test_slsqp.py 21.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
"""
Unit test for SLSQP optimization.
"""
from numpy.testing import (assert_, assert_array_almost_equal,
                           assert_allclose, assert_equal)
from pytest import raises as assert_raises
import numpy as np

from scipy.optimize import fmin_slsqp, minimize, Bounds


class MyCallBack(object):
    """pass a custom callback function

    This makes sure it's being used.
    """
    def __init__(self):
        self.been_called = False
        self.ncalls = 0

    def __call__(self, x):
        self.been_called = True
        self.ncalls += 1


class TestSLSQP(object):
    """
    Test SLSQP algorithm using Example 14.4 from Numerical Methods for
    Engineers by Steven Chapra and Raymond Canale.
    This example maximizes the function f(x) = 2*x*y + 2*x - x**2 - 2*y**2,
    which has a maximum at x=2, y=1.
    """
    def setup_method(self):
        self.opts = {'disp': False}

    def fun(self, d, sign=1.0):
        """
        Arguments:
        d     - A list of two elements, where d[0] represents x and d[1] represents y
                 in the following equation.
        sign - A multiplier for f. Since we want to optimize it, and the SciPy
               optimizers can only minimize functions, we need to multiply it by
               -1 to achieve the desired solution
        Returns:
        2*x*y + 2*x - x**2 - 2*y**2

        """
        x = d[0]
        y = d[1]
        return sign*(2*x*y + 2*x - x**2 - 2*y**2)

    def jac(self, d, sign=1.0):
        """
        This is the derivative of fun, returning a NumPy array
        representing df/dx and df/dy.

        """
        x = d[0]
        y = d[1]
        dfdx = sign*(-2*x + 2*y + 2)
        dfdy = sign*(2*x - 4*y)
        return np.array([dfdx, dfdy], float)

    def fun_and_jac(self, d, sign=1.0):
        return self.fun(d, sign), self.jac(d, sign)

    def f_eqcon(self, x, sign=1.0):
        """ Equality constraint """
        return np.array([x[0] - x[1]])

    def fprime_eqcon(self, x, sign=1.0):
        """ Equality constraint, derivative """
        return np.array([[1, -1]])

    def f_eqcon_scalar(self, x, sign=1.0):
        """ Scalar equality constraint """
        return self.f_eqcon(x, sign)[0]

    def fprime_eqcon_scalar(self, x, sign=1.0):
        """ Scalar equality constraint, derivative """
        return self.fprime_eqcon(x, sign)[0].tolist()

    def f_ieqcon(self, x, sign=1.0):
        """ Inequality constraint """
        return np.array([x[0] - x[1] - 1.0])

    def fprime_ieqcon(self, x, sign=1.0):
        """ Inequality constraint, derivative """
        return np.array([[1, -1]])

    def f_ieqcon2(self, x):
        """ Vector inequality constraint """
        return np.asarray(x)

    def fprime_ieqcon2(self, x):
        """ Vector inequality constraint, derivative """
        return np.identity(x.shape[0])

    # minimize
    def test_minimize_unbounded_approximated(self):
        # Minimize, method='SLSQP': unbounded, approximated jacobian.
        jacs = [None, False, '2-point', '3-point']
        for jac in jacs:
            res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                           jac=jac, method='SLSQP',
                           options=self.opts)
            assert_(res['success'], res['message'])
            assert_allclose(res.x, [2, 1])

    def test_minimize_unbounded_given(self):
        # Minimize, method='SLSQP': unbounded, given Jacobian.
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       jac=self.jac, method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_bounded_approximated(self):
        # Minimize, method='SLSQP': bounded, approximated jacobian.
        jacs = [None, False, '2-point', '3-point']
        for jac in jacs:
            with np.errstate(invalid='ignore'):
                res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                               jac=jac,
                               bounds=((2.5, None), (None, 0.5)),
                               method='SLSQP', options=self.opts)
            assert_(res['success'], res['message'])
            assert_allclose(res.x, [2.5, 0.5])
            assert_(2.5 <= res.x[0])
            assert_(res.x[1] <= 0.5)

    def test_minimize_unbounded_combined(self):
        # Minimize, method='SLSQP': unbounded, combined function and Jacobian.
        res = minimize(self.fun_and_jac, [-1.0, 1.0], args=(-1.0, ),
                       jac=True, method='SLSQP', options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_equality_approximated(self):
        # Minimize with method='SLSQP': equality constraint, approx. jacobian.
        jacs = [None, False, '2-point', '3-point']
        for jac in jacs:
            res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                           jac=jac,
                           constraints={'type': 'eq',
                                        'fun': self.f_eqcon,
                                        'args': (-1.0, )},
                           method='SLSQP', options=self.opts)
            assert_(res['success'], res['message'])
            assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given(self):
        # Minimize with method='SLSQP': equality constraint, given Jacobian.
        res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
                       method='SLSQP', args=(-1.0,),
                       constraints={'type': 'eq', 'fun':self.f_eqcon,
                                    'args': (-1.0, )},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given2(self):
        # Minimize with method='SLSQP': equality constraint, given Jacobian
        # for fun and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0,),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_equality_given_cons_scalar(self):
        # Minimize with method='SLSQP': scalar equality constraint, given
        # Jacobian for fun and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0,),
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon_scalar,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon_scalar},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [1, 1])

    def test_minimize_inequality_given(self):
        # Minimize with method='SLSQP': inequality constraint, given Jacobian.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0, ),
                       constraints={'type': 'ineq',
                                    'fun': self.f_ieqcon,
                                    'args': (-1.0, )},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1], atol=1e-3)

    def test_minimize_inequality_given_vector_constraints(self):
        # Minimize with method='SLSQP': vector inequality constraint, given
        # Jacobian.
        res = minimize(self.fun, [-1.0, 1.0], jac=self.jac,
                       method='SLSQP', args=(-1.0,),
                       constraints={'type': 'ineq',
                                    'fun': self.f_ieqcon2,
                                    'jac': self.fprime_ieqcon2},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [2, 1])

    def test_minimize_bound_equality_given2(self):
        # Minimize with method='SLSQP': bounds, eq. const., given jac. for
        # fun. and const.
        res = minimize(self.fun, [-1.0, 1.0], method='SLSQP',
                       jac=self.jac, args=(-1.0, ),
                       bounds=[(-0.8, 1.), (-1, 0.8)],
                       constraints={'type': 'eq',
                                    'fun': self.f_eqcon,
                                    'args': (-1.0, ),
                                    'jac': self.fprime_eqcon},
                       options=self.opts)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, [0.8, 0.8], atol=1e-3)
        assert_(-0.8 <= res.x[0] <= 1)
        assert_(-1 <= res.x[1] <= 0.8)

    # fmin_slsqp
    def test_unbounded_approximated(self):
        # SLSQP: unbounded, approximated Jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1])

    def test_unbounded_given(self):
        # SLSQP: unbounded, given Jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0], args=(-1.0, ),
                         fprime = self.jac, iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1])

    def test_equality_approximated(self):
        # SLSQP: equality constraint, approximated Jacobian.
        res = fmin_slsqp(self.fun,[-1.0,1.0], args=(-1.0,),
                         eqcons = [self.f_eqcon],
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_equality_given(self):
        # SLSQP: equality constraint, given Jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0,),
                         eqcons = [self.f_eqcon], iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_equality_given2(self):
        # SLSQP: equality constraint, given Jacobian for fun and const.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0,),
                         f_eqcons = self.f_eqcon,
                         fprime_eqcons = self.fprime_eqcon,
                         iprint = 0,
                         full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [1, 1])

    def test_inequality_given(self):
        # SLSQP: inequality constraint, given Jacobian.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0, ),
                         ieqcons = [self.f_ieqcon],
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [2, 1], decimal=3)

    def test_bound_equality_given2(self):
        # SLSQP: bounds, eq. const., given jac. for fun. and const.
        res = fmin_slsqp(self.fun, [-1.0, 1.0],
                         fprime=self.jac, args=(-1.0, ),
                         bounds = [(-0.8, 1.), (-1, 0.8)],
                         f_eqcons = self.f_eqcon,
                         fprime_eqcons = self.fprime_eqcon,
                         iprint = 0, full_output = 1)
        x, fx, its, imode, smode = res
        assert_(imode == 0, imode)
        assert_array_almost_equal(x, [0.8, 0.8], decimal=3)
        assert_(-0.8 <= x[0] <= 1)
        assert_(-1 <= x[1] <= 0.8)

    def test_scalar_constraints(self):
        # Regression test for gh-2182
        x = fmin_slsqp(lambda z: z**2, [3.],
                       ieqcons=[lambda z: z[0] - 1],
                       iprint=0)
        assert_array_almost_equal(x, [1.])

        x = fmin_slsqp(lambda z: z**2, [3.],
                       f_ieqcons=lambda z: [z[0] - 1],
                       iprint=0)
        assert_array_almost_equal(x, [1.])

    def test_integer_bounds(self):
        # This should not raise an exception
        fmin_slsqp(lambda z: z**2 - 1, [0], bounds=[[0, 1]], iprint=0)

    def test_array_bounds(self):
        # NumPy used to treat n-dimensional 1-element arrays as scalars
        # in some cases.  The handling of `bounds` by `fmin_slsqp` still
        # supports this behavior.
        bounds = [(-np.inf, np.inf), (np.array([2]), np.array([3]))]
        x = fmin_slsqp(lambda z: np.sum(z**2 - 1), [2.5, 2.5], bounds=bounds,
                       iprint=0)
        assert_array_almost_equal(x, [0, 2])

    def test_obj_must_return_scalar(self):
        # Regression test for Github Issue #5433
        # If objective function does not return a scalar, raises ValueError
        with assert_raises(ValueError):
            fmin_slsqp(lambda x: [0, 1], [1, 2, 3])

    def test_obj_returns_scalar_in_list(self):
        # Test for Github Issue #5433 and PR #6691
        # Objective function should be able to return length-1 Python list
        #  containing the scalar
        fmin_slsqp(lambda x: [0], [1, 2, 3], iprint=0)

    def test_callback(self):
        # Minimize, method='SLSQP': unbounded, approximated jacobian. Check for callback
        callback = MyCallBack()
        res = minimize(self.fun, [-1.0, 1.0], args=(-1.0, ),
                       method='SLSQP', callback=callback, options=self.opts)
        assert_(res['success'], res['message'])
        assert_(callback.been_called)
        assert_equal(callback.ncalls, res['nit'])

    def test_inconsistent_linearization(self):
        # SLSQP must be able to solve this problem, even if the
        # linearized problem at the starting point is infeasible.

        # Linearized constraints are
        #
        #    2*x0[0]*x[0] >= 1
        #
        # At x0 = [0, 1], the second constraint is clearly infeasible.
        # This triggers a call with n2==1 in the LSQ subroutine.
        x = [0, 1]
        f1 = lambda x: x[0] + x[1] - 2
        f2 = lambda x: x[0]**2 - 1
        sol = minimize(
            lambda x: x[0]**2 + x[1]**2,
            x,
            constraints=({'type':'eq','fun': f1},
                         {'type':'ineq','fun': f2}),
            bounds=((0,None), (0,None)),
            method='SLSQP')
        x = sol.x

        assert_allclose(f1(x), 0, atol=1e-8)
        assert_(f2(x) >= -1e-8)
        assert_(sol.success, sol)

    def test_regression_5743(self):
        # SLSQP must not indicate success for this problem,
        # which is infeasible.
        x = [1, 2]
        sol = minimize(
            lambda x: x[0]**2 + x[1]**2,
            x,
            constraints=({'type':'eq','fun': lambda x: x[0]+x[1]-1},
                         {'type':'ineq','fun': lambda x: x[0]-2}),
            bounds=((0,None), (0,None)),
            method='SLSQP')
        assert_(not sol.success, sol)

    def test_gh_6676(self):
        def func(x):
            return (x[0] - 1)**2 + 2*(x[1] - 1)**2 + 0.5*(x[2] - 1)**2

        sol = minimize(func, [0, 0, 0], method='SLSQP')
        assert_(sol.jac.shape == (3,))

    def test_invalid_bounds(self):
        # Raise correct error when lower bound is greater than upper bound.
        # See Github issue 6875.
        bounds_list = [
            ((1, 2), (2, 1)),
            ((2, 1), (1, 2)),
            ((2, 1), (2, 1)),
            ((np.inf, 0), (np.inf, 0)),
            ((1, -np.inf), (0, 1)),
        ]
        for bounds in bounds_list:
            with assert_raises(ValueError):
                minimize(self.fun, [-1.0, 1.0], bounds=bounds, method='SLSQP')

    def test_bounds_clipping(self):
        #
        # SLSQP returns bogus results for initial guess out of bounds, gh-6859
        #
        def f(x):
            return (x[0] - 1)**2

        sol = minimize(f, [10], method='slsqp', bounds=[(None, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', bounds=[(2, None)])
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', bounds=[(None, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', bounds=[(2, None)])
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-0.5], method='slsqp', bounds=[(-1, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', bounds=[(-1, 0)])
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

    def test_infeasible_initial(self):
        # Check SLSQP behavior with infeasible initial point
        def f(x):
            x, = x
            return x*x - 2*x + 1

        cons_u = [{'type': 'ineq', 'fun': lambda x: 0 - x}]
        cons_l = [{'type': 'ineq', 'fun': lambda x: x - 2}]
        cons_ul = [{'type': 'ineq', 'fun': lambda x: 0 - x},
                   {'type': 'ineq', 'fun': lambda x: x + 1}]

        sol = minimize(f, [10], method='slsqp', constraints=cons_u)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', constraints=cons_l)
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-10], method='slsqp', constraints=cons_u)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', constraints=cons_l)
        assert_(sol.success)
        assert_allclose(sol.x, 2, atol=1e-10)

        sol = minimize(f, [-0.5], method='slsqp', constraints=cons_ul)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

        sol = minimize(f, [10], method='slsqp', constraints=cons_ul)
        assert_(sol.success)
        assert_allclose(sol.x, 0, atol=1e-10)

    def test_inconsistent_inequalities(self):
        # gh-7618

        def cost(x):
            return -1 * x[0] + 4 * x[1]

        def ineqcons1(x):
            return x[1] - x[0] - 1

        def ineqcons2(x):
            return x[0] - x[1]

        # The inequalities are inconsistent, so no solution can exist:
        #
        # x1 >= x0 + 1
        # x0 >= x1

        x0 = (1,5)
        bounds = ((-5, 5), (-5, 5))
        cons = (dict(type='ineq', fun=ineqcons1), dict(type='ineq', fun=ineqcons2))
        res = minimize(cost, x0, method='SLSQP', bounds=bounds, constraints=cons)

        assert_(not res.success)

    def test_new_bounds_type(self):
        f = lambda x: x[0]**2 + x[1]**2
        bounds = Bounds([1, 0], [np.inf, np.inf])
        sol = minimize(f, [0, 0], method='slsqp', bounds=bounds)
        assert_(sol.success)
        assert_allclose(sol.x, [1, 0])

    def test_nested_minimization(self):

        class NestedProblem():

            def __init__(self):
                self.F_outer_count = 0

            def F_outer(self, x):
                self.F_outer_count += 1
                if self.F_outer_count > 1000:
                    raise Exception("Nested minimization failed to terminate.")
                inner_res = minimize(self.F_inner, (3, 4), method="SLSQP")
                assert_(inner_res.success)
                assert_allclose(inner_res.x, [1, 1])
                return x[0]**2 + x[1]**2 + x[2]**2

            def F_inner(self, x):
                return (x[0] - 1)**2 + (x[1] - 1)**2

            def solve(self):
                outer_res = minimize(self.F_outer, (5, 5, 5), method="SLSQP")
                assert_(outer_res.success)
                assert_allclose(outer_res.x, [0, 0, 0])

        problem = NestedProblem()
        problem.solve()

    def test_gh1758(self):
        # the test suggested in gh1758
        # https://nlopt.readthedocs.io/en/latest/NLopt_Tutorial/
        # implement two equality constraints, in R^2.
        def fun(x):
            return np.sqrt(x[1])

        def f_eqcon(x):
            """ Equality constraint """
            return x[1] - (2 * x[0]) ** 3

        def f_eqcon2(x):
            """ Equality constraint """
            return x[1] - (-x[0] + 1) ** 3

        c1 = {'type': 'eq', 'fun': f_eqcon}
        c2 = {'type': 'eq', 'fun': f_eqcon2}

        res = minimize(fun, [8, 0.25], method='SLSQP',
                       constraints=[c1, c2], bounds=[(-0.5, 1), (0, 8)])

        np.testing.assert_allclose(res.fun, 0.5443310539518)
        np.testing.assert_allclose(res.x, [0.33333333, 0.2962963])
        assert res.success

    def test_gh9640(self):
        np.random.seed(10)
        cons = ({'type': 'ineq', 'fun': lambda x: -x[0] - x[1] - 3},
                {'type': 'ineq', 'fun': lambda x: x[1] + x[2] - 2})
        bnds = ((-2, 2), (-2, 2), (-2, 2))

        target = lambda x: 1
        x0 = [-1.8869783504471584, -0.640096352696244, -0.8174212253407696]
        res = minimize(target, x0, method='SLSQP', bounds=bnds, constraints=cons,
                       options={'disp':False, 'maxiter':10000})

        # The problem is infeasible, so it cannot succeed
        assert not res.success