test_encoders.py 25.3 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
# -*- coding: utf-8 -*-

import re

import numpy as np
from scipy import sparse
import pytest

from sklearn.exceptions import NotFittedError
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose

from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder


def test_one_hot_encoder_sparse_dense():
    # check that sparse and dense will give the same results

    X = np.array([[3, 2, 1], [0, 1, 1]])
    enc_sparse = OneHotEncoder()
    enc_dense = OneHotEncoder(sparse=False)

    X_trans_sparse = enc_sparse.fit_transform(X)
    X_trans_dense = enc_dense.fit_transform(X)

    assert X_trans_sparse.shape == (2, 5)
    assert X_trans_dense.shape == (2, 5)

    assert sparse.issparse(X_trans_sparse)
    assert not sparse.issparse(X_trans_dense)

    # check outcome
    assert_array_equal(X_trans_sparse.toarray(), [[0., 1., 0., 1., 1.],
                                                  [1., 0., 1., 0., 1.]])
    assert_array_equal(X_trans_sparse.toarray(), X_trans_dense)


def test_one_hot_encoder_diff_n_features():
    X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
    X2 = np.array([[1, 0]])
    enc = OneHotEncoder()
    enc.fit(X)
    err_msg = ("The number of features in X is different to the number of "
               "features of the fitted data.")
    with pytest.raises(ValueError, match=err_msg):
        enc.transform(X2)


def test_one_hot_encoder_handle_unknown():
    X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
    X2 = np.array([[4, 1, 1]])

    # Test that one hot encoder raises error for unknown features
    # present during transform.
    oh = OneHotEncoder(handle_unknown='error')
    oh.fit(X)
    with pytest.raises(ValueError, match='Found unknown categories'):
        oh.transform(X2)

    # Test the ignore option, ignores unknown features (giving all 0's)
    oh = OneHotEncoder(handle_unknown='ignore')
    oh.fit(X)
    X2_passed = X2.copy()
    assert_array_equal(
        oh.transform(X2_passed).toarray(),
        np.array([[0.,  0.,  0.,  0.,  1.,  0.,  0.]]))
    # ensure transformed data was not modified in place
    assert_allclose(X2, X2_passed)

    # Raise error if handle_unknown is neither ignore or error.
    oh = OneHotEncoder(handle_unknown='42')
    with pytest.raises(ValueError, match='handle_unknown should be either'):
        oh.fit(X)


def test_one_hot_encoder_not_fitted():
    X = np.array([['a'], ['b']])
    enc = OneHotEncoder(categories=['a', 'b'])
    msg = ("This OneHotEncoder instance is not fitted yet. "
           "Call 'fit' with appropriate arguments before using this "
           "estimator.")
    with pytest.raises(NotFittedError, match=msg):
        enc.transform(X)


def test_one_hot_encoder_handle_unknown_strings():
    X = np.array(['11111111', '22', '333', '4444']).reshape((-1, 1))
    X2 = np.array(['55555', '22']).reshape((-1, 1))
    # Non Regression test for the issue #12470
    # Test the ignore option, when categories are numpy string dtype
    # particularly when the known category strings are larger
    # than the unknown category strings
    oh = OneHotEncoder(handle_unknown='ignore')
    oh.fit(X)
    X2_passed = X2.copy()
    assert_array_equal(
        oh.transform(X2_passed).toarray(),
        np.array([[0.,  0.,  0.,  0.], [0.,  1.,  0.,  0.]]))
    # ensure transformed data was not modified in place
    assert_array_equal(X2, X2_passed)


@pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64])
@pytest.mark.parametrize("input_dtype", [np.int32, np.float32, np.float64])
def test_one_hot_encoder_dtype(input_dtype, output_dtype):
    X = np.asarray([[0, 1]], dtype=input_dtype).T
    X_expected = np.asarray([[1, 0], [0, 1]], dtype=output_dtype)

    oh = OneHotEncoder(categories='auto', dtype=output_dtype)
    assert_array_equal(oh.fit_transform(X).toarray(), X_expected)
    assert_array_equal(oh.fit(X).transform(X).toarray(), X_expected)

    oh = OneHotEncoder(categories='auto', dtype=output_dtype, sparse=False)
    assert_array_equal(oh.fit_transform(X), X_expected)
    assert_array_equal(oh.fit(X).transform(X), X_expected)


@pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64])
def test_one_hot_encoder_dtype_pandas(output_dtype):
    pd = pytest.importorskip('pandas')

    X_df = pd.DataFrame({'A': ['a', 'b'], 'B': [1, 2]})
    X_expected = np.array([[1, 0, 1, 0], [0, 1, 0, 1]], dtype=output_dtype)

    oh = OneHotEncoder(dtype=output_dtype)
    assert_array_equal(oh.fit_transform(X_df).toarray(), X_expected)
    assert_array_equal(oh.fit(X_df).transform(X_df).toarray(), X_expected)

    oh = OneHotEncoder(dtype=output_dtype, sparse=False)
    assert_array_equal(oh.fit_transform(X_df), X_expected)
    assert_array_equal(oh.fit(X_df).transform(X_df), X_expected)


def test_one_hot_encoder_feature_names():
    enc = OneHotEncoder()
    X = [['Male', 1, 'girl', 2, 3],
         ['Female', 41, 'girl', 1, 10],
         ['Male', 51, 'boy', 12, 3],
         ['Male', 91, 'girl', 21, 30]]

    enc.fit(X)
    feature_names = enc.get_feature_names()
    assert isinstance(feature_names, np.ndarray)

    assert_array_equal(['x0_Female', 'x0_Male',
                        'x1_1', 'x1_41', 'x1_51', 'x1_91',
                        'x2_boy', 'x2_girl',
                        'x3_1', 'x3_2', 'x3_12', 'x3_21',
                        'x4_3',
                        'x4_10', 'x4_30'], feature_names)

    feature_names2 = enc.get_feature_names(['one', 'two',
                                            'three', 'four', 'five'])

    assert_array_equal(['one_Female', 'one_Male',
                        'two_1', 'two_41', 'two_51', 'two_91',
                        'three_boy', 'three_girl',
                        'four_1', 'four_2', 'four_12', 'four_21',
                        'five_3', 'five_10', 'five_30'], feature_names2)

    with pytest.raises(ValueError, match="input_features should have length"):
        enc.get_feature_names(['one', 'two'])


def test_one_hot_encoder_feature_names_unicode():
    enc = OneHotEncoder()
    X = np.array([['c❤t1', 'dat2']], dtype=object).T
    enc.fit(X)
    feature_names = enc.get_feature_names()
    assert_array_equal(['x0_c❤t1', 'x0_dat2'], feature_names)
    feature_names = enc.get_feature_names(input_features=['n👍me'])
    assert_array_equal(['n👍me_c❤t1', 'n👍me_dat2'], feature_names)


def test_one_hot_encoder_set_params():
    X = np.array([[1, 2]]).T
    oh = OneHotEncoder()
    # set params on not yet fitted object
    oh.set_params(categories=[[0, 1, 2, 3]])
    assert oh.get_params()['categories'] == [[0, 1, 2, 3]]
    assert oh.fit_transform(X).toarray().shape == (2, 4)
    # set params on already fitted object
    oh.set_params(categories=[[0, 1, 2, 3, 4]])
    assert oh.fit_transform(X).toarray().shape == (2, 5)


def check_categorical_onehot(X):
    enc = OneHotEncoder(categories='auto')
    Xtr1 = enc.fit_transform(X)

    enc = OneHotEncoder(categories='auto', sparse=False)
    Xtr2 = enc.fit_transform(X)

    assert_allclose(Xtr1.toarray(), Xtr2)

    assert sparse.isspmatrix_csr(Xtr1)
    return Xtr1.toarray()


@pytest.mark.parametrize("X", [
    [['def', 1, 55], ['abc', 2, 55]],
    np.array([[10, 1, 55], [5, 2, 55]]),
    np.array([['b', 'A', 'cat'], ['a', 'B', 'cat']], dtype=object)
    ], ids=['mixed', 'numeric', 'object'])
def test_one_hot_encoder(X):
    Xtr = check_categorical_onehot(np.array(X)[:, [0]])
    assert_allclose(Xtr, [[0, 1], [1, 0]])

    Xtr = check_categorical_onehot(np.array(X)[:, [0, 1]])
    assert_allclose(Xtr, [[0, 1, 1, 0], [1, 0, 0, 1]])

    Xtr = OneHotEncoder(categories='auto').fit_transform(X)
    assert_allclose(Xtr.toarray(), [[0, 1, 1, 0,  1], [1, 0, 0, 1, 1]])


@pytest.mark.parametrize('sparse_', [False, True])
@pytest.mark.parametrize('drop', [None, 'first'])
def test_one_hot_encoder_inverse(sparse_, drop):
    X = [['abc', 2, 55], ['def', 1, 55], ['abc', 3, 55]]
    enc = OneHotEncoder(sparse=sparse_, drop=drop)
    X_tr = enc.fit_transform(X)
    exp = np.array(X, dtype=object)
    assert_array_equal(enc.inverse_transform(X_tr), exp)

    X = [[2, 55], [1, 55], [3, 55]]
    enc = OneHotEncoder(sparse=sparse_, categories='auto',
                        drop=drop)
    X_tr = enc.fit_transform(X)
    exp = np.array(X)
    assert_array_equal(enc.inverse_transform(X_tr), exp)

    if drop is None:
        # with unknown categories
        # drop is incompatible with handle_unknown=ignore
        X = [['abc', 2, 55], ['def', 1, 55], ['abc', 3, 55]]
        enc = OneHotEncoder(sparse=sparse_, handle_unknown='ignore',
                            categories=[['abc', 'def'], [1, 2],
                                        [54, 55, 56]])
        X_tr = enc.fit_transform(X)
        exp = np.array(X, dtype=object)
        exp[2, 1] = None
        assert_array_equal(enc.inverse_transform(X_tr), exp)

        # with an otherwise numerical output, still object if unknown
        X = [[2, 55], [1, 55], [3, 55]]
        enc = OneHotEncoder(sparse=sparse_, categories=[[1, 2], [54, 56]],
                            handle_unknown='ignore')
        X_tr = enc.fit_transform(X)
        exp = np.array(X, dtype=object)
        exp[2, 0] = None
        exp[:, 1] = None
        assert_array_equal(enc.inverse_transform(X_tr), exp)

    # incorrect shape raises
    X_tr = np.array([[0, 1, 1], [1, 0, 1]])
    msg = re.escape('Shape of the passed X data is not correct')
    with pytest.raises(ValueError, match=msg):
        enc.inverse_transform(X_tr)


def test_one_hot_encoder_inverse_if_binary():
    X = np.array([['Male', 1],
                  ['Female', 3],
                  ['Female', 2]], dtype=object)
    ohe = OneHotEncoder(drop='if_binary', sparse=False)
    X_tr = ohe.fit_transform(X)
    assert_array_equal(ohe.inverse_transform(X_tr), X)


# check that resetting drop option without refitting does not throw an error
@pytest.mark.parametrize('drop', ['if_binary', 'first', None])
@pytest.mark.parametrize('reset_drop', ['if_binary', 'first', None])
def test_one_hot_encoder_drop_reset(drop, reset_drop):
    X = np.array([['Male', 1],
                  ['Female', 3],
                  ['Female', 2]], dtype=object)
    ohe = OneHotEncoder(drop=drop, sparse=False)
    ohe.fit(X)
    X_tr = ohe.transform(X)
    feature_names = ohe.get_feature_names()
    ohe.set_params(drop=reset_drop)
    assert_array_equal(ohe.inverse_transform(X_tr), X)
    assert_allclose(ohe.transform(X), X_tr)
    assert_array_equal(ohe.get_feature_names(), feature_names)


@pytest.mark.parametrize("method", ['fit', 'fit_transform'])
@pytest.mark.parametrize("X", [
    [1, 2],
    np.array([3., 4.])
    ])
def test_X_is_not_1D(X, method):
    oh = OneHotEncoder()

    msg = ("Expected 2D array, got 1D array instead")
    with pytest.raises(ValueError, match=msg):
        getattr(oh, method)(X)


@pytest.mark.parametrize("method", ['fit', 'fit_transform'])
def test_X_is_not_1D_pandas(method):
    pd = pytest.importorskip('pandas')
    X = pd.Series([6, 3, 4, 6])
    oh = OneHotEncoder()

    msg = ("Expected 2D array, got 1D array instead")
    with pytest.raises(ValueError, match=msg):
        getattr(oh, method)(X)


@pytest.mark.parametrize("X, cat_exp, cat_dtype", [
    ([['abc', 55], ['def', 55]], [['abc', 'def'], [55]], np.object_),
    (np.array([[1, 2], [3, 2]]), [[1, 3], [2]], np.integer),
    (np.array([['A', 'cat'], ['B', 'cat']], dtype=object),
     [['A', 'B'], ['cat']], np.object_),
    (np.array([['A', 'cat'], ['B', 'cat']]),
     [['A', 'B'], ['cat']], np.str_)
    ], ids=['mixed', 'numeric', 'object', 'string'])
def test_one_hot_encoder_categories(X, cat_exp, cat_dtype):
    # order of categories should not depend on order of samples
    for Xi in [X, X[::-1]]:
        enc = OneHotEncoder(categories='auto')
        enc.fit(Xi)
        # assert enc.categories == 'auto'
        assert isinstance(enc.categories_, list)
        for res, exp in zip(enc.categories_, cat_exp):
            assert res.tolist() == exp
            assert np.issubdtype(res.dtype, cat_dtype)


@pytest.mark.parametrize("X, X2, cats, cat_dtype", [
    (np.array([['a', 'b']], dtype=object).T,
     np.array([['a', 'd']], dtype=object).T,
     [['a', 'b', 'c']], np.object_),
    (np.array([[1, 2]], dtype='int64').T,
     np.array([[1, 4]], dtype='int64').T,
     [[1, 2, 3]], np.int64),
    (np.array([['a', 'b']], dtype=object).T,
     np.array([['a', 'd']], dtype=object).T,
     [np.array(['a', 'b', 'c'])], np.object_),
    ], ids=['object', 'numeric', 'object-string-cat'])
def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype):
    enc = OneHotEncoder(categories=cats)
    exp = np.array([[1., 0., 0.],
                    [0., 1., 0.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert list(enc.categories[0]) == list(cats[0])
    assert enc.categories_[0].tolist() == list(cats[0])
    # manually specified categories should have same dtype as
    # the data when coerced from lists
    assert enc.categories_[0].dtype == cat_dtype

    # when specifying categories manually, unknown categories should already
    # raise when fitting
    enc = OneHotEncoder(categories=cats)
    with pytest.raises(ValueError, match="Found unknown categories"):
        enc.fit(X2)
    enc = OneHotEncoder(categories=cats, handle_unknown='ignore')
    exp = np.array([[1., 0., 0.], [0., 0., 0.]])
    assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp)


def test_one_hot_encoder_unsorted_categories():
    X = np.array([['a', 'b']], dtype=object).T

    enc = OneHotEncoder(categories=[['b', 'a', 'c']])
    exp = np.array([[0., 1., 0.],
                    [1., 0., 0.]])
    assert_array_equal(enc.fit(X).transform(X).toarray(), exp)
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories_[0].tolist() == ['b', 'a', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.object_)

    # unsorted passed categories still raise for numerical values
    X = np.array([[1, 2]]).T
    enc = OneHotEncoder(categories=[[2, 1, 3]])
    msg = 'Unsorted categories are not supported'
    with pytest.raises(ValueError, match=msg):
        enc.fit_transform(X)


def test_one_hot_encoder_specified_categories_mixed_columns():
    # multiple columns
    X = np.array([['a', 'b'], [0, 2]], dtype=object).T
    enc = OneHotEncoder(categories=[['a', 'b', 'c'], [0, 1, 2]])
    exp = np.array([[1., 0., 0., 1., 0., 0.],
                    [0., 1., 0., 0., 0., 1.]])
    assert_array_equal(enc.fit_transform(X).toarray(), exp)
    assert enc.categories_[0].tolist() == ['a', 'b', 'c']
    assert np.issubdtype(enc.categories_[0].dtype, np.object_)
    assert enc.categories_[1].tolist() == [0, 1, 2]
    # integer categories but from object dtype data
    assert np.issubdtype(enc.categories_[1].dtype, np.object_)


def test_one_hot_encoder_pandas():
    pd = pytest.importorskip('pandas')

    X_df = pd.DataFrame({'A': ['a', 'b'], 'B': [1, 2]})

    Xtr = check_categorical_onehot(X_df)
    assert_allclose(Xtr, [[1, 0, 1, 0], [0, 1, 0, 1]])


@pytest.mark.parametrize("drop, expected_names",
                         [('first', ['x0_c', 'x2_b']),
                          ('if_binary', ['x0_c', 'x1_2', 'x2_b']),
                          (['c', 2, 'b'], ['x0_b', 'x2_a'])],
                         ids=['first', 'binary', 'manual'])
def test_one_hot_encoder_feature_names_drop(drop, expected_names):
    X = [['c', 2, 'a'],
         ['b', 2, 'b']]

    ohe = OneHotEncoder(drop=drop)
    ohe.fit(X)
    feature_names = ohe.get_feature_names()
    assert isinstance(feature_names, np.ndarray)
    assert_array_equal(expected_names, feature_names)


def test_one_hot_encoder_drop_equals_if_binary():
    # Canonical case
    X = [[10, 'yes'],
         [20, 'no'],
         [30, 'yes']]
    expected = np.array([[1., 0., 0., 1.],
                         [0., 1., 0., 0.],
                         [0., 0., 1., 1.]])
    expected_drop_idx = np.array([None, 0])

    ohe = OneHotEncoder(drop='if_binary', sparse=False)
    result = ohe.fit_transform(X)
    assert_array_equal(ohe.drop_idx_, expected_drop_idx)
    assert_allclose(result, expected)

    # with only one cat, the behaviour is equivalent to drop=None
    X = [['true', 'a'],
         ['false', 'a'],
         ['false', 'a']]
    expected = np.array([[1., 1.],
                         [0., 1.],
                         [0., 1.]])
    expected_drop_idx = np.array([0, None])

    ohe = OneHotEncoder(drop='if_binary', sparse=False)
    result = ohe.fit_transform(X)
    assert_array_equal(ohe.drop_idx_, expected_drop_idx)
    assert_allclose(result, expected)


@pytest.mark.parametrize("X", [np.array([[1, np.nan]]).T,
                               np.array([['a', np.nan]], dtype=object).T],
                         ids=['numeric', 'object'])
@pytest.mark.parametrize("as_data_frame", [False, True],
                         ids=['array', 'dataframe'])
@pytest.mark.parametrize("handle_unknown", ['error', 'ignore'])
def test_one_hot_encoder_raise_missing(X, as_data_frame, handle_unknown):
    if as_data_frame:
        pd = pytest.importorskip('pandas')
        X = pd.DataFrame(X)

    ohe = OneHotEncoder(categories='auto', handle_unknown=handle_unknown)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit(X)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit_transform(X)

    if as_data_frame:
        X_partial = X.iloc[:1, :]
    else:
        X_partial = X[:1, :]

    ohe.fit(X_partial)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.transform(X)


@pytest.mark.parametrize("X", [
    [['abc', 2, 55], ['def', 1, 55]],
    np.array([[10, 2, 55], [20, 1, 55]]),
    np.array([['a', 'B', 'cat'], ['b', 'A', 'cat']], dtype=object)
    ], ids=['mixed', 'numeric', 'object'])
def test_ordinal_encoder(X):
    enc = OrdinalEncoder()
    exp = np.array([[0, 1, 0],
                    [1, 0, 0]], dtype='int64')
    assert_array_equal(enc.fit_transform(X), exp.astype('float64'))
    enc = OrdinalEncoder(dtype='int64')
    assert_array_equal(enc.fit_transform(X), exp)


@pytest.mark.parametrize("X, X2, cats, cat_dtype", [
    (np.array([['a', 'b']], dtype=object).T,
     np.array([['a', 'd']], dtype=object).T,
     [['a', 'b', 'c']], np.object_),
    (np.array([[1, 2]], dtype='int64').T,
     np.array([[1, 4]], dtype='int64').T,
     [[1, 2, 3]], np.int64),
    (np.array([['a', 'b']], dtype=object).T,
     np.array([['a', 'd']], dtype=object).T,
     [np.array(['a', 'b', 'c'])], np.object_),
    ], ids=['object', 'numeric', 'object-string-cat'])
def test_ordinal_encoder_specified_categories(X, X2, cats, cat_dtype):
    enc = OrdinalEncoder(categories=cats)
    exp = np.array([[0.], [1.]])
    assert_array_equal(enc.fit_transform(X), exp)
    assert list(enc.categories[0]) == list(cats[0])
    assert enc.categories_[0].tolist() == list(cats[0])
    # manually specified categories should have same dtype as
    # the data when coerced from lists
    assert enc.categories_[0].dtype == cat_dtype

    # when specifying categories manually, unknown categories should already
    # raise when fitting
    enc = OrdinalEncoder(categories=cats)
    with pytest.raises(ValueError, match="Found unknown categories"):
        enc.fit(X2)


def test_ordinal_encoder_inverse():
    X = [['abc', 2, 55], ['def', 1, 55]]
    enc = OrdinalEncoder()
    X_tr = enc.fit_transform(X)
    exp = np.array(X, dtype=object)
    assert_array_equal(enc.inverse_transform(X_tr), exp)

    # incorrect shape raises
    X_tr = np.array([[0, 1, 1, 2], [1, 0, 1, 0]])
    msg = re.escape('Shape of the passed X data is not correct')
    with pytest.raises(ValueError, match=msg):
        enc.inverse_transform(X_tr)


@pytest.mark.parametrize("X", [np.array([[1, np.nan]]).T,
                               np.array([['a', np.nan]], dtype=object).T],
                         ids=['numeric', 'object'])
def test_ordinal_encoder_raise_missing(X):
    ohe = OrdinalEncoder()

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit(X)

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.fit_transform(X)

    ohe.fit(X[:1, :])

    with pytest.raises(ValueError, match="Input contains NaN"):
        ohe.transform(X)


def test_ordinal_encoder_raise_categories_shape():

    X = np.array([['Low', 'Medium', 'High', 'Medium', 'Low']], dtype=object).T
    cats = ['Low', 'Medium', 'High']
    enc = OrdinalEncoder(categories=cats)
    msg = ("Shape mismatch: if categories is an array,")

    with pytest.raises(ValueError, match=msg):
        enc.fit(X)


def test_encoder_dtypes():
    # check that dtypes are preserved when determining categories
    enc = OneHotEncoder(categories='auto')
    exp = np.array([[1., 0., 1., 0.], [0., 1., 0., 1.]], dtype='float64')

    for X in [np.array([[1, 2], [3, 4]], dtype='int64'),
              np.array([[1, 2], [3, 4]], dtype='float64'),
              np.array([['a', 'b'], ['c', 'd']]),  # string dtype
              np.array([[1, 'a'], [3, 'b']], dtype='object')]:
        enc.fit(X)
        assert all([enc.categories_[i].dtype == X.dtype for i in range(2)])
        assert_array_equal(enc.transform(X).toarray(), exp)

    X = [[1, 2], [3, 4]]
    enc.fit(X)
    assert all([np.issubdtype(enc.categories_[i].dtype, np.integer)
                for i in range(2)])
    assert_array_equal(enc.transform(X).toarray(), exp)

    X = [[1, 'a'], [3, 'b']]
    enc.fit(X)
    assert all([enc.categories_[i].dtype == 'object' for i in range(2)])
    assert_array_equal(enc.transform(X).toarray(), exp)


def test_encoder_dtypes_pandas():
    # check dtype (similar to test_categorical_encoder_dtypes for dataframes)
    pd = pytest.importorskip('pandas')

    enc = OneHotEncoder(categories='auto')
    exp = np.array([[1., 0., 1., 0., 1., 0.],
                    [0., 1., 0., 1., 0., 1.]], dtype='float64')

    X = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}, dtype='int64')
    enc.fit(X)
    assert all([enc.categories_[i].dtype == 'int64' for i in range(2)])
    assert_array_equal(enc.transform(X).toarray(), exp)

    X = pd.DataFrame({'A': [1, 2], 'B': ['a', 'b'], 'C': [3., 4.]})
    X_type = [X['A'].dtype, X['B'].dtype, X['C'].dtype]
    enc.fit(X)
    assert all([enc.categories_[i].dtype == X_type[i] for i in range(3)])
    assert_array_equal(enc.transform(X).toarray(), exp)


def test_one_hot_encoder_warning():
    enc = OneHotEncoder()
    X = [['Male', 1], ['Female', 3]]
    np.testing.assert_no_warnings(enc.fit_transform, X)


def test_one_hot_encoder_drop_manual():
    cats_to_drop = ['def', 12, 3, 56]
    enc = OneHotEncoder(drop=cats_to_drop)
    X = [['abc', 12, 2, 55],
         ['def', 12, 1, 55],
         ['def', 12, 3, 56]]
    trans = enc.fit_transform(X).toarray()
    exp = [[1, 0, 1, 1],
           [0, 1, 0, 1],
           [0, 0, 0, 0]]
    assert_array_equal(trans, exp)
    dropped_cats = [cat[feature]
                    for cat, feature in zip(enc.categories_,
                                            enc.drop_idx_)]
    assert_array_equal(dropped_cats, cats_to_drop)
    assert_array_equal(np.array(X, dtype=object),
                       enc.inverse_transform(trans))


@pytest.mark.parametrize(
    "X_fit, params, err_msg",
    [([["Male"], ["Female"]], {'drop': 'second'},
     "Wrong input for parameter `drop`"),
     ([["Male"], ["Female"]], {'drop': 'first', 'handle_unknown': 'ignore'},
     "`handle_unknown` must be 'error'"),
     ([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]],
      {'drop': np.asarray('b', dtype=object)},
     "Wrong input for parameter `drop`"),
     ([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]],
      {'drop': ['ghi', 3, 59]},
     "The following categories were supposed")]
)
def test_one_hot_encoder_invalid_params(X_fit, params, err_msg):
    enc = OneHotEncoder(**params)
    with pytest.raises(ValueError, match=err_msg):
        enc.fit(X_fit)


@pytest.mark.parametrize('drop', [['abc', 3], ['abc', 3, 41, 'a']])
def test_invalid_drop_length(drop):
    enc = OneHotEncoder(drop=drop)
    err_msg = "`drop` should have length equal to the number"
    with pytest.raises(ValueError, match=err_msg):
        enc.fit([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]])


@pytest.mark.parametrize("density", [True, False],
                         ids=['sparse', 'dense'])
@pytest.mark.parametrize("drop", ['first',
                                  ['a', 2, 'b']],
                         ids=['first', 'manual'])
def test_categories(density, drop):
    ohe_base = OneHotEncoder(sparse=density)
    ohe_test = OneHotEncoder(sparse=density, drop=drop)
    X = [['c', 1, 'a'],
         ['a', 2, 'b']]
    ohe_base.fit(X)
    ohe_test.fit(X)
    assert_array_equal(ohe_base.categories_, ohe_test.categories_)
    if drop == 'first':
        assert_array_equal(ohe_test.drop_idx_, 0)
    else:
        for drop_cat, drop_idx, cat_list in zip(drop,
                                                ohe_test.drop_idx_,
                                                ohe_test.categories_):
            assert cat_list[int(drop_idx)] == drop_cat
    assert isinstance(ohe_test.drop_idx_, np.ndarray)
    assert ohe_test.drop_idx_.dtype == np.object


@pytest.mark.parametrize('Encoder', [OneHotEncoder, OrdinalEncoder])
def test_encoders_has_categorical_tags(Encoder):
    assert 'categorical' in Encoder()._get_tags()['X_types']


@pytest.mark.parametrize('Encoder', [OneHotEncoder, OrdinalEncoder])
def test_encoders_does_not_support_none_values(Encoder):
    values = [["a"], [None]]
    with pytest.raises(TypeError, match="Encoders require their input to be "
                                        "uniformly strings or numbers."):
        Encoder().fit(values)