kdtree.py 37.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
# Copyright Anne M. Archibald 2008
# Released under the scipy license
import numpy as np
from heapq import heappush, heappop
import scipy.sparse

__all__ = ['minkowski_distance_p', 'minkowski_distance',
           'distance_matrix',
           'Rectangle', 'KDTree']


def minkowski_distance_p(x, y, p=2):
    """
    Compute the pth power of the L**p distance between two arrays.

    For efficiency, this function computes the L**p distance but does
    not extract the pth root. If `p` is 1 or infinity, this is equal to
    the actual L**p distance.

    Parameters
    ----------
    x : (M, K) array_like
        Input array.
    y : (N, K) array_like
        Input array.
    p : float, 1 <= p <= infinity
        Which Minkowski p-norm to use.

    Examples
    --------
    >>> from scipy.spatial import minkowski_distance_p
    >>> minkowski_distance_p([[0,0],[0,0]], [[1,1],[0,1]])
    array([2, 1])

    """
    x = np.asarray(x)
    y = np.asarray(y)

    # Find smallest common datatype with float64 (return type of this function) - addresses #10262.
    # Don't just cast to float64 for complex input case.
    common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype), 'float64')

    # Make sure x and y are NumPy arrays of correct datatype.
    x = x.astype(common_datatype)
    y = y.astype(common_datatype)

    if p == np.inf:
        return np.amax(np.abs(y-x), axis=-1)
    elif p == 1:
        return np.sum(np.abs(y-x), axis=-1)
    else:
        return np.sum(np.abs(y-x)**p, axis=-1)


def minkowski_distance(x, y, p=2):
    """
    Compute the L**p distance between two arrays.

    Parameters
    ----------
    x : (M, K) array_like
        Input array.
    y : (N, K) array_like
        Input array.
    p : float, 1 <= p <= infinity
        Which Minkowski p-norm to use.

    Examples
    --------
    >>> from scipy.spatial import minkowski_distance
    >>> minkowski_distance([[0,0],[0,0]], [[1,1],[0,1]])
    array([ 1.41421356,  1.        ])

    """
    x = np.asarray(x)
    y = np.asarray(y)
    if p == np.inf or p == 1:
        return minkowski_distance_p(x, y, p)
    else:
        return minkowski_distance_p(x, y, p)**(1./p)


class Rectangle(object):
    """Hyperrectangle class.

    Represents a Cartesian product of intervals.
    """
    def __init__(self, maxes, mins):
        """Construct a hyperrectangle."""
        self.maxes = np.maximum(maxes,mins).astype(float)
        self.mins = np.minimum(maxes,mins).astype(float)
        self.m, = self.maxes.shape

    def __repr__(self):
        return "<Rectangle %s>" % list(zip(self.mins, self.maxes))

    def volume(self):
        """Total volume."""
        return np.prod(self.maxes-self.mins)

    def split(self, d, split):
        """
        Produce two hyperrectangles by splitting.

        In general, if you need to compute maximum and minimum
        distances to the children, it can be done more efficiently
        by updating the maximum and minimum distances to the parent.

        Parameters
        ----------
        d : int
            Axis to split hyperrectangle along.
        split : float
            Position along axis `d` to split at.

        """
        mid = np.copy(self.maxes)
        mid[d] = split
        less = Rectangle(self.mins, mid)
        mid = np.copy(self.mins)
        mid[d] = split
        greater = Rectangle(mid, self.maxes)
        return less, greater

    def min_distance_point(self, x, p=2.):
        """
        Return the minimum distance between input and points in the hyperrectangle.

        Parameters
        ----------
        x : array_like
            Input.
        p : float, optional
            Input.

        """
        return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-x,x-self.maxes)),p)

    def max_distance_point(self, x, p=2.):
        """
        Return the maximum distance between input and points in the hyperrectangle.

        Parameters
        ----------
        x : array_like
            Input array.
        p : float, optional
            Input.

        """
        return minkowski_distance(0, np.maximum(self.maxes-x,x-self.mins),p)

    def min_distance_rectangle(self, other, p=2.):
        """
        Compute the minimum distance between points in the two hyperrectangles.

        Parameters
        ----------
        other : hyperrectangle
            Input.
        p : float
            Input.

        """
        return minkowski_distance(0, np.maximum(0,np.maximum(self.mins-other.maxes,other.mins-self.maxes)),p)

    def max_distance_rectangle(self, other, p=2.):
        """
        Compute the maximum distance between points in the two hyperrectangles.

        Parameters
        ----------
        other : hyperrectangle
            Input.
        p : float, optional
            Input.

        """
        return minkowski_distance(0, np.maximum(self.maxes-other.mins,other.maxes-self.mins),p)


class KDTree(object):
    """
    kd-tree for quick nearest-neighbor lookup

    This class provides an index into a set of k-D points which
    can be used to rapidly look up the nearest neighbors of any point.

    Parameters
    ----------
    data : (N,K) array_like
        The data points to be indexed. This array is not copied, and
        so modifying this data will result in bogus results.
    leafsize : int, optional
        The number of points at which the algorithm switches over to
        brute-force.  Has to be positive.

    Raises
    ------
    RuntimeError
        The maximum recursion limit can be exceeded for large data
        sets.  If this happens, either increase the value for the `leafsize`
        parameter or increase the recursion limit by::

            >>> import sys
            >>> sys.setrecursionlimit(10000)

    See Also
    --------
    cKDTree : Implementation of `KDTree` in Cython

    Notes
    -----
    The algorithm used is described in Maneewongvatana and Mount 1999.
    The general idea is that the kd-tree is a binary tree, each of whose
    nodes represents an axis-aligned hyperrectangle. Each node specifies
    an axis and splits the set of points based on whether their coordinate
    along that axis is greater than or less than a particular value.

    During construction, the axis and splitting point are chosen by the
    "sliding midpoint" rule, which ensures that the cells do not all
    become long and thin.

    The tree can be queried for the r closest neighbors of any given point
    (optionally returning only those within some maximum distance of the
    point). It can also be queried, with a substantial gain in efficiency,
    for the r approximate closest neighbors.

    For large dimensions (20 is already large) do not expect this to run
    significantly faster than brute force. High-dimensional nearest-neighbor
    queries are a substantial open problem in computer science.

    The tree also supports all-neighbors queries, both with arrays of points
    and with other kd-trees. These do use a reasonably efficient algorithm,
    but the kd-tree is not necessarily the best data structure for this
    sort of calculation.

    """
    def __init__(self, data, leafsize=10):
        self.data = np.asarray(data)
        if self.data.dtype.kind == 'c':
            raise TypeError("KDTree does not work with complex data")

        self.n, self.m = np.shape(self.data)
        self.leafsize = int(leafsize)
        if self.leafsize < 1:
            raise ValueError("leafsize must be at least 1")
        self.maxes = np.amax(self.data,axis=0)
        self.mins = np.amin(self.data,axis=0)

        self.tree = self.__build(np.arange(self.n), self.maxes, self.mins)

    class node(object):
        def __lt__(self, other):
            return id(self) < id(other)

        def __gt__(self, other):
            return id(self) > id(other)

        def __le__(self, other):
            return id(self) <= id(other)

        def __ge__(self, other):
            return id(self) >= id(other)

        def __eq__(self, other):
            return id(self) == id(other)

    class leafnode(node):
        def __init__(self, idx):
            self.idx = idx
            self.children = len(idx)

    class innernode(node):
        def __init__(self, split_dim, split, less, greater):
            self.split_dim = split_dim
            self.split = split
            self.less = less
            self.greater = greater
            self.children = less.children+greater.children

    def __build(self, idx, maxes, mins):
        if len(idx) <= self.leafsize:
            return KDTree.leafnode(idx)
        else:
            data = self.data[idx]
            # maxes = np.amax(data,axis=0)
            # mins = np.amin(data,axis=0)
            d = np.argmax(maxes-mins)
            maxval = maxes[d]
            minval = mins[d]
            if maxval == minval:
                # all points are identical; warn user?
                return KDTree.leafnode(idx)
            data = data[:,d]

            # sliding midpoint rule; see Maneewongvatana and Mount 1999
            # for arguments that this is a good idea.
            split = (maxval+minval)/2
            less_idx = np.nonzero(data <= split)[0]
            greater_idx = np.nonzero(data > split)[0]
            if len(less_idx) == 0:
                split = np.amin(data)
                less_idx = np.nonzero(data <= split)[0]
                greater_idx = np.nonzero(data > split)[0]
            if len(greater_idx) == 0:
                split = np.amax(data)
                less_idx = np.nonzero(data < split)[0]
                greater_idx = np.nonzero(data >= split)[0]
            if len(less_idx) == 0:
                # _still_ zero? all must have the same value
                if not np.all(data == data[0]):
                    raise ValueError("Troublesome data array: %s" % data)
                split = data[0]
                less_idx = np.arange(len(data)-1)
                greater_idx = np.array([len(data)-1])

            lessmaxes = np.copy(maxes)
            lessmaxes[d] = split
            greatermins = np.copy(mins)
            greatermins[d] = split
            return KDTree.innernode(d, split,
                    self.__build(idx[less_idx],lessmaxes,mins),
                    self.__build(idx[greater_idx],maxes,greatermins))

    def __query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):

        side_distances = np.maximum(0,np.maximum(x-self.maxes,self.mins-x))
        if p != np.inf:
            side_distances **= p
            min_distance = np.sum(side_distances)
        else:
            min_distance = np.amax(side_distances)

        # priority queue for chasing nodes
        # entries are:
        #  minimum distance between the cell and the target
        #  distances between the nearest side of the cell and the target
        #  the head node of the cell
        q = [(min_distance,
              tuple(side_distances),
              self.tree)]
        # priority queue for the nearest neighbors
        # furthest known neighbor first
        # entries are (-distance**p, i)
        neighbors = []

        if eps == 0:
            epsfac = 1
        elif p == np.inf:
            epsfac = 1/(1+eps)
        else:
            epsfac = 1/(1+eps)**p

        if p != np.inf and distance_upper_bound != np.inf:
            distance_upper_bound = distance_upper_bound**p

        while q:
            min_distance, side_distances, node = heappop(q)
            if isinstance(node, KDTree.leafnode):
                # brute-force
                data = self.data[node.idx]
                ds = minkowski_distance_p(data,x[np.newaxis,:],p)
                for i in range(len(ds)):
                    if ds[i] < distance_upper_bound:
                        if len(neighbors) == k:
                            heappop(neighbors)
                        heappush(neighbors, (-ds[i], node.idx[i]))
                        if len(neighbors) == k:
                            distance_upper_bound = -neighbors[0][0]
            else:
                # we don't push cells that are too far onto the queue at all,
                # but since the distance_upper_bound decreases, we might get
                # here even if the cell's too far
                if min_distance > distance_upper_bound*epsfac:
                    # since this is the nearest cell, we're done, bail out
                    break
                # compute minimum distances to the children and push them on
                if x[node.split_dim] < node.split:
                    near, far = node.less, node.greater
                else:
                    near, far = node.greater, node.less

                # near child is at the same distance as the current node
                heappush(q,(min_distance, side_distances, near))

                # far child is further by an amount depending only
                # on the split value
                sd = list(side_distances)
                if p == np.inf:
                    min_distance = max(min_distance, abs(node.split-x[node.split_dim]))
                elif p == 1:
                    sd[node.split_dim] = np.abs(node.split-x[node.split_dim])
                    min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]
                else:
                    sd[node.split_dim] = np.abs(node.split-x[node.split_dim])**p
                    min_distance = min_distance - side_distances[node.split_dim] + sd[node.split_dim]

                # far child might be too far, if so, don't bother pushing it
                if min_distance <= distance_upper_bound*epsfac:
                    heappush(q,(min_distance, tuple(sd), far))

        if p == np.inf:
            return sorted([(-d,i) for (d,i) in neighbors])
        else:
            return sorted([((-d)**(1./p),i) for (d,i) in neighbors])

    def query(self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf):
        """
        Query the kd-tree for nearest neighbors

        Parameters
        ----------
        x : array_like, last dimension self.m
            An array of points to query.
        k : int, optional
            The number of nearest neighbors to return.
        eps : nonnegative float, optional
            Return approximate nearest neighbors; the kth returned value
            is guaranteed to be no further than (1+eps) times the
            distance to the real kth nearest neighbor.
        p : float, 1<=p<=infinity, optional
            Which Minkowski p-norm to use.
            1 is the sum-of-absolute-values "Manhattan" distance
            2 is the usual Euclidean distance
            infinity is the maximum-coordinate-difference distance
        distance_upper_bound : nonnegative float, optional
            Return only neighbors within this distance. This is used to prune
            tree searches, so if you are doing a series of nearest-neighbor
            queries, it may help to supply the distance to the nearest neighbor
            of the most recent point.

        Returns
        -------
        d : float or array of floats
            The distances to the nearest neighbors.
            If x has shape tuple+(self.m,), then d has shape tuple if
            k is one, or tuple+(k,) if k is larger than one. Missing
            neighbors (e.g. when k > n or distance_upper_bound is
            given) are indicated with infinite distances.  If k is None,
            then d is an object array of shape tuple, containing lists
            of distances. In either case the hits are sorted by distance
            (nearest first).
        i : integer or array of integers
            The locations of the neighbors in self.data. i is the same
            shape as d.

        Examples
        --------
        >>> from scipy import spatial
        >>> x, y = np.mgrid[0:5, 2:8]
        >>> tree = spatial.KDTree(list(zip(x.ravel(), y.ravel())))
        >>> tree.data
        array([[0, 2],
               [0, 3],
               [0, 4],
               [0, 5],
               [0, 6],
               [0, 7],
               [1, 2],
               [1, 3],
               [1, 4],
               [1, 5],
               [1, 6],
               [1, 7],
               [2, 2],
               [2, 3],
               [2, 4],
               [2, 5],
               [2, 6],
               [2, 7],
               [3, 2],
               [3, 3],
               [3, 4],
               [3, 5],
               [3, 6],
               [3, 7],
               [4, 2],
               [4, 3],
               [4, 4],
               [4, 5],
               [4, 6],
               [4, 7]])
        >>> pts = np.array([[0, 0], [2.1, 2.9]])
        >>> tree.query(pts)
        (array([ 2.        ,  0.14142136]), array([ 0, 13]))
        >>> tree.query(pts[0])
        (2.0, 0)

        """
        x = np.asarray(x)
        if x.dtype.kind == 'c':
            raise TypeError("KDTree does not work with complex data")
        if np.shape(x)[-1] != self.m:
            raise ValueError("x must consist of vectors of length %d but has shape %s" % (self.m, np.shape(x)))
        if p < 1:
            raise ValueError("Only p-norms with 1<=p<=infinity permitted")
        retshape = np.shape(x)[:-1]
        if retshape != ():
            if k is None:
                dd = np.empty(retshape,dtype=object)
                ii = np.empty(retshape,dtype=object)
            elif k > 1:
                dd = np.empty(retshape+(k,),dtype=float)
                dd.fill(np.inf)
                ii = np.empty(retshape+(k,),dtype=int)
                ii.fill(self.n)
            elif k == 1:
                dd = np.empty(retshape,dtype=float)
                dd.fill(np.inf)
                ii = np.empty(retshape,dtype=int)
                ii.fill(self.n)
            else:
                raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")
            for c in np.ndindex(retshape):
                hits = self.__query(x[c], k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
                if k is None:
                    dd[c] = [d for (d,i) in hits]
                    ii[c] = [i for (d,i) in hits]
                elif k > 1:
                    for j in range(len(hits)):
                        dd[c+(j,)], ii[c+(j,)] = hits[j]
                elif k == 1:
                    if len(hits) > 0:
                        dd[c], ii[c] = hits[0]
                    else:
                        dd[c] = np.inf
                        ii[c] = self.n
            return dd, ii
        else:
            hits = self.__query(x, k=k, eps=eps, p=p, distance_upper_bound=distance_upper_bound)
            if k is None:
                return [d for (d,i) in hits], [i for (d,i) in hits]
            elif k == 1:
                if len(hits) > 0:
                    return hits[0]
                else:
                    return np.inf, self.n
            elif k > 1:
                dd = np.empty(k,dtype=float)
                dd.fill(np.inf)
                ii = np.empty(k,dtype=int)
                ii.fill(self.n)
                for j in range(len(hits)):
                    dd[j], ii[j] = hits[j]
                return dd, ii
            else:
                raise ValueError("Requested %s nearest neighbors; acceptable numbers are integers greater than or equal to one, or None")

    def __query_ball_point(self, x, r, p=2., eps=0):
        R = Rectangle(self.maxes, self.mins)

        def traverse_checking(node, rect):
            if rect.min_distance_point(x, p) > r / (1. + eps):
                return []
            elif rect.max_distance_point(x, p) < r * (1. + eps):
                return traverse_no_checking(node)
            elif isinstance(node, KDTree.leafnode):
                d = self.data[node.idx]
                return node.idx[minkowski_distance(d, x, p) <= r].tolist()
            else:
                less, greater = rect.split(node.split_dim, node.split)
                return traverse_checking(node.less, less) + \
                       traverse_checking(node.greater, greater)

        def traverse_no_checking(node):
            if isinstance(node, KDTree.leafnode):
                return node.idx.tolist()
            else:
                return traverse_no_checking(node.less) + \
                       traverse_no_checking(node.greater)

        return traverse_checking(self.tree, R)

    def query_ball_point(self, x, r, p=2., eps=0):
        """Find all points within distance r of point(s) x.

        Parameters
        ----------
        x : array_like, shape tuple + (self.m,)
            The point or points to search for neighbors of.
        r : positive float
            The radius of points to return.
        p : float, optional
            Which Minkowski p-norm to use.  Should be in the range [1, inf].
        eps : nonnegative float, optional
            Approximate search. Branches of the tree are not explored if their
            nearest points are further than ``r / (1 + eps)``, and branches are
            added in bulk if their furthest points are nearer than
            ``r * (1 + eps)``.

        Returns
        -------
        results : list or array of lists
            If `x` is a single point, returns a list of the indices of the
            neighbors of `x`. If `x` is an array of points, returns an object
            array of shape tuple containing lists of neighbors.

        Notes
        -----
        If you have many points whose neighbors you want to find, you may save
        substantial amounts of time by putting them in a KDTree and using
        query_ball_tree.

        Examples
        --------
        >>> from scipy import spatial
        >>> x, y = np.mgrid[0:5, 0:5]
        >>> points = np.c_[x.ravel(), y.ravel()]
        >>> tree = spatial.KDTree(points)
        >>> tree.query_ball_point([2, 0], 1)
        [5, 10, 11, 15]

        Query multiple points and plot the results:

        >>> import matplotlib.pyplot as plt
        >>> points = np.asarray(points)
        >>> plt.plot(points[:,0], points[:,1], '.')
        >>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
        ...     nearby_points = points[results]
        ...     plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
        >>> plt.margins(0.1, 0.1)
        >>> plt.show()

        """
        x = np.asarray(x)
        if x.dtype.kind == 'c':
            raise TypeError("KDTree does not work with complex data")
        if x.shape[-1] != self.m:
            raise ValueError("Searching for a %d-dimensional point in a "
                             "%d-dimensional KDTree" % (x.shape[-1], self.m))
        if len(x.shape) == 1:
            return self.__query_ball_point(x, r, p, eps)
        else:
            retshape = x.shape[:-1]
            result = np.empty(retshape, dtype=object)
            for c in np.ndindex(retshape):
                result[c] = self.__query_ball_point(x[c], r, p=p, eps=eps)
            return result

    def query_ball_tree(self, other, r, p=2., eps=0):
        """Find all pairs of points whose distance is at most r

        Parameters
        ----------
        other : KDTree instance
            The tree containing points to search against.
        r : float
            The maximum distance, has to be positive.
        p : float, optional
            Which Minkowski norm to use.  `p` has to meet the condition
            ``1 <= p <= infinity``.
        eps : float, optional
            Approximate search.  Branches of the tree are not explored
            if their nearest points are further than ``r/(1+eps)``, and
            branches are added in bulk if their furthest points are nearer
            than ``r * (1+eps)``.  `eps` has to be non-negative.

        Returns
        -------
        results : list of lists
            For each element ``self.data[i]`` of this tree, ``results[i]`` is a
            list of the indices of its neighbors in ``other.data``.

        """
        results = [[] for i in range(self.n)]

        def traverse_checking(node1, rect1, node2, rect2):
            if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
                return
            elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
                traverse_no_checking(node1, node2)
            elif isinstance(node1, KDTree.leafnode):
                if isinstance(node2, KDTree.leafnode):
                    d = other.data[node2.idx]
                    for i in node1.idx:
                        results[i] += node2.idx[minkowski_distance(d,self.data[i],p) <= r].tolist()
                else:
                    less, greater = rect2.split(node2.split_dim, node2.split)
                    traverse_checking(node1,rect1,node2.less,less)
                    traverse_checking(node1,rect1,node2.greater,greater)
            elif isinstance(node2, KDTree.leafnode):
                less, greater = rect1.split(node1.split_dim, node1.split)
                traverse_checking(node1.less,less,node2,rect2)
                traverse_checking(node1.greater,greater,node2,rect2)
            else:
                less1, greater1 = rect1.split(node1.split_dim, node1.split)
                less2, greater2 = rect2.split(node2.split_dim, node2.split)
                traverse_checking(node1.less,less1,node2.less,less2)
                traverse_checking(node1.less,less1,node2.greater,greater2)
                traverse_checking(node1.greater,greater1,node2.less,less2)
                traverse_checking(node1.greater,greater1,node2.greater,greater2)

        def traverse_no_checking(node1, node2):
            if isinstance(node1, KDTree.leafnode):
                if isinstance(node2, KDTree.leafnode):
                    for i in node1.idx:
                        results[i] += node2.idx.tolist()
                else:
                    traverse_no_checking(node1, node2.less)
                    traverse_no_checking(node1, node2.greater)
            else:
                traverse_no_checking(node1.less, node2)
                traverse_no_checking(node1.greater, node2)

        traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
                          other.tree, Rectangle(other.maxes, other.mins))
        return results

    def query_pairs(self, r, p=2., eps=0):
        """
        Find all pairs of points within a distance.

        Parameters
        ----------
        r : positive float
            The maximum distance.
        p : float, optional
            Which Minkowski norm to use.  `p` has to meet the condition
            ``1 <= p <= infinity``.
        eps : float, optional
            Approximate search.  Branches of the tree are not explored
            if their nearest points are further than ``r/(1+eps)``, and
            branches are added in bulk if their furthest points are nearer
            than ``r * (1+eps)``.  `eps` has to be non-negative.

        Returns
        -------
        results : set
            Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
            positions are close.

        """
        results = set()

        def traverse_checking(node1, rect1, node2, rect2):
            if rect1.min_distance_rectangle(rect2, p) > r/(1.+eps):
                return
            elif rect1.max_distance_rectangle(rect2, p) < r*(1.+eps):
                traverse_no_checking(node1, node2)
            elif isinstance(node1, KDTree.leafnode):
                if isinstance(node2, KDTree.leafnode):
                    # Special care to avoid duplicate pairs
                    if id(node1) == id(node2):
                        d = self.data[node2.idx]
                        for i in node1.idx:
                            for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
                                if i < j:
                                    results.add((i,j))
                    else:
                        d = self.data[node2.idx]
                        for i in node1.idx:
                            for j in node2.idx[minkowski_distance(d,self.data[i],p) <= r]:
                                if i < j:
                                    results.add((i,j))
                                elif j < i:
                                    results.add((j,i))
                else:
                    less, greater = rect2.split(node2.split_dim, node2.split)
                    traverse_checking(node1,rect1,node2.less,less)
                    traverse_checking(node1,rect1,node2.greater,greater)
            elif isinstance(node2, KDTree.leafnode):
                less, greater = rect1.split(node1.split_dim, node1.split)
                traverse_checking(node1.less,less,node2,rect2)
                traverse_checking(node1.greater,greater,node2,rect2)
            else:
                less1, greater1 = rect1.split(node1.split_dim, node1.split)
                less2, greater2 = rect2.split(node2.split_dim, node2.split)
                traverse_checking(node1.less,less1,node2.less,less2)
                traverse_checking(node1.less,less1,node2.greater,greater2)

                # Avoid traversing (node1.less, node2.greater) and
                # (node1.greater, node2.less) (it's the same node pair twice
                # over, which is the source of the complication in the
                # original KDTree.query_pairs)
                if id(node1) != id(node2):
                    traverse_checking(node1.greater,greater1,node2.less,less2)

                traverse_checking(node1.greater,greater1,node2.greater,greater2)

        def traverse_no_checking(node1, node2):
            if isinstance(node1, KDTree.leafnode):
                if isinstance(node2, KDTree.leafnode):
                    # Special care to avoid duplicate pairs
                    if id(node1) == id(node2):
                        for i in node1.idx:
                            for j in node2.idx:
                                if i < j:
                                    results.add((i,j))
                    else:
                        for i in node1.idx:
                            for j in node2.idx:
                                if i < j:
                                    results.add((i,j))
                                elif j < i:
                                    results.add((j,i))
                else:
                    traverse_no_checking(node1, node2.less)
                    traverse_no_checking(node1, node2.greater)
            else:
                # Avoid traversing (node1.less, node2.greater) and
                # (node1.greater, node2.less) (it's the same node pair twice
                # over, which is the source of the complication in the
                # original KDTree.query_pairs)
                if id(node1) == id(node2):
                    traverse_no_checking(node1.less, node2.less)
                    traverse_no_checking(node1.less, node2.greater)
                    traverse_no_checking(node1.greater, node2.greater)
                else:
                    traverse_no_checking(node1.less, node2)
                    traverse_no_checking(node1.greater, node2)

        traverse_checking(self.tree, Rectangle(self.maxes, self.mins),
                          self.tree, Rectangle(self.maxes, self.mins))
        return results

    def count_neighbors(self, other, r, p=2.):
        """
        Count how many nearby pairs can be formed.

        Count the number of pairs (x1,x2) can be formed, with x1 drawn
        from self and x2 drawn from ``other``, and where
        ``distance(x1, x2, p) <= r``.
        This is the "two-point correlation" described in Gray and Moore 2000,
        "N-body problems in statistical learning", and the code here is based
        on their algorithm.

        Parameters
        ----------
        other : KDTree instance
            The other tree to draw points from.
        r : float or one-dimensional array of floats
            The radius to produce a count for. Multiple radii are searched with
            a single tree traversal.
        p : float, 1<=p<=infinity, optional
            Which Minkowski p-norm to use

        Returns
        -------
        result : int or 1-D array of ints
            The number of pairs. Note that this is internally stored in a numpy
            int, and so may overflow if very large (2e9).

        """
        def traverse(node1, rect1, node2, rect2, idx):
            min_r = rect1.min_distance_rectangle(rect2,p)
            max_r = rect1.max_distance_rectangle(rect2,p)
            c_greater = r[idx] > max_r
            result[idx[c_greater]] += node1.children*node2.children
            idx = idx[(min_r <= r[idx]) & (r[idx] <= max_r)]
            if len(idx) == 0:
                return

            if isinstance(node1,KDTree.leafnode):
                if isinstance(node2,KDTree.leafnode):
                    ds = minkowski_distance(self.data[node1.idx][:,np.newaxis,:],
                                  other.data[node2.idx][np.newaxis,:,:],
                                  p).ravel()
                    ds.sort()
                    result[idx] += np.searchsorted(ds,r[idx],side='right')
                else:
                    less, greater = rect2.split(node2.split_dim, node2.split)
                    traverse(node1, rect1, node2.less, less, idx)
                    traverse(node1, rect1, node2.greater, greater, idx)
            else:
                if isinstance(node2,KDTree.leafnode):
                    less, greater = rect1.split(node1.split_dim, node1.split)
                    traverse(node1.less, less, node2, rect2, idx)
                    traverse(node1.greater, greater, node2, rect2, idx)
                else:
                    less1, greater1 = rect1.split(node1.split_dim, node1.split)
                    less2, greater2 = rect2.split(node2.split_dim, node2.split)
                    traverse(node1.less,less1,node2.less,less2,idx)
                    traverse(node1.less,less1,node2.greater,greater2,idx)
                    traverse(node1.greater,greater1,node2.less,less2,idx)
                    traverse(node1.greater,greater1,node2.greater,greater2,idx)

        R1 = Rectangle(self.maxes, self.mins)
        R2 = Rectangle(other.maxes, other.mins)
        if np.shape(r) == ():
            r = np.array([r])
            result = np.zeros(1,dtype=int)
            traverse(self.tree, R1, other.tree, R2, np.arange(1))
            return result[0]
        elif len(np.shape(r)) == 1:
            r = np.asarray(r)
            n, = r.shape
            result = np.zeros(n,dtype=int)
            traverse(self.tree, R1, other.tree, R2, np.arange(n))
            return result
        else:
            raise ValueError("r must be either a single value or a one-dimensional array of values")

    def sparse_distance_matrix(self, other, max_distance, p=2.):
        """
        Compute a sparse distance matrix

        Computes a distance matrix between two KDTrees, leaving as zero
        any distance greater than max_distance.

        Parameters
        ----------
        other : KDTree

        max_distance : positive float

        p : float, optional

        Returns
        -------
        result : dok_matrix
            Sparse matrix representing the results in "dictionary of keys" format.

        """
        result = scipy.sparse.dok_matrix((self.n,other.n))

        def traverse(node1, rect1, node2, rect2):
            if rect1.min_distance_rectangle(rect2, p) > max_distance:
                return
            elif isinstance(node1, KDTree.leafnode):
                if isinstance(node2, KDTree.leafnode):
                    for i in node1.idx:
                        for j in node2.idx:
                            d = minkowski_distance(self.data[i],other.data[j],p)
                            if d <= max_distance:
                                result[i,j] = d
                else:
                    less, greater = rect2.split(node2.split_dim, node2.split)
                    traverse(node1,rect1,node2.less,less)
                    traverse(node1,rect1,node2.greater,greater)
            elif isinstance(node2, KDTree.leafnode):
                less, greater = rect1.split(node1.split_dim, node1.split)
                traverse(node1.less,less,node2,rect2)
                traverse(node1.greater,greater,node2,rect2)
            else:
                less1, greater1 = rect1.split(node1.split_dim, node1.split)
                less2, greater2 = rect2.split(node2.split_dim, node2.split)
                traverse(node1.less,less1,node2.less,less2)
                traverse(node1.less,less1,node2.greater,greater2)
                traverse(node1.greater,greater1,node2.less,less2)
                traverse(node1.greater,greater1,node2.greater,greater2)
        traverse(self.tree, Rectangle(self.maxes, self.mins),
                 other.tree, Rectangle(other.maxes, other.mins))

        return result


def distance_matrix(x, y, p=2, threshold=1000000):
    """
    Compute the distance matrix.

    Returns the matrix of all pair-wise distances.

    Parameters
    ----------
    x : (M, K) array_like
        Matrix of M vectors in K dimensions.
    y : (N, K) array_like
        Matrix of N vectors in K dimensions.
    p : float, 1 <= p <= infinity
        Which Minkowski p-norm to use.
    threshold : positive int
        If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
        of large temporary arrays.

    Returns
    -------
    result : (M, N) ndarray
        Matrix containing the distance from every vector in `x` to every vector
        in `y`.

    Examples
    --------
    >>> from scipy.spatial import distance_matrix
    >>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
    array([[ 1.        ,  1.41421356],
           [ 1.41421356,  1.        ]])

    """

    x = np.asarray(x)
    m, k = x.shape
    y = np.asarray(y)
    n, kk = y.shape

    if k != kk:
        raise ValueError("x contains %d-dimensional vectors but y contains %d-dimensional vectors" % (k, kk))

    if m*n*k <= threshold:
        return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
    else:
        result = np.empty((m,n),dtype=float)  # FIXME: figure out the best dtype
        if m < n:
            for i in range(m):
                result[i,:] = minkowski_distance(x[i],y,p)
        else:
            for j in range(n):
                result[:,j] = minkowski_distance(x,y[j],p)
        return result