zeros.py
49.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
import warnings
from collections import namedtuple
import operator
from . import _zeros
import numpy as np
_iter = 100
_xtol = 2e-12
_rtol = 4 * np.finfo(float).eps
__all__ = ['newton', 'bisect', 'ridder', 'brentq', 'brenth', 'toms748',
'RootResults']
# Must agree with CONVERGED, SIGNERR, CONVERR, ... in zeros.h
_ECONVERGED = 0
_ESIGNERR = -1
_ECONVERR = -2
_EVALUEERR = -3
_EINPROGRESS = 1
CONVERGED = 'converged'
SIGNERR = 'sign error'
CONVERR = 'convergence error'
VALUEERR = 'value error'
INPROGRESS = 'No error'
flag_map = {_ECONVERGED: CONVERGED, _ESIGNERR: SIGNERR, _ECONVERR: CONVERR,
_EVALUEERR: VALUEERR, _EINPROGRESS: INPROGRESS}
class RootResults(object):
"""Represents the root finding result.
Attributes
----------
root : float
Estimated root location.
iterations : int
Number of iterations needed to find the root.
function_calls : int
Number of times the function was called.
converged : bool
True if the routine converged.
flag : str
Description of the cause of termination.
"""
def __init__(self, root, iterations, function_calls, flag):
self.root = root
self.iterations = iterations
self.function_calls = function_calls
self.converged = flag == _ECONVERGED
self.flag = None
try:
self.flag = flag_map[flag]
except KeyError:
self.flag = 'unknown error %d' % (flag,)
def __repr__(self):
attrs = ['converged', 'flag', 'function_calls',
'iterations', 'root']
m = max(map(len, attrs)) + 1
return '\n'.join([a.rjust(m) + ': ' + repr(getattr(self, a))
for a in attrs])
def results_c(full_output, r):
if full_output:
x, funcalls, iterations, flag = r
results = RootResults(root=x,
iterations=iterations,
function_calls=funcalls,
flag=flag)
return x, results
else:
return r
def _results_select(full_output, r):
"""Select from a tuple of (root, funccalls, iterations, flag)"""
x, funcalls, iterations, flag = r
if full_output:
results = RootResults(root=x,
iterations=iterations,
function_calls=funcalls,
flag=flag)
return x, results
return x
def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50,
fprime2=None, x1=None, rtol=0.0,
full_output=False, disp=True):
"""
Find a zero of a real or complex function using the Newton-Raphson
(or secant or Halley's) method.
Find a zero of the function `func` given a nearby starting point `x0`.
The Newton-Raphson method is used if the derivative `fprime` of `func`
is provided, otherwise the secant method is used. If the second order
derivative `fprime2` of `func` is also provided, then Halley's method is
used.
If `x0` is a sequence with more than one item, then `newton` returns an
array, and `func` must be vectorized and return a sequence or array of the
same shape as its first argument. If `fprime` or `fprime2` is given, then
its return must also have the same shape.
Parameters
----------
func : callable
The function whose zero is wanted. It must be a function of a
single variable of the form ``f(x,a,b,c...)``, where ``a,b,c...``
are extra arguments that can be passed in the `args` parameter.
x0 : float, sequence, or ndarray
An initial estimate of the zero that should be somewhere near the
actual zero. If not scalar, then `func` must be vectorized and return
a sequence or array of the same shape as its first argument.
fprime : callable, optional
The derivative of the function when available and convenient. If it
is None (default), then the secant method is used.
args : tuple, optional
Extra arguments to be used in the function call.
tol : float, optional
The allowable error of the zero value. If `func` is complex-valued,
a larger `tol` is recommended as both the real and imaginary parts
of `x` contribute to ``|x - x0|``.
maxiter : int, optional
Maximum number of iterations.
fprime2 : callable, optional
The second order derivative of the function when available and
convenient. If it is None (default), then the normal Newton-Raphson
or the secant method is used. If it is not None, then Halley's method
is used.
x1 : float, optional
Another estimate of the zero that should be somewhere near the
actual zero. Used if `fprime` is not provided.
rtol : float, optional
Tolerance (relative) for termination.
full_output : bool, optional
If `full_output` is False (default), the root is returned.
If True and `x0` is scalar, the return value is ``(x, r)``, where ``x``
is the root and ``r`` is a `RootResults` object.
If True and `x0` is non-scalar, the return value is ``(x, converged,
zero_der)`` (see Returns section for details).
disp : bool, optional
If True, raise a RuntimeError if the algorithm didn't converge, with
the error message containing the number of iterations and current
function value. Otherwise, the convergence status is recorded in a
`RootResults` return object.
Ignored if `x0` is not scalar.
*Note: this has little to do with displaying, however,
the `disp` keyword cannot be renamed for backwards compatibility.*
Returns
-------
root : float, sequence, or ndarray
Estimated location where function is zero.
r : `RootResults`, optional
Present if ``full_output=True`` and `x0` is scalar.
Object containing information about the convergence. In particular,
``r.converged`` is True if the routine converged.
converged : ndarray of bool, optional
Present if ``full_output=True`` and `x0` is non-scalar.
For vector functions, indicates which elements converged successfully.
zero_der : ndarray of bool, optional
Present if ``full_output=True`` and `x0` is non-scalar.
For vector functions, indicates which elements had a zero derivative.
See Also
--------
brentq, brenth, ridder, bisect
fsolve : find zeros in N dimensions.
Notes
-----
The convergence rate of the Newton-Raphson method is quadratic,
the Halley method is cubic, and the secant method is
sub-quadratic. This means that if the function is well-behaved
the actual error in the estimated zero after the nth iteration
is approximately the square (cube for Halley) of the error
after the (n-1)th step. However, the stopping criterion used
here is the step size and there is no guarantee that a zero
has been found. Consequently, the result should be verified.
Safer algorithms are brentq, brenth, ridder, and bisect,
but they all require that the root first be bracketed in an
interval where the function changes sign. The brentq algorithm
is recommended for general use in one dimensional problems
when such an interval has been found.
When `newton` is used with arrays, it is best suited for the following
types of problems:
* The initial guesses, `x0`, are all relatively the same distance from
the roots.
* Some or all of the extra arguments, `args`, are also arrays so that a
class of similar problems can be solved together.
* The size of the initial guesses, `x0`, is larger than O(100) elements.
Otherwise, a naive loop may perform as well or better than a vector.
Examples
--------
>>> from scipy import optimize
>>> import matplotlib.pyplot as plt
>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1
``fprime`` is not provided, use the secant method:
>>> root = optimize.newton(f, 1.5)
>>> root
1.0000000000000016
>>> root = optimize.newton(f, 1.5, fprime2=lambda x: 6 * x)
>>> root
1.0000000000000016
Only ``fprime`` is provided, use the Newton-Raphson method:
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2)
>>> root
1.0
Both ``fprime2`` and ``fprime`` are provided, use Halley's method:
>>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2,
... fprime2=lambda x: 6 * x)
>>> root
1.0
When we want to find zeros for a set of related starting values and/or
function parameters, we can provide both of those as an array of inputs:
>>> f = lambda x, a: x**3 - a
>>> fder = lambda x, a: 3 * x**2
>>> np.random.seed(4321)
>>> x = np.random.randn(100)
>>> a = np.arange(-50, 50)
>>> vec_res = optimize.newton(f, x, fprime=fder, args=(a, ))
The above is the equivalent of solving for each value in ``(x, a)``
separately in a for-loop, just faster:
>>> loop_res = [optimize.newton(f, x0, fprime=fder, args=(a0,))
... for x0, a0 in zip(x, a)]
>>> np.allclose(vec_res, loop_res)
True
Plot the results found for all values of ``a``:
>>> analytical_result = np.sign(a) * np.abs(a)**(1/3)
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.plot(a, analytical_result, 'o')
>>> ax.plot(a, vec_res, '.')
>>> ax.set_xlabel('$a$')
>>> ax.set_ylabel('$x$ where $f(x, a)=0$')
>>> plt.show()
"""
if tol <= 0:
raise ValueError("tol too small (%g <= 0)" % tol)
maxiter = operator.index(maxiter)
if maxiter < 1:
raise ValueError("maxiter must be greater than 0")
if np.size(x0) > 1:
return _array_newton(func, x0, fprime, args, tol, maxiter, fprime2,
full_output)
# Convert to float (don't use float(x0); this works also for complex x0)
p0 = 1.0 * x0
funcalls = 0
if fprime is not None:
# Newton-Raphson method
for itr in range(maxiter):
# first evaluate fval
fval = func(p0, *args)
funcalls += 1
# If fval is 0, a root has been found, then terminate
if fval == 0:
return _results_select(
full_output, (p0, funcalls, itr, _ECONVERGED))
fder = fprime(p0, *args)
funcalls += 1
if fder == 0:
msg = "Derivative was zero."
if disp:
msg += (
" Failed to converge after %d iterations, value is %s."
% (itr + 1, p0))
raise RuntimeError(msg)
warnings.warn(msg, RuntimeWarning)
return _results_select(
full_output, (p0, funcalls, itr + 1, _ECONVERR))
newton_step = fval / fder
if fprime2:
fder2 = fprime2(p0, *args)
funcalls += 1
# Halley's method:
# newton_step /= (1.0 - 0.5 * newton_step * fder2 / fder)
# Only do it if denominator stays close enough to 1
# Rationale: If 1-adj < 0, then Halley sends x in the
# opposite direction to Newton. Doesn't happen if x is close
# enough to root.
adj = newton_step * fder2 / fder / 2
if np.abs(adj) < 1:
newton_step /= 1.0 - adj
p = p0 - newton_step
if np.isclose(p, p0, rtol=rtol, atol=tol):
return _results_select(
full_output, (p, funcalls, itr + 1, _ECONVERGED))
p0 = p
else:
# Secant method
if x1 is not None:
if x1 == x0:
raise ValueError("x1 and x0 must be different")
p1 = x1
else:
eps = 1e-4
p1 = x0 * (1 + eps)
p1 += (eps if p1 >= 0 else -eps)
q0 = func(p0, *args)
funcalls += 1
q1 = func(p1, *args)
funcalls += 1
if abs(q1) < abs(q0):
p0, p1, q0, q1 = p1, p0, q1, q0
for itr in range(maxiter):
if q1 == q0:
if p1 != p0:
msg = "Tolerance of %s reached." % (p1 - p0)
if disp:
msg += (
" Failed to converge after %d iterations, value is %s."
% (itr + 1, p1))
raise RuntimeError(msg)
warnings.warn(msg, RuntimeWarning)
p = (p1 + p0) / 2.0
return _results_select(
full_output, (p, funcalls, itr + 1, _ECONVERGED))
else:
if abs(q1) > abs(q0):
p = (-q0 / q1 * p1 + p0) / (1 - q0 / q1)
else:
p = (-q1 / q0 * p0 + p1) / (1 - q1 / q0)
if np.isclose(p, p1, rtol=rtol, atol=tol):
return _results_select(
full_output, (p, funcalls, itr + 1, _ECONVERGED))
p0, q0 = p1, q1
p1 = p
q1 = func(p1, *args)
funcalls += 1
if disp:
msg = ("Failed to converge after %d iterations, value is %s."
% (itr + 1, p))
raise RuntimeError(msg)
return _results_select(full_output, (p, funcalls, itr + 1, _ECONVERR))
def _array_newton(func, x0, fprime, args, tol, maxiter, fprime2, full_output):
"""
A vectorized version of Newton, Halley, and secant methods for arrays.
Do not use this method directly. This method is called from `newton`
when ``np.size(x0) > 1`` is ``True``. For docstring, see `newton`.
"""
# Explicitly copy `x0` as `p` will be modified inplace, but the
# user's array should not be altered.
p = np.array(x0, copy=True)
failures = np.ones_like(p, dtype=bool)
nz_der = np.ones_like(failures)
if fprime is not None:
# Newton-Raphson method
for iteration in range(maxiter):
# first evaluate fval
fval = np.asarray(func(p, *args))
# If all fval are 0, all roots have been found, then terminate
if not fval.any():
failures = fval.astype(bool)
break
fder = np.asarray(fprime(p, *args))
nz_der = (fder != 0)
# stop iterating if all derivatives are zero
if not nz_der.any():
break
# Newton step
dp = fval[nz_der] / fder[nz_der]
if fprime2 is not None:
fder2 = np.asarray(fprime2(p, *args))
dp = dp / (1.0 - 0.5 * dp * fder2[nz_der] / fder[nz_der])
# only update nonzero derivatives
p = np.asarray(p, dtype=np.result_type(p, dp, np.float64))
p[nz_der] -= dp
failures[nz_der] = np.abs(dp) >= tol # items not yet converged
# stop iterating if there aren't any failures, not incl zero der
if not failures[nz_der].any():
break
else:
# Secant method
dx = np.finfo(float).eps**0.33
p1 = p * (1 + dx) + np.where(p >= 0, dx, -dx)
q0 = np.asarray(func(p, *args))
q1 = np.asarray(func(p1, *args))
active = np.ones_like(p, dtype=bool)
for iteration in range(maxiter):
nz_der = (q1 != q0)
# stop iterating if all derivatives are zero
if not nz_der.any():
p = (p1 + p) / 2.0
break
# Secant Step
dp = (q1 * (p1 - p))[nz_der] / (q1 - q0)[nz_der]
# only update nonzero derivatives
p = np.asarray(p, dtype=np.result_type(p, p1, dp, np.float64))
p[nz_der] = p1[nz_der] - dp
active_zero_der = ~nz_der & active
p[active_zero_der] = (p1 + p)[active_zero_der] / 2.0
active &= nz_der # don't assign zero derivatives again
failures[nz_der] = np.abs(dp) >= tol # not yet converged
# stop iterating if there aren't any failures, not incl zero der
if not failures[nz_der].any():
break
p1, p = p, p1
q0 = q1
q1 = np.asarray(func(p1, *args))
zero_der = ~nz_der & failures # don't include converged with zero-ders
if zero_der.any():
# Secant warnings
if fprime is None:
nonzero_dp = (p1 != p)
# non-zero dp, but infinite newton step
zero_der_nz_dp = (zero_der & nonzero_dp)
if zero_der_nz_dp.any():
rms = np.sqrt(
sum((p1[zero_der_nz_dp] - p[zero_der_nz_dp]) ** 2)
)
warnings.warn(
'RMS of {:g} reached'.format(rms), RuntimeWarning)
# Newton or Halley warnings
else:
all_or_some = 'all' if zero_der.all() else 'some'
msg = '{:s} derivatives were zero'.format(all_or_some)
warnings.warn(msg, RuntimeWarning)
elif failures.any():
all_or_some = 'all' if failures.all() else 'some'
msg = '{0:s} failed to converge after {1:d} iterations'.format(
all_or_some, maxiter
)
if failures.all():
raise RuntimeError(msg)
warnings.warn(msg, RuntimeWarning)
if full_output:
result = namedtuple('result', ('root', 'converged', 'zero_der'))
p = result(p, ~failures, zero_der)
return p
def bisect(f, a, b, args=(),
xtol=_xtol, rtol=_rtol, maxiter=_iter,
full_output=False, disp=True):
"""
Find root of a function within an interval using bisection.
Basic bisection routine to find a zero of the function `f` between the
arguments `a` and `b`. `f(a)` and `f(b)` cannot have the same signs.
Slow but sure.
Parameters
----------
f : function
Python function returning a number. `f` must be continuous, and
f(a) and f(b) must have opposite signs.
a : scalar
One end of the bracketing interval [a,b].
b : scalar
The other end of the bracketing interval [a,b].
xtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter must be nonnegative.
rtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter cannot be smaller than its default value of
``4*np.finfo(float).eps``.
maxiter : int, optional
If convergence is not achieved in `maxiter` iterations, an error is
raised. Must be >= 0.
args : tuple, optional
Containing extra arguments for the function `f`.
`f` is called by ``apply(f, (x)+args)``.
full_output : bool, optional
If `full_output` is False, the root is returned. If `full_output` is
True, the return value is ``(x, r)``, where x is the root, and r is
a `RootResults` object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Otherwise, the convergence status is recorded in a `RootResults`
return object.
Returns
-------
x0 : float
Zero of `f` between `a` and `b`.
r : `RootResults` (present if ``full_output = True``)
Object containing information about the convergence. In particular,
``r.converged`` is True if the routine converged.
Examples
--------
>>> def f(x):
... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.bisect(f, 0, 2)
>>> root
1.0
>>> root = optimize.bisect(f, -2, 0)
>>> root
-1.0
See Also
--------
brentq, brenth, bisect, newton
fixed_point : scalar fixed-point finder
fsolve : n-dimensional root-finding
"""
if not isinstance(args, tuple):
args = (args,)
maxiter = operator.index(maxiter)
if xtol <= 0:
raise ValueError("xtol too small (%g <= 0)" % xtol)
if rtol < _rtol:
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
r = _zeros._bisect(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
return results_c(full_output, r)
def ridder(f, a, b, args=(),
xtol=_xtol, rtol=_rtol, maxiter=_iter,
full_output=False, disp=True):
"""
Find a root of a function in an interval using Ridder's method.
Parameters
----------
f : function
Python function returning a number. f must be continuous, and f(a) and
f(b) must have opposite signs.
a : scalar
One end of the bracketing interval [a,b].
b : scalar
The other end of the bracketing interval [a,b].
xtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter must be nonnegative.
rtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter cannot be smaller than its default value of
``4*np.finfo(float).eps``.
maxiter : int, optional
If convergence is not achieved in `maxiter` iterations, an error is
raised. Must be >= 0.
args : tuple, optional
Containing extra arguments for the function `f`.
`f` is called by ``apply(f, (x)+args)``.
full_output : bool, optional
If `full_output` is False, the root is returned. If `full_output` is
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
a `RootResults` object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Otherwise, the convergence status is recorded in any `RootResults`
return object.
Returns
-------
x0 : float
Zero of `f` between `a` and `b`.
r : `RootResults` (present if ``full_output = True``)
Object containing information about the convergence.
In particular, ``r.converged`` is True if the routine converged.
See Also
--------
brentq, brenth, bisect, newton : 1-D root-finding
fixed_point : scalar fixed-point finder
Notes
-----
Uses [Ridders1979]_ method to find a zero of the function `f` between the
arguments `a` and `b`. Ridders' method is faster than bisection, but not
generally as fast as the Brent routines. [Ridders1979]_ provides the
classic description and source of the algorithm. A description can also be
found in any recent edition of Numerical Recipes.
The routine used here diverges slightly from standard presentations in
order to be a bit more careful of tolerance.
References
----------
.. [Ridders1979]
Ridders, C. F. J. "A New Algorithm for Computing a
Single Root of a Real Continuous Function."
IEEE Trans. Circuits Systems 26, 979-980, 1979.
Examples
--------
>>> def f(x):
... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.ridder(f, 0, 2)
>>> root
1.0
>>> root = optimize.ridder(f, -2, 0)
>>> root
-1.0
"""
if not isinstance(args, tuple):
args = (args,)
maxiter = operator.index(maxiter)
if xtol <= 0:
raise ValueError("xtol too small (%g <= 0)" % xtol)
if rtol < _rtol:
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
r = _zeros._ridder(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
return results_c(full_output, r)
def brentq(f, a, b, args=(),
xtol=_xtol, rtol=_rtol, maxiter=_iter,
full_output=False, disp=True):
"""
Find a root of a function in a bracketing interval using Brent's method.
Uses the classic Brent's method to find a zero of the function `f` on
the sign changing interval [a , b]. Generally considered the best of the
rootfinding routines here. It is a safe version of the secant method that
uses inverse quadratic extrapolation. Brent's method combines root
bracketing, interval bisection, and inverse quadratic interpolation. It is
sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973)
claims convergence is guaranteed for functions computable within [a,b].
[Brent1973]_ provides the classic description of the algorithm. Another
description can be found in a recent edition of Numerical Recipes, including
[PressEtal1992]_. A third description is at
http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to
understand the algorithm just by reading our code. Our code diverges a bit
from standard presentations: we choose a different formula for the
extrapolation step.
Parameters
----------
f : function
Python function returning a number. The function :math:`f`
must be continuous, and :math:`f(a)` and :math:`f(b)` must
have opposite signs.
a : scalar
One end of the bracketing interval :math:`[a, b]`.
b : scalar
The other end of the bracketing interval :math:`[a, b]`.
xtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter must be nonnegative. For nice functions, Brent's
method will often satisfy the above condition with ``xtol/2``
and ``rtol/2``. [Brent1973]_
rtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter cannot be smaller than its default value of
``4*np.finfo(float).eps``. For nice functions, Brent's
method will often satisfy the above condition with ``xtol/2``
and ``rtol/2``. [Brent1973]_
maxiter : int, optional
If convergence is not achieved in `maxiter` iterations, an error is
raised. Must be >= 0.
args : tuple, optional
Containing extra arguments for the function `f`.
`f` is called by ``apply(f, (x)+args)``.
full_output : bool, optional
If `full_output` is False, the root is returned. If `full_output` is
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
a `RootResults` object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Otherwise, the convergence status is recorded in any `RootResults`
return object.
Returns
-------
x0 : float
Zero of `f` between `a` and `b`.
r : `RootResults` (present if ``full_output = True``)
Object containing information about the convergence. In particular,
``r.converged`` is True if the routine converged.
Notes
-----
`f` must be continuous. f(a) and f(b) must have opposite signs.
Related functions fall into several classes:
multivariate local optimizers
`fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg`
nonlinear least squares minimizer
`leastsq`
constrained multivariate optimizers
`fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla`
global optimizers
`basinhopping`, `brute`, `differential_evolution`
local scalar minimizers
`fminbound`, `brent`, `golden`, `bracket`
N-D root-finding
`fsolve`
1-D root-finding
`brenth`, `ridder`, `bisect`, `newton`
scalar fixed-point finder
`fixed_point`
References
----------
.. [Brent1973]
Brent, R. P.,
*Algorithms for Minimization Without Derivatives*.
Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.
.. [PressEtal1992]
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
*Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd ed.
Cambridge, England: Cambridge University Press, pp. 352-355, 1992.
Section 9.3: "Van Wijngaarden-Dekker-Brent Method."
Examples
--------
>>> def f(x):
... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.brentq(f, -2, 0)
>>> root
-1.0
>>> root = optimize.brentq(f, 0, 2)
>>> root
1.0
"""
if not isinstance(args, tuple):
args = (args,)
maxiter = operator.index(maxiter)
if xtol <= 0:
raise ValueError("xtol too small (%g <= 0)" % xtol)
if rtol < _rtol:
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
r = _zeros._brentq(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
return results_c(full_output, r)
def brenth(f, a, b, args=(),
xtol=_xtol, rtol=_rtol, maxiter=_iter,
full_output=False, disp=True):
"""Find a root of a function in a bracketing interval using Brent's
method with hyperbolic extrapolation.
A variation on the classic Brent routine to find a zero of the function f
between the arguments a and b that uses hyperbolic extrapolation instead of
inverse quadratic extrapolation. There was a paper back in the 1980's ...
f(a) and f(b) cannot have the same signs. Generally, on a par with the
brent routine, but not as heavily tested. It is a safe version of the
secant method that uses hyperbolic extrapolation. The version here is by
Chuck Harris.
Parameters
----------
f : function
Python function returning a number. f must be continuous, and f(a) and
f(b) must have opposite signs.
a : scalar
One end of the bracketing interval [a,b].
b : scalar
The other end of the bracketing interval [a,b].
xtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter must be nonnegative. As with `brentq`, for nice
functions the method will often satisfy the above condition
with ``xtol/2`` and ``rtol/2``.
rtol : number, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter cannot be smaller than its default value of
``4*np.finfo(float).eps``. As with `brentq`, for nice functions
the method will often satisfy the above condition with
``xtol/2`` and ``rtol/2``.
maxiter : int, optional
If convergence is not achieved in `maxiter` iterations, an error is
raised. Must be >= 0.
args : tuple, optional
Containing extra arguments for the function `f`.
`f` is called by ``apply(f, (x)+args)``.
full_output : bool, optional
If `full_output` is False, the root is returned. If `full_output` is
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
a `RootResults` object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Otherwise, the convergence status is recorded in any `RootResults`
return object.
Returns
-------
x0 : float
Zero of `f` between `a` and `b`.
r : `RootResults` (present if ``full_output = True``)
Object containing information about the convergence. In particular,
``r.converged`` is True if the routine converged.
Examples
--------
>>> def f(x):
... return (x**2 - 1)
>>> from scipy import optimize
>>> root = optimize.brenth(f, -2, 0)
>>> root
-1.0
>>> root = optimize.brenth(f, 0, 2)
>>> root
1.0
See Also
--------
fmin, fmin_powell, fmin_cg,
fmin_bfgs, fmin_ncg : multivariate local optimizers
leastsq : nonlinear least squares minimizer
fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained multivariate optimizers
basinhopping, differential_evolution, brute : global optimizers
fminbound, brent, golden, bracket : local scalar minimizers
fsolve : N-D root-finding
brentq, brenth, ridder, bisect, newton : 1-D root-finding
fixed_point : scalar fixed-point finder
"""
if not isinstance(args, tuple):
args = (args,)
maxiter = operator.index(maxiter)
if xtol <= 0:
raise ValueError("xtol too small (%g <= 0)" % xtol)
if rtol < _rtol:
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
r = _zeros._brenth(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
return results_c(full_output, r)
################################
# TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions", by
# Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
# See [1]
def _within_tolerance(x, y, rtol, atol):
diff = np.abs(x - y)
z = np.abs(y)
result = (diff <= (atol + rtol * z))
return result
def _notclose(fs, rtol=_rtol, atol=_xtol):
# Ensure not None, not 0, all finite, and not very close to each other
notclosefvals = (
all(fs) and all(np.isfinite(fs)) and
not any(any(np.isclose(_f, fs[i + 1:], rtol=rtol, atol=atol))
for i, _f in enumerate(fs[:-1])))
return notclosefvals
def _secant(xvals, fvals):
"""Perform a secant step, taking a little care"""
# Secant has many "mathematically" equivalent formulations
# x2 = x0 - (x1 - x0)/(f1 - f0) * f0
# = x1 - (x1 - x0)/(f1 - f0) * f1
# = (-x1 * f0 + x0 * f1) / (f1 - f0)
# = (-f0 / f1 * x1 + x0) / (1 - f0 / f1)
# = (-f1 / f0 * x0 + x1) / (1 - f1 / f0)
x0, x1 = xvals[:2]
f0, f1 = fvals[:2]
if f0 == f1:
return np.nan
if np.abs(f1) > np.abs(f0):
x2 = (-f0 / f1 * x1 + x0) / (1 - f0 / f1)
else:
x2 = (-f1 / f0 * x0 + x1) / (1 - f1 / f0)
return x2
def _update_bracket(ab, fab, c, fc):
"""Update a bracket given (c, fc), return the discarded endpoints."""
fa, fb = fab
idx = (0 if np.sign(fa) * np.sign(fc) > 0 else 1)
rx, rfx = ab[idx], fab[idx]
fab[idx] = fc
ab[idx] = c
return rx, rfx
def _compute_divided_differences(xvals, fvals, N=None, full=True,
forward=True):
"""Return a matrix of divided differences for the xvals, fvals pairs
DD[i, j] = f[x_{i-j}, ..., x_i] for 0 <= j <= i
If full is False, just return the main diagonal(or last row):
f[a], f[a, b] and f[a, b, c].
If forward is False, return f[c], f[b, c], f[a, b, c]."""
if full:
if forward:
xvals = np.asarray(xvals)
else:
xvals = np.array(xvals)[::-1]
M = len(xvals)
N = M if N is None else min(N, M)
DD = np.zeros([M, N])
DD[:, 0] = fvals[:]
for i in range(1, N):
DD[i:, i] = (np.diff(DD[i - 1:, i - 1]) /
(xvals[i:] - xvals[:M - i]))
return DD
xvals = np.asarray(xvals)
dd = np.array(fvals)
row = np.array(fvals)
idx2Use = (0 if forward else -1)
dd[0] = fvals[idx2Use]
for i in range(1, len(xvals)):
denom = xvals[i:i + len(row) - 1] - xvals[:len(row) - 1]
row = np.diff(row)[:] / denom
dd[i] = row[idx2Use]
return dd
def _interpolated_poly(xvals, fvals, x):
"""Compute p(x) for the polynomial passing through the specified locations.
Use Neville's algorithm to compute p(x) where p is the minimal degree
polynomial passing through the points xvals, fvals"""
xvals = np.asarray(xvals)
N = len(xvals)
Q = np.zeros([N, N])
D = np.zeros([N, N])
Q[:, 0] = fvals[:]
D[:, 0] = fvals[:]
for k in range(1, N):
alpha = D[k:, k - 1] - Q[k - 1:N - 1, k - 1]
diffik = xvals[0:N - k] - xvals[k:N]
Q[k:, k] = (xvals[k:] - x) / diffik * alpha
D[k:, k] = (xvals[:N - k] - x) / diffik * alpha
# Expect Q[-1, 1:] to be small relative to Q[-1, 0] as x approaches a root
return np.sum(Q[-1, 1:]) + Q[-1, 0]
def _inverse_poly_zero(a, b, c, d, fa, fb, fc, fd):
"""Inverse cubic interpolation f-values -> x-values
Given four points (fa, a), (fb, b), (fc, c), (fd, d) with
fa, fb, fc, fd all distinct, find poly IP(y) through the 4 points
and compute x=IP(0).
"""
return _interpolated_poly([fa, fb, fc, fd], [a, b, c, d], 0)
def _newton_quadratic(ab, fab, d, fd, k):
"""Apply Newton-Raphson like steps, using divided differences to approximate f'
ab is a real interval [a, b] containing a root,
fab holds the real values of f(a), f(b)
d is a real number outside [ab, b]
k is the number of steps to apply
"""
a, b = ab
fa, fb = fab
_, B, A = _compute_divided_differences([a, b, d], [fa, fb, fd],
forward=True, full=False)
# _P is the quadratic polynomial through the 3 points
def _P(x):
# Horner evaluation of fa + B * (x - a) + A * (x - a) * (x - b)
return (A * (x - b) + B) * (x - a) + fa
if A == 0:
r = a - fa / B
else:
r = (a if np.sign(A) * np.sign(fa) > 0 else b)
# Apply k Newton-Raphson steps to _P(x), starting from x=r
for i in range(k):
r1 = r - _P(r) / (B + A * (2 * r - a - b))
if not (ab[0] < r1 < ab[1]):
if (ab[0] < r < ab[1]):
return r
r = sum(ab) / 2.0
break
r = r1
return r
class TOMS748Solver(object):
"""Solve f(x, *args) == 0 using Algorithm748 of Alefeld, Potro & Shi.
"""
_MU = 0.5
_K_MIN = 1
_K_MAX = 100 # A very high value for real usage. Expect 1, 2, maybe 3.
def __init__(self):
self.f = None
self.args = None
self.function_calls = 0
self.iterations = 0
self.k = 2
# ab=[a,b] is a global interval containing a root
self.ab = [np.nan, np.nan]
# fab is function values at a, b
self.fab = [np.nan, np.nan]
self.d = None
self.fd = None
self.e = None
self.fe = None
self.disp = False
self.xtol = _xtol
self.rtol = _rtol
self.maxiter = _iter
def configure(self, xtol, rtol, maxiter, disp, k):
self.disp = disp
self.xtol = xtol
self.rtol = rtol
self.maxiter = maxiter
# Silently replace a low value of k with 1
self.k = max(k, self._K_MIN)
# Noisily replace a high value of k with self._K_MAX
if self.k > self._K_MAX:
msg = "toms748: Overriding k: ->%d" % self._K_MAX
warnings.warn(msg, RuntimeWarning)
self.k = self._K_MAX
def _callf(self, x, error=True):
"""Call the user-supplied function, update book-keeping"""
fx = self.f(x, *self.args)
self.function_calls += 1
if not np.isfinite(fx) and error:
raise ValueError("Invalid function value: f(%f) -> %s " % (x, fx))
return fx
def get_result(self, x, flag=_ECONVERGED):
r"""Package the result and statistics into a tuple."""
return (x, self.function_calls, self.iterations, flag)
def _update_bracket(self, c, fc):
return _update_bracket(self.ab, self.fab, c, fc)
def start(self, f, a, b, args=()):
r"""Prepare for the iterations."""
self.function_calls = 0
self.iterations = 0
self.f = f
self.args = args
self.ab[:] = [a, b]
if not np.isfinite(a) or np.imag(a) != 0:
raise ValueError("Invalid x value: %s " % (a))
if not np.isfinite(b) or np.imag(b) != 0:
raise ValueError("Invalid x value: %s " % (b))
fa = self._callf(a)
if not np.isfinite(fa) or np.imag(fa) != 0:
raise ValueError("Invalid function value: f(%f) -> %s " % (a, fa))
if fa == 0:
return _ECONVERGED, a
fb = self._callf(b)
if not np.isfinite(fb) or np.imag(fb) != 0:
raise ValueError("Invalid function value: f(%f) -> %s " % (b, fb))
if fb == 0:
return _ECONVERGED, b
if np.sign(fb) * np.sign(fa) > 0:
raise ValueError("a, b must bracket a root f(%e)=%e, f(%e)=%e " %
(a, fa, b, fb))
self.fab[:] = [fa, fb]
return _EINPROGRESS, sum(self.ab) / 2.0
def get_status(self):
"""Determine the current status."""
a, b = self.ab[:2]
if _within_tolerance(a, b, self.rtol, self.xtol):
return _ECONVERGED, sum(self.ab) / 2.0
if self.iterations >= self.maxiter:
return _ECONVERR, sum(self.ab) / 2.0
return _EINPROGRESS, sum(self.ab) / 2.0
def iterate(self):
"""Perform one step in the algorithm.
Implements Algorithm 4.1(k=1) or 4.2(k=2) in [APS1995]
"""
self.iterations += 1
eps = np.finfo(float).eps
d, fd, e, fe = self.d, self.fd, self.e, self.fe
ab_width = self.ab[1] - self.ab[0] # Need the start width below
c = None
for nsteps in range(2, self.k+2):
# If the f-values are sufficiently separated, perform an inverse
# polynomial interpolation step. Otherwise, nsteps repeats of
# an approximate Newton-Raphson step.
if _notclose(self.fab + [fd, fe], rtol=0, atol=32*eps):
c0 = _inverse_poly_zero(self.ab[0], self.ab[1], d, e,
self.fab[0], self.fab[1], fd, fe)
if self.ab[0] < c0 < self.ab[1]:
c = c0
if c is None:
c = _newton_quadratic(self.ab, self.fab, d, fd, nsteps)
fc = self._callf(c)
if fc == 0:
return _ECONVERGED, c
# re-bracket
e, fe = d, fd
d, fd = self._update_bracket(c, fc)
# u is the endpoint with the smallest f-value
uix = (0 if np.abs(self.fab[0]) < np.abs(self.fab[1]) else 1)
u, fu = self.ab[uix], self.fab[uix]
_, A = _compute_divided_differences(self.ab, self.fab,
forward=(uix == 0), full=False)
c = u - 2 * fu / A
if np.abs(c - u) > 0.5 * (self.ab[1] - self.ab[0]):
c = sum(self.ab) / 2.0
else:
if np.isclose(c, u, rtol=eps, atol=0):
# c didn't change (much).
# Either because the f-values at the endpoints have vastly
# differing magnitudes, or because the root is very close to
# that endpoint
frs = np.frexp(self.fab)[1]
if frs[uix] < frs[1 - uix] - 50: # Differ by more than 2**50
c = (31 * self.ab[uix] + self.ab[1 - uix]) / 32
else:
# Make a bigger adjustment, about the
# size of the requested tolerance.
mm = (1 if uix == 0 else -1)
adj = mm * np.abs(c) * self.rtol + mm * self.xtol
c = u + adj
if not self.ab[0] < c < self.ab[1]:
c = sum(self.ab) / 2.0
fc = self._callf(c)
if fc == 0:
return _ECONVERGED, c
e, fe = d, fd
d, fd = self._update_bracket(c, fc)
# If the width of the new interval did not decrease enough, bisect
if self.ab[1] - self.ab[0] > self._MU * ab_width:
e, fe = d, fd
z = sum(self.ab) / 2.0
fz = self._callf(z)
if fz == 0:
return _ECONVERGED, z
d, fd = self._update_bracket(z, fz)
# Record d and e for next iteration
self.d, self.fd = d, fd
self.e, self.fe = e, fe
status, xn = self.get_status()
return status, xn
def solve(self, f, a, b, args=(),
xtol=_xtol, rtol=_rtol, k=2, maxiter=_iter, disp=True):
r"""Solve f(x) = 0 given an interval containing a zero."""
self.configure(xtol=xtol, rtol=rtol, maxiter=maxiter, disp=disp, k=k)
status, xn = self.start(f, a, b, args)
if status == _ECONVERGED:
return self.get_result(xn)
# The first step only has two x-values.
c = _secant(self.ab, self.fab)
if not self.ab[0] < c < self.ab[1]:
c = sum(self.ab) / 2.0
fc = self._callf(c)
if fc == 0:
return self.get_result(c)
self.d, self.fd = self._update_bracket(c, fc)
self.e, self.fe = None, None
self.iterations += 1
while True:
status, xn = self.iterate()
if status == _ECONVERGED:
return self.get_result(xn)
if status == _ECONVERR:
fmt = "Failed to converge after %d iterations, bracket is %s"
if disp:
msg = fmt % (self.iterations + 1, self.ab)
raise RuntimeError(msg)
return self.get_result(xn, _ECONVERR)
def toms748(f, a, b, args=(), k=1,
xtol=_xtol, rtol=_rtol, maxiter=_iter,
full_output=False, disp=True):
"""
Find a zero using TOMS Algorithm 748 method.
Implements the Algorithm 748 method of Alefeld, Potro and Shi to find a
zero of the function `f` on the interval `[a , b]`, where `f(a)` and
`f(b)` must have opposite signs.
It uses a mixture of inverse cubic interpolation and
"Newton-quadratic" steps. [APS1995].
Parameters
----------
f : function
Python function returning a scalar. The function :math:`f`
must be continuous, and :math:`f(a)` and :math:`f(b)`
have opposite signs.
a : scalar,
lower boundary of the search interval
b : scalar,
upper boundary of the search interval
args : tuple, optional
containing extra arguments for the function `f`.
`f` is called by ``f(x, *args)``.
k : int, optional
The number of Newton quadratic steps to perform each
iteration. ``k>=1``.
xtol : scalar, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
parameter must be nonnegative.
rtol : scalar, optional
The computed root ``x0`` will satisfy ``np.allclose(x, x0,
atol=xtol, rtol=rtol)``, where ``x`` is the exact root.
maxiter : int, optional
If convergence is not achieved in `maxiter` iterations, an error is
raised. Must be >= 0.
full_output : bool, optional
If `full_output` is False, the root is returned. If `full_output` is
True, the return value is ``(x, r)``, where `x` is the root, and `r` is
a `RootResults` object.
disp : bool, optional
If True, raise RuntimeError if the algorithm didn't converge.
Otherwise, the convergence status is recorded in the `RootResults`
return object.
Returns
-------
x0 : float
Approximate Zero of `f`
r : `RootResults` (present if ``full_output = True``)
Object containing information about the convergence. In particular,
``r.converged`` is True if the routine converged.
See Also
--------
brentq, brenth, ridder, bisect, newton
fsolve : find zeroes in N dimensions.
Notes
-----
`f` must be continuous.
Algorithm 748 with ``k=2`` is asymptotically the most efficient
algorithm known for finding roots of a four times continuously
differentiable function.
In contrast with Brent's algorithm, which may only decrease the length of
the enclosing bracket on the last step, Algorithm 748 decreases it each
iteration with the same asymptotic efficiency as it finds the root.
For easy statement of efficiency indices, assume that `f` has 4
continuouous deriviatives.
For ``k=1``, the convergence order is at least 2.7, and with about
asymptotically 2 function evaluations per iteration, the efficiency
index is approximately 1.65.
For ``k=2``, the order is about 4.6 with asymptotically 3 function
evaluations per iteration, and the efficiency index 1.66.
For higher values of `k`, the efficiency index approaches
the kth root of ``(3k-2)``, hence ``k=1`` or ``k=2`` are
usually appropriate.
References
----------
.. [APS1995]
Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
*Algorithm 748: Enclosing Zeros of Continuous Functions*,
ACM Trans. Math. Softw. Volume 221(1995)
doi = {10.1145/210089.210111}
Examples
--------
>>> def f(x):
... return (x**3 - 1) # only one real root at x = 1
>>> from scipy import optimize
>>> root, results = optimize.toms748(f, 0, 2, full_output=True)
>>> root
1.0
>>> results
converged: True
flag: 'converged'
function_calls: 11
iterations: 5
root: 1.0
"""
if xtol <= 0:
raise ValueError("xtol too small (%g <= 0)" % xtol)
if rtol < _rtol / 4:
raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
maxiter = operator.index(maxiter)
if maxiter < 1:
raise ValueError("maxiter must be greater than 0")
if not np.isfinite(a):
raise ValueError("a is not finite %s" % a)
if not np.isfinite(b):
raise ValueError("b is not finite %s" % b)
if a >= b:
raise ValueError("a and b are not an interval [{}, {}]".format(a, b))
if not k >= 1:
raise ValueError("k too small (%s < 1)" % k)
if not isinstance(args, tuple):
args = (args,)
solver = TOMS748Solver()
result = solver.solve(f, a, b, args=args, k=k, xtol=xtol, rtol=rtol,
maxiter=maxiter, disp=disp)
x, function_calls, iterations, flag = result
return _results_select(full_output, (x, function_calls, iterations, flag))