test_zeros.py 27.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
import pytest

from math import sqrt, exp, sin, cos
from functools import lru_cache

from numpy.testing import (assert_warns, assert_,
                           assert_allclose,
                           assert_equal,
                           assert_array_equal,
                           suppress_warnings)
import numpy as np
from numpy import finfo, power, nan, isclose


from scipy.optimize import zeros, newton, root_scalar

from scipy._lib._util import getfullargspec_no_self as _getfullargspec

# Import testing parameters
from scipy.optimize._tstutils import get_tests, functions as tstutils_functions, fstrings as tstutils_fstrings

TOL = 4*np.finfo(float).eps  # tolerance

_FLOAT_EPS = finfo(float).eps

# A few test functions used frequently:
# # A simple quadratic, (x-1)^2 - 1
def f1(x):
    return x ** 2 - 2 * x - 1


def f1_1(x):
    return 2 * x - 2


def f1_2(x):
    return 2.0 + 0 * x


def f1_and_p_and_pp(x):
    return f1(x), f1_1(x), f1_2(x)


# Simple transcendental function
def f2(x):
    return exp(x) - cos(x)


def f2_1(x):
    return exp(x) + sin(x)


def f2_2(x):
    return exp(x) + cos(x)


# lru cached function
@lru_cache()
def f_lrucached(x):
    return x


class TestBasic(object):

    def run_check_by_name(self, name, smoothness=0, **kwargs):
        a = .5
        b = sqrt(3)
        xtol = 4*np.finfo(float).eps
        rtol = 4*np.finfo(float).eps
        for function, fname in zip(tstutils_functions, tstutils_fstrings):
            if smoothness > 0 and fname in ['f4', 'f5', 'f6']:
                continue
            r = root_scalar(function, method=name, bracket=[a, b], x0=a,
                            xtol=xtol, rtol=rtol, **kwargs)
            zero = r.root
            assert_(r.converged)
            assert_allclose(zero, 1.0, atol=xtol, rtol=rtol,
                            err_msg='method %s, function %s' % (name, fname))

    def run_check(self, method, name):
        a = .5
        b = sqrt(3)
        xtol = 4 * _FLOAT_EPS
        rtol = 4 * _FLOAT_EPS
        for function, fname in zip(tstutils_functions, tstutils_fstrings):
            zero, r = method(function, a, b, xtol=xtol, rtol=rtol,
                             full_output=True)
            assert_(r.converged)
            assert_allclose(zero, 1.0, atol=xtol, rtol=rtol,
                            err_msg='method %s, function %s' % (name, fname))

    def run_check_lru_cached(self, method, name):
        # check that https://github.com/scipy/scipy/issues/10846 is fixed
        a = -1
        b = 1
        zero, r = method(f_lrucached, a, b, full_output=True)
        assert_(r.converged)
        assert_allclose(zero, 0,
                        err_msg='method %s, function %s' % (name, 'f_lrucached'))

    def _run_one_test(self, tc, method, sig_args_keys=None,
                      sig_kwargs_keys=None, **kwargs):
        method_args = []
        for k in sig_args_keys or []:
            if k not in tc:
                # If a,b not present use x0, x1. Similarly for f and func
                k = {'a': 'x0', 'b': 'x1', 'func': 'f'}.get(k, k)
            method_args.append(tc[k])

        method_kwargs = dict(**kwargs)
        method_kwargs.update({'full_output': True, 'disp': False})
        for k in sig_kwargs_keys or []:
            method_kwargs[k] = tc[k]

        root = tc.get('root')
        func_args = tc.get('args', ())

        try:
            r, rr = method(*method_args, args=func_args, **method_kwargs)
            return root, rr, tc
        except Exception:
            return root, zeros.RootResults(nan, -1, -1, zeros._EVALUEERR), tc

    def run_tests(self, tests, method, name,
                  xtol=4 * _FLOAT_EPS, rtol=4 * _FLOAT_EPS,
                  known_fail=None, **kwargs):
        r"""Run test-cases using the specified method and the supplied signature.

        Extract the arguments for the method call from the test case
        dictionary using the supplied keys for the method's signature."""
        # The methods have one of two base signatures:
        # (f, a, b, **kwargs)  # newton
        # (func, x0, **kwargs)  # bisect/brentq/...
        sig = _getfullargspec(method)  # FullArgSpec with args, varargs, varkw, defaults, ...
        assert_(not sig.kwonlyargs)
        nDefaults = len(sig.defaults)
        nRequired = len(sig.args) - nDefaults
        sig_args_keys = sig.args[:nRequired]
        sig_kwargs_keys = []
        if name in ['secant', 'newton', 'halley']:
            if name in ['newton', 'halley']:
                sig_kwargs_keys.append('fprime')
                if name in ['halley']:
                    sig_kwargs_keys.append('fprime2')
            kwargs['tol'] = xtol
        else:
            kwargs['xtol'] = xtol
            kwargs['rtol'] = rtol

        results = [list(self._run_one_test(
            tc, method, sig_args_keys=sig_args_keys,
            sig_kwargs_keys=sig_kwargs_keys, **kwargs)) for tc in tests]
        # results= [[true root, full output, tc], ...]

        known_fail = known_fail or []
        notcvgd = [elt for elt in results if not elt[1].converged]
        notcvgd = [elt for elt in notcvgd if elt[-1]['ID'] not in known_fail]
        notcvged_IDS = [elt[-1]['ID'] for elt in notcvgd]
        assert_equal([len(notcvged_IDS), notcvged_IDS], [0, []])

        # The usable xtol and rtol depend on the test
        tols = {'xtol': 4 * _FLOAT_EPS, 'rtol': 4 * _FLOAT_EPS}
        tols.update(**kwargs)
        rtol = tols['rtol']
        atol = tols.get('tol', tols['xtol'])

        cvgd = [elt for elt in results if elt[1].converged]
        approx = [elt[1].root for elt in cvgd]
        correct = [elt[0] for elt in cvgd]
        notclose = [[a] + elt for a, c, elt in zip(approx, correct, cvgd) if
                    not isclose(a, c, rtol=rtol, atol=atol)
                    and elt[-1]['ID'] not in known_fail]
        # Evaluate the function and see if is 0 at the purported root
        fvs = [tc['f'](aroot, *(tc['args'])) for aroot, c, fullout, tc in notclose]
        notclose = [[fv] + elt for fv, elt in zip(fvs, notclose) if fv != 0]
        assert_equal([notclose, len(notclose)], [[], 0])

    def run_collection(self, collection, method, name, smoothness=None,
                       known_fail=None,
                       xtol=4 * _FLOAT_EPS, rtol=4 * _FLOAT_EPS,
                       **kwargs):
        r"""Run a collection of tests using the specified method.

        The name is used to determine some optional arguments."""
        tests = get_tests(collection, smoothness=smoothness)
        self.run_tests(tests, method, name, xtol=xtol, rtol=rtol,
                       known_fail=known_fail, **kwargs)

    def test_bisect(self):
        self.run_check(zeros.bisect, 'bisect')
        self.run_check_lru_cached(zeros.bisect, 'bisect')
        self.run_check_by_name('bisect')
        self.run_collection('aps', zeros.bisect, 'bisect', smoothness=1)

    def test_ridder(self):
        self.run_check(zeros.ridder, 'ridder')
        self.run_check_lru_cached(zeros.ridder, 'ridder')
        self.run_check_by_name('ridder')
        self.run_collection('aps', zeros.ridder, 'ridder', smoothness=1)

    def test_brentq(self):
        self.run_check(zeros.brentq, 'brentq')
        self.run_check_lru_cached(zeros.brentq, 'brentq')
        self.run_check_by_name('brentq')
        # Brentq/h needs a lower tolerance to be specified
        self.run_collection('aps', zeros.brentq, 'brentq', smoothness=1,
                            xtol=1e-14, rtol=1e-14)

    def test_brenth(self):
        self.run_check(zeros.brenth, 'brenth')
        self.run_check_lru_cached(zeros.brenth, 'brenth')
        self.run_check_by_name('brenth')
        self.run_collection('aps', zeros.brenth, 'brenth', smoothness=1,
                            xtol=1e-14, rtol=1e-14)

    def test_toms748(self):
        self.run_check(zeros.toms748, 'toms748')
        self.run_check_lru_cached(zeros.toms748, 'toms748')
        self.run_check_by_name('toms748')
        self.run_collection('aps', zeros.toms748, 'toms748', smoothness=1)

    def test_newton_collections(self):
        known_fail = ['aps.13.00']
        known_fail += ['aps.12.05', 'aps.12.17']  # fails under Windows Py27
        for collection in ['aps', 'complex']:
            self.run_collection(collection, zeros.newton, 'newton',
                                smoothness=2, known_fail=known_fail)

    def test_halley_collections(self):
        known_fail = ['aps.12.06', 'aps.12.07', 'aps.12.08', 'aps.12.09',
                      'aps.12.10', 'aps.12.11', 'aps.12.12', 'aps.12.13',
                      'aps.12.14', 'aps.12.15', 'aps.12.16', 'aps.12.17',
                      'aps.12.18', 'aps.13.00']
        for collection in ['aps', 'complex']:
            self.run_collection(collection, zeros.newton, 'halley',
                                smoothness=2, known_fail=known_fail)

    @staticmethod
    def f1(x):
        return x**2 - 2*x - 1  # == (x-1)**2 - 2

    @staticmethod
    def f1_1(x):
        return 2*x - 2

    @staticmethod
    def f1_2(x):
        return 2.0 + 0*x

    @staticmethod
    def f2(x):
        return exp(x) - cos(x)

    @staticmethod
    def f2_1(x):
        return exp(x) + sin(x)

    @staticmethod
    def f2_2(x):
        return exp(x) + cos(x)

    def test_newton(self):
        for f, f_1, f_2 in [(self.f1, self.f1_1, self.f1_2),
                            (self.f2, self.f2_1, self.f2_2)]:
            x = zeros.newton(f, 3, tol=1e-6)
            assert_allclose(f(x), 0, atol=1e-6)
            x = zeros.newton(f, 3, x1=5, tol=1e-6)  # secant, x0 and x1
            assert_allclose(f(x), 0, atol=1e-6)
            x = zeros.newton(f, 3, fprime=f_1, tol=1e-6)   # newton
            assert_allclose(f(x), 0, atol=1e-6)
            x = zeros.newton(f, 3, fprime=f_1, fprime2=f_2, tol=1e-6)  # halley
            assert_allclose(f(x), 0, atol=1e-6)

    def test_newton_by_name(self):
        r"""Invoke newton through root_scalar()"""
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='newton', x0=3, fprime=f_1, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)

    def test_secant_by_name(self):
        r"""Invoke secant through root_scalar()"""
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='secant', x0=3, x1=2, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)
            r = root_scalar(f, method='secant', x0=3, x1=5, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)

    def test_halley_by_name(self):
        r"""Invoke halley through root_scalar()"""
        for f, f_1, f_2 in [(f1, f1_1, f1_2), (f2, f2_1, f2_2)]:
            r = root_scalar(f, method='halley', x0=3,
                            fprime=f_1, fprime2=f_2, xtol=1e-6)
            assert_allclose(f(r.root), 0, atol=1e-6)

    def test_root_scalar_fail(self):
        with pytest.raises(ValueError):
            root_scalar(f1, method='secant', x0=3, xtol=1e-6)  # no x1
        with pytest.raises(ValueError):
            root_scalar(f1, method='newton', x0=3, xtol=1e-6)  # no fprime
        with pytest.raises(ValueError):
            root_scalar(f1, method='halley', fprime=f1_1, x0=3, xtol=1e-6)  # no fprime2
        with pytest.raises(ValueError):
            root_scalar(f1, method='halley', fprime2=f1_2, x0=3, xtol=1e-6)  # no fprime

    def test_array_newton(self):
        """test newton with array"""

        def f1(x, *a):
            b = a[0] + x * a[3]
            return a[1] - a[2] * (np.exp(b / a[5]) - 1.0) - b / a[4] - x

        def f1_1(x, *a):
            b = a[3] / a[5]
            return -a[2] * np.exp(a[0] / a[5] + x * b) * b - a[3] / a[4] - 1

        def f1_2(x, *a):
            b = a[3] / a[5]
            return -a[2] * np.exp(a[0] / a[5] + x * b) * b**2

        a0 = np.array([
            5.32725221, 5.48673747, 5.49539973,
            5.36387202, 4.80237316, 1.43764452,
            5.23063958, 5.46094772, 5.50512718,
            5.42046290
        ])
        a1 = (np.sin(range(10)) + 1.0) * 7.0
        args = (a0, a1, 1e-09, 0.004, 10, 0.27456)
        x0 = [7.0] * 10
        x = zeros.newton(f1, x0, f1_1, args)
        x_expected = (
            6.17264965, 11.7702805, 12.2219954,
            7.11017681, 1.18151293, 0.143707955,
            4.31928228, 10.5419107, 12.7552490,
            8.91225749
        )
        assert_allclose(x, x_expected)
        # test halley's
        x = zeros.newton(f1, x0, f1_1, args, fprime2=f1_2)
        assert_allclose(x, x_expected)
        # test secant
        x = zeros.newton(f1, x0, args=args)
        assert_allclose(x, x_expected)

    def test_array_newton_complex(self):
        def f(x):
            return x + 1+1j

        def fprime(x):
            return 1.0

        t = np.full(4, 1j)
        x = zeros.newton(f, t, fprime=fprime)
        assert_allclose(f(x), 0.)

        # should work even if x0 is not complex
        t = np.ones(4)
        x = zeros.newton(f, t, fprime=fprime)
        assert_allclose(f(x), 0.)

        x = zeros.newton(f, t)
        assert_allclose(f(x), 0.)

    def test_array_secant_active_zero_der(self):
        """test secant doesn't continue to iterate zero derivatives"""
        x = zeros.newton(lambda x, *a: x*x - a[0], x0=[4.123, 5],
                         args=[np.array([17, 25])])
        assert_allclose(x, (4.123105625617661, 5.0))

    def test_array_newton_integers(self):
        # test secant with float
        x = zeros.newton(lambda y, z: z - y ** 2, [4.0] * 2,
                         args=([15.0, 17.0],))
        assert_allclose(x, (3.872983346207417, 4.123105625617661))
        # test integer becomes float
        x = zeros.newton(lambda y, z: z - y ** 2, [4] * 2, args=([15, 17],))
        assert_allclose(x, (3.872983346207417, 4.123105625617661))

    def test_array_newton_zero_der_failures(self):
        # test derivative zero warning
        assert_warns(RuntimeWarning, zeros.newton,
                     lambda y: y**2 - 2, [0., 0.], lambda y: 2 * y)
        # test failures and zero_der
        with pytest.warns(RuntimeWarning):
            results = zeros.newton(lambda y: y**2 - 2, [0., 0.],
                                   lambda y: 2*y, full_output=True)
            assert_allclose(results.root, 0)
            assert results.zero_der.all()
            assert not results.converged.any()

    def test_newton_combined(self):
        f1 = lambda x: x**2 - 2*x - 1
        f1_1 = lambda x: 2*x - 2
        f1_2 = lambda x: 2.0 + 0*x

        def f1_and_p_and_pp(x):
            return x**2 - 2*x-1, 2*x-2, 2.0

        sol0 = root_scalar(f1, method='newton', x0=3, fprime=f1_1)
        sol = root_scalar(f1_and_p_and_pp, method='newton', x0=3, fprime=True)
        assert_allclose(sol0.root, sol.root, atol=1e-8)
        assert_equal(2*sol.function_calls, sol0.function_calls)

        sol0 = root_scalar(f1, method='halley', x0=3, fprime=f1_1, fprime2=f1_2)
        sol = root_scalar(f1_and_p_and_pp, method='halley', x0=3, fprime2=True)
        assert_allclose(sol0.root, sol.root, atol=1e-8)
        assert_equal(3*sol.function_calls, sol0.function_calls)

    def test_newton_full_output(self):
        # Test the full_output capability, both when converging and not.
        # Use simple polynomials, to avoid hitting platform dependencies
        # (e.g., exp & trig) in number of iterations

        x0 = 3
        expected_counts = [(6, 7), (5, 10), (3, 9)]

        for derivs in range(3):
            kwargs = {'tol': 1e-6, 'full_output': True, }
            for k, v in [['fprime', self.f1_1], ['fprime2', self.f1_2]][:derivs]:
                kwargs[k] = v

            x, r = zeros.newton(self.f1, x0, disp=False, **kwargs)
            assert_(r.converged)
            assert_equal(x, r.root)
            assert_equal((r.iterations, r.function_calls), expected_counts[derivs])
            if derivs == 0:
                assert(r.function_calls <= r.iterations + 1)
            else:
                assert_equal(r.function_calls, (derivs + 1) * r.iterations)

            # Now repeat, allowing one fewer iteration to force convergence failure
            iters = r.iterations - 1
            x, r = zeros.newton(self.f1, x0, maxiter=iters, disp=False, **kwargs)
            assert_(not r.converged)
            assert_equal(x, r.root)
            assert_equal(r.iterations, iters)

            if derivs == 1:
                # Check that the correct Exception is raised and
                # validate the start of the message.
                with pytest.raises(
                    RuntimeError,
                    match='Failed to converge after %d iterations, value is .*' % (iters)):
                    x, r = zeros.newton(self.f1, x0, maxiter=iters, disp=True, **kwargs)

    def test_deriv_zero_warning(self):
        func = lambda x: x**2 - 2.0
        dfunc = lambda x: 2*x
        assert_warns(RuntimeWarning, zeros.newton, func, 0.0, dfunc, disp=False)
        with pytest.raises(RuntimeError, match='Derivative was zero'):
            zeros.newton(func, 0.0, dfunc)

    def test_newton_does_not_modify_x0(self):
        # https://github.com/scipy/scipy/issues/9964
        x0 = np.array([0.1, 3])
        x0_copy = x0.copy()  # Copy to test for equality.
        newton(np.sin, x0, np.cos)
        assert_array_equal(x0, x0_copy)

    def test_maxiter_int_check(self):
        for method in [zeros.bisect, zeros.newton, zeros.ridder, zeros.brentq,
                       zeros.brenth, zeros.toms748]:
            with pytest.raises(TypeError,
                    match="'float' object cannot be interpreted as an integer"):
                method(f1, 0.0, 1.0, maxiter=72.45)


def test_gh_5555():
    root = 0.1

    def f(x):
        return x - root

    methods = [zeros.bisect, zeros.ridder]
    xtol = rtol = TOL
    for method in methods:
        res = method(f, -1e8, 1e7, xtol=xtol, rtol=rtol)
        assert_allclose(root, res, atol=xtol, rtol=rtol,
                        err_msg='method %s' % method.__name__)


def test_gh_5557():
    # Show that without the changes in 5557 brentq and brenth might
    # only achieve a tolerance of 2*(xtol + rtol*|res|).

    # f linearly interpolates (0, -0.1), (0.5, -0.1), and (1,
    # 0.4). The important parts are that |f(0)| < |f(1)| (so that
    # brent takes 0 as the initial guess), |f(0)| < atol (so that
    # brent accepts 0 as the root), and that the exact root of f lies
    # more than atol away from 0 (so that brent doesn't achieve the
    # desired tolerance).
    def f(x):
        if x < 0.5:
            return -0.1
        else:
            return x - 0.6

    atol = 0.51
    rtol = 4 * _FLOAT_EPS
    methods = [zeros.brentq, zeros.brenth]
    for method in methods:
        res = method(f, 0, 1, xtol=atol, rtol=rtol)
        assert_allclose(0.6, res, atol=atol, rtol=rtol)


class TestRootResults:
    def test_repr(self):
        r = zeros.RootResults(root=1.0,
                              iterations=44,
                              function_calls=46,
                              flag=0)
        expected_repr = ("      converged: True\n           flag: 'converged'"
                         "\n function_calls: 46\n     iterations: 44\n"
                         "           root: 1.0")
        assert_equal(repr(r), expected_repr)


def test_complex_halley():
    """Test Halley's works with complex roots"""
    def f(x, *a):
        return a[0] * x**2 + a[1] * x + a[2]

    def f_1(x, *a):
        return 2 * a[0] * x + a[1]

    def f_2(x, *a):
        retval = 2 * a[0]
        try:
            size = len(x)
        except TypeError:
            return retval
        else:
            return [retval] * size

    z = complex(1.0, 2.0)
    coeffs = (2.0, 3.0, 4.0)
    y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
    # (-0.75000000000000078+1.1989578808281789j)
    assert_allclose(f(y, *coeffs), 0, atol=1e-6)
    z = [z] * 10
    coeffs = (2.0, 3.0, 4.0)
    y = zeros.newton(f, z, args=coeffs, fprime=f_1, fprime2=f_2, tol=1e-6)
    assert_allclose(f(y, *coeffs), 0, atol=1e-6)


def test_zero_der_nz_dp():
    """Test secant method with a non-zero dp, but an infinite newton step"""
    # pick a symmetrical functions and choose a point on the side that with dx
    # makes a secant that is a flat line with zero slope, EG: f = (x - 100)**2,
    # which has a root at x = 100 and is symmetrical around the line x = 100
    # we have to pick a really big number so that it is consistently true
    # now find a point on each side so that the secant has a zero slope
    dx = np.finfo(float).eps ** 0.33
    # 100 - p0 = p1 - 100 = p0 * (1 + dx) + dx - 100
    # -> 200 = p0 * (2 + dx) + dx
    p0 = (200.0 - dx) / (2.0 + dx)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "RMS of")
        x = zeros.newton(lambda y: (y - 100.0)**2, x0=[p0] * 10)
    assert_allclose(x, [100] * 10)
    # test scalar cases too
    p0 = (2.0 - 1e-4) / (2.0 + 1e-4)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "Tolerance of")
        x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=False)
    assert_allclose(x, 1)
    with pytest.raises(RuntimeError, match='Tolerance of'):
        x = zeros.newton(lambda y: (y - 1.0) ** 2, x0=p0, disp=True)
    p0 = (-2.0 + 1e-4) / (2.0 + 1e-4)
    with suppress_warnings() as sup:
        sup.filter(RuntimeWarning, "Tolerance of")
        x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=False)
    assert_allclose(x, -1)
    with pytest.raises(RuntimeError, match='Tolerance of'):
        x = zeros.newton(lambda y: (y + 1.0) ** 2, x0=p0, disp=True)


def test_array_newton_failures():
    """Test that array newton fails as expected"""
    # p = 0.68  # [MPa]
    # dp = -0.068 * 1e6  # [Pa]
    # T = 323  # [K]
    diameter = 0.10  # [m]
    # L = 100  # [m]
    roughness = 0.00015  # [m]
    rho = 988.1  # [kg/m**3]
    mu = 5.4790e-04  # [Pa*s]
    u = 2.488  # [m/s]
    reynolds_number = rho * u * diameter / mu  # Reynolds number

    def colebrook_eqn(darcy_friction, re, dia):
        return (1 / np.sqrt(darcy_friction) +
                2 * np.log10(roughness / 3.7 / dia +
                             2.51 / re / np.sqrt(darcy_friction)))

    # only some failures
    with pytest.warns(RuntimeWarning):
        result = zeros.newton(
            colebrook_eqn, x0=[0.01, 0.2, 0.02223, 0.3], maxiter=2,
            args=[reynolds_number, diameter], full_output=True
        )
        assert not result.converged.all()
    # they all fail
    with pytest.raises(RuntimeError):
        result = zeros.newton(
            colebrook_eqn, x0=[0.01] * 2, maxiter=2,
            args=[reynolds_number, diameter], full_output=True
        )


# this test should **not** raise a RuntimeWarning
def test_gh8904_zeroder_at_root_fails():
    """Test that Newton or Halley don't warn if zero derivative at root"""

    # a function that has a zero derivative at it's root
    def f_zeroder_root(x):
        return x**3 - x**2

    # should work with secant
    r = zeros.newton(f_zeroder_root, x0=0)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # test again with array
    r = zeros.newton(f_zeroder_root, x0=[0]*10)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)

    # 1st derivative
    def fder(x):
        return 3 * x**2 - 2 * x

    # 2nd derivative
    def fder2(x):
        return 6*x - 2

    # should work with newton and halley
    r = zeros.newton(f_zeroder_root, x0=0, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    r = zeros.newton(f_zeroder_root, x0=0, fprime=fder,
                     fprime2=fder2)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # test again with array
    r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    r = zeros.newton(f_zeroder_root, x0=[0]*10, fprime=fder,
                     fprime2=fder2)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)

    # also test that if a root is found we do not raise RuntimeWarning even if
    # the derivative is zero, EG: at x = 0.5, then fval = -0.125 and
    # fder = -0.25 so the next guess is 0.5 - (-0.125/-0.5) = 0 which is the
    # root, but if the solver continued with that guess, then it will calculate
    # a zero derivative, so it should return the root w/o RuntimeWarning
    r = zeros.newton(f_zeroder_root, x0=0.5, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # test again with array
    r = zeros.newton(f_zeroder_root, x0=[0.5]*10, fprime=fder)
    assert_allclose(r, 0, atol=zeros._xtol, rtol=zeros._rtol)
    # doesn't apply to halley


def test_gh_8881():
    r"""Test that Halley's method realizes that the 2nd order adjustment
    is too big and drops off to the 1st order adjustment."""
    n = 9

    def f(x):
        return power(x, 1.0/n) - power(n, 1.0/n)

    def fp(x):
        return power(x, (1.0-n)/n)/n

    def fpp(x):
        return power(x, (1.0-2*n)/n) * (1.0/n) * (1.0-n)/n

    x0 = 0.1
    # The root is at x=9.
    # The function has positive slope, x0 < root.
    # Newton succeeds in 8 iterations
    rt, r = newton(f, x0, fprime=fp, full_output=True)
    assert(r.converged)
    # Before the Issue 8881/PR 8882, halley would send x in the wrong direction.
    # Check that it now succeeds.
    rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
    assert(r.converged)


def test_gh_9608_preserve_array_shape():
    """
    Test that shape is preserved for array inputs even if fprime or fprime2 is
    scalar
    """
    def f(x):
        return x**2

    def fp(x):
        return 2 * x

    def fpp(x):
        return 2

    x0 = np.array([-2], dtype=np.float32)
    rt, r = newton(f, x0, fprime=fp, fprime2=fpp, full_output=True)
    assert(r.converged)

    x0_array = np.array([-2, -3], dtype=np.float32)
    # This next invocation should fail
    with pytest.raises(IndexError):
        result = zeros.newton(
            f, x0_array, fprime=fp, fprime2=fpp, full_output=True
        )

    def fpp_array(x):
        return np.full(np.shape(x), 2, dtype=np.float32)

    result = zeros.newton(
        f, x0_array, fprime=fp, fprime2=fpp_array, full_output=True
    )
    assert result.converged.all()


@pytest.mark.parametrize(
    "maximum_iterations,flag_expected",
    [(10, zeros.CONVERR), (100, zeros.CONVERGED)])
def test_gh9254_flag_if_maxiter_exceeded(maximum_iterations, flag_expected):
    """
    Test that if the maximum iterations is exceeded that the flag is not
    converged.
    """
    result = zeros.brentq(
        lambda x: ((1.2*x - 2.3)*x + 3.4)*x - 4.5,
        -30, 30, (), 1e-6, 1e-6, maximum_iterations,
        full_output=True, disp=False)
    assert result[1].flag == flag_expected
    if flag_expected == zeros.CONVERR:
        # didn't converge because exceeded maximum iterations
        assert result[1].iterations == maximum_iterations
    elif flag_expected == zeros.CONVERGED:
        # converged before maximum iterations
        assert result[1].iterations < maximum_iterations


def test_gh9551_raise_error_if_disp_true():
    """Test that if disp is true then zero derivative raises RuntimeError"""

    def f(x):
        return x*x + 1

    def f_p(x):
        return 2*x

    assert_warns(RuntimeWarning, zeros.newton, f, 1.0, f_p, disp=False)
    with pytest.raises(
            RuntimeError,
            match=r'^Derivative was zero\. Failed to converge after \d+ iterations, value is [+-]?\d*\.\d+\.$'):
        zeros.newton(f, 1.0, f_p)
    root = zeros.newton(f, complex(10.0, 10.0), f_p)
    assert_allclose(root, complex(0.0, 1.0))