_nca.py
20.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
# coding: utf-8
"""
Neighborhood Component Analysis
"""
# Authors: William de Vazelhes <wdevazelhes@gmail.com>
# John Chiotellis <ioannis.chiotellis@in.tum.de>
# License: BSD 3 clause
from __future__ import print_function
from warnings import warn
import numpy as np
import sys
import time
import numbers
from scipy.optimize import minimize
from ..utils.extmath import softmax
from ..metrics import pairwise_distances
from ..base import BaseEstimator, TransformerMixin
from ..preprocessing import LabelEncoder
from ..decomposition import PCA
from ..utils.multiclass import check_classification_targets
from ..utils.random import check_random_state
from ..utils.validation import check_is_fitted, check_array, check_scalar
from ..utils.validation import _deprecate_positional_args
from ..exceptions import ConvergenceWarning
class NeighborhoodComponentsAnalysis(TransformerMixin, BaseEstimator):
"""Neighborhood Components Analysis
Neighborhood Component Analysis (NCA) is a machine learning algorithm for
metric learning. It learns a linear transformation in a supervised fashion
to improve the classification accuracy of a stochastic nearest neighbors
rule in the transformed space.
Read more in the :ref:`User Guide <nca>`.
Parameters
----------
n_components : int, default=None
Preferred dimensionality of the projected space.
If None it will be set to ``n_features``.
init : {'auto', 'pca', 'lda', 'identity', 'random'} or ndarray of shape \
(n_features_a, n_features_b), default='auto'
Initialization of the linear transformation. Possible options are
'auto', 'pca', 'lda', 'identity', 'random', and a numpy array of shape
(n_features_a, n_features_b).
'auto'
Depending on ``n_components``, the most reasonable initialization
will be chosen. If ``n_components <= n_classes`` we use 'lda', as
it uses labels information. If not, but
``n_components < min(n_features, n_samples)``, we use 'pca', as
it projects data in meaningful directions (those of higher
variance). Otherwise, we just use 'identity'.
'pca'
``n_components`` principal components of the inputs passed
to :meth:`fit` will be used to initialize the transformation.
(See :class:`~sklearn.decomposition.PCA`)
'lda'
``min(n_components, n_classes)`` most discriminative
components of the inputs passed to :meth:`fit` will be used to
initialize the transformation. (If ``n_components > n_classes``,
the rest of the components will be zero.) (See
:class:`~sklearn.discriminant_analysis.LinearDiscriminantAnalysis`)
'identity'
If ``n_components`` is strictly smaller than the
dimensionality of the inputs passed to :meth:`fit`, the identity
matrix will be truncated to the first ``n_components`` rows.
'random'
The initial transformation will be a random array of shape
`(n_components, n_features)`. Each value is sampled from the
standard normal distribution.
numpy array
n_features_b must match the dimensionality of the inputs passed to
:meth:`fit` and n_features_a must be less than or equal to that.
If ``n_components`` is not None, n_features_a must match it.
warm_start : bool, default=False
If True and :meth:`fit` has been called before, the solution of the
previous call to :meth:`fit` is used as the initial linear
transformation (``n_components`` and ``init`` will be ignored).
max_iter : int, default=50
Maximum number of iterations in the optimization.
tol : float, default=1e-5
Convergence tolerance for the optimization.
callback : callable, default=None
If not None, this function is called after every iteration of the
optimizer, taking as arguments the current solution (flattened
transformation matrix) and the number of iterations. This might be
useful in case one wants to examine or store the transformation
found after each iteration.
verbose : int, default=0
If 0, no progress messages will be printed.
If 1, progress messages will be printed to stdout.
If > 1, progress messages will be printed and the ``disp``
parameter of :func:`scipy.optimize.minimize` will be set to
``verbose - 2``.
random_state : int or numpy.RandomState, default=None
A pseudo random number generator object or a seed for it if int. If
``init='random'``, ``random_state`` is used to initialize the random
transformation. If ``init='pca'``, ``random_state`` is passed as an
argument to PCA when initializing the transformation. Pass an int
for reproducible results across multiple function calls.
See :term: `Glossary <random_state>`.
Attributes
----------
components_ : ndarray of shape (n_components, n_features)
The linear transformation learned during fitting.
n_iter_ : int
Counts the number of iterations performed by the optimizer.
random_state_ : numpy.RandomState
Pseudo random number generator object used during initialization.
Examples
--------
>>> from sklearn.neighbors import NeighborhoodComponentsAnalysis
>>> from sklearn.neighbors import KNeighborsClassifier
>>> from sklearn.datasets import load_iris
>>> from sklearn.model_selection import train_test_split
>>> X, y = load_iris(return_X_y=True)
>>> X_train, X_test, y_train, y_test = train_test_split(X, y,
... stratify=y, test_size=0.7, random_state=42)
>>> nca = NeighborhoodComponentsAnalysis(random_state=42)
>>> nca.fit(X_train, y_train)
NeighborhoodComponentsAnalysis(...)
>>> knn = KNeighborsClassifier(n_neighbors=3)
>>> knn.fit(X_train, y_train)
KNeighborsClassifier(...)
>>> print(knn.score(X_test, y_test))
0.933333...
>>> knn.fit(nca.transform(X_train), y_train)
KNeighborsClassifier(...)
>>> print(knn.score(nca.transform(X_test), y_test))
0.961904...
References
----------
.. [1] J. Goldberger, G. Hinton, S. Roweis, R. Salakhutdinov.
"Neighbourhood Components Analysis". Advances in Neural Information
Processing Systems. 17, 513-520, 2005.
http://www.cs.nyu.edu/~roweis/papers/ncanips.pdf
.. [2] Wikipedia entry on Neighborhood Components Analysis
https://en.wikipedia.org/wiki/Neighbourhood_components_analysis
"""
@_deprecate_positional_args
def __init__(self, n_components=None, *, init='auto', warm_start=False,
max_iter=50, tol=1e-5, callback=None, verbose=0,
random_state=None):
self.n_components = n_components
self.init = init
self.warm_start = warm_start
self.max_iter = max_iter
self.tol = tol
self.callback = callback
self.verbose = verbose
self.random_state = random_state
def fit(self, X, y):
"""Fit the model according to the given training data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The corresponding training labels.
Returns
-------
self : object
returns a trained NeighborhoodComponentsAnalysis model.
"""
# Verify inputs X and y and NCA parameters, and transform a copy if
# needed
X, y, init = self._validate_params(X, y)
# Initialize the random generator
self.random_state_ = check_random_state(self.random_state)
# Measure the total training time
t_train = time.time()
# Compute a mask that stays fixed during optimization:
same_class_mask = y[:, np.newaxis] == y[np.newaxis, :]
# (n_samples, n_samples)
# Initialize the transformation
transformation = self._initialize(X, y, init)
# Create a dictionary of parameters to be passed to the optimizer
disp = self.verbose - 2 if self.verbose > 1 else -1
optimizer_params = {'method': 'L-BFGS-B',
'fun': self._loss_grad_lbfgs,
'args': (X, same_class_mask, -1.0),
'jac': True,
'x0': transformation,
'tol': self.tol,
'options': dict(maxiter=self.max_iter, disp=disp),
'callback': self._callback
}
# Call the optimizer
self.n_iter_ = 0
opt_result = minimize(**optimizer_params)
# Reshape the solution found by the optimizer
self.components_ = opt_result.x.reshape(-1, X.shape[1])
# Stop timer
t_train = time.time() - t_train
if self.verbose:
cls_name = self.__class__.__name__
# Warn the user if the algorithm did not converge
if not opt_result.success:
warn('[{}] NCA did not converge: {}'.format(
cls_name, opt_result.message),
ConvergenceWarning)
print('[{}] Training took {:8.2f}s.'.format(cls_name, t_train))
return self
def transform(self, X):
"""Applies the learned transformation to the given data.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data samples.
Returns
-------
X_embedded: ndarray of shape (n_samples, n_components)
The data samples transformed.
Raises
------
NotFittedError
If :meth:`fit` has not been called before.
"""
check_is_fitted(self)
X = check_array(X)
return np.dot(X, self.components_.T)
def _validate_params(self, X, y):
"""Validate parameters as soon as :meth:`fit` is called.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The corresponding training labels.
Returns
-------
X : ndarray of shape (n_samples, n_features)
The validated training samples.
y : ndarray of shape (n_samples,)
The validated training labels, encoded to be integers in
the range(0, n_classes).
init : str or ndarray of shape (n_features_a, n_features_b)
The validated initialization of the linear transformation.
Raises
-------
TypeError
If a parameter is not an instance of the desired type.
ValueError
If a parameter's value violates its legal value range or if the
combination of two or more given parameters is incompatible.
"""
# Validate the inputs X and y, and converts y to numerical classes.
X, y = self._validate_data(X, y, ensure_min_samples=2)
check_classification_targets(y)
y = LabelEncoder().fit_transform(y)
# Check the preferred dimensionality of the projected space
if self.n_components is not None:
check_scalar(
self.n_components, 'n_components', numbers.Integral, min_val=1)
if self.n_components > X.shape[1]:
raise ValueError('The preferred dimensionality of the '
'projected space `n_components` ({}) cannot '
'be greater than the given data '
'dimensionality ({})!'
.format(self.n_components, X.shape[1]))
# If warm_start is enabled, check that the inputs are consistent
check_scalar(self.warm_start, 'warm_start', bool)
if self.warm_start and hasattr(self, 'components_'):
if self.components_.shape[1] != X.shape[1]:
raise ValueError('The new inputs dimensionality ({}) does not '
'match the input dimensionality of the '
'previously learned transformation ({}).'
.format(X.shape[1],
self.components_.shape[1]))
check_scalar(self.max_iter, 'max_iter', numbers.Integral, min_val=1)
check_scalar(self.tol, 'tol', numbers.Real, min_val=0.)
check_scalar(self.verbose, 'verbose', numbers.Integral, min_val=0)
if self.callback is not None:
if not callable(self.callback):
raise ValueError('`callback` is not callable.')
# Check how the linear transformation should be initialized
init = self.init
if isinstance(init, np.ndarray):
init = check_array(init)
# Assert that init.shape[1] = X.shape[1]
if init.shape[1] != X.shape[1]:
raise ValueError(
'The input dimensionality ({}) of the given '
'linear transformation `init` must match the '
'dimensionality of the given inputs `X` ({}).'
.format(init.shape[1], X.shape[1]))
# Assert that init.shape[0] <= init.shape[1]
if init.shape[0] > init.shape[1]:
raise ValueError(
'The output dimensionality ({}) of the given '
'linear transformation `init` cannot be '
'greater than its input dimensionality ({}).'
.format(init.shape[0], init.shape[1]))
if self.n_components is not None:
# Assert that self.n_components = init.shape[0]
if self.n_components != init.shape[0]:
raise ValueError('The preferred dimensionality of the '
'projected space `n_components` ({}) does'
' not match the output dimensionality of '
'the given linear transformation '
'`init` ({})!'
.format(self.n_components,
init.shape[0]))
elif init in ['auto', 'pca', 'lda', 'identity', 'random']:
pass
else:
raise ValueError(
"`init` must be 'auto', 'pca', 'lda', 'identity', 'random' "
"or a numpy array of shape (n_components, n_features).")
return X, y, init
def _initialize(self, X, y, init):
"""Initialize the transformation.
Parameters
----------
X : array-like of shape (n_samples, n_features)
The training samples.
y : array-like of shape (n_samples,)
The training labels.
init : str or ndarray of shape (n_features_a, n_features_b)
The validated initialization of the linear transformation.
Returns
-------
transformation : ndarray of shape (n_components, n_features)
The initialized linear transformation.
"""
transformation = init
if self.warm_start and hasattr(self, 'components_'):
transformation = self.components_
elif isinstance(init, np.ndarray):
pass
else:
n_samples, n_features = X.shape
n_components = self.n_components or n_features
if init == 'auto':
n_classes = len(np.unique(y))
if n_components <= min(n_features, n_classes - 1):
init = 'lda'
elif n_components < min(n_features, n_samples):
init = 'pca'
else:
init = 'identity'
if init == 'identity':
transformation = np.eye(n_components, X.shape[1])
elif init == 'random':
transformation = self.random_state_.randn(n_components,
X.shape[1])
elif init in {'pca', 'lda'}:
init_time = time.time()
if init == 'pca':
pca = PCA(n_components=n_components,
random_state=self.random_state_)
if self.verbose:
print('Finding principal components... ', end='')
sys.stdout.flush()
pca.fit(X)
transformation = pca.components_
elif init == 'lda':
from ..discriminant_analysis import (
LinearDiscriminantAnalysis)
lda = LinearDiscriminantAnalysis(n_components=n_components)
if self.verbose:
print('Finding most discriminative components... ',
end='')
sys.stdout.flush()
lda.fit(X, y)
transformation = lda.scalings_.T[:n_components]
if self.verbose:
print('done in {:5.2f}s'.format(time.time() - init_time))
return transformation
def _callback(self, transformation):
"""Called after each iteration of the optimizer.
Parameters
----------
transformation : ndarray of shape (n_components * n_features,)
The solution computed by the optimizer in this iteration.
"""
if self.callback is not None:
self.callback(transformation, self.n_iter_)
self.n_iter_ += 1
def _loss_grad_lbfgs(self, transformation, X, same_class_mask, sign=1.0):
"""Compute the loss and the loss gradient w.r.t. ``transformation``.
Parameters
----------
transformation : ndarray of shape (n_components * n_features,)
The raveled linear transformation on which to compute loss and
evaluate gradient.
X : ndarray of shape (n_samples, n_features)
The training samples.
same_class_mask : ndarray of shape (n_samples, n_samples)
A mask where ``mask[i, j] == 1`` if ``X[i]`` and ``X[j]`` belong
to the same class, and ``0`` otherwise.
Returns
-------
loss : float
The loss computed for the given transformation.
gradient : ndarray of shape (n_components * n_features,)
The new (flattened) gradient of the loss.
"""
if self.n_iter_ == 0:
self.n_iter_ += 1
if self.verbose:
header_fields = ['Iteration', 'Objective Value', 'Time(s)']
header_fmt = '{:>10} {:>20} {:>10}'
header = header_fmt.format(*header_fields)
cls_name = self.__class__.__name__
print('[{}]'.format(cls_name))
print('[{}] {}\n[{}] {}'.format(cls_name, header,
cls_name, '-' * len(header)))
t_funcall = time.time()
transformation = transformation.reshape(-1, X.shape[1])
X_embedded = np.dot(X, transformation.T) # (n_samples, n_components)
# Compute softmax distances
p_ij = pairwise_distances(X_embedded, squared=True)
np.fill_diagonal(p_ij, np.inf)
p_ij = softmax(-p_ij) # (n_samples, n_samples)
# Compute loss
masked_p_ij = p_ij * same_class_mask
p = np.sum(masked_p_ij, axis=1, keepdims=True) # (n_samples, 1)
loss = np.sum(p)
# Compute gradient of loss w.r.t. `transform`
weighted_p_ij = masked_p_ij - p_ij * p
weighted_p_ij_sym = weighted_p_ij + weighted_p_ij.T
np.fill_diagonal(weighted_p_ij_sym, -weighted_p_ij.sum(axis=0))
gradient = 2 * X_embedded.T.dot(weighted_p_ij_sym).dot(X)
# time complexity of the gradient: O(n_components x n_samples x (
# n_samples + n_features))
if self.verbose:
t_funcall = time.time() - t_funcall
values_fmt = '[{}] {:>10} {:>20.6e} {:>10.2f}'
print(values_fmt.format(self.__class__.__name__, self.n_iter_,
loss, t_funcall))
sys.stdout.flush()
return sign * loss, sign * gradient.ravel()
def _more_tags(self):
return {'requires_y': True}