows per time period.  By convention, net "deposits"
        are negative and net "withdrawals" are positive.  Thus, for
        example, at least the first element of `values`, which represents
        the initial investment, will typically be negative.

    Returns
    -------
    out : float
        Internal Rate of Return for periodic input values.

    Notes
    -----
    The IRR is perhaps best understood through an example (illustrated
    using np.irr in the Examples section below).  Suppose one invests 100
    units and then makes the following withdrawals at regular (fixed)
    intervals: 39, 59, 55, 20.  Assuming the ending value is 0, one's 100
    unit investment yields 173 units; however, due to the combination of
    compounding and the periodic withdrawals, the "average" rate of return
    is neither simply 0.73/4 nor (1.73)^0.25-1.  Rather, it is the solution
    (for :math:`r`) of the equation:

    .. math:: -100 + \\frac{39}{1+r} + \\frac{59}{(1+r)^2}
     + \\frac{55}{(1+r)^3} + \\frac{20}{(1+r)^4} = 0

    In general, for `values` :math:`= [v_0, v_1, ... v_M]`,
    irr is the solution of the equation: [2]_

    .. math:: \\sum_{t=0}^M{\\frac{v_t}{(1+irr)^{t}}} = 0

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    .. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
       Addison-Wesley, 2003, pg. 348.

    Examples
    --------
    >>> round(np.irr([-100, 39, 59, 55, 20]), 5)
    0.28095
    >>> round(np.irr([-100, 0, 0, 74]), 5)
    -0.0955
    >>> round(np.irr([-100, 100, 0, -7]), 5)
    -0.0833
    >>> round(np.irr([-100, 100, 0, 7]), 5)
    0.06206
    >>> round(np.irr([-5, 10.5, 1, -8, 1]), 5)
    0.0886

    """
    # `np.roots` call is why this function does not support Decimal type.
    #
    # Ultimately Decimal support needs to be added to np.roots, which has
    # greater implications on the entire linear algebra module and how it does
    # eigenvalue computations.
    res = np.roots(values[::-1])
    mask = (res.imag == 0) & (res.real > 0)
    if not mask.any():
        return np.nan
    res = res[mask].real
    # NPV(rate) = 0 can have more than one solution so we return
    # only the solution closest to zero.
    rate = 1/res - 1
    rate = rate.item(np.argmin(np.abs(rate)))
    return rate


def _npv_dispatcher(rate, values):
    warnings.warn(_depmsg.format(name='npv'),
                  DeprecationWarning, stacklevel=3)
    return (values,)


@array_function_dispatch(_npv_dispatcher)
def npv(rate, values):
    """
    Returns the NPV (Net Present Value) of a cash flow series.

    .. deprecated:: 1.18

       `npv` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Parameters
    ----------
    rate : scalar
        The discount rate.
    values : array_like, shape(M, )
        The values of the time series of cash flows.  The (fixed) time
        interval between cash flow "events" must be the same as that for
        which `rate` is given (i.e., if `rate` is per year, then precisely
        a year is understood to elapse between each cash flow event).  By
        convention, investments or "deposits" are negative, income or
        "withdrawals" are positive; `values` must begin with the initial
        investment, thus `values[0]` will typically be negative.

    Returns
    -------
    out : float
        The NPV of the input cash flow series `values` at the discount
        `rate`.

    Warnings
    --------
    ``npv`` considers a series of cashflows starting in the present (t = 0).
    NPV can also be defined with a series of future cashflows, paid at the
    end, rather than the start, of each period. If future cashflows are used,
    the first cashflow `values[0]` must be zeroed and added to the net
    present value of the future cashflows. This is demonstrated in the
    examples.

    Notes
    -----
    Returns the result of: [2]_

    .. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}}

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    .. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
       Addison-Wesley, 2003, pg. 346.

    Examples
    --------
    Consider a potential project with an initial investment of $40 000 and
    projected cashflows of $5 000, $8 000, $12 000 and $30 000 at the end of
    each period discounted at a rate of 8% per period. To find the project's
    net present value:

    >>> rate, cashflows = 0.08, [-40_000, 5_000, 8_000, 12_000, 30_000]
    >>> np.npv(rate, cashflows).round(5)
    3065.22267

    It may be preferable to split the projected cashflow into an initial
    investment and expected future cashflows. In this case, the value of
    the initial cashflow is zero and the initial investment is later added
    to the future cashflows net present value:

    >>> initial_cashflow = cashflows[0]
    >>> cashflows[0] = 0
    >>> np.round(np.npv(rate, cashflows) + initial_cashflow, 5)
    3065.22267

    """
    values = np.asarray(values)
    return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)


def _mirr_dispatcher(values, finance_rate, reinvest_rate):
    warnings.warn(_depmsg.format(name='mirr'),
                  DeprecationWarning, stacklevel=3)
    return (values,)


@array_function_dispatch(_mirr_dispatcher)
def mirr(values, finance_rate, reinvest_rate):
    """
    Modified internal rate of return.

    .. deprecated:: 1.18

       `mirr` is deprecated; for details, see NEP 32 [1]_.
       Use the corresponding function in the numpy-financial library,
       https://pypi.org/project/numpy-financial.

    Parameters
    ----------
    values : array_like
        Cash flows (must contain at least one positive and one negative
        value) or nan is returned.  The first value is considered a sunk
        cost at time zero.
    finance_rate : scalar
        Interest rate paid on the cash flows
    reinvest_rate : scalar
        Interest rate received on the cash flows upon reinvestment

    Returns
    -------
    out : float
        Modified internal rate of return

    References
    ----------
    .. [1] NumPy Enhancement Proposal (NEP) 32,
       https://numpy.org/neps/nep-0032-remove-financial-functions.html
    """
    values = np.asarray(values)
    n = values.size

    # Without this explicit cast the 1/(n - 1) computation below
    # becomes a float, which causes TypeError when using Decimal
    # values.
    if isinstance(finance_rate, Decimal):
        n = Decimal(n)

    pos = values > 0
    neg = values < 0
    if not (pos.any() and neg.any()):
        return np.nan
    numer = np.abs(npv(reinvest_rate, values*pos))
    denom = np.abs(npv(finance_rate, values*neg))
    return (numer/denom)**(1/(n - 1))*(1 + reinvest_rate) - 1