_pocketfft.py 46.6 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304
"""
Discrete Fourier Transforms

Routines in this module:

fft(a, n=None, axis=-1)
ifft(a, n=None, axis=-1)
rfft(a, n=None, axis=-1)
irfft(a, n=None, axis=-1)
hfft(a, n=None, axis=-1)
ihfft(a, n=None, axis=-1)
fftn(a, s=None, axes=None)
ifftn(a, s=None, axes=None)
rfftn(a, s=None, axes=None)
irfftn(a, s=None, axes=None)
fft2(a, s=None, axes=(-2,-1))
ifft2(a, s=None, axes=(-2, -1))
rfft2(a, s=None, axes=(-2,-1))
irfft2(a, s=None, axes=(-2, -1))

i = inverse transform
r = transform of purely real data
h = Hermite transform
n = n-dimensional transform
2 = 2-dimensional transform
(Note: 2D routines are just nD routines with different default
behavior.)

"""
__all__ = ['fft', 'ifft', 'rfft', 'irfft', 'hfft', 'ihfft', 'rfftn',
           'irfftn', 'rfft2', 'irfft2', 'fft2', 'ifft2', 'fftn', 'ifftn']

import functools

from numpy.core import asarray, zeros, swapaxes, conjugate, take, sqrt
from . import _pocketfft_internal as pfi
from numpy.core.multiarray import normalize_axis_index
from numpy.core import overrides


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy.fft')


# `inv_norm` is a float by which the result of the transform needs to be
# divided. This replaces the original, more intuitive 'fct` parameter to avoid
# divisions by zero (or alternatively additional checks) in the case of
# zero-length axes during its computation.
def _raw_fft(a, n, axis, is_real, is_forward, inv_norm):
    axis = normalize_axis_index(axis, a.ndim)
    if n is None:
        n = a.shape[axis]

    if n < 1:
        raise ValueError("Invalid number of FFT data points (%d) specified."
                         % n)

    fct = 1/inv_norm

    if a.shape[axis] != n:
        s = list(a.shape)
        index = [slice(None)]*len(s)
        if s[axis] > n:
            index[axis] = slice(0, n)
            a = a[tuple(index)]
        else:
            index[axis] = slice(0, s[axis])
            s[axis] = n
            z = zeros(s, a.dtype.char)
            z[tuple(index)] = a
            a = z

    if axis == a.ndim-1:
        r = pfi.execute(a, is_real, is_forward, fct)
    else:
        a = swapaxes(a, axis, -1)
        r = pfi.execute(a, is_real, is_forward, fct)
        r = swapaxes(r, axis, -1)
    return r


def _unitary(norm):
    if norm is None:
        return False
    if norm=="ortho":
        return True
    raise ValueError("Invalid norm value %s, should be None or \"ortho\"."
                     % norm)


def _fft_dispatcher(a, n=None, axis=None, norm=None):
    return (a,)


@array_function_dispatch(_fft_dispatcher)
def fft(a, n=None, axis=-1, norm=None):
    """
    Compute the one-dimensional discrete Fourier Transform.

    This function computes the one-dimensional *n*-point discrete Fourier
    Transform (DFT) with the efficient Fast Fourier Transform (FFT)
    algorithm [CT].

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    n : int, optional
        Length of the transformed axis of the output.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros.  If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the FFT.  If not given, the last axis is
        used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.

    Raises
    ------
    IndexError
        if `axes` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : for definition of the DFT and conventions used.
    ifft : The inverse of `fft`.
    fft2 : The two-dimensional FFT.
    fftn : The *n*-dimensional FFT.
    rfftn : The *n*-dimensional FFT of real input.
    fftfreq : Frequency bins for given FFT parameters.

    Notes
    -----
    FFT (Fast Fourier Transform) refers to a way the discrete Fourier
    Transform (DFT) can be calculated efficiently, by using symmetries in the
    calculated terms.  The symmetry is highest when `n` is a power of 2, and
    the transform is therefore most efficient for these sizes.

    The DFT is defined, with the conventions used in this implementation, in
    the documentation for the `numpy.fft` module.

    References
    ----------
    .. [CT] Cooley, James W., and John W. Tukey, 1965, "An algorithm for the
            machine calculation of complex Fourier series," *Math. Comput.*
            19: 297-301.

    Examples
    --------
    >>> np.fft.fft(np.exp(2j * np.pi * np.arange(8) / 8))
    array([-2.33486982e-16+1.14423775e-17j,  8.00000000e+00-1.25557246e-15j,
            2.33486982e-16+2.33486982e-16j,  0.00000000e+00+1.22464680e-16j,
           -1.14423775e-17+2.33486982e-16j,  0.00000000e+00+5.20784380e-16j,
            1.14423775e-17+1.14423775e-17j,  0.00000000e+00+1.22464680e-16j])

    In this example, real input has an FFT which is Hermitian, i.e., symmetric
    in the real part and anti-symmetric in the imaginary part, as described in
    the `numpy.fft` documentation:

    >>> import matplotlib.pyplot as plt
    >>> t = np.arange(256)
    >>> sp = np.fft.fft(np.sin(t))
    >>> freq = np.fft.fftfreq(t.shape[-1])
    >>> plt.plot(freq, sp.real, freq, sp.imag)
    [<matplotlib.lines.Line2D object at 0x...>, <matplotlib.lines.Line2D object at 0x...>]
    >>> plt.show()

    """

    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    inv_norm = 1
    if norm is not None and _unitary(norm):
        inv_norm = sqrt(n)
    output = _raw_fft(a, n, axis, False, True, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def ifft(a, n=None, axis=-1, norm=None):
    """
    Compute the one-dimensional inverse discrete Fourier Transform.

    This function computes the inverse of the one-dimensional *n*-point
    discrete Fourier transform computed by `fft`.  In other words,
    ``ifft(fft(a)) == a`` to within numerical accuracy.
    For a general description of the algorithm and definitions,
    see `numpy.fft`.

    The input should be ordered in the same way as is returned by `fft`,
    i.e.,

    * ``a[0]`` should contain the zero frequency term,
    * ``a[1:n//2]`` should contain the positive-frequency terms,
    * ``a[n//2 + 1:]`` should contain the negative-frequency terms, in
      increasing order starting from the most negative frequency.

    For an even number of input points, ``A[n//2]`` represents the sum of
    the values at the positive and negative Nyquist frequencies, as the two
    are aliased together. See `numpy.fft` for details.

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    n : int, optional
        Length of the transformed axis of the output.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros.  If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
        See notes about padding issues.
    axis : int, optional
        Axis over which to compute the inverse DFT.  If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.

    Raises
    ------
    IndexError
        If `axes` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : An introduction, with definitions and general explanations.
    fft : The one-dimensional (forward) FFT, of which `ifft` is the inverse
    ifft2 : The two-dimensional inverse FFT.
    ifftn : The n-dimensional inverse FFT.

    Notes
    -----
    If the input parameter `n` is larger than the size of the input, the input
    is padded by appending zeros at the end.  Even though this is the common
    approach, it might lead to surprising results.  If a different padding is
    desired, it must be performed before calling `ifft`.

    Examples
    --------
    >>> np.fft.ifft([0, 4, 0, 0])
    array([ 1.+0.j,  0.+1.j, -1.+0.j,  0.-1.j]) # may vary

    Create and plot a band-limited signal with random phases:

    >>> import matplotlib.pyplot as plt
    >>> t = np.arange(400)
    >>> n = np.zeros((400,), dtype=complex)
    >>> n[40:60] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20,)))
    >>> s = np.fft.ifft(n)
    >>> plt.plot(t, s.real, 'b-', t, s.imag, 'r--')
    [<matplotlib.lines.Line2D object at ...>, <matplotlib.lines.Line2D object at ...>]
    >>> plt.legend(('real', 'imaginary'))
    <matplotlib.legend.Legend object at ...>
    >>> plt.show()

    """
    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    if norm is not None and _unitary(norm):
        inv_norm = sqrt(max(n, 1))
    else:
        inv_norm = n
    output = _raw_fft(a, n, axis, False, False, inv_norm)
    return output



@array_function_dispatch(_fft_dispatcher)
def rfft(a, n=None, axis=-1, norm=None):
    """
    Compute the one-dimensional discrete Fourier Transform for real input.

    This function computes the one-dimensional *n*-point discrete Fourier
    Transform (DFT) of a real-valued array by means of an efficient algorithm
    called the Fast Fourier Transform (FFT).

    Parameters
    ----------
    a : array_like
        Input array
    n : int, optional
        Number of points along transformation axis in the input to use.
        If `n` is smaller than the length of the input, the input is cropped.
        If it is larger, the input is padded with zeros. If `n` is not given,
        the length of the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the FFT. If not given, the last axis is
        used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        If `n` is even, the length of the transformed axis is ``(n/2)+1``.
        If `n` is odd, the length is ``(n+1)/2``.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : For definition of the DFT and conventions used.
    irfft : The inverse of `rfft`.
    fft : The one-dimensional FFT of general (complex) input.
    fftn : The *n*-dimensional FFT.
    rfftn : The *n*-dimensional FFT of real input.

    Notes
    -----
    When the DFT is computed for purely real input, the output is
    Hermitian-symmetric, i.e. the negative frequency terms are just the complex
    conjugates of the corresponding positive-frequency terms, and the
    negative-frequency terms are therefore redundant.  This function does not
    compute the negative frequency terms, and the length of the transformed
    axis of the output is therefore ``n//2 + 1``.

    When ``A = rfft(a)`` and fs is the sampling frequency, ``A[0]`` contains
    the zero-frequency term 0*fs, which is real due to Hermitian symmetry.

    If `n` is even, ``A[-1]`` contains the term representing both positive
    and negative Nyquist frequency (+fs/2 and -fs/2), and must also be purely
    real. If `n` is odd, there is no term at fs/2; ``A[-1]`` contains
    the largest positive frequency (fs/2*(n-1)/n), and is complex in the
    general case.

    If the input `a` contains an imaginary part, it is silently discarded.

    Examples
    --------
    >>> np.fft.fft([0, 1, 0, 0])
    array([ 1.+0.j,  0.-1.j, -1.+0.j,  0.+1.j]) # may vary
    >>> np.fft.rfft([0, 1, 0, 0])
    array([ 1.+0.j,  0.-1.j, -1.+0.j]) # may vary

    Notice how the final element of the `fft` output is the complex conjugate
    of the second element, for real input. For `rfft`, this symmetry is
    exploited to compute only the non-negative frequency terms.

    """
    a = asarray(a)
    inv_norm = 1
    if norm is not None and _unitary(norm):
        if n is None:
            n = a.shape[axis]
        inv_norm = sqrt(n)
    output = _raw_fft(a, n, axis, True, True, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def irfft(a, n=None, axis=-1, norm=None):
    """
    Compute the inverse of the n-point DFT for real input.

    This function computes the inverse of the one-dimensional *n*-point
    discrete Fourier Transform of real input computed by `rfft`.
    In other words, ``irfft(rfft(a), len(a)) == a`` to within numerical
    accuracy. (See Notes below for why ``len(a)`` is necessary here.)

    The input is expected to be in the form returned by `rfft`, i.e. the
    real zero-frequency term followed by the complex positive frequency terms
    in order of increasing frequency.  Since the discrete Fourier Transform of
    real input is Hermitian-symmetric, the negative frequency terms are taken
    to be the complex conjugates of the corresponding positive frequency terms.

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output.
        For `n` output points, ``n//2+1`` input points are necessary.  If the
        input is longer than this, it is cropped.  If it is shorter than this,
        it is padded with zeros.  If `n` is not given, it is taken to be
        ``2*(m-1)`` where ``m`` is the length of the input along the axis
        specified by `axis`.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*(m-1)`` where ``m`` is the length of the transformed axis of the
        input. To get an odd number of output points, `n` must be specified.

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See Also
    --------
    numpy.fft : For definition of the DFT and conventions used.
    rfft : The one-dimensional FFT of real input, of which `irfft` is inverse.
    fft : The one-dimensional FFT.
    irfft2 : The inverse of the two-dimensional FFT of real input.
    irfftn : The inverse of the *n*-dimensional FFT of real input.

    Notes
    -----
    Returns the real valued `n`-point inverse discrete Fourier transform
    of `a`, where `a` contains the non-negative frequency terms of a
    Hermitian-symmetric sequence. `n` is the length of the result, not the
    input.

    If you specify an `n` such that `a` must be zero-padded or truncated, the
    extra/removed values will be added/removed at high frequencies. One can
    thus resample a series to `m` points via Fourier interpolation by:
    ``a_resamp = irfft(rfft(a), m)``.

    The correct interpretation of the hermitian input depends on the length of
    the original data, as given by `n`. This is because each input shape could
    correspond to either an odd or even length signal. By default, `irfft`
    assumes an even output length which puts the last entry at the Nyquist
    frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
    the value is thus treated as purely real. To avoid losing information, the
    correct length of the real input **must** be given.

    Examples
    --------
    >>> np.fft.ifft([1, -1j, -1, 1j])
    array([0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j]) # may vary
    >>> np.fft.irfft([1, -1j, -1])
    array([0.,  1.,  0.,  0.])

    Notice how the last term in the input to the ordinary `ifft` is the
    complex conjugate of the second term, and the output has zero imaginary
    part everywhere.  When calling `irfft`, the negative frequencies are not
    specified, and the output array is purely real.

    """
    a = asarray(a)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    inv_norm = n
    if norm is not None and _unitary(norm):
        inv_norm = sqrt(n)
    output = _raw_fft(a, n, axis, True, False, inv_norm)
    return output


@array_function_dispatch(_fft_dispatcher)
def hfft(a, n=None, axis=-1, norm=None):
    """
    Compute the FFT of a signal that has Hermitian symmetry, i.e., a real
    spectrum.

    Parameters
    ----------
    a : array_like
        The input array.
    n : int, optional
        Length of the transformed axis of the output. For `n` output
        points, ``n//2 + 1`` input points are necessary.  If the input is
        longer than this, it is cropped.  If it is shorter than this, it is
        padded with zeros.  If `n` is not given, it is taken to be ``2*(m-1)``
        where ``m`` is the length of the input along the axis specified by
        `axis`.
    axis : int, optional
        Axis over which to compute the FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        Normalization mode (see `numpy.fft`). Default is None.

        .. versionadded:: 1.10.0

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is `n`, or, if `n` is not given,
        ``2*m - 2`` where ``m`` is the length of the transformed axis of
        the input. To get an odd number of output points, `n` must be
        specified, for instance as ``2*m - 1`` in the typical case,

    Raises
    ------
    IndexError
        If `axis` is larger than the last axis of `a`.

    See also
    --------
    rfft : Compute the one-dimensional FFT for real input.
    ihfft : The inverse of `hfft`.

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time
    domain and is real in the frequency domain. So here it's `hfft` for
    which you must supply the length of the result if it is to be odd.

    * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,
    * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.

    The correct interpretation of the hermitian input depends on the length of
    the original data, as given by `n`. This is because each input shape could
    correspond to either an odd or even length signal. By default, `hfft`
    assumes an even output length which puts the last entry at the Nyquist
    frequency; aliasing with its symmetric counterpart. By Hermitian symmetry,
    the value is thus treated as purely real. To avoid losing information, the
    shape of the full signal **must** be given.

    Examples
    --------
    >>> signal = np.array([1, 2, 3, 4, 3, 2])
    >>> np.fft.fft(signal)
    array([15.+0.j,  -4.+0.j,   0.+0.j,  -1.-0.j,   0.+0.j,  -4.+0.j]) # may vary
    >>> np.fft.hfft(signal[:4]) # Input first half of signal
    array([15.,  -4.,   0.,  -1.,   0.,  -4.])
    >>> np.fft.hfft(signal, 6)  # Input entire signal and truncate
    array([15.,  -4.,   0.,  -1.,   0.,  -4.])


    >>> signal = np.array([[1, 1.j], [-1.j, 2]])
    >>> np.conj(signal.T) - signal   # check Hermitian symmetry
    array([[ 0.-0.j,  -0.+0.j], # may vary
           [ 0.+0.j,  0.-0.j]])
    >>> freq_spectrum = np.fft.hfft(signal)
    >>> freq_spectrum
    array([[ 1.,  1.],
           [ 2., -2.]])

    """
    a = asarray(a)
    if n is None:
        n = (a.shape[axis] - 1) * 2
    unitary = _unitary(norm)
    return irfft(conjugate(a), n, axis) * (sqrt(n) if unitary else n)


@array_function_dispatch(_fft_dispatcher)
def ihfft(a, n=None, axis=-1, norm=None):
    """
    Compute the inverse FFT of a signal that has Hermitian symmetry.

    Parameters
    ----------
    a : array_like
        Input array.
    n : int, optional
        Length of the inverse FFT, the number of points along
        transformation axis in the input to use.  If `n` is smaller than
        the length of the input, the input is cropped.  If it is larger,
        the input is padded with zeros. If `n` is not given, the length of
        the input along the axis specified by `axis` is used.
    axis : int, optional
        Axis over which to compute the inverse FFT. If not given, the last
        axis is used.
    norm : {None, "ortho"}, optional
        Normalization mode (see `numpy.fft`). Default is None.

        .. versionadded:: 1.10.0

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axis
        indicated by `axis`, or the last one if `axis` is not specified.
        The length of the transformed axis is ``n//2 + 1``.

    See also
    --------
    hfft, irfft

    Notes
    -----
    `hfft`/`ihfft` are a pair analogous to `rfft`/`irfft`, but for the
    opposite case: here the signal has Hermitian symmetry in the time
    domain and is real in the frequency domain. So here it's `hfft` for
    which you must supply the length of the result if it is to be odd:

    * even: ``ihfft(hfft(a, 2*len(a) - 2)) == a``, within roundoff error,
    * odd: ``ihfft(hfft(a, 2*len(a) - 1)) == a``, within roundoff error.

    Examples
    --------
    >>> spectrum = np.array([ 15, -4, 0, -1, 0, -4])
    >>> np.fft.ifft(spectrum)
    array([1.+0.j,  2.+0.j,  3.+0.j,  4.+0.j,  3.+0.j,  2.+0.j]) # may vary
    >>> np.fft.ihfft(spectrum)
    array([ 1.-0.j,  2.-0.j,  3.-0.j,  4.-0.j]) # may vary

    """
    a = asarray(a)
    if n is None:
        n = a.shape[axis]
    unitary = _unitary(norm)
    output = conjugate(rfft(a, n, axis))
    return output * (1 / (sqrt(n) if unitary else n))


def _cook_nd_args(a, s=None, axes=None, invreal=0):
    if s is None:
        shapeless = 1
        if axes is None:
            s = list(a.shape)
        else:
            s = take(a.shape, axes)
    else:
        shapeless = 0
    s = list(s)
    if axes is None:
        axes = list(range(-len(s), 0))
    if len(s) != len(axes):
        raise ValueError("Shape and axes have different lengths.")
    if invreal and shapeless:
        s[-1] = (a.shape[axes[-1]] - 1) * 2
    return s, axes


def _raw_fftnd(a, s=None, axes=None, function=fft, norm=None):
    a = asarray(a)
    s, axes = _cook_nd_args(a, s, axes)
    itl = list(range(len(axes)))
    itl.reverse()
    for ii in itl:
        a = function(a, n=s[ii], axis=axes[ii], norm=norm)
    return a


def _fftn_dispatcher(a, s=None, axes=None, norm=None):
    return (a,)


@array_function_dispatch(_fftn_dispatcher)
def fftn(a, s=None, axes=None, norm=None):
    """
    Compute the N-dimensional discrete Fourier Transform.

    This function computes the *N*-dimensional discrete Fourier Transform over
    any number of axes in an *M*-dimensional array by means of the Fast Fourier
    Transform (FFT).

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    s : sequence of ints, optional
        Shape (length of each transformed axis) of the output
        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
        This corresponds to ``n`` for ``fft(x, n)``.
        Along any axis, if the given shape is smaller than that of the input,
        the input is cropped.  If it is larger, the input is padded with zeros.
        if `s` is not given, the shape of the input along the axes specified
        by `axes` is used.
    axes : sequence of ints, optional
        Axes over which to compute the FFT.  If not given, the last ``len(s)``
        axes are used, or all axes if `s` is also not specified.
        Repeated indices in `axes` means that the transform over that axis is
        performed multiple times.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axes
        indicated by `axes`, or by a combination of `s` and `a`,
        as explained in the parameters section above.

    Raises
    ------
    ValueError
        If `s` and `axes` have different length.
    IndexError
        If an element of `axes` is larger than than the number of axes of `a`.

    See Also
    --------
    numpy.fft : Overall view of discrete Fourier transforms, with definitions
        and conventions used.
    ifftn : The inverse of `fftn`, the inverse *n*-dimensional FFT.
    fft : The one-dimensional FFT, with definitions and conventions used.
    rfftn : The *n*-dimensional FFT of real input.
    fft2 : The two-dimensional FFT.
    fftshift : Shifts zero-frequency terms to centre of array

    Notes
    -----
    The output, analogously to `fft`, contains the term for zero frequency in
    the low-order corner of all axes, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    See `numpy.fft` for details, definitions and conventions used.

    Examples
    --------
    >>> a = np.mgrid[:3, :3, :3][0]
    >>> np.fft.fftn(a, axes=(1, 2))
    array([[[ 0.+0.j,   0.+0.j,   0.+0.j], # may vary
            [ 0.+0.j,   0.+0.j,   0.+0.j],
            [ 0.+0.j,   0.+0.j,   0.+0.j]],
           [[ 9.+0.j,   0.+0.j,   0.+0.j],
            [ 0.+0.j,   0.+0.j,   0.+0.j],
            [ 0.+0.j,   0.+0.j,   0.+0.j]],
           [[18.+0.j,   0.+0.j,   0.+0.j],
            [ 0.+0.j,   0.+0.j,   0.+0.j],
            [ 0.+0.j,   0.+0.j,   0.+0.j]]])
    >>> np.fft.fftn(a, (2, 2), axes=(0, 1))
    array([[[ 2.+0.j,  2.+0.j,  2.+0.j], # may vary
            [ 0.+0.j,  0.+0.j,  0.+0.j]],
           [[-2.+0.j, -2.+0.j, -2.+0.j],
            [ 0.+0.j,  0.+0.j,  0.+0.j]]])

    >>> import matplotlib.pyplot as plt
    >>> [X, Y] = np.meshgrid(2 * np.pi * np.arange(200) / 12,
    ...                      2 * np.pi * np.arange(200) / 34)
    >>> S = np.sin(X) + np.cos(Y) + np.random.uniform(0, 1, X.shape)
    >>> FS = np.fft.fftn(S)
    >>> plt.imshow(np.log(np.abs(np.fft.fftshift(FS))**2))
    <matplotlib.image.AxesImage object at 0x...>
    >>> plt.show()

    """

    return _raw_fftnd(a, s, axes, fft, norm)


@array_function_dispatch(_fftn_dispatcher)
def ifftn(a, s=None, axes=None, norm=None):
    """
    Compute the N-dimensional inverse discrete Fourier Transform.

    This function computes the inverse of the N-dimensional discrete
    Fourier Transform over any number of axes in an M-dimensional array by
    means of the Fast Fourier Transform (FFT).  In other words,
    ``ifftn(fftn(a)) == a`` to within numerical accuracy.
    For a description of the definitions and conventions used, see `numpy.fft`.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fftn`, i.e. it should have the term for zero frequency
    in all axes in the low-order corner, the positive frequency terms in the
    first half of all axes, the term for the Nyquist frequency in the middle
    of all axes and the negative frequency terms in the second half of all
    axes, in order of decreasingly negative frequency.

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    s : sequence of ints, optional
        Shape (length of each transformed axis) of the output
        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
        This corresponds to ``n`` for ``ifft(x, n)``.
        Along any axis, if the given shape is smaller than that of the input,
        the input is cropped.  If it is larger, the input is padded with zeros.
        if `s` is not given, the shape of the input along the axes specified
        by `axes` is used.  See notes for issue on `ifft` zero padding.
    axes : sequence of ints, optional
        Axes over which to compute the IFFT.  If not given, the last ``len(s)``
        axes are used, or all axes if `s` is also not specified.
        Repeated indices in `axes` means that the inverse transform over that
        axis is performed multiple times.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axes
        indicated by `axes`, or by a combination of `s` or `a`,
        as explained in the parameters section above.

    Raises
    ------
    ValueError
        If `s` and `axes` have different length.
    IndexError
        If an element of `axes` is larger than than the number of axes of `a`.

    See Also
    --------
    numpy.fft : Overall view of discrete Fourier transforms, with definitions
         and conventions used.
    fftn : The forward *n*-dimensional FFT, of which `ifftn` is the inverse.
    ifft : The one-dimensional inverse FFT.
    ifft2 : The two-dimensional inverse FFT.
    ifftshift : Undoes `fftshift`, shifts zero-frequency terms to beginning
        of array.

    Notes
    -----
    See `numpy.fft` for definitions and conventions used.

    Zero-padding, analogously with `ifft`, is performed by appending zeros to
    the input along the specified dimension.  Although this is the common
    approach, it might lead to surprising results.  If another form of zero
    padding is desired, it must be performed before `ifftn` is called.

    Examples
    --------
    >>> a = np.eye(4)
    >>> np.fft.ifftn(np.fft.fftn(a, axes=(0,)), axes=(1,))
    array([[1.+0.j,  0.+0.j,  0.+0.j,  0.+0.j], # may vary
           [0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j],
           [0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],
           [0.+0.j,  0.+0.j,  0.+0.j,  1.+0.j]])


    Create and plot an image with band-limited frequency content:

    >>> import matplotlib.pyplot as plt
    >>> n = np.zeros((200,200), dtype=complex)
    >>> n[60:80, 20:40] = np.exp(1j*np.random.uniform(0, 2*np.pi, (20, 20)))
    >>> im = np.fft.ifftn(n).real
    >>> plt.imshow(im)
    <matplotlib.image.AxesImage object at 0x...>
    >>> plt.show()

    """

    return _raw_fftnd(a, s, axes, ifft, norm)


@array_function_dispatch(_fftn_dispatcher)
def fft2(a, s=None, axes=(-2, -1), norm=None):
    """
    Compute the 2-dimensional discrete Fourier Transform

    This function computes the *n*-dimensional discrete Fourier Transform
    over any axes in an *M*-dimensional array by means of the
    Fast Fourier Transform (FFT).  By default, the transform is computed over
    the last two axes of the input array, i.e., a 2-dimensional FFT.

    Parameters
    ----------
    a : array_like
        Input array, can be complex
    s : sequence of ints, optional
        Shape (length of each transformed axis) of the output
        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
        This corresponds to ``n`` for ``fft(x, n)``.
        Along each axis, if the given shape is smaller than that of the input,
        the input is cropped.  If it is larger, the input is padded with zeros.
        if `s` is not given, the shape of the input along the axes specified
        by `axes` is used.
    axes : sequence of ints, optional
        Axes over which to compute the FFT.  If not given, the last two
        axes are used.  A repeated index in `axes` means the transform over
        that axis is performed multiple times.  A one-element sequence means
        that a one-dimensional FFT is performed.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axes
        indicated by `axes`, or the last two axes if `axes` is not given.

    Raises
    ------
    ValueError
        If `s` and `axes` have different length, or `axes` not given and
        ``len(s) != 2``.
    IndexError
        If an element of `axes` is larger than than the number of axes of `a`.

    See Also
    --------
    numpy.fft : Overall view of discrete Fourier transforms, with definitions
         and conventions used.
    ifft2 : The inverse two-dimensional FFT.
    fft : The one-dimensional FFT.
    fftn : The *n*-dimensional FFT.
    fftshift : Shifts zero-frequency terms to the center of the array.
        For two-dimensional input, swaps first and third quadrants, and second
        and fourth quadrants.

    Notes
    -----
    `fft2` is just `fftn` with a different default for `axes`.

    The output, analogously to `fft`, contains the term for zero frequency in
    the low-order corner of the transformed axes, the positive frequency terms
    in the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    the axes, in order of decreasingly negative frequency.

    See `fftn` for details and a plotting example, and `numpy.fft` for
    definitions and conventions used.


    Examples
    --------
    >>> a = np.mgrid[:5, :5][0]
    >>> np.fft.fft2(a)
    array([[ 50.  +0.j        ,   0.  +0.j        ,   0.  +0.j        , # may vary
              0.  +0.j        ,   0.  +0.j        ],
           [-12.5+17.20477401j,   0.  +0.j        ,   0.  +0.j        ,
              0.  +0.j        ,   0.  +0.j        ],
           [-12.5 +4.0614962j ,   0.  +0.j        ,   0.  +0.j        ,
              0.  +0.j        ,   0.  +0.j        ],
           [-12.5 -4.0614962j ,   0.  +0.j        ,   0.  +0.j        ,
              0.  +0.j        ,   0.  +0.j        ],
           [-12.5-17.20477401j,   0.  +0.j        ,   0.  +0.j        ,
              0.  +0.j        ,   0.  +0.j        ]])

    """

    return _raw_fftnd(a, s, axes, fft, norm)


@array_function_dispatch(_fftn_dispatcher)
def ifft2(a, s=None, axes=(-2, -1), norm=None):
    """
    Compute the 2-dimensional inverse discrete Fourier Transform.

    This function computes the inverse of the 2-dimensional discrete Fourier
    Transform over any number of axes in an M-dimensional array by means of
    the Fast Fourier Transform (FFT).  In other words, ``ifft2(fft2(a)) == a``
    to within numerical accuracy.  By default, the inverse transform is
    computed over the last two axes of the input array.

    The input, analogously to `ifft`, should be ordered in the same way as is
    returned by `fft2`, i.e. it should have the term for zero frequency
    in the low-order corner of the two axes, the positive frequency terms in
    the first half of these axes, the term for the Nyquist frequency in the
    middle of the axes and the negative frequency terms in the second half of
    both axes, in order of decreasingly negative frequency.

    Parameters
    ----------
    a : array_like
        Input array, can be complex.
    s : sequence of ints, optional
        Shape (length of each axis) of the output (``s[0]`` refers to axis 0,
        ``s[1]`` to axis 1, etc.).  This corresponds to `n` for ``ifft(x, n)``.
        Along each axis, if the given shape is smaller than that of the input,
        the input is cropped.  If it is larger, the input is padded with zeros.
        if `s` is not given, the shape of the input along the axes specified
        by `axes` is used.  See notes for issue on `ifft` zero padding.
    axes : sequence of ints, optional
        Axes over which to compute the FFT.  If not given, the last two
        axes are used.  A repeated index in `axes` means the transform over
        that axis is performed multiple times.  A one-element sequence means
        that a one-dimensional FFT is performed.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axes
        indicated by `axes`, or the last two axes if `axes` is not given.

    Raises
    ------
    ValueError
        If `s` and `axes` have different length, or `axes` not given and
        ``len(s) != 2``.
    IndexError
        If an element of `axes` is larger than than the number of axes of `a`.

    See Also
    --------
    numpy.fft : Overall view of discrete Fourier transforms, with definitions
         and conventions used.
    fft2 : The forward 2-dimensional FFT, of which `ifft2` is the inverse.
    ifftn : The inverse of the *n*-dimensional FFT.
    fft : The one-dimensional FFT.
    ifft : The one-dimensional inverse FFT.

    Notes
    -----
    `ifft2` is just `ifftn` with a different default for `axes`.

    See `ifftn` for details and a plotting example, and `numpy.fft` for
    definition and conventions used.

    Zero-padding, analogously with `ifft`, is performed by appending zeros to
    the input along the specified dimension.  Although this is the common
    approach, it might lead to surprising results.  If another form of zero
    padding is desired, it must be performed before `ifft2` is called.

    Examples
    --------
    >>> a = 4 * np.eye(4)
    >>> np.fft.ifft2(a)
    array([[1.+0.j,  0.+0.j,  0.+0.j,  0.+0.j], # may vary
           [0.+0.j,  0.+0.j,  0.+0.j,  1.+0.j],
           [0.+0.j,  0.+0.j,  1.+0.j,  0.+0.j],
           [0.+0.j,  1.+0.j,  0.+0.j,  0.+0.j]])

    """

    return _raw_fftnd(a, s, axes, ifft, norm)


@array_function_dispatch(_fftn_dispatcher)
def rfftn(a, s=None, axes=None, norm=None):
    """
    Compute the N-dimensional discrete Fourier Transform for real input.

    This function computes the N-dimensional discrete Fourier Transform over
    any number of axes in an M-dimensional real array by means of the Fast
    Fourier Transform (FFT).  By default, all axes are transformed, with the
    real transform performed over the last axis, while the remaining
    transforms are complex.

    Parameters
    ----------
    a : array_like
        Input array, taken to be real.
    s : sequence of ints, optional
        Shape (length along each transformed axis) to use from the input.
        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.).
        The final element of `s` corresponds to `n` for ``rfft(x, n)``, while
        for the remaining axes, it corresponds to `n` for ``fft(x, n)``.
        Along any axis, if the given shape is smaller than that of the input,
        the input is cropped.  If it is larger, the input is padded with zeros.
        if `s` is not given, the shape of the input along the axes specified
        by `axes` is used.
    axes : sequence of ints, optional
        Axes over which to compute the FFT.  If not given, the last ``len(s)``
        axes are used, or all axes if `s` is also not specified.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : complex ndarray
        The truncated or zero-padded input, transformed along the axes
        indicated by `axes`, or by a combination of `s` and `a`,
        as explained in the parameters section above.
        The length of the last axis transformed will be ``s[-1]//2+1``,
        while the remaining transformed axes will have lengths according to
        `s`, or unchanged from the input.

    Raises
    ------
    ValueError
        If `s` and `axes` have different length.
    IndexError
        If an element of `axes` is larger than than the number of axes of `a`.

    See Also
    --------
    irfftn : The inverse of `rfftn`, i.e. the inverse of the n-dimensional FFT
         of real input.
    fft : The one-dimensional FFT, with definitions and conventions used.
    rfft : The one-dimensional FFT of real input.
    fftn : The n-dimensional FFT.
    rfft2 : The two-dimensional FFT of real input.

    Notes
    -----
    The transform for real input is performed over the last transformation
    axis, as by `rfft`, then the transform over the remaining axes is
    performed as by `fftn`.  The order of the output is as for `rfft` for the
    final transformation axis, and as for `fftn` for the remaining
    transformation axes.

    See `fft` for details, definitions and conventions used.

    Examples
    --------
    >>> a = np.ones((2, 2, 2))
    >>> np.fft.rfftn(a)
    array([[[8.+0.j,  0.+0.j], # may vary
            [0.+0.j,  0.+0.j]],
           [[0.+0.j,  0.+0.j],
            [0.+0.j,  0.+0.j]]])

    >>> np.fft.rfftn(a, axes=(2, 0))
    array([[[4.+0.j,  0.+0.j], # may vary
            [4.+0.j,  0.+0.j]],
           [[0.+0.j,  0.+0.j],
            [0.+0.j,  0.+0.j]]])

    """
    a = asarray(a)
    s, axes = _cook_nd_args(a, s, axes)
    a = rfft(a, s[-1], axes[-1], norm)
    for ii in range(len(axes)-1):
        a = fft(a, s[ii], axes[ii], norm)
    return a


@array_function_dispatch(_fftn_dispatcher)
def rfft2(a, s=None, axes=(-2, -1), norm=None):
    """
    Compute the 2-dimensional FFT of a real array.

    Parameters
    ----------
    a : array
        Input array, taken to be real.
    s : sequence of ints, optional
        Shape of the FFT.
    axes : sequence of ints, optional
        Axes over which to compute the FFT.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : ndarray
        The result of the real 2-D FFT.

    See Also
    --------
    rfftn : Compute the N-dimensional discrete Fourier Transform for real
            input.

    Notes
    -----
    This is really just `rfftn` with different default behavior.
    For more details see `rfftn`.

    """

    return rfftn(a, s, axes, norm)


@array_function_dispatch(_fftn_dispatcher)
def irfftn(a, s=None, axes=None, norm=None):
    """
    Compute the inverse of the N-dimensional FFT of real input.

    This function computes the inverse of the N-dimensional discrete
    Fourier Transform for real input over any number of axes in an
    M-dimensional array by means of the Fast Fourier Transform (FFT).  In
    other words, ``irfftn(rfftn(a), a.shape) == a`` to within numerical
    accuracy. (The ``a.shape`` is necessary like ``len(a)`` is for `irfft`,
    and for the same reason.)

    The input should be ordered in the same way as is returned by `rfftn`,
    i.e. as for `irfft` for the final transformation axis, and as for `ifftn`
    along all the other axes.

    Parameters
    ----------
    a : array_like
        Input array.
    s : sequence of ints, optional
        Shape (length of each transformed axis) of the output
        (``s[0]`` refers to axis 0, ``s[1]`` to axis 1, etc.). `s` is also the
        number of input points used along this axis, except for the last axis,
        where ``s[-1]//2+1`` points of the input are used.
        Along any axis, if the shape indicated by `s` is smaller than that of
        the input, the input is cropped.  If it is larger, the input is padded
        with zeros. If `s` is not given, the shape of the input along the axes
        specified by axes is used. Except for the last axis which is taken to be
        ``2*(m-1)`` where ``m`` is the length of the input along that axis.
    axes : sequence of ints, optional
        Axes over which to compute the inverse FFT. If not given, the last
        `len(s)` axes are used, or all axes if `s` is also not specified.
        Repeated indices in `axes` means that the inverse transform over that
        axis is performed multiple times.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : ndarray
        The truncated or zero-padded input, transformed along the axes
        indicated by `axes`, or by a combination of `s` or `a`,
        as explained in the parameters section above.
        The length of each transformed axis is as given by the corresponding
        element of `s`, or the length of the input in every axis except for the
        last one if `s` is not given.  In the final transformed axis the length
        of the output when `s` is not given is ``2*(m-1)`` where ``m`` is the
        length of the final transformed axis of the input.  To get an odd
        number of output points in the final axis, `s` must be specified.

    Raises
    ------
    ValueError
        If `s` and `axes` have different length.
    IndexError
        If an element of `axes` is larger than than the number of axes of `a`.

    See Also
    --------
    rfftn : The forward n-dimensional FFT of real input,
            of which `ifftn` is the inverse.
    fft : The one-dimensional FFT, with definitions and conventions used.
    irfft : The inverse of the one-dimensional FFT of real input.
    irfft2 : The inverse of the two-dimensional FFT of real input.

    Notes
    -----
    See `fft` for definitions and conventions used.

    See `rfft` for definitions and conventions used for real input.

    The correct interpretation of the hermitian input depends on the shape of
    the original data, as given by `s`. This is because each input shape could
    correspond to either an odd or even length signal. By default, `irfftn`
    assumes an even output length which puts the last entry at the Nyquist
    frequency; aliasing with its symmetric counterpart. When performing the
    final complex to real transform, the last value is thus treated as purely
    real. To avoid losing information, the correct shape of the real input
    **must** be given.

    Examples
    --------
    >>> a = np.zeros((3, 2, 2))
    >>> a[0, 0, 0] = 3 * 2 * 2
    >>> np.fft.irfftn(a)
    array([[[1.,  1.],
            [1.,  1.]],
           [[1.,  1.],
            [1.,  1.]],
           [[1.,  1.],
            [1.,  1.]]])

    """
    a = asarray(a)
    s, axes = _cook_nd_args(a, s, axes, invreal=1)
    for ii in range(len(axes)-1):
        a = ifft(a, s[ii], axes[ii], norm)
    a = irfft(a, s[-1], axes[-1], norm)
    return a


@array_function_dispatch(_fftn_dispatcher)
def irfft2(a, s=None, axes=(-2, -1), norm=None):
    """
    Compute the 2-dimensional inverse FFT of a real array.

    Parameters
    ----------
    a : array_like
        The input array
    s : sequence of ints, optional
        Shape of the real output to the inverse FFT.
    axes : sequence of ints, optional
        The axes over which to compute the inverse fft.
        Default is the last two axes.
    norm : {None, "ortho"}, optional
        .. versionadded:: 1.10.0

        Normalization mode (see `numpy.fft`). Default is None.

    Returns
    -------
    out : ndarray
        The result of the inverse real 2-D FFT.

    See Also
    --------
    irfftn : Compute the inverse of the N-dimensional FFT of real input.

    Notes
    -----
    This is really `irfftn` with different defaults.
    For more details see `irfftn`.

    """

    return irfftn(a, s, axes, norm)