test_encoders.py
25.3 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
# -*- coding: utf-8 -*-
import re
import numpy as np
from scipy import sparse
import pytest
from sklearn.exceptions import NotFittedError
from sklearn.utils._testing import assert_array_equal
from sklearn.utils._testing import assert_allclose
from sklearn.preprocessing import OneHotEncoder
from sklearn.preprocessing import OrdinalEncoder
def test_one_hot_encoder_sparse_dense():
# check that sparse and dense will give the same results
X = np.array([[3, 2, 1], [0, 1, 1]])
enc_sparse = OneHotEncoder()
enc_dense = OneHotEncoder(sparse=False)
X_trans_sparse = enc_sparse.fit_transform(X)
X_trans_dense = enc_dense.fit_transform(X)
assert X_trans_sparse.shape == (2, 5)
assert X_trans_dense.shape == (2, 5)
assert sparse.issparse(X_trans_sparse)
assert not sparse.issparse(X_trans_dense)
# check outcome
assert_array_equal(X_trans_sparse.toarray(), [[0., 1., 0., 1., 1.],
[1., 0., 1., 0., 1.]])
assert_array_equal(X_trans_sparse.toarray(), X_trans_dense)
def test_one_hot_encoder_diff_n_features():
X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
X2 = np.array([[1, 0]])
enc = OneHotEncoder()
enc.fit(X)
err_msg = ("The number of features in X is different to the number of "
"features of the fitted data.")
with pytest.raises(ValueError, match=err_msg):
enc.transform(X2)
def test_one_hot_encoder_handle_unknown():
X = np.array([[0, 2, 1], [1, 0, 3], [1, 0, 2]])
X2 = np.array([[4, 1, 1]])
# Test that one hot encoder raises error for unknown features
# present during transform.
oh = OneHotEncoder(handle_unknown='error')
oh.fit(X)
with pytest.raises(ValueError, match='Found unknown categories'):
oh.transform(X2)
# Test the ignore option, ignores unknown features (giving all 0's)
oh = OneHotEncoder(handle_unknown='ignore')
oh.fit(X)
X2_passed = X2.copy()
assert_array_equal(
oh.transform(X2_passed).toarray(),
np.array([[0., 0., 0., 0., 1., 0., 0.]]))
# ensure transformed data was not modified in place
assert_allclose(X2, X2_passed)
# Raise error if handle_unknown is neither ignore or error.
oh = OneHotEncoder(handle_unknown='42')
with pytest.raises(ValueError, match='handle_unknown should be either'):
oh.fit(X)
def test_one_hot_encoder_not_fitted():
X = np.array([['a'], ['b']])
enc = OneHotEncoder(categories=['a', 'b'])
msg = ("This OneHotEncoder instance is not fitted yet. "
"Call 'fit' with appropriate arguments before using this "
"estimator.")
with pytest.raises(NotFittedError, match=msg):
enc.transform(X)
def test_one_hot_encoder_handle_unknown_strings():
X = np.array(['11111111', '22', '333', '4444']).reshape((-1, 1))
X2 = np.array(['55555', '22']).reshape((-1, 1))
# Non Regression test for the issue #12470
# Test the ignore option, when categories are numpy string dtype
# particularly when the known category strings are larger
# than the unknown category strings
oh = OneHotEncoder(handle_unknown='ignore')
oh.fit(X)
X2_passed = X2.copy()
assert_array_equal(
oh.transform(X2_passed).toarray(),
np.array([[0., 0., 0., 0.], [0., 1., 0., 0.]]))
# ensure transformed data was not modified in place
assert_array_equal(X2, X2_passed)
@pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64])
@pytest.mark.parametrize("input_dtype", [np.int32, np.float32, np.float64])
def test_one_hot_encoder_dtype(input_dtype, output_dtype):
X = np.asarray([[0, 1]], dtype=input_dtype).T
X_expected = np.asarray([[1, 0], [0, 1]], dtype=output_dtype)
oh = OneHotEncoder(categories='auto', dtype=output_dtype)
assert_array_equal(oh.fit_transform(X).toarray(), X_expected)
assert_array_equal(oh.fit(X).transform(X).toarray(), X_expected)
oh = OneHotEncoder(categories='auto', dtype=output_dtype, sparse=False)
assert_array_equal(oh.fit_transform(X), X_expected)
assert_array_equal(oh.fit(X).transform(X), X_expected)
@pytest.mark.parametrize("output_dtype", [np.int32, np.float32, np.float64])
def test_one_hot_encoder_dtype_pandas(output_dtype):
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame({'A': ['a', 'b'], 'B': [1, 2]})
X_expected = np.array([[1, 0, 1, 0], [0, 1, 0, 1]], dtype=output_dtype)
oh = OneHotEncoder(dtype=output_dtype)
assert_array_equal(oh.fit_transform(X_df).toarray(), X_expected)
assert_array_equal(oh.fit(X_df).transform(X_df).toarray(), X_expected)
oh = OneHotEncoder(dtype=output_dtype, sparse=False)
assert_array_equal(oh.fit_transform(X_df), X_expected)
assert_array_equal(oh.fit(X_df).transform(X_df), X_expected)
def test_one_hot_encoder_feature_names():
enc = OneHotEncoder()
X = [['Male', 1, 'girl', 2, 3],
['Female', 41, 'girl', 1, 10],
['Male', 51, 'boy', 12, 3],
['Male', 91, 'girl', 21, 30]]
enc.fit(X)
feature_names = enc.get_feature_names()
assert isinstance(feature_names, np.ndarray)
assert_array_equal(['x0_Female', 'x0_Male',
'x1_1', 'x1_41', 'x1_51', 'x1_91',
'x2_boy', 'x2_girl',
'x3_1', 'x3_2', 'x3_12', 'x3_21',
'x4_3',
'x4_10', 'x4_30'], feature_names)
feature_names2 = enc.get_feature_names(['one', 'two',
'three', 'four', 'five'])
assert_array_equal(['one_Female', 'one_Male',
'two_1', 'two_41', 'two_51', 'two_91',
'three_boy', 'three_girl',
'four_1', 'four_2', 'four_12', 'four_21',
'five_3', 'five_10', 'five_30'], feature_names2)
with pytest.raises(ValueError, match="input_features should have length"):
enc.get_feature_names(['one', 'two'])
def test_one_hot_encoder_feature_names_unicode():
enc = OneHotEncoder()
X = np.array([['c❤t1', 'dat2']], dtype=object).T
enc.fit(X)
feature_names = enc.get_feature_names()
assert_array_equal(['x0_c❤t1', 'x0_dat2'], feature_names)
feature_names = enc.get_feature_names(input_features=['n👍me'])
assert_array_equal(['n👍me_c❤t1', 'n👍me_dat2'], feature_names)
def test_one_hot_encoder_set_params():
X = np.array([[1, 2]]).T
oh = OneHotEncoder()
# set params on not yet fitted object
oh.set_params(categories=[[0, 1, 2, 3]])
assert oh.get_params()['categories'] == [[0, 1, 2, 3]]
assert oh.fit_transform(X).toarray().shape == (2, 4)
# set params on already fitted object
oh.set_params(categories=[[0, 1, 2, 3, 4]])
assert oh.fit_transform(X).toarray().shape == (2, 5)
def check_categorical_onehot(X):
enc = OneHotEncoder(categories='auto')
Xtr1 = enc.fit_transform(X)
enc = OneHotEncoder(categories='auto', sparse=False)
Xtr2 = enc.fit_transform(X)
assert_allclose(Xtr1.toarray(), Xtr2)
assert sparse.isspmatrix_csr(Xtr1)
return Xtr1.toarray()
@pytest.mark.parametrize("X", [
[['def', 1, 55], ['abc', 2, 55]],
np.array([[10, 1, 55], [5, 2, 55]]),
np.array([['b', 'A', 'cat'], ['a', 'B', 'cat']], dtype=object)
], ids=['mixed', 'numeric', 'object'])
def test_one_hot_encoder(X):
Xtr = check_categorical_onehot(np.array(X)[:, [0]])
assert_allclose(Xtr, [[0, 1], [1, 0]])
Xtr = check_categorical_onehot(np.array(X)[:, [0, 1]])
assert_allclose(Xtr, [[0, 1, 1, 0], [1, 0, 0, 1]])
Xtr = OneHotEncoder(categories='auto').fit_transform(X)
assert_allclose(Xtr.toarray(), [[0, 1, 1, 0, 1], [1, 0, 0, 1, 1]])
@pytest.mark.parametrize('sparse_', [False, True])
@pytest.mark.parametrize('drop', [None, 'first'])
def test_one_hot_encoder_inverse(sparse_, drop):
X = [['abc', 2, 55], ['def', 1, 55], ['abc', 3, 55]]
enc = OneHotEncoder(sparse=sparse_, drop=drop)
X_tr = enc.fit_transform(X)
exp = np.array(X, dtype=object)
assert_array_equal(enc.inverse_transform(X_tr), exp)
X = [[2, 55], [1, 55], [3, 55]]
enc = OneHotEncoder(sparse=sparse_, categories='auto',
drop=drop)
X_tr = enc.fit_transform(X)
exp = np.array(X)
assert_array_equal(enc.inverse_transform(X_tr), exp)
if drop is None:
# with unknown categories
# drop is incompatible with handle_unknown=ignore
X = [['abc', 2, 55], ['def', 1, 55], ['abc', 3, 55]]
enc = OneHotEncoder(sparse=sparse_, handle_unknown='ignore',
categories=[['abc', 'def'], [1, 2],
[54, 55, 56]])
X_tr = enc.fit_transform(X)
exp = np.array(X, dtype=object)
exp[2, 1] = None
assert_array_equal(enc.inverse_transform(X_tr), exp)
# with an otherwise numerical output, still object if unknown
X = [[2, 55], [1, 55], [3, 55]]
enc = OneHotEncoder(sparse=sparse_, categories=[[1, 2], [54, 56]],
handle_unknown='ignore')
X_tr = enc.fit_transform(X)
exp = np.array(X, dtype=object)
exp[2, 0] = None
exp[:, 1] = None
assert_array_equal(enc.inverse_transform(X_tr), exp)
# incorrect shape raises
X_tr = np.array([[0, 1, 1], [1, 0, 1]])
msg = re.escape('Shape of the passed X data is not correct')
with pytest.raises(ValueError, match=msg):
enc.inverse_transform(X_tr)
def test_one_hot_encoder_inverse_if_binary():
X = np.array([['Male', 1],
['Female', 3],
['Female', 2]], dtype=object)
ohe = OneHotEncoder(drop='if_binary', sparse=False)
X_tr = ohe.fit_transform(X)
assert_array_equal(ohe.inverse_transform(X_tr), X)
# check that resetting drop option without refitting does not throw an error
@pytest.mark.parametrize('drop', ['if_binary', 'first', None])
@pytest.mark.parametrize('reset_drop', ['if_binary', 'first', None])
def test_one_hot_encoder_drop_reset(drop, reset_drop):
X = np.array([['Male', 1],
['Female', 3],
['Female', 2]], dtype=object)
ohe = OneHotEncoder(drop=drop, sparse=False)
ohe.fit(X)
X_tr = ohe.transform(X)
feature_names = ohe.get_feature_names()
ohe.set_params(drop=reset_drop)
assert_array_equal(ohe.inverse_transform(X_tr), X)
assert_allclose(ohe.transform(X), X_tr)
assert_array_equal(ohe.get_feature_names(), feature_names)
@pytest.mark.parametrize("method", ['fit', 'fit_transform'])
@pytest.mark.parametrize("X", [
[1, 2],
np.array([3., 4.])
])
def test_X_is_not_1D(X, method):
oh = OneHotEncoder()
msg = ("Expected 2D array, got 1D array instead")
with pytest.raises(ValueError, match=msg):
getattr(oh, method)(X)
@pytest.mark.parametrize("method", ['fit', 'fit_transform'])
def test_X_is_not_1D_pandas(method):
pd = pytest.importorskip('pandas')
X = pd.Series([6, 3, 4, 6])
oh = OneHotEncoder()
msg = ("Expected 2D array, got 1D array instead")
with pytest.raises(ValueError, match=msg):
getattr(oh, method)(X)
@pytest.mark.parametrize("X, cat_exp, cat_dtype", [
([['abc', 55], ['def', 55]], [['abc', 'def'], [55]], np.object_),
(np.array([[1, 2], [3, 2]]), [[1, 3], [2]], np.integer),
(np.array([['A', 'cat'], ['B', 'cat']], dtype=object),
[['A', 'B'], ['cat']], np.object_),
(np.array([['A', 'cat'], ['B', 'cat']]),
[['A', 'B'], ['cat']], np.str_)
], ids=['mixed', 'numeric', 'object', 'string'])
def test_one_hot_encoder_categories(X, cat_exp, cat_dtype):
# order of categories should not depend on order of samples
for Xi in [X, X[::-1]]:
enc = OneHotEncoder(categories='auto')
enc.fit(Xi)
# assert enc.categories == 'auto'
assert isinstance(enc.categories_, list)
for res, exp in zip(enc.categories_, cat_exp):
assert res.tolist() == exp
assert np.issubdtype(res.dtype, cat_dtype)
@pytest.mark.parametrize("X, X2, cats, cat_dtype", [
(np.array([['a', 'b']], dtype=object).T,
np.array([['a', 'd']], dtype=object).T,
[['a', 'b', 'c']], np.object_),
(np.array([[1, 2]], dtype='int64').T,
np.array([[1, 4]], dtype='int64').T,
[[1, 2, 3]], np.int64),
(np.array([['a', 'b']], dtype=object).T,
np.array([['a', 'd']], dtype=object).T,
[np.array(['a', 'b', 'c'])], np.object_),
], ids=['object', 'numeric', 'object-string-cat'])
def test_one_hot_encoder_specified_categories(X, X2, cats, cat_dtype):
enc = OneHotEncoder(categories=cats)
exp = np.array([[1., 0., 0.],
[0., 1., 0.]])
assert_array_equal(enc.fit_transform(X).toarray(), exp)
assert list(enc.categories[0]) == list(cats[0])
assert enc.categories_[0].tolist() == list(cats[0])
# manually specified categories should have same dtype as
# the data when coerced from lists
assert enc.categories_[0].dtype == cat_dtype
# when specifying categories manually, unknown categories should already
# raise when fitting
enc = OneHotEncoder(categories=cats)
with pytest.raises(ValueError, match="Found unknown categories"):
enc.fit(X2)
enc = OneHotEncoder(categories=cats, handle_unknown='ignore')
exp = np.array([[1., 0., 0.], [0., 0., 0.]])
assert_array_equal(enc.fit(X2).transform(X2).toarray(), exp)
def test_one_hot_encoder_unsorted_categories():
X = np.array([['a', 'b']], dtype=object).T
enc = OneHotEncoder(categories=[['b', 'a', 'c']])
exp = np.array([[0., 1., 0.],
[1., 0., 0.]])
assert_array_equal(enc.fit(X).transform(X).toarray(), exp)
assert_array_equal(enc.fit_transform(X).toarray(), exp)
assert enc.categories_[0].tolist() == ['b', 'a', 'c']
assert np.issubdtype(enc.categories_[0].dtype, np.object_)
# unsorted passed categories still raise for numerical values
X = np.array([[1, 2]]).T
enc = OneHotEncoder(categories=[[2, 1, 3]])
msg = 'Unsorted categories are not supported'
with pytest.raises(ValueError, match=msg):
enc.fit_transform(X)
def test_one_hot_encoder_specified_categories_mixed_columns():
# multiple columns
X = np.array([['a', 'b'], [0, 2]], dtype=object).T
enc = OneHotEncoder(categories=[['a', 'b', 'c'], [0, 1, 2]])
exp = np.array([[1., 0., 0., 1., 0., 0.],
[0., 1., 0., 0., 0., 1.]])
assert_array_equal(enc.fit_transform(X).toarray(), exp)
assert enc.categories_[0].tolist() == ['a', 'b', 'c']
assert np.issubdtype(enc.categories_[0].dtype, np.object_)
assert enc.categories_[1].tolist() == [0, 1, 2]
# integer categories but from object dtype data
assert np.issubdtype(enc.categories_[1].dtype, np.object_)
def test_one_hot_encoder_pandas():
pd = pytest.importorskip('pandas')
X_df = pd.DataFrame({'A': ['a', 'b'], 'B': [1, 2]})
Xtr = check_categorical_onehot(X_df)
assert_allclose(Xtr, [[1, 0, 1, 0], [0, 1, 0, 1]])
@pytest.mark.parametrize("drop, expected_names",
[('first', ['x0_c', 'x2_b']),
('if_binary', ['x0_c', 'x1_2', 'x2_b']),
(['c', 2, 'b'], ['x0_b', 'x2_a'])],
ids=['first', 'binary', 'manual'])
def test_one_hot_encoder_feature_names_drop(drop, expected_names):
X = [['c', 2, 'a'],
['b', 2, 'b']]
ohe = OneHotEncoder(drop=drop)
ohe.fit(X)
feature_names = ohe.get_feature_names()
assert isinstance(feature_names, np.ndarray)
assert_array_equal(expected_names, feature_names)
def test_one_hot_encoder_drop_equals_if_binary():
# Canonical case
X = [[10, 'yes'],
[20, 'no'],
[30, 'yes']]
expected = np.array([[1., 0., 0., 1.],
[0., 1., 0., 0.],
[0., 0., 1., 1.]])
expected_drop_idx = np.array([None, 0])
ohe = OneHotEncoder(drop='if_binary', sparse=False)
result = ohe.fit_transform(X)
assert_array_equal(ohe.drop_idx_, expected_drop_idx)
assert_allclose(result, expected)
# with only one cat, the behaviour is equivalent to drop=None
X = [['true', 'a'],
['false', 'a'],
['false', 'a']]
expected = np.array([[1., 1.],
[0., 1.],
[0., 1.]])
expected_drop_idx = np.array([0, None])
ohe = OneHotEncoder(drop='if_binary', sparse=False)
result = ohe.fit_transform(X)
assert_array_equal(ohe.drop_idx_, expected_drop_idx)
assert_allclose(result, expected)
@pytest.mark.parametrize("X", [np.array([[1, np.nan]]).T,
np.array([['a', np.nan]], dtype=object).T],
ids=['numeric', 'object'])
@pytest.mark.parametrize("as_data_frame", [False, True],
ids=['array', 'dataframe'])
@pytest.mark.parametrize("handle_unknown", ['error', 'ignore'])
def test_one_hot_encoder_raise_missing(X, as_data_frame, handle_unknown):
if as_data_frame:
pd = pytest.importorskip('pandas')
X = pd.DataFrame(X)
ohe = OneHotEncoder(categories='auto', handle_unknown=handle_unknown)
with pytest.raises(ValueError, match="Input contains NaN"):
ohe.fit(X)
with pytest.raises(ValueError, match="Input contains NaN"):
ohe.fit_transform(X)
if as_data_frame:
X_partial = X.iloc[:1, :]
else:
X_partial = X[:1, :]
ohe.fit(X_partial)
with pytest.raises(ValueError, match="Input contains NaN"):
ohe.transform(X)
@pytest.mark.parametrize("X", [
[['abc', 2, 55], ['def', 1, 55]],
np.array([[10, 2, 55], [20, 1, 55]]),
np.array([['a', 'B', 'cat'], ['b', 'A', 'cat']], dtype=object)
], ids=['mixed', 'numeric', 'object'])
def test_ordinal_encoder(X):
enc = OrdinalEncoder()
exp = np.array([[0, 1, 0],
[1, 0, 0]], dtype='int64')
assert_array_equal(enc.fit_transform(X), exp.astype('float64'))
enc = OrdinalEncoder(dtype='int64')
assert_array_equal(enc.fit_transform(X), exp)
@pytest.mark.parametrize("X, X2, cats, cat_dtype", [
(np.array([['a', 'b']], dtype=object).T,
np.array([['a', 'd']], dtype=object).T,
[['a', 'b', 'c']], np.object_),
(np.array([[1, 2]], dtype='int64').T,
np.array([[1, 4]], dtype='int64').T,
[[1, 2, 3]], np.int64),
(np.array([['a', 'b']], dtype=object).T,
np.array([['a', 'd']], dtype=object).T,
[np.array(['a', 'b', 'c'])], np.object_),
], ids=['object', 'numeric', 'object-string-cat'])
def test_ordinal_encoder_specified_categories(X, X2, cats, cat_dtype):
enc = OrdinalEncoder(categories=cats)
exp = np.array([[0.], [1.]])
assert_array_equal(enc.fit_transform(X), exp)
assert list(enc.categories[0]) == list(cats[0])
assert enc.categories_[0].tolist() == list(cats[0])
# manually specified categories should have same dtype as
# the data when coerced from lists
assert enc.categories_[0].dtype == cat_dtype
# when specifying categories manually, unknown categories should already
# raise when fitting
enc = OrdinalEncoder(categories=cats)
with pytest.raises(ValueError, match="Found unknown categories"):
enc.fit(X2)
def test_ordinal_encoder_inverse():
X = [['abc', 2, 55], ['def', 1, 55]]
enc = OrdinalEncoder()
X_tr = enc.fit_transform(X)
exp = np.array(X, dtype=object)
assert_array_equal(enc.inverse_transform(X_tr), exp)
# incorrect shape raises
X_tr = np.array([[0, 1, 1, 2], [1, 0, 1, 0]])
msg = re.escape('Shape of the passed X data is not correct')
with pytest.raises(ValueError, match=msg):
enc.inverse_transform(X_tr)
@pytest.mark.parametrize("X", [np.array([[1, np.nan]]).T,
np.array([['a', np.nan]], dtype=object).T],
ids=['numeric', 'object'])
def test_ordinal_encoder_raise_missing(X):
ohe = OrdinalEncoder()
with pytest.raises(ValueError, match="Input contains NaN"):
ohe.fit(X)
with pytest.raises(ValueError, match="Input contains NaN"):
ohe.fit_transform(X)
ohe.fit(X[:1, :])
with pytest.raises(ValueError, match="Input contains NaN"):
ohe.transform(X)
def test_ordinal_encoder_raise_categories_shape():
X = np.array([['Low', 'Medium', 'High', 'Medium', 'Low']], dtype=object).T
cats = ['Low', 'Medium', 'High']
enc = OrdinalEncoder(categories=cats)
msg = ("Shape mismatch: if categories is an array,")
with pytest.raises(ValueError, match=msg):
enc.fit(X)
def test_encoder_dtypes():
# check that dtypes are preserved when determining categories
enc = OneHotEncoder(categories='auto')
exp = np.array([[1., 0., 1., 0.], [0., 1., 0., 1.]], dtype='float64')
for X in [np.array([[1, 2], [3, 4]], dtype='int64'),
np.array([[1, 2], [3, 4]], dtype='float64'),
np.array([['a', 'b'], ['c', 'd']]), # string dtype
np.array([[1, 'a'], [3, 'b']], dtype='object')]:
enc.fit(X)
assert all([enc.categories_[i].dtype == X.dtype for i in range(2)])
assert_array_equal(enc.transform(X).toarray(), exp)
X = [[1, 2], [3, 4]]
enc.fit(X)
assert all([np.issubdtype(enc.categories_[i].dtype, np.integer)
for i in range(2)])
assert_array_equal(enc.transform(X).toarray(), exp)
X = [[1, 'a'], [3, 'b']]
enc.fit(X)
assert all([enc.categories_[i].dtype == 'object' for i in range(2)])
assert_array_equal(enc.transform(X).toarray(), exp)
def test_encoder_dtypes_pandas():
# check dtype (similar to test_categorical_encoder_dtypes for dataframes)
pd = pytest.importorskip('pandas')
enc = OneHotEncoder(categories='auto')
exp = np.array([[1., 0., 1., 0., 1., 0.],
[0., 1., 0., 1., 0., 1.]], dtype='float64')
X = pd.DataFrame({'A': [1, 2], 'B': [3, 4], 'C': [5, 6]}, dtype='int64')
enc.fit(X)
assert all([enc.categories_[i].dtype == 'int64' for i in range(2)])
assert_array_equal(enc.transform(X).toarray(), exp)
X = pd.DataFrame({'A': [1, 2], 'B': ['a', 'b'], 'C': [3., 4.]})
X_type = [X['A'].dtype, X['B'].dtype, X['C'].dtype]
enc.fit(X)
assert all([enc.categories_[i].dtype == X_type[i] for i in range(3)])
assert_array_equal(enc.transform(X).toarray(), exp)
def test_one_hot_encoder_warning():
enc = OneHotEncoder()
X = [['Male', 1], ['Female', 3]]
np.testing.assert_no_warnings(enc.fit_transform, X)
def test_one_hot_encoder_drop_manual():
cats_to_drop = ['def', 12, 3, 56]
enc = OneHotEncoder(drop=cats_to_drop)
X = [['abc', 12, 2, 55],
['def', 12, 1, 55],
['def', 12, 3, 56]]
trans = enc.fit_transform(X).toarray()
exp = [[1, 0, 1, 1],
[0, 1, 0, 1],
[0, 0, 0, 0]]
assert_array_equal(trans, exp)
dropped_cats = [cat[feature]
for cat, feature in zip(enc.categories_,
enc.drop_idx_)]
assert_array_equal(dropped_cats, cats_to_drop)
assert_array_equal(np.array(X, dtype=object),
enc.inverse_transform(trans))
@pytest.mark.parametrize(
"X_fit, params, err_msg",
[([["Male"], ["Female"]], {'drop': 'second'},
"Wrong input for parameter `drop`"),
([["Male"], ["Female"]], {'drop': 'first', 'handle_unknown': 'ignore'},
"`handle_unknown` must be 'error'"),
([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]],
{'drop': np.asarray('b', dtype=object)},
"Wrong input for parameter `drop`"),
([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]],
{'drop': ['ghi', 3, 59]},
"The following categories were supposed")]
)
def test_one_hot_encoder_invalid_params(X_fit, params, err_msg):
enc = OneHotEncoder(**params)
with pytest.raises(ValueError, match=err_msg):
enc.fit(X_fit)
@pytest.mark.parametrize('drop', [['abc', 3], ['abc', 3, 41, 'a']])
def test_invalid_drop_length(drop):
enc = OneHotEncoder(drop=drop)
err_msg = "`drop` should have length equal to the number"
with pytest.raises(ValueError, match=err_msg):
enc.fit([['abc', 2, 55], ['def', 1, 55], ['def', 3, 59]])
@pytest.mark.parametrize("density", [True, False],
ids=['sparse', 'dense'])
@pytest.mark.parametrize("drop", ['first',
['a', 2, 'b']],
ids=['first', 'manual'])
def test_categories(density, drop):
ohe_base = OneHotEncoder(sparse=density)
ohe_test = OneHotEncoder(sparse=density, drop=drop)
X = [['c', 1, 'a'],
['a', 2, 'b']]
ohe_base.fit(X)
ohe_test.fit(X)
assert_array_equal(ohe_base.categories_, ohe_test.categories_)
if drop == 'first':
assert_array_equal(ohe_test.drop_idx_, 0)
else:
for drop_cat, drop_idx, cat_list in zip(drop,
ohe_test.drop_idx_,
ohe_test.categories_):
assert cat_list[int(drop_idx)] == drop_cat
assert isinstance(ohe_test.drop_idx_, np.ndarray)
assert ohe_test.drop_idx_.dtype == np.object
@pytest.mark.parametrize('Encoder', [OneHotEncoder, OrdinalEncoder])
def test_encoders_has_categorical_tags(Encoder):
assert 'categorical' in Encoder()._get_tags()['X_types']
@pytest.mark.parametrize('Encoder', [OneHotEncoder, OrdinalEncoder])
def test_encoders_does_not_support_none_values(Encoder):
values = [["a"], [None]]
with pytest.raises(TypeError, match="Encoders require their input to be "
"uniformly strings or numbers."):
Encoder().fit(values)