zeros.py 49.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371
import warnings
from collections import namedtuple
import operator
from . import _zeros
import numpy as np


_iter = 100
_xtol = 2e-12
_rtol = 4 * np.finfo(float).eps

__all__ = ['newton', 'bisect', 'ridder', 'brentq', 'brenth', 'toms748',
           'RootResults']

# Must agree with CONVERGED, SIGNERR, CONVERR, ...  in zeros.h
_ECONVERGED = 0
_ESIGNERR = -1
_ECONVERR = -2
_EVALUEERR = -3
_EINPROGRESS = 1

CONVERGED = 'converged'
SIGNERR = 'sign error'
CONVERR = 'convergence error'
VALUEERR = 'value error'
INPROGRESS = 'No error'


flag_map = {_ECONVERGED: CONVERGED, _ESIGNERR: SIGNERR, _ECONVERR: CONVERR,
            _EVALUEERR: VALUEERR, _EINPROGRESS: INPROGRESS}


class RootResults(object):
    """Represents the root finding result.

    Attributes
    ----------
    root : float
        Estimated root location.
    iterations : int
        Number of iterations needed to find the root.
    function_calls : int
        Number of times the function was called.
    converged : bool
        True if the routine converged.
    flag : str
        Description of the cause of termination.

    """

    def __init__(self, root, iterations, function_calls, flag):
        self.root = root
        self.iterations = iterations
        self.function_calls = function_calls
        self.converged = flag == _ECONVERGED
        self.flag = None
        try:
            self.flag = flag_map[flag]
        except KeyError:
            self.flag = 'unknown error %d' % (flag,)

    def __repr__(self):
        attrs = ['converged', 'flag', 'function_calls',
                 'iterations', 'root']
        m = max(map(len, attrs)) + 1
        return '\n'.join([a.rjust(m) + ': ' + repr(getattr(self, a))
                          for a in attrs])


def results_c(full_output, r):
    if full_output:
        x, funcalls, iterations, flag = r
        results = RootResults(root=x,
                              iterations=iterations,
                              function_calls=funcalls,
                              flag=flag)
        return x, results
    else:
        return r


def _results_select(full_output, r):
    """Select from a tuple of (root, funccalls, iterations, flag)"""
    x, funcalls, iterations, flag = r
    if full_output:
        results = RootResults(root=x,
                              iterations=iterations,
                              function_calls=funcalls,
                              flag=flag)
        return x, results
    return x


def newton(func, x0, fprime=None, args=(), tol=1.48e-8, maxiter=50,
           fprime2=None, x1=None, rtol=0.0,
           full_output=False, disp=True):
    """
    Find a zero of a real or complex function using the Newton-Raphson
    (or secant or Halley's) method.

    Find a zero of the function `func` given a nearby starting point `x0`.
    The Newton-Raphson method is used if the derivative `fprime` of `func`
    is provided, otherwise the secant method is used. If the second order
    derivative `fprime2` of `func` is also provided, then Halley's method is
    used.

    If `x0` is a sequence with more than one item, then `newton` returns an
    array, and `func` must be vectorized and return a sequence or array of the
    same shape as its first argument. If `fprime` or `fprime2` is given, then
    its return must also have the same shape.

    Parameters
    ----------
    func : callable
        The function whose zero is wanted. It must be a function of a
        single variable of the form ``f(x,a,b,c...)``, where ``a,b,c...``
        are extra arguments that can be passed in the `args` parameter.
    x0 : float, sequence, or ndarray
        An initial estimate of the zero that should be somewhere near the
        actual zero. If not scalar, then `func` must be vectorized and return
        a sequence or array of the same shape as its first argument.
    fprime : callable, optional
        The derivative of the function when available and convenient. If it
        is None (default), then the secant method is used.
    args : tuple, optional
        Extra arguments to be used in the function call.
    tol : float, optional
        The allowable error of the zero value. If `func` is complex-valued,
        a larger `tol` is recommended as both the real and imaginary parts
        of `x` contribute to ``|x - x0|``.
    maxiter : int, optional
        Maximum number of iterations.
    fprime2 : callable, optional
        The second order derivative of the function when available and
        convenient. If it is None (default), then the normal Newton-Raphson
        or the secant method is used. If it is not None, then Halley's method
        is used.
    x1 : float, optional
        Another estimate of the zero that should be somewhere near the
        actual zero. Used if `fprime` is not provided.
    rtol : float, optional
        Tolerance (relative) for termination.
    full_output : bool, optional
        If `full_output` is False (default), the root is returned.
        If True and `x0` is scalar, the return value is ``(x, r)``, where ``x``
        is the root and ``r`` is a `RootResults` object.
        If True and `x0` is non-scalar, the return value is ``(x, converged,
        zero_der)`` (see Returns section for details).
    disp : bool, optional
        If True, raise a RuntimeError if the algorithm didn't converge, with
        the error message containing the number of iterations and current
        function value. Otherwise, the convergence status is recorded in a
        `RootResults` return object.
        Ignored if `x0` is not scalar.
        *Note: this has little to do with displaying, however,
        the `disp` keyword cannot be renamed for backwards compatibility.*

    Returns
    -------
    root : float, sequence, or ndarray
        Estimated location where function is zero.
    r : `RootResults`, optional
        Present if ``full_output=True`` and `x0` is scalar.
        Object containing information about the convergence. In particular,
        ``r.converged`` is True if the routine converged.
    converged : ndarray of bool, optional
        Present if ``full_output=True`` and `x0` is non-scalar.
        For vector functions, indicates which elements converged successfully.
    zero_der : ndarray of bool, optional
        Present if ``full_output=True`` and `x0` is non-scalar.
        For vector functions, indicates which elements had a zero derivative.

    See Also
    --------
    brentq, brenth, ridder, bisect
    fsolve : find zeros in N dimensions.

    Notes
    -----
    The convergence rate of the Newton-Raphson method is quadratic,
    the Halley method is cubic, and the secant method is
    sub-quadratic. This means that if the function is well-behaved
    the actual error in the estimated zero after the nth iteration
    is approximately the square (cube for Halley) of the error
    after the (n-1)th step. However, the stopping criterion used
    here is the step size and there is no guarantee that a zero
    has been found. Consequently, the result should be verified.
    Safer algorithms are brentq, brenth, ridder, and bisect,
    but they all require that the root first be bracketed in an
    interval where the function changes sign. The brentq algorithm
    is recommended for general use in one dimensional problems
    when such an interval has been found.

    When `newton` is used with arrays, it is best suited for the following
    types of problems:

    * The initial guesses, `x0`, are all relatively the same distance from
      the roots.
    * Some or all of the extra arguments, `args`, are also arrays so that a
      class of similar problems can be solved together.
    * The size of the initial guesses, `x0`, is larger than O(100) elements.
      Otherwise, a naive loop may perform as well or better than a vector.

    Examples
    --------
    >>> from scipy import optimize
    >>> import matplotlib.pyplot as plt

    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    ``fprime`` is not provided, use the secant method:

    >>> root = optimize.newton(f, 1.5)
    >>> root
    1.0000000000000016
    >>> root = optimize.newton(f, 1.5, fprime2=lambda x: 6 * x)
    >>> root
    1.0000000000000016

    Only ``fprime`` is provided, use the Newton-Raphson method:

    >>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2)
    >>> root
    1.0

    Both ``fprime2`` and ``fprime`` are provided, use Halley's method:

    >>> root = optimize.newton(f, 1.5, fprime=lambda x: 3 * x**2,
    ...                        fprime2=lambda x: 6 * x)
    >>> root
    1.0

    When we want to find zeros for a set of related starting values and/or
    function parameters, we can provide both of those as an array of inputs:

    >>> f = lambda x, a: x**3 - a
    >>> fder = lambda x, a: 3 * x**2
    >>> np.random.seed(4321)
    >>> x = np.random.randn(100)
    >>> a = np.arange(-50, 50)
    >>> vec_res = optimize.newton(f, x, fprime=fder, args=(a, ))

    The above is the equivalent of solving for each value in ``(x, a)``
    separately in a for-loop, just faster:

    >>> loop_res = [optimize.newton(f, x0, fprime=fder, args=(a0,))
    ...             for x0, a0 in zip(x, a)]
    >>> np.allclose(vec_res, loop_res)
    True

    Plot the results found for all values of ``a``:

    >>> analytical_result = np.sign(a) * np.abs(a)**(1/3)
    >>> fig = plt.figure()
    >>> ax = fig.add_subplot(111)
    >>> ax.plot(a, analytical_result, 'o')
    >>> ax.plot(a, vec_res, '.')
    >>> ax.set_xlabel('$a$')
    >>> ax.set_ylabel('$x$ where $f(x, a)=0$')
    >>> plt.show()

    """
    if tol <= 0:
        raise ValueError("tol too small (%g <= 0)" % tol)
    maxiter = operator.index(maxiter)
    if maxiter < 1:
        raise ValueError("maxiter must be greater than 0")
    if np.size(x0) > 1:
        return _array_newton(func, x0, fprime, args, tol, maxiter, fprime2,
                             full_output)

    # Convert to float (don't use float(x0); this works also for complex x0)
    p0 = 1.0 * x0
    funcalls = 0
    if fprime is not None:
        # Newton-Raphson method
        for itr in range(maxiter):
            # first evaluate fval
            fval = func(p0, *args)
            funcalls += 1
            # If fval is 0, a root has been found, then terminate
            if fval == 0:
                return _results_select(
                    full_output, (p0, funcalls, itr, _ECONVERGED))
            fder = fprime(p0, *args)
            funcalls += 1
            if fder == 0:
                msg = "Derivative was zero."
                if disp:
                    msg += (
                        " Failed to converge after %d iterations, value is %s."
                        % (itr + 1, p0))
                    raise RuntimeError(msg)
                warnings.warn(msg, RuntimeWarning)
                return _results_select(
                    full_output, (p0, funcalls, itr + 1, _ECONVERR))
            newton_step = fval / fder
            if fprime2:
                fder2 = fprime2(p0, *args)
                funcalls += 1
                # Halley's method:
                #   newton_step /= (1.0 - 0.5 * newton_step * fder2 / fder)
                # Only do it if denominator stays close enough to 1
                # Rationale: If 1-adj < 0, then Halley sends x in the
                # opposite direction to Newton. Doesn't happen if x is close
                # enough to root.
                adj = newton_step * fder2 / fder / 2
                if np.abs(adj) < 1:
                    newton_step /= 1.0 - adj
            p = p0 - newton_step
            if np.isclose(p, p0, rtol=rtol, atol=tol):
                return _results_select(
                    full_output, (p, funcalls, itr + 1, _ECONVERGED))
            p0 = p
    else:
        # Secant method
        if x1 is not None:
            if x1 == x0:
                raise ValueError("x1 and x0 must be different")
            p1 = x1
        else:
            eps = 1e-4
            p1 = x0 * (1 + eps)
            p1 += (eps if p1 >= 0 else -eps)
        q0 = func(p0, *args)
        funcalls += 1
        q1 = func(p1, *args)
        funcalls += 1
        if abs(q1) < abs(q0):
            p0, p1, q0, q1 = p1, p0, q1, q0
        for itr in range(maxiter):
            if q1 == q0:
                if p1 != p0:
                    msg = "Tolerance of %s reached." % (p1 - p0)
                    if disp:
                        msg += (
                            " Failed to converge after %d iterations, value is %s."
                            % (itr + 1, p1))
                        raise RuntimeError(msg)
                    warnings.warn(msg, RuntimeWarning)
                p = (p1 + p0) / 2.0
                return _results_select(
                    full_output, (p, funcalls, itr + 1, _ECONVERGED))
            else:
                if abs(q1) > abs(q0):
                    p = (-q0 / q1 * p1 + p0) / (1 - q0 / q1)
                else:
                    p = (-q1 / q0 * p0 + p1) / (1 - q1 / q0)
            if np.isclose(p, p1, rtol=rtol, atol=tol):
                return _results_select(
                    full_output, (p, funcalls, itr + 1, _ECONVERGED))
            p0, q0 = p1, q1
            p1 = p
            q1 = func(p1, *args)
            funcalls += 1

    if disp:
        msg = ("Failed to converge after %d iterations, value is %s."
               % (itr + 1, p))
        raise RuntimeError(msg)

    return _results_select(full_output, (p, funcalls, itr + 1, _ECONVERR))


def _array_newton(func, x0, fprime, args, tol, maxiter, fprime2, full_output):
    """
    A vectorized version of Newton, Halley, and secant methods for arrays.

    Do not use this method directly. This method is called from `newton`
    when ``np.size(x0) > 1`` is ``True``. For docstring, see `newton`.
    """
    # Explicitly copy `x0` as `p` will be modified inplace, but the
    # user's array should not be altered.
    p = np.array(x0, copy=True)

    failures = np.ones_like(p, dtype=bool)
    nz_der = np.ones_like(failures)
    if fprime is not None:
        # Newton-Raphson method
        for iteration in range(maxiter):
            # first evaluate fval
            fval = np.asarray(func(p, *args))
            # If all fval are 0, all roots have been found, then terminate
            if not fval.any():
                failures = fval.astype(bool)
                break
            fder = np.asarray(fprime(p, *args))
            nz_der = (fder != 0)
            # stop iterating if all derivatives are zero
            if not nz_der.any():
                break
            # Newton step
            dp = fval[nz_der] / fder[nz_der]
            if fprime2 is not None:
                fder2 = np.asarray(fprime2(p, *args))
                dp = dp / (1.0 - 0.5 * dp * fder2[nz_der] / fder[nz_der])
            # only update nonzero derivatives
            p = np.asarray(p, dtype=np.result_type(p, dp, np.float64))
            p[nz_der] -= dp
            failures[nz_der] = np.abs(dp) >= tol  # items not yet converged
            # stop iterating if there aren't any failures, not incl zero der
            if not failures[nz_der].any():
                break
    else:
        # Secant method
        dx = np.finfo(float).eps**0.33
        p1 = p * (1 + dx) + np.where(p >= 0, dx, -dx)
        q0 = np.asarray(func(p, *args))
        q1 = np.asarray(func(p1, *args))
        active = np.ones_like(p, dtype=bool)
        for iteration in range(maxiter):
            nz_der = (q1 != q0)
            # stop iterating if all derivatives are zero
            if not nz_der.any():
                p = (p1 + p) / 2.0
                break
            # Secant Step
            dp = (q1 * (p1 - p))[nz_der] / (q1 - q0)[nz_der]
            # only update nonzero derivatives
            p = np.asarray(p, dtype=np.result_type(p, p1, dp, np.float64))
            p[nz_der] = p1[nz_der] - dp
            active_zero_der = ~nz_der & active
            p[active_zero_der] = (p1 + p)[active_zero_der] / 2.0
            active &= nz_der  # don't assign zero derivatives again
            failures[nz_der] = np.abs(dp) >= tol  # not yet converged
            # stop iterating if there aren't any failures, not incl zero der
            if not failures[nz_der].any():
                break
            p1, p = p, p1
            q0 = q1
            q1 = np.asarray(func(p1, *args))

    zero_der = ~nz_der & failures  # don't include converged with zero-ders
    if zero_der.any():
        # Secant warnings
        if fprime is None:
            nonzero_dp = (p1 != p)
            # non-zero dp, but infinite newton step
            zero_der_nz_dp = (zero_der & nonzero_dp)
            if zero_der_nz_dp.any():
                rms = np.sqrt(
                    sum((p1[zero_der_nz_dp] - p[zero_der_nz_dp]) ** 2)
                )
                warnings.warn(
                    'RMS of {:g} reached'.format(rms), RuntimeWarning)
        # Newton or Halley warnings
        else:
            all_or_some = 'all' if zero_der.all() else 'some'
            msg = '{:s} derivatives were zero'.format(all_or_some)
            warnings.warn(msg, RuntimeWarning)
    elif failures.any():
        all_or_some = 'all' if failures.all() else 'some'
        msg = '{0:s} failed to converge after {1:d} iterations'.format(
            all_or_some, maxiter
        )
        if failures.all():
            raise RuntimeError(msg)
        warnings.warn(msg, RuntimeWarning)

    if full_output:
        result = namedtuple('result', ('root', 'converged', 'zero_der'))
        p = result(p, ~failures, zero_der)

    return p


def bisect(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """
    Find root of a function within an interval using bisection.

    Basic bisection routine to find a zero of the function `f` between the
    arguments `a` and `b`. `f(a)` and `f(b)` cannot have the same signs.
    Slow but sure.

    Parameters
    ----------
    f : function
        Python function returning a number.  `f` must be continuous, and
        f(a) and f(b) must have opposite signs.
    a : scalar
        One end of the bracketing interval [a,b].
    b : scalar
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter must be nonnegative.
    rtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter cannot be smaller than its default value of
        ``4*np.finfo(float).eps``.
    maxiter : int, optional
        If convergence is not achieved in `maxiter` iterations, an error is
        raised. Must be >= 0.
    args : tuple, optional
        Containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned. If `full_output` is
        True, the return value is ``(x, r)``, where x is the root, and r is
        a `RootResults` object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.
        Otherwise, the convergence status is recorded in a `RootResults`
        return object.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : `RootResults` (present if ``full_output = True``)
        Object containing information about the convergence. In particular,
        ``r.converged`` is True if the routine converged.

    Examples
    --------

    >>> def f(x):
    ...     return (x**2 - 1)

    >>> from scipy import optimize

    >>> root = optimize.bisect(f, 0, 2)
    >>> root
    1.0

    >>> root = optimize.bisect(f, -2, 0)
    >>> root
    -1.0

    See Also
    --------
    brentq, brenth, bisect, newton
    fixed_point : scalar fixed-point finder
    fsolve : n-dimensional root-finding

    """
    if not isinstance(args, tuple):
        args = (args,)
    maxiter = operator.index(maxiter)
    if xtol <= 0:
        raise ValueError("xtol too small (%g <= 0)" % xtol)
    if rtol < _rtol:
        raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
    r = _zeros._bisect(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
    return results_c(full_output, r)


def ridder(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """
    Find a root of a function in an interval using Ridder's method.

    Parameters
    ----------
    f : function
        Python function returning a number. f must be continuous, and f(a) and
        f(b) must have opposite signs.
    a : scalar
        One end of the bracketing interval [a,b].
    b : scalar
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter must be nonnegative.
    rtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter cannot be smaller than its default value of
        ``4*np.finfo(float).eps``.
    maxiter : int, optional
        If convergence is not achieved in `maxiter` iterations, an error is
        raised. Must be >= 0.
    args : tuple, optional
        Containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned. If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a `RootResults` object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.
        Otherwise, the convergence status is recorded in any `RootResults`
        return object.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : `RootResults` (present if ``full_output = True``)
        Object containing information about the convergence.
        In particular, ``r.converged`` is True if the routine converged.

    See Also
    --------
    brentq, brenth, bisect, newton : 1-D root-finding
    fixed_point : scalar fixed-point finder

    Notes
    -----
    Uses [Ridders1979]_ method to find a zero of the function `f` between the
    arguments `a` and `b`. Ridders' method is faster than bisection, but not
    generally as fast as the Brent routines. [Ridders1979]_ provides the
    classic description and source of the algorithm. A description can also be
    found in any recent edition of Numerical Recipes.

    The routine used here diverges slightly from standard presentations in
    order to be a bit more careful of tolerance.

    References
    ----------
    .. [Ridders1979]
       Ridders, C. F. J. "A New Algorithm for Computing a
       Single Root of a Real Continuous Function."
       IEEE Trans. Circuits Systems 26, 979-980, 1979.

    Examples
    --------

    >>> def f(x):
    ...     return (x**2 - 1)

    >>> from scipy import optimize

    >>> root = optimize.ridder(f, 0, 2)
    >>> root
    1.0

    >>> root = optimize.ridder(f, -2, 0)
    >>> root
    -1.0
    """
    if not isinstance(args, tuple):
        args = (args,)
    maxiter = operator.index(maxiter)
    if xtol <= 0:
        raise ValueError("xtol too small (%g <= 0)" % xtol)
    if rtol < _rtol:
        raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
    r = _zeros._ridder(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
    return results_c(full_output, r)


def brentq(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """
    Find a root of a function in a bracketing interval using Brent's method.

    Uses the classic Brent's method to find a zero of the function `f` on
    the sign changing interval [a , b]. Generally considered the best of the
    rootfinding routines here. It is a safe version of the secant method that
    uses inverse quadratic extrapolation. Brent's method combines root
    bracketing, interval bisection, and inverse quadratic interpolation. It is
    sometimes known as the van Wijngaarden-Dekker-Brent method. Brent (1973)
    claims convergence is guaranteed for functions computable within [a,b].

    [Brent1973]_ provides the classic description of the algorithm. Another
    description can be found in a recent edition of Numerical Recipes, including
    [PressEtal1992]_. A third description is at
    http://mathworld.wolfram.com/BrentsMethod.html. It should be easy to
    understand the algorithm just by reading our code. Our code diverges a bit
    from standard presentations: we choose a different formula for the
    extrapolation step.

    Parameters
    ----------
    f : function
        Python function returning a number. The function :math:`f`
        must be continuous, and :math:`f(a)` and :math:`f(b)` must
        have opposite signs.
    a : scalar
        One end of the bracketing interval :math:`[a, b]`.
    b : scalar
        The other end of the bracketing interval :math:`[a, b]`.
    xtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter must be nonnegative. For nice functions, Brent's
        method will often satisfy the above condition with ``xtol/2``
        and ``rtol/2``. [Brent1973]_
    rtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter cannot be smaller than its default value of
        ``4*np.finfo(float).eps``. For nice functions, Brent's
        method will often satisfy the above condition with ``xtol/2``
        and ``rtol/2``. [Brent1973]_
    maxiter : int, optional
        If convergence is not achieved in `maxiter` iterations, an error is
        raised. Must be >= 0.
    args : tuple, optional
        Containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned. If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a `RootResults` object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.
        Otherwise, the convergence status is recorded in any `RootResults`
        return object.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : `RootResults` (present if ``full_output = True``)
        Object containing information about the convergence. In particular,
        ``r.converged`` is True if the routine converged.

    Notes
    -----
    `f` must be continuous.  f(a) and f(b) must have opposite signs.

    Related functions fall into several classes:

    multivariate local optimizers
      `fmin`, `fmin_powell`, `fmin_cg`, `fmin_bfgs`, `fmin_ncg`
    nonlinear least squares minimizer
      `leastsq`
    constrained multivariate optimizers
      `fmin_l_bfgs_b`, `fmin_tnc`, `fmin_cobyla`
    global optimizers
      `basinhopping`, `brute`, `differential_evolution`
    local scalar minimizers
      `fminbound`, `brent`, `golden`, `bracket`
    N-D root-finding
      `fsolve`
    1-D root-finding
      `brenth`, `ridder`, `bisect`, `newton`
    scalar fixed-point finder
      `fixed_point`

    References
    ----------
    .. [Brent1973]
       Brent, R. P.,
       *Algorithms for Minimization Without Derivatives*.
       Englewood Cliffs, NJ: Prentice-Hall, 1973. Ch. 3-4.

    .. [PressEtal1992]
       Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
       *Numerical Recipes in FORTRAN: The Art of Scientific Computing*, 2nd ed.
       Cambridge, England: Cambridge University Press, pp. 352-355, 1992.
       Section 9.3:  "Van Wijngaarden-Dekker-Brent Method."

    Examples
    --------
    >>> def f(x):
    ...     return (x**2 - 1)

    >>> from scipy import optimize

    >>> root = optimize.brentq(f, -2, 0)
    >>> root
    -1.0

    >>> root = optimize.brentq(f, 0, 2)
    >>> root
    1.0
    """
    if not isinstance(args, tuple):
        args = (args,)
    maxiter = operator.index(maxiter)
    if xtol <= 0:
        raise ValueError("xtol too small (%g <= 0)" % xtol)
    if rtol < _rtol:
        raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
    r = _zeros._brentq(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
    return results_c(full_output, r)


def brenth(f, a, b, args=(),
           xtol=_xtol, rtol=_rtol, maxiter=_iter,
           full_output=False, disp=True):
    """Find a root of a function in a bracketing interval using Brent's
    method with hyperbolic extrapolation.

    A variation on the classic Brent routine to find a zero of the function f
    between the arguments a and b that uses hyperbolic extrapolation instead of
    inverse quadratic extrapolation. There was a paper back in the 1980's ...
    f(a) and f(b) cannot have the same signs. Generally, on a par with the
    brent routine, but not as heavily tested. It is a safe version of the
    secant method that uses hyperbolic extrapolation. The version here is by
    Chuck Harris.

    Parameters
    ----------
    f : function
        Python function returning a number. f must be continuous, and f(a) and
        f(b) must have opposite signs.
    a : scalar
        One end of the bracketing interval [a,b].
    b : scalar
        The other end of the bracketing interval [a,b].
    xtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter must be nonnegative. As with `brentq`, for nice
        functions the method will often satisfy the above condition
        with ``xtol/2`` and ``rtol/2``.
    rtol : number, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter cannot be smaller than its default value of
        ``4*np.finfo(float).eps``. As with `brentq`, for nice functions
        the method will often satisfy the above condition with
        ``xtol/2`` and ``rtol/2``.
    maxiter : int, optional
        If convergence is not achieved in `maxiter` iterations, an error is
        raised. Must be >= 0.
    args : tuple, optional
        Containing extra arguments for the function `f`.
        `f` is called by ``apply(f, (x)+args)``.
    full_output : bool, optional
        If `full_output` is False, the root is returned. If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a `RootResults` object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.
        Otherwise, the convergence status is recorded in any `RootResults`
        return object.

    Returns
    -------
    x0 : float
        Zero of `f` between `a` and `b`.
    r : `RootResults` (present if ``full_output = True``)
        Object containing information about the convergence. In particular,
        ``r.converged`` is True if the routine converged.

    Examples
    --------
    >>> def f(x):
    ...     return (x**2 - 1)

    >>> from scipy import optimize

    >>> root = optimize.brenth(f, -2, 0)
    >>> root
    -1.0

    >>> root = optimize.brenth(f, 0, 2)
    >>> root
    1.0

    See Also
    --------
    fmin, fmin_powell, fmin_cg,
           fmin_bfgs, fmin_ncg : multivariate local optimizers

    leastsq : nonlinear least squares minimizer

    fmin_l_bfgs_b, fmin_tnc, fmin_cobyla : constrained multivariate optimizers

    basinhopping, differential_evolution, brute : global optimizers

    fminbound, brent, golden, bracket : local scalar minimizers

    fsolve : N-D root-finding

    brentq, brenth, ridder, bisect, newton : 1-D root-finding

    fixed_point : scalar fixed-point finder

    """
    if not isinstance(args, tuple):
        args = (args,)
    maxiter = operator.index(maxiter)
    if xtol <= 0:
        raise ValueError("xtol too small (%g <= 0)" % xtol)
    if rtol < _rtol:
        raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
    r = _zeros._brenth(f, a, b, xtol, rtol, maxiter, args, full_output, disp)
    return results_c(full_output, r)


################################
# TOMS "Algorithm 748: Enclosing Zeros of Continuous Functions", by
#  Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
#  See [1]


def _within_tolerance(x, y, rtol, atol):
    diff = np.abs(x - y)
    z = np.abs(y)
    result = (diff <= (atol + rtol * z))
    return result


def _notclose(fs, rtol=_rtol, atol=_xtol):
    # Ensure not None, not 0, all finite, and not very close to each other
    notclosefvals = (
            all(fs) and all(np.isfinite(fs)) and
            not any(any(np.isclose(_f, fs[i + 1:], rtol=rtol, atol=atol))
                    for i, _f in enumerate(fs[:-1])))
    return notclosefvals


def _secant(xvals, fvals):
    """Perform a secant step, taking a little care"""
    # Secant has many "mathematically" equivalent formulations
    # x2 = x0 - (x1 - x0)/(f1 - f0) * f0
    #    = x1 - (x1 - x0)/(f1 - f0) * f1
    #    = (-x1 * f0 + x0 * f1) / (f1 - f0)
    #    = (-f0 / f1 * x1 + x0) / (1 - f0 / f1)
    #    = (-f1 / f0 * x0 + x1) / (1 - f1 / f0)
    x0, x1 = xvals[:2]
    f0, f1 = fvals[:2]
    if f0 == f1:
        return np.nan
    if np.abs(f1) > np.abs(f0):
        x2 = (-f0 / f1 * x1 + x0) / (1 - f0 / f1)
    else:
        x2 = (-f1 / f0 * x0 + x1) / (1 - f1 / f0)
    return x2


def _update_bracket(ab, fab, c, fc):
    """Update a bracket given (c, fc), return the discarded endpoints."""
    fa, fb = fab
    idx = (0 if np.sign(fa) * np.sign(fc) > 0 else 1)
    rx, rfx = ab[idx], fab[idx]
    fab[idx] = fc
    ab[idx] = c
    return rx, rfx


def _compute_divided_differences(xvals, fvals, N=None, full=True,
                                 forward=True):
    """Return a matrix of divided differences for the xvals, fvals pairs

    DD[i, j] = f[x_{i-j}, ..., x_i] for 0 <= j <= i

    If full is False, just return the main diagonal(or last row):
      f[a], f[a, b] and f[a, b, c].
    If forward is False, return f[c], f[b, c], f[a, b, c]."""
    if full:
        if forward:
            xvals = np.asarray(xvals)
        else:
            xvals = np.array(xvals)[::-1]
        M = len(xvals)
        N = M if N is None else min(N, M)
        DD = np.zeros([M, N])
        DD[:, 0] = fvals[:]
        for i in range(1, N):
            DD[i:, i] = (np.diff(DD[i - 1:, i - 1]) /
                         (xvals[i:] - xvals[:M - i]))
        return DD

    xvals = np.asarray(xvals)
    dd = np.array(fvals)
    row = np.array(fvals)
    idx2Use = (0 if forward else -1)
    dd[0] = fvals[idx2Use]
    for i in range(1, len(xvals)):
        denom = xvals[i:i + len(row) - 1] - xvals[:len(row) - 1]
        row = np.diff(row)[:] / denom
        dd[i] = row[idx2Use]
    return dd


def _interpolated_poly(xvals, fvals, x):
    """Compute p(x) for the polynomial passing through the specified locations.

    Use Neville's algorithm to compute p(x) where p is the minimal degree
    polynomial passing through the points xvals, fvals"""
    xvals = np.asarray(xvals)
    N = len(xvals)
    Q = np.zeros([N, N])
    D = np.zeros([N, N])
    Q[:, 0] = fvals[:]
    D[:, 0] = fvals[:]
    for k in range(1, N):
        alpha = D[k:, k - 1] - Q[k - 1:N - 1, k - 1]
        diffik = xvals[0:N - k] - xvals[k:N]
        Q[k:, k] = (xvals[k:] - x) / diffik * alpha
        D[k:, k] = (xvals[:N - k] - x) / diffik * alpha
    # Expect Q[-1, 1:] to be small relative to Q[-1, 0] as x approaches a root
    return np.sum(Q[-1, 1:]) + Q[-1, 0]


def _inverse_poly_zero(a, b, c, d, fa, fb, fc, fd):
    """Inverse cubic interpolation f-values -> x-values

    Given four points (fa, a), (fb, b), (fc, c), (fd, d) with
    fa, fb, fc, fd all distinct, find poly IP(y) through the 4 points
    and compute x=IP(0).
    """
    return _interpolated_poly([fa, fb, fc, fd], [a, b, c, d], 0)


def _newton_quadratic(ab, fab, d, fd, k):
    """Apply Newton-Raphson like steps, using divided differences to approximate f'

    ab is a real interval [a, b] containing a root,
    fab holds the real values of f(a), f(b)
    d is a real number outside [ab, b]
    k is the number of steps to apply
    """
    a, b = ab
    fa, fb = fab
    _, B, A = _compute_divided_differences([a, b, d], [fa, fb, fd],
                                           forward=True, full=False)

    # _P  is the quadratic polynomial through the 3 points
    def _P(x):
        # Horner evaluation of fa + B * (x - a) + A * (x - a) * (x - b)
        return (A * (x - b) + B) * (x - a) + fa

    if A == 0:
        r = a - fa / B
    else:
        r = (a if np.sign(A) * np.sign(fa) > 0 else b)
    # Apply k Newton-Raphson steps to _P(x), starting from x=r
    for i in range(k):
        r1 = r - _P(r) / (B + A * (2 * r - a - b))
        if not (ab[0] < r1 < ab[1]):
            if (ab[0] < r < ab[1]):
                return r
            r = sum(ab) / 2.0
            break
        r = r1

    return r


class TOMS748Solver(object):
    """Solve f(x, *args) == 0 using Algorithm748 of Alefeld, Potro & Shi.
    """
    _MU = 0.5
    _K_MIN = 1
    _K_MAX = 100  # A very high value for real usage. Expect 1, 2, maybe 3.

    def __init__(self):
        self.f = None
        self.args = None
        self.function_calls = 0
        self.iterations = 0
        self.k = 2
        # ab=[a,b] is a global interval containing a root
        self.ab = [np.nan, np.nan]
        # fab is function values at a, b
        self.fab = [np.nan, np.nan]
        self.d = None
        self.fd = None
        self.e = None
        self.fe = None
        self.disp = False
        self.xtol = _xtol
        self.rtol = _rtol
        self.maxiter = _iter

    def configure(self, xtol, rtol, maxiter, disp, k):
        self.disp = disp
        self.xtol = xtol
        self.rtol = rtol
        self.maxiter = maxiter
        # Silently replace a low value of k with 1
        self.k = max(k, self._K_MIN)
        # Noisily replace a high value of k with self._K_MAX
        if self.k > self._K_MAX:
            msg = "toms748: Overriding k: ->%d" % self._K_MAX
            warnings.warn(msg, RuntimeWarning)
            self.k = self._K_MAX

    def _callf(self, x, error=True):
        """Call the user-supplied function, update book-keeping"""
        fx = self.f(x, *self.args)
        self.function_calls += 1
        if not np.isfinite(fx) and error:
            raise ValueError("Invalid function value: f(%f) -> %s " % (x, fx))
        return fx

    def get_result(self, x, flag=_ECONVERGED):
        r"""Package the result and statistics into a tuple."""
        return (x, self.function_calls, self.iterations, flag)

    def _update_bracket(self, c, fc):
        return _update_bracket(self.ab, self.fab, c, fc)

    def start(self, f, a, b, args=()):
        r"""Prepare for the iterations."""
        self.function_calls = 0
        self.iterations = 0

        self.f = f
        self.args = args
        self.ab[:] = [a, b]
        if not np.isfinite(a) or np.imag(a) != 0:
            raise ValueError("Invalid x value: %s " % (a))
        if not np.isfinite(b) or np.imag(b) != 0:
            raise ValueError("Invalid x value: %s " % (b))

        fa = self._callf(a)
        if not np.isfinite(fa) or np.imag(fa) != 0:
            raise ValueError("Invalid function value: f(%f) -> %s " % (a, fa))
        if fa == 0:
            return _ECONVERGED, a
        fb = self._callf(b)
        if not np.isfinite(fb) or np.imag(fb) != 0:
            raise ValueError("Invalid function value: f(%f) -> %s " % (b, fb))
        if fb == 0:
            return _ECONVERGED, b

        if np.sign(fb) * np.sign(fa) > 0:
            raise ValueError("a, b must bracket a root f(%e)=%e, f(%e)=%e " %
                             (a, fa, b, fb))
        self.fab[:] = [fa, fb]

        return _EINPROGRESS, sum(self.ab) / 2.0

    def get_status(self):
        """Determine the current status."""
        a, b = self.ab[:2]
        if _within_tolerance(a, b, self.rtol, self.xtol):
            return _ECONVERGED, sum(self.ab) / 2.0
        if self.iterations >= self.maxiter:
            return _ECONVERR, sum(self.ab) / 2.0
        return _EINPROGRESS, sum(self.ab) / 2.0

    def iterate(self):
        """Perform one step in the algorithm.

        Implements Algorithm 4.1(k=1) or 4.2(k=2) in [APS1995]
        """
        self.iterations += 1
        eps = np.finfo(float).eps
        d, fd, e, fe = self.d, self.fd, self.e, self.fe
        ab_width = self.ab[1] - self.ab[0]  # Need the start width below
        c = None

        for nsteps in range(2, self.k+2):
            # If the f-values are sufficiently separated, perform an inverse
            # polynomial interpolation step. Otherwise, nsteps repeats of
            # an approximate Newton-Raphson step.
            if _notclose(self.fab + [fd, fe], rtol=0, atol=32*eps):
                c0 = _inverse_poly_zero(self.ab[0], self.ab[1], d, e,
                                        self.fab[0], self.fab[1], fd, fe)
                if self.ab[0] < c0 < self.ab[1]:
                    c = c0
            if c is None:
                c = _newton_quadratic(self.ab, self.fab, d, fd, nsteps)

            fc = self._callf(c)
            if fc == 0:
                return _ECONVERGED, c

            # re-bracket
            e, fe = d, fd
            d, fd = self._update_bracket(c, fc)

        # u is the endpoint with the smallest f-value
        uix = (0 if np.abs(self.fab[0]) < np.abs(self.fab[1]) else 1)
        u, fu = self.ab[uix], self.fab[uix]

        _, A = _compute_divided_differences(self.ab, self.fab,
                                            forward=(uix == 0), full=False)
        c = u - 2 * fu / A
        if np.abs(c - u) > 0.5 * (self.ab[1] - self.ab[0]):
            c = sum(self.ab) / 2.0
        else:
            if np.isclose(c, u, rtol=eps, atol=0):
                # c didn't change (much).
                # Either because the f-values at the endpoints have vastly
                # differing magnitudes, or because the root is very close to
                # that endpoint
                frs = np.frexp(self.fab)[1]
                if frs[uix] < frs[1 - uix] - 50:  # Differ by more than 2**50
                    c = (31 * self.ab[uix] + self.ab[1 - uix]) / 32
                else:
                    # Make a bigger adjustment, about the
                    # size of the requested tolerance.
                    mm = (1 if uix == 0 else -1)
                    adj = mm * np.abs(c) * self.rtol + mm * self.xtol
                    c = u + adj
                if not self.ab[0] < c < self.ab[1]:
                    c = sum(self.ab) / 2.0

        fc = self._callf(c)
        if fc == 0:
            return _ECONVERGED, c

        e, fe = d, fd
        d, fd = self._update_bracket(c, fc)

        # If the width of the new interval did not decrease enough, bisect
        if self.ab[1] - self.ab[0] > self._MU * ab_width:
            e, fe = d, fd
            z = sum(self.ab) / 2.0
            fz = self._callf(z)
            if fz == 0:
                return _ECONVERGED, z
            d, fd = self._update_bracket(z, fz)

        # Record d and e for next iteration
        self.d, self.fd = d, fd
        self.e, self.fe = e, fe

        status, xn = self.get_status()
        return status, xn

    def solve(self, f, a, b, args=(),
              xtol=_xtol, rtol=_rtol, k=2, maxiter=_iter, disp=True):
        r"""Solve f(x) = 0 given an interval containing a zero."""
        self.configure(xtol=xtol, rtol=rtol, maxiter=maxiter, disp=disp, k=k)
        status, xn = self.start(f, a, b, args)
        if status == _ECONVERGED:
            return self.get_result(xn)

        # The first step only has two x-values.
        c = _secant(self.ab, self.fab)
        if not self.ab[0] < c < self.ab[1]:
            c = sum(self.ab) / 2.0
        fc = self._callf(c)
        if fc == 0:
            return self.get_result(c)

        self.d, self.fd = self._update_bracket(c, fc)
        self.e, self.fe = None, None
        self.iterations += 1

        while True:
            status, xn = self.iterate()
            if status == _ECONVERGED:
                return self.get_result(xn)
            if status == _ECONVERR:
                fmt = "Failed to converge after %d iterations, bracket is %s"
                if disp:
                    msg = fmt % (self.iterations + 1, self.ab)
                    raise RuntimeError(msg)
                return self.get_result(xn, _ECONVERR)


def toms748(f, a, b, args=(), k=1,
            xtol=_xtol, rtol=_rtol, maxiter=_iter,
            full_output=False, disp=True):
    """
    Find a zero using TOMS Algorithm 748 method.

    Implements the Algorithm 748 method of Alefeld, Potro and Shi to find a
    zero of the function `f` on the interval `[a , b]`, where `f(a)` and
    `f(b)` must have opposite signs.

    It uses a mixture of inverse cubic interpolation and
    "Newton-quadratic" steps. [APS1995].

    Parameters
    ----------
    f : function
        Python function returning a scalar. The function :math:`f`
        must be continuous, and :math:`f(a)` and :math:`f(b)`
        have opposite signs.
    a : scalar,
        lower boundary of the search interval
    b : scalar,
        upper boundary of the search interval
    args : tuple, optional
        containing extra arguments for the function `f`.
        `f` is called by ``f(x, *args)``.
    k : int, optional
        The number of Newton quadratic steps to perform each
        iteration. ``k>=1``.
    xtol : scalar, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root. The
        parameter must be nonnegative.
    rtol : scalar, optional
        The computed root ``x0`` will satisfy ``np.allclose(x, x0,
        atol=xtol, rtol=rtol)``, where ``x`` is the exact root.
    maxiter : int, optional
        If convergence is not achieved in `maxiter` iterations, an error is
        raised. Must be >= 0.
    full_output : bool, optional
        If `full_output` is False, the root is returned. If `full_output` is
        True, the return value is ``(x, r)``, where `x` is the root, and `r` is
        a `RootResults` object.
    disp : bool, optional
        If True, raise RuntimeError if the algorithm didn't converge.
        Otherwise, the convergence status is recorded in the `RootResults`
        return object.

    Returns
    -------
    x0 : float
        Approximate Zero of `f`
    r : `RootResults` (present if ``full_output = True``)
        Object containing information about the convergence. In particular,
        ``r.converged`` is True if the routine converged.

    See Also
    --------
    brentq, brenth, ridder, bisect, newton
    fsolve : find zeroes in N dimensions.

    Notes
    -----
    `f` must be continuous.
    Algorithm 748 with ``k=2`` is asymptotically the most efficient
    algorithm known for finding roots of a four times continuously
    differentiable function.
    In contrast with Brent's algorithm, which may only decrease the length of
    the enclosing bracket on the last step, Algorithm 748 decreases it each
    iteration with the same asymptotic efficiency as it finds the root.

    For easy statement of efficiency indices, assume that `f` has 4
    continuouous deriviatives.
    For ``k=1``, the convergence order is at least 2.7, and with about
    asymptotically 2 function evaluations per iteration, the efficiency
    index is approximately 1.65.
    For ``k=2``, the order is about 4.6 with asymptotically 3 function
    evaluations per iteration, and the efficiency index 1.66.
    For higher values of `k`, the efficiency index approaches
    the kth root of ``(3k-2)``, hence ``k=1`` or ``k=2`` are
    usually appropriate.

    References
    ----------
    .. [APS1995]
       Alefeld, G. E. and Potra, F. A. and Shi, Yixun,
       *Algorithm 748: Enclosing Zeros of Continuous Functions*,
       ACM Trans. Math. Softw. Volume 221(1995)
       doi = {10.1145/210089.210111}

    Examples
    --------
    >>> def f(x):
    ...     return (x**3 - 1)  # only one real root at x = 1

    >>> from scipy import optimize
    >>> root, results = optimize.toms748(f, 0, 2, full_output=True)
    >>> root
    1.0
    >>> results
          converged: True
               flag: 'converged'
     function_calls: 11
         iterations: 5
               root: 1.0
    """
    if xtol <= 0:
        raise ValueError("xtol too small (%g <= 0)" % xtol)
    if rtol < _rtol / 4:
        raise ValueError("rtol too small (%g < %g)" % (rtol, _rtol))
    maxiter = operator.index(maxiter)
    if maxiter < 1:
        raise ValueError("maxiter must be greater than 0")
    if not np.isfinite(a):
        raise ValueError("a is not finite %s" % a)
    if not np.isfinite(b):
        raise ValueError("b is not finite %s" % b)
    if a >= b:
        raise ValueError("a and b are not an interval [{}, {}]".format(a, b))
    if not k >= 1:
        raise ValueError("k too small (%s < 1)" % k)

    if not isinstance(args, tuple):
        args = (args,)
    solver = TOMS748Solver()
    result = solver.solve(f, a, b, args=args, k=k, xtol=xtol, rtol=rtol,
                          maxiter=maxiter, disp=disp)
    x, function_calls, iterations, flag = result
    return _results_select(full_output, (x, function_calls, iterations, flag))