financial.py
30.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
"""Some simple financial calculations
patterned after spreadsheet computations.
There is some complexity in each function
so that the functions behave like ufuncs with
broadcasting and being able to be called with scalars
or arrays (or other sequences).
Functions support the :class:`decimal.Decimal` type unless
otherwise stated.
"""
import warnings
from decimal import Decimal
import functools
import numpy as np
from numpy.core import overrides
_depmsg = ("numpy.{name} is deprecated and will be removed from NumPy 1.20. "
"Use numpy_financial.{name} instead "
"(https://pypi.org/project/numpy-financial/).")
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
__all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate',
'irr', 'npv', 'mirr']
_when_to_num = {'end':0, 'begin':1,
'e':0, 'b':1,
0:0, 1:1,
'beginning':1,
'start':1,
'finish':0}
def _convert_when(when):
#Test to see if when has already been converted to ndarray
#This will happen if one function calls another, for example ppmt
if isinstance(when, np.ndarray):
return when
try:
return _when_to_num[when]
except (KeyError, TypeError):
return [_when_to_num[x] for x in when]
def _fv_dispatcher(rate, nper, pmt, pv, when=None):
warnings.warn(_depmsg.format(name='fv'),
DeprecationWarning, stacklevel=3)
return (rate, nper, pmt, pv)
@array_function_dispatch(_fv_dispatcher)
def fv(rate, nper, pmt, pv, when='end'):
"""
Compute the future value.
.. deprecated:: 1.18
`fv` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Given:
* a present value, `pv`
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* a (fixed) payment, `pmt`, paid either
* at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the value at the end of the `nper` periods
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
nper : scalar or array_like of shape(M, )
Number of compounding periods
pmt : scalar or array_like of shape(M, )
Payment
pv : scalar or array_like of shape(M, )
Present value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Future values. If all input is scalar, returns a scalar float. If
any input is array_like, returns future values for each input element.
If multiple inputs are array_like, they all must have the same shape.
Notes
-----
The future value is computed by solving the equation::
fv +
pv*(1+rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
Examples
--------
What is the future value after 10 years of saving $100 now, with
an additional monthly savings of $100. Assume the interest rate is
5% (annually) compounded monthly?
>>> np.fv(0.05/12, 10*12, -100, -100)
15692.928894335748
By convention, the negative sign represents cash flow out (i.e. money not
available today). Thus, saving $100 a month at 5% annual interest leads
to $15,692.93 available to spend in 10 years.
If any input is array_like, returns an array of equal shape. Let's
compare different interest rates from the example above.
>>> a = np.array((0.05, 0.06, 0.07))/12
>>> np.fv(a, 10*12, -100, -100)
array([ 15692.92889434, 16569.87435405, 17509.44688102]) # may vary
"""
when = _convert_when(when)
(rate, nper, pmt, pv, when) = map(np.asarray, [rate, nper, pmt, pv, when])
temp = (1+rate)**nper
fact = np.where(rate == 0, nper,
(1 + rate*when)*(temp - 1)/rate)
return -(pv*temp + pmt*fact)
def _pmt_dispatcher(rate, nper, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='pmt'),
DeprecationWarning, stacklevel=3)
return (rate, nper, pv, fv)
@array_function_dispatch(_pmt_dispatcher)
def pmt(rate, nper, pv, fv=0, when='end'):
"""
Compute the payment against loan principal plus interest.
.. deprecated:: 1.18
`pmt` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Given:
* a present value, `pv` (e.g., an amount borrowed)
* a future value, `fv` (e.g., 0)
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* and (optional) specification of whether payment is made
at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the (fixed) periodic payment.
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value (default = 0)
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray
Payment against loan plus interest. If all input is scalar, returns a
scalar float. If any input is array_like, returns payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
Notes
-----
The payment is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0
or, when ``rate == 0``::
fv + pv + pmt * nper == 0
for ``pmt``.
Note that computing a monthly mortgage payment is only
one use for this function. For example, pmt returns the
periodic deposit one must make to achieve a specified
future balance given an initial deposit, a fixed,
periodically compounded interest rate, and the total
number of periods.
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php
?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt
Examples
--------
What is the monthly payment needed to pay off a $200,000 loan in 15
years at an annual interest rate of 7.5%?
>>> np.pmt(0.075/12, 12*15, 200000)
-1854.0247200054619
In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained
today, a monthly payment of $1,854.02 would be required. Note that this
example illustrates usage of `fv` having a default value of 0.
"""
when = _convert_when(when)
(rate, nper, pv, fv, when) = map(np.array, [rate, nper, pv, fv, when])
temp = (1 + rate)**nper
mask = (rate == 0)
masked_rate = np.where(mask, 1, rate)
fact = np.where(mask != 0, nper,
(1 + masked_rate*when)*(temp - 1)/masked_rate)
return -(fv + pv*temp) / fact
def _nper_dispatcher(rate, pmt, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='nper'),
DeprecationWarning, stacklevel=3)
return (rate, pmt, pv, fv)
@array_function_dispatch(_nper_dispatcher)
def nper(rate, pmt, pv, fv=0, when='end'):
"""
Compute the number of periodic payments.
.. deprecated:: 1.18
`nper` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
:class:`decimal.Decimal` type is not supported.
Parameters
----------
rate : array_like
Rate of interest (per period)
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
Notes
-----
The number of periods ``nper`` is computed by solving the equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0
but if ``rate = 0`` then::
fv + pv + pmt*nper = 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
Examples
--------
If you only had $150/month to pay towards the loan, how long would it take
to pay-off a loan of $8,000 at 7% annual interest?
>>> print(np.round(np.nper(0.07/12, -150, 8000), 5))
64.07335
So, over 64 months would be required to pay off the loan.
The same analysis could be done with several different interest rates
and/or payments and/or total amounts to produce an entire table.
>>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12,
... -150 : -99 : 50 ,
... 8000 : 9001 : 1000]))
array([[[ 64.07334877, 74.06368256],
[108.07548412, 127.99022654]],
[[ 66.12443902, 76.87897353],
[114.70165583, 137.90124779]]])
"""
when = _convert_when(when)
(rate, pmt, pv, fv, when) = map(np.asarray, [rate, pmt, pv, fv, when])
use_zero_rate = False
with np.errstate(divide="raise"):
try:
z = pmt*(1+rate*when)/rate
except FloatingPointError:
use_zero_rate = True
if use_zero_rate:
return (-fv + pv) / pmt
else:
A = -(fv + pv)/(pmt+0)
B = np.log((-fv+z) / (pv+z))/np.log(1+rate)
return np.where(rate == 0, A, B)
def _ipmt_dispatcher(rate, per, nper, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='ipmt'),
DeprecationWarning, stacklevel=3)
return (rate, per, nper, pv, fv)
@array_function_dispatch(_ipmt_dispatcher)
def ipmt(rate, per, nper, pv, fv=0, when='end'):
"""
Compute the interest portion of a payment.
.. deprecated:: 1.18
`ipmt` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
rate : scalar or array_like of shape(M, )
Rate of interest as decimal (not per cent) per period
per : scalar or array_like of shape(M, )
Interest paid against the loan changes during the life or the loan.
The `per` is the payment period to calculate the interest amount.
nper : scalar or array_like of shape(M, )
Number of compounding periods
pv : scalar or array_like of shape(M, )
Present value
fv : scalar or array_like of shape(M, ), optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0)).
Defaults to {'end', 0}.
Returns
-------
out : ndarray
Interest portion of payment. If all input is scalar, returns a scalar
float. If any input is array_like, returns interest payment for each
input element. If multiple inputs are array_like, they all must have
the same shape.
See Also
--------
ppmt, pmt, pv
Notes
-----
The total payment is made up of payment against principal plus interest.
``pmt = ppmt + ipmt``
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
Examples
--------
What is the amortization schedule for a 1 year loan of $2500 at
8.24% interest per year compounded monthly?
>>> principal = 2500.00
The 'per' variable represents the periods of the loan. Remember that
financial equations start the period count at 1!
>>> per = np.arange(1*12) + 1
>>> ipmt = np.ipmt(0.0824/12, per, 1*12, principal)
>>> ppmt = np.ppmt(0.0824/12, per, 1*12, principal)
Each element of the sum of the 'ipmt' and 'ppmt' arrays should equal
'pmt'.
>>> pmt = np.pmt(0.0824/12, 1*12, principal)
>>> np.allclose(ipmt + ppmt, pmt)
True
>>> fmt = '{0:2d} {1:8.2f} {2:8.2f} {3:8.2f}'
>>> for payment in per:
... index = payment - 1
... principal = principal + ppmt[index]
... print(fmt.format(payment, ppmt[index], ipmt[index], principal))
1 -200.58 -17.17 2299.42
2 -201.96 -15.79 2097.46
3 -203.35 -14.40 1894.11
4 -204.74 -13.01 1689.37
5 -206.15 -11.60 1483.22
6 -207.56 -10.18 1275.66
7 -208.99 -8.76 1066.67
8 -210.42 -7.32 856.25
9 -211.87 -5.88 644.38
10 -213.32 -4.42 431.05
11 -214.79 -2.96 216.26
12 -216.26 -1.49 -0.00
>>> interestpd = np.sum(ipmt)
>>> np.round(interestpd, 2)
-112.98
"""
when = _convert_when(when)
rate, per, nper, pv, fv, when = np.broadcast_arrays(rate, per, nper,
pv, fv, when)
total_pmt = pmt(rate, nper, pv, fv, when)
ipmt = _rbl(rate, per, total_pmt, pv, when)*rate
try:
ipmt = np.where(when == 1, ipmt/(1 + rate), ipmt)
ipmt = np.where(np.logical_and(when == 1, per == 1), 0, ipmt)
except IndexError:
pass
return ipmt
def _rbl(rate, per, pmt, pv, when):
"""
This function is here to simply have a different name for the 'fv'
function to not interfere with the 'fv' keyword argument within the 'ipmt'
function. It is the 'remaining balance on loan' which might be useful as
its own function, but is easily calculated with the 'fv' function.
"""
return fv(rate, (per - 1), pmt, pv, when)
def _ppmt_dispatcher(rate, per, nper, pv, fv=None, when=None):
warnings.warn(_depmsg.format(name='ppmt'),
DeprecationWarning, stacklevel=3)
return (rate, per, nper, pv, fv)
@array_function_dispatch(_ppmt_dispatcher)
def ppmt(rate, per, nper, pv, fv=0, when='end'):
"""
Compute the payment against loan principal.
.. deprecated:: 1.18
`ppmt` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
rate : array_like
Rate of interest (per period)
per : array_like, int
Amount paid against the loan changes. The `per` is the period of
interest.
nper : array_like
Number of compounding periods
pv : array_like
Present value
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}
When payments are due ('begin' (1) or 'end' (0))
See Also
--------
pmt, pv, ipmt
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
"""
total = pmt(rate, nper, pv, fv, when)
return total - ipmt(rate, per, nper, pv, fv, when)
def _pv_dispatcher(rate, nper, pmt, fv=None, when=None):
warnings.warn(_depmsg.format(name='pv'),
DeprecationWarning, stacklevel=3)
return (rate, nper, nper, pv, fv)
@array_function_dispatch(_pv_dispatcher)
def pv(rate, nper, pmt, fv=0, when='end'):
"""
Compute the present value.
.. deprecated:: 1.18
`pv` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Given:
* a future value, `fv`
* an interest `rate` compounded once per period, of which
there are
* `nper` total
* a (fixed) payment, `pmt`, paid either
* at the beginning (`when` = {'begin', 1}) or the end
(`when` = {'end', 0}) of each period
Return:
the value now
Parameters
----------
rate : array_like
Rate of interest (per period)
nper : array_like
Number of compounding periods
pmt : array_like
Payment
fv : array_like, optional
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
Returns
-------
out : ndarray, float
Present value of a series of payments or investments.
Notes
-----
The present value is computed by solving the equation::
fv +
pv*(1 + rate)**nper +
pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0
or, when ``rate = 0``::
fv + pv + pmt * nper = 0
for `pv`, which is then returned.
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
Examples
--------
What is the present value (e.g., the initial investment)
of an investment that needs to total $15692.93
after 10 years of saving $100 every month? Assume the
interest rate is 5% (annually) compounded monthly.
>>> np.pv(0.05/12, 10*12, -100, 15692.93)
-100.00067131625819
By convention, the negative sign represents cash flow out
(i.e., money not available today). Thus, to end up with
$15,692.93 in 10 years saving $100 a month at 5% annual
interest, one's initial deposit should also be $100.
If any input is array_like, ``pv`` returns an array of equal shape.
Let's compare different interest rates in the example above:
>>> a = np.array((0.05, 0.04, 0.03))/12
>>> np.pv(a, 10*12, -100, 15692.93)
array([ -100.00067132, -649.26771385, -1273.78633713]) # may vary
So, to end up with the same $15692.93 under the same $100 per month
"savings plan," for annual interest rates of 4% and 3%, one would
need initial investments of $649.27 and $1273.79, respectively.
"""
when = _convert_when(when)
(rate, nper, pmt, fv, when) = map(np.asarray, [rate, nper, pmt, fv, when])
temp = (1+rate)**nper
fact = np.where(rate == 0, nper, (1+rate*when)*(temp-1)/rate)
return -(fv + pmt*fact)/temp
# Computed with Sage
# (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x -
# p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r +
# p*((r + 1)^n - 1)*w/r)
def _g_div_gp(r, n, p, x, y, w):
t1 = (r+1)**n
t2 = (r+1)**(n-1)
return ((y + t1*x + p*(t1 - 1)*(r*w + 1)/r) /
(n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r +
p*(t1 - 1)*w/r))
def _rate_dispatcher(nper, pmt, pv, fv, when=None, guess=None, tol=None,
maxiter=None):
warnings.warn(_depmsg.format(name='rate'),
DeprecationWarning, stacklevel=3)
return (nper, pmt, pv, fv)
# Use Newton's iteration until the change is less than 1e-6
# for all values or a maximum of 100 iterations is reached.
# Newton's rule is
# r_{n+1} = r_{n} - g(r_n)/g'(r_n)
# where
# g(r) is the formula
# g'(r) is the derivative with respect to r.
@array_function_dispatch(_rate_dispatcher)
def rate(nper, pmt, pv, fv, when='end', guess=None, tol=None, maxiter=100):
"""
Compute the rate of interest per period.
.. deprecated:: 1.18
`rate` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
nper : array_like
Number of compounding periods
pmt : array_like
Payment
pv : array_like
Present value
fv : array_like
Future value
when : {{'begin', 1}, {'end', 0}}, {string, int}, optional
When payments are due ('begin' (1) or 'end' (0))
guess : Number, optional
Starting guess for solving the rate of interest, default 0.1
tol : Number, optional
Required tolerance for the solution, default 1e-6
maxiter : int, optional
Maximum iterations in finding the solution
Notes
-----
The rate of interest is computed by iteratively solving the
(non-linear) equation::
fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0
for ``rate``.
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May).
Open Document Format for Office Applications (OpenDocument)v1.2,
Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version,
Pre-Draft 12. Organization for the Advancement of Structured Information
Standards (OASIS). Billerica, MA, USA. [ODT Document].
Available:
http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula
OpenDocument-formula-20090508.odt
"""
when = _convert_when(when)
default_type = Decimal if isinstance(pmt, Decimal) else float
# Handle casting defaults to Decimal if/when pmt is a Decimal and
# guess and/or tol are not given default values
if guess is None:
guess = default_type('0.1')
if tol is None:
tol = default_type('1e-6')
(nper, pmt, pv, fv, when) = map(np.asarray, [nper, pmt, pv, fv, when])
rn = guess
iterator = 0
close = False
while (iterator < maxiter) and not close:
rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when)
diff = abs(rnp1-rn)
close = np.all(diff < tol)
iterator += 1
rn = rnp1
if not close:
# Return nan's in array of the same shape as rn
return np.nan + rn
else:
return rn
def _irr_dispatcher(values):
warnings.warn(_depmsg.format(name='irr'),
DeprecationWarning, stacklevel=3)
return (values,)
@array_function_dispatch(_irr_dispatcher)
def irr(values):
"""
Return the Internal Rate of Return (IRR).
.. deprecated:: 1.18
`irr` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
This is the "average" periodically compounded rate of return
that gives a net present value of 0.0; for a more complete explanation,
see Notes below.
:class:`decimal.Decimal` type is not supported.
Parameters
----------
values : array_like, shape(N,)
Input cash flows per time period. By convention, net "deposits"
are negative and net "withdrawals" are positive. Thus, for
example, at least the first element of `values`, which represents
the initial investment, will typically be negative.
Returns
-------
out : float
Internal Rate of Return for periodic input values.
Notes
-----
The IRR is perhaps best understood through an example (illustrated
using np.irr in the Examples section below). Suppose one invests 100
units and then makes the following withdrawals at regular (fixed)
intervals: 39, 59, 55, 20. Assuming the ending value is 0, one's 100
unit investment yields 173 units; however, due to the combination of
compounding and the periodic withdrawals, the "average" rate of return
is neither simply 0.73/4 nor (1.73)^0.25-1. Rather, it is the solution
(for :math:`r`) of the equation:
.. math:: -100 + \\frac{39}{1+r} + \\frac{59}{(1+r)^2}
+ \\frac{55}{(1+r)^3} + \\frac{20}{(1+r)^4} = 0
In general, for `values` :math:`= [v_0, v_1, ... v_M]`,
irr is the solution of the equation: [2]_
.. math:: \\sum_{t=0}^M{\\frac{v_t}{(1+irr)^{t}}} = 0
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
Addison-Wesley, 2003, pg. 348.
Examples
--------
>>> round(np.irr([-100, 39, 59, 55, 20]), 5)
0.28095
>>> round(np.irr([-100, 0, 0, 74]), 5)
-0.0955
>>> round(np.irr([-100, 100, 0, -7]), 5)
-0.0833
>>> round(np.irr([-100, 100, 0, 7]), 5)
0.06206
>>> round(np.irr([-5, 10.5, 1, -8, 1]), 5)
0.0886
"""
# `np.roots` call is why this function does not support Decimal type.
#
# Ultimately Decimal support needs to be added to np.roots, which has
# greater implications on the entire linear algebra module and how it does
# eigenvalue computations.
res = np.roots(values[::-1])
mask = (res.imag == 0) & (res.real > 0)
if not mask.any():
return np.nan
res = res[mask].real
# NPV(rate) = 0 can have more than one solution so we return
# only the solution closest to zero.
rate = 1/res - 1
rate = rate.item(np.argmin(np.abs(rate)))
return rate
def _npv_dispatcher(rate, values):
warnings.warn(_depmsg.format(name='npv'),
DeprecationWarning, stacklevel=3)
return (values,)
@array_function_dispatch(_npv_dispatcher)
def npv(rate, values):
"""
Returns the NPV (Net Present Value) of a cash flow series.
.. deprecated:: 1.18
`npv` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
rate : scalar
The discount rate.
values : array_like, shape(M, )
The values of the time series of cash flows. The (fixed) time
interval between cash flow "events" must be the same as that for
which `rate` is given (i.e., if `rate` is per year, then precisely
a year is understood to elapse between each cash flow event). By
convention, investments or "deposits" are negative, income or
"withdrawals" are positive; `values` must begin with the initial
investment, thus `values[0]` will typically be negative.
Returns
-------
out : float
The NPV of the input cash flow series `values` at the discount
`rate`.
Warnings
--------
``npv`` considers a series of cashflows starting in the present (t = 0).
NPV can also be defined with a series of future cashflows, paid at the
end, rather than the start, of each period. If future cashflows are used,
the first cashflow `values[0]` must be zeroed and added to the net
present value of the future cashflows. This is demonstrated in the
examples.
Notes
-----
Returns the result of: [2]_
.. math :: \\sum_{t=0}^{M-1}{\\frac{values_t}{(1+rate)^{t}}}
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
.. [2] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed.,
Addison-Wesley, 2003, pg. 346.
Examples
--------
Consider a potential project with an initial investment of $40 000 and
projected cashflows of $5 000, $8 000, $12 000 and $30 000 at the end of
each period discounted at a rate of 8% per period. To find the project's
net present value:
>>> rate, cashflows = 0.08, [-40_000, 5_000, 8_000, 12_000, 30_000]
>>> np.npv(rate, cashflows).round(5)
3065.22267
It may be preferable to split the projected cashflow into an initial
investment and expected future cashflows. In this case, the value of
the initial cashflow is zero and the initial investment is later added
to the future cashflows net present value:
>>> initial_cashflow = cashflows[0]
>>> cashflows[0] = 0
>>> np.round(np.npv(rate, cashflows) + initial_cashflow, 5)
3065.22267
"""
values = np.asarray(values)
return (values / (1+rate)**np.arange(0, len(values))).sum(axis=0)
def _mirr_dispatcher(values, finance_rate, reinvest_rate):
warnings.warn(_depmsg.format(name='mirr'),
DeprecationWarning, stacklevel=3)
return (values,)
@array_function_dispatch(_mirr_dispatcher)
def mirr(values, finance_rate, reinvest_rate):
"""
Modified internal rate of return.
.. deprecated:: 1.18
`mirr` is deprecated; for details, see NEP 32 [1]_.
Use the corresponding function in the numpy-financial library,
https://pypi.org/project/numpy-financial.
Parameters
----------
values : array_like
Cash flows (must contain at least one positive and one negative
value) or nan is returned. The first value is considered a sunk
cost at time zero.
finance_rate : scalar
Interest rate paid on the cash flows
reinvest_rate : scalar
Interest rate received on the cash flows upon reinvestment
Returns
-------
out : float
Modified internal rate of return
References
----------
.. [1] NumPy Enhancement Proposal (NEP) 32,
https://numpy.org/neps/nep-0032-remove-financial-functions.html
"""
values = np.asarray(values)
n = values.size
# Without this explicit cast the 1/(n - 1) computation below
# becomes a float, which causes TypeError when using Decimal
# values.
if isinstance(finance_rate, Decimal):
n = Decimal(n)
pos = values > 0
neg = values < 0
if not (pos.any() and neg.any()):
return np.nan
numer = np.abs(npv(reinvest_rate, values*pos))
denom = np.abs(npv(finance_rate, values*neg))
return (numer/denom)**(1/(n - 1))*(1 + reinvest_rate) - 1