test_optimize.py 83.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
"""
Unit tests for optimization routines from optimize.py

Authors:
   Ed Schofield, Nov 2005
   Andrew Straw, April 2008

To run it in its simplest form::
  nosetests test_optimize.py

"""
import itertools
import numpy as np
from numpy.testing import (assert_allclose, assert_equal,
                           assert_,
                           assert_almost_equal, assert_warns,
                           assert_array_less, suppress_warnings)
import pytest
from pytest import raises as assert_raises

from scipy import optimize
from scipy.optimize._minimize import MINIMIZE_METHODS
from scipy.optimize._differentiable_functions import ScalarFunction
from scipy.optimize.optimize import MemoizeJac


def test_check_grad():
    # Verify if check_grad is able to estimate the derivative of the
    # logistic function.

    def logit(x):
        return 1 / (1 + np.exp(-x))

    def der_logit(x):
        return np.exp(-x) / (1 + np.exp(-x))**2

    x0 = np.array([1.5])

    r = optimize.check_grad(logit, der_logit, x0)
    assert_almost_equal(r, 0)

    r = optimize.check_grad(logit, der_logit, x0, epsilon=1e-6)
    assert_almost_equal(r, 0)

    # Check if the epsilon parameter is being considered.
    r = abs(optimize.check_grad(logit, der_logit, x0, epsilon=1e-1) - 0)
    assert_(r > 1e-7)


class CheckOptimize(object):
    """ Base test case for a simple constrained entropy maximization problem
    (the machine translation example of Berger et al in
    Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
    """

    def setup_method(self):
        self.F = np.array([[1, 1, 1],
                           [1, 1, 0],
                           [1, 0, 1],
                           [1, 0, 0],
                           [1, 0, 0]])
        self.K = np.array([1., 0.3, 0.5])
        self.startparams = np.zeros(3, np.float64)
        self.solution = np.array([0., -0.524869316, 0.487525860])
        self.maxiter = 1000
        self.funccalls = 0
        self.gradcalls = 0
        self.trace = []

    def func(self, x):
        self.funccalls += 1
        if self.funccalls > 6000:
            raise RuntimeError("too many iterations in optimization routine")
        log_pdot = np.dot(self.F, x)
        logZ = np.log(sum(np.exp(log_pdot)))
        f = logZ - np.dot(self.K, x)
        self.trace.append(np.copy(x))
        return f

    def grad(self, x):
        self.gradcalls += 1
        log_pdot = np.dot(self.F, x)
        logZ = np.log(sum(np.exp(log_pdot)))
        p = np.exp(log_pdot - logZ)
        return np.dot(self.F.transpose(), p) - self.K

    def hess(self, x):
        log_pdot = np.dot(self.F, x)
        logZ = np.log(sum(np.exp(log_pdot)))
        p = np.exp(log_pdot - logZ)
        return np.dot(self.F.T,
                      np.dot(np.diag(p), self.F - np.dot(self.F.T, p)))

    def hessp(self, x, p):
        return np.dot(self.hess(x), p)


class CheckOptimizeParameterized(CheckOptimize):

    def test_cg(self):
        # conjugate gradient optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='CG', jac=self.grad,
                                    options=opts)
            params, fopt, func_calls, grad_calls, warnflag = \
                res['x'], res['fun'], res['nfev'], res['njev'], res['status']
        else:
            retval = optimize.fmin_cg(self.func, self.startparams,
                                      self.grad, (), maxiter=self.maxiter,
                                      full_output=True, disp=self.disp,
                                      retall=False)
            (params, fopt, func_calls, grad_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls == 9, self.funccalls)
        assert_(self.gradcalls == 7, self.gradcalls)

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[2:4],
                        [[0, -0.5, 0.5],
                         [0, -5.05700028e-01, 4.95985862e-01]],
                        atol=1e-14, rtol=1e-7)

    def test_cg_cornercase(self):
        def f(r):
            return 2.5 * (1 - np.exp(-1.5*(r - 0.5)))**2

        # Check several initial guesses. (Too far away from the
        # minimum, the function ends up in the flat region of exp.)
        for x0 in np.linspace(-0.75, 3, 71):
            sol = optimize.minimize(f, [x0], method='CG')
            assert_(sol.success)
            assert_allclose(sol.x, [0.5], rtol=1e-5)

    def test_bfgs(self):
        # Broyden-Fletcher-Goldfarb-Shanno optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams,
                                    jac=self.grad, method='BFGS', args=(),
                                    options=opts)

            params, fopt, gopt, Hopt, func_calls, grad_calls, warnflag = (
                    res['x'], res['fun'], res['jac'], res['hess_inv'],
                    res['nfev'], res['njev'], res['status'])
        else:
            retval = optimize.fmin_bfgs(self.func, self.startparams, self.grad,
                                        args=(), maxiter=self.maxiter,
                                        full_output=True, disp=self.disp,
                                        retall=False)
            (params, fopt, gopt, Hopt,
             func_calls, grad_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls == 10, self.funccalls)
        assert_(self.gradcalls == 8, self.gradcalls)

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[6:8],
                        [[0, -5.25060743e-01, 4.87748473e-01],
                         [0, -5.24885582e-01, 4.87530347e-01]],
                        atol=1e-14, rtol=1e-7)

    def test_bfgs_infinite(self):
        # Test corner case where -Inf is the minimum.  See gh-2019.
        func = lambda x: -np.e**-x
        fprime = lambda x: -func(x)
        x0 = [0]
        with np.errstate(over='ignore'):
            if self.use_wrapper:
                opts = {'disp': self.disp}
                x = optimize.minimize(func, x0, jac=fprime, method='BFGS',
                                      args=(), options=opts)['x']
            else:
                x = optimize.fmin_bfgs(func, x0, fprime, disp=self.disp)
            assert_(not np.isfinite(func(x)))

    def test_powell(self):
        # Powell (direction set) optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Powell', options=opts)
            params, fopt, direc, numiter, func_calls, warnflag = (
                    res['x'], res['fun'], res['direc'], res['nit'],
                    res['nfev'], res['status'])
        else:
            retval = optimize.fmin_powell(self.func, self.startparams,
                                          args=(), maxiter=self.maxiter,
                                          full_output=True, disp=self.disp,
                                          retall=False)
            (params, fopt, direc, numiter, func_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        #
        # However, some leeway must be added: the exact evaluation
        # count is sensitive to numerical error, and floating-point
        # computations are not bit-for-bit reproducible across
        # machines, and when using e.g., MKL, data alignment
        # etc., affect the rounding error.
        #
        assert_(self.funccalls <= 116 + 20, self.funccalls)
        assert_(self.gradcalls == 0, self.gradcalls)

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[34:39],
                        [[0.72949016, -0.44156936, 0.47100962],
                         [0.72949016, -0.44156936, 0.48052496],
                         [1.45898031, -0.88313872, 0.95153458],
                         [0.72949016, -0.44156936, 0.47576729],
                         [1.72949016, -0.44156936, 0.47576729]],
                        atol=1e-14, rtol=1e-7)

    def test_powell_bounded(self):
        # Powell (direction set) optimization routine
        # same as test_powell above, but with bounds
        bounds = [(-np.pi, np.pi) for _ in self.startparams]
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    bounds=bounds, 
                                    method='Powell', options=opts)
            params, fopt, direc, numiter, func_calls, warnflag = (
                    res['x'], res['fun'], res['direc'], res['nit'],
                    res['nfev'], res['status'])

            assert func_calls == self.funccalls
            assert_allclose(self.func(params), self.func(self.solution),
                            atol=1e-6)

            # Ensure that function call counts are 'known good'.
            # Generally, this takes 131 function calls. However, on some CI
            # checks it finds 138 funccalls. This 20 call leeway was also
            # included in the test_powell function.
            # The exact evaluation count is sensitive to numerical error, and
            # floating-point computations are not bit-for-bit reproducible
            # across machines, and when using e.g. MKL, data alignment etc.
            # affect the rounding error.
            assert self.funccalls <= 131 + 20
            assert self.gradcalls == 0

    def test_neldermead(self):
        # Nelder-Mead simplex algorithm
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Nelder-mead', options=opts)
            params, fopt, numiter, func_calls, warnflag = (
                    res['x'], res['fun'], res['nit'], res['nfev'],
                    res['status'])
        else:
            retval = optimize.fmin(self.func, self.startparams,
                                   args=(), maxiter=self.maxiter,
                                   full_output=True, disp=self.disp,
                                   retall=False)
            (params, fopt, numiter, func_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls == 167, self.funccalls)
        assert_(self.gradcalls == 0, self.gradcalls)

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[76:78],
                        [[0.1928968, -0.62780447, 0.35166118],
                         [0.19572515, -0.63648426, 0.35838135]],
                        atol=1e-14, rtol=1e-7)

    def test_neldermead_initial_simplex(self):
        # Nelder-Mead simplex algorithm
        simplex = np.zeros((4, 3))
        simplex[...] = self.startparams
        for j in range(3):
            simplex[j+1, j] += 0.1

        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': False,
                    'return_all': True, 'initial_simplex': simplex}
            res = optimize.minimize(self.func, self.startparams, args=(),
                                    method='Nelder-mead', options=opts)
            params, fopt, numiter, func_calls, warnflag = (res['x'],
                                                           res['fun'],
                                                           res['nit'],
                                                           res['nfev'],
                                                           res['status'])
            assert_allclose(res['allvecs'][0], simplex[0])
        else:
            retval = optimize.fmin(self.func, self.startparams,
                                   args=(), maxiter=self.maxiter,
                                   full_output=True, disp=False, retall=False,
                                   initial_simplex=simplex)

            (params, fopt, numiter, func_calls, warnflag) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.17.0. Don't allow them to increase.
        assert_(self.funccalls == 100, self.funccalls)
        assert_(self.gradcalls == 0, self.gradcalls)

        # Ensure that the function behaves the same; this is from SciPy 0.15.0
        assert_allclose(self.trace[50:52],
                        [[0.14687474, -0.5103282, 0.48252111],
                         [0.14474003, -0.5282084, 0.48743951]],
                        atol=1e-14, rtol=1e-7)

    def test_neldermead_initial_simplex_bad(self):
        # Check it fails with a bad simplices
        bad_simplices = []

        simplex = np.zeros((3, 2))
        simplex[...] = self.startparams[:2]
        for j in range(2):
            simplex[j+1, j] += 0.1
        bad_simplices.append(simplex)

        simplex = np.zeros((3, 3))
        bad_simplices.append(simplex)

        for simplex in bad_simplices:
            if self.use_wrapper:
                opts = {'maxiter': self.maxiter, 'disp': False,
                        'return_all': False, 'initial_simplex': simplex}
                assert_raises(ValueError,
                              optimize.minimize,
                              self.func,
                              self.startparams,
                              args=(),
                              method='Nelder-mead',
                              options=opts)
            else:
                assert_raises(ValueError, optimize.fmin,
                              self.func, self.startparams,
                              args=(), maxiter=self.maxiter,
                              full_output=True, disp=False, retall=False,
                              initial_simplex=simplex)

    def test_ncg_negative_maxiter(self):
        # Regression test for gh-8241
        opts = {'maxiter': -1}
        result = optimize.minimize(self.func, self.startparams,
                                   method='Newton-CG', jac=self.grad,
                                   args=(), options=opts)
        assert_(result.status == 1)

    def test_ncg(self):
        # line-search Newton conjugate gradient optimization routine
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            retval = optimize.minimize(self.func, self.startparams,
                                       method='Newton-CG', jac=self.grad,
                                       args=(), options=opts)['x']
        else:
            retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
                                       args=(), maxiter=self.maxiter,
                                       full_output=False, disp=self.disp,
                                       retall=False)

        params = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls == 7, self.funccalls)
        assert_(self.gradcalls <= 22, self.gradcalls)  # 0.13.0
        # assert_(self.gradcalls <= 18, self.gradcalls) # 0.9.0
        # assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
        # assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[3:5],
                        [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
                         [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
                        atol=1e-6, rtol=1e-7)

    def test_ncg_hess(self):
        # Newton conjugate gradient with Hessian
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            retval = optimize.minimize(self.func, self.startparams,
                                       method='Newton-CG', jac=self.grad,
                                       hess=self.hess,
                                       args=(), options=opts)['x']
        else:
            retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
                                       fhess=self.hess,
                                       args=(), maxiter=self.maxiter,
                                       full_output=False, disp=self.disp,
                                       retall=False)

        params = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls <= 7, self.funccalls)   # gh10673
        assert_(self.gradcalls <= 18, self.gradcalls)  # 0.9.0
        # assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
        # assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[3:5],
                        [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
                         [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
                        atol=1e-6, rtol=1e-7)

    def test_ncg_hessp(self):
        # Newton conjugate gradient with Hessian times a vector p.
        if self.use_wrapper:
            opts = {'maxiter': self.maxiter, 'disp': self.disp,
                    'return_all': False}
            retval = optimize.minimize(self.func, self.startparams,
                                       method='Newton-CG', jac=self.grad,
                                       hessp=self.hessp,
                                       args=(), options=opts)['x']
        else:
            retval = optimize.fmin_ncg(self.func, self.startparams, self.grad,
                                       fhess_p=self.hessp,
                                       args=(), maxiter=self.maxiter,
                                       full_output=False, disp=self.disp,
                                       retall=False)

        params = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls <= 7, self.funccalls)   # gh10673
        assert_(self.gradcalls <= 18, self.gradcalls)  # 0.9.0
        # assert_(self.gradcalls == 18, self.gradcalls) # 0.8.0
        # assert_(self.gradcalls == 22, self.gradcalls) # 0.7.0

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        assert_allclose(self.trace[3:5],
                        [[-4.35700753e-07, -5.24869435e-01, 4.87527480e-01],
                         [-4.35700753e-07, -5.24869401e-01, 4.87527774e-01]],
                        atol=1e-6, rtol=1e-7)


def test_obj_func_returns_scalar():
    match = ("The user-provided "
             "objective function must "
             "return a scalar value.")
    with assert_raises(ValueError, match=match):
        optimize.minimize(lambda x: x, np.array([1, 1]), method='BFGS')

def test_neldermead_xatol_fatol():
    # gh4484
    # test we can call with fatol, xatol specified
    func = lambda x: x[0]**2 + x[1]**2

    optimize._minimize._minimize_neldermead(func, [1, 1], maxiter=2,
                                            xatol=1e-3, fatol=1e-3)
    assert_warns(DeprecationWarning,
                 optimize._minimize._minimize_neldermead,
                 func, [1, 1], xtol=1e-3, ftol=1e-3, maxiter=2)


def test_neldermead_adaptive():
    func = lambda x: np.sum(x**2)
    p0 = [0.15746215, 0.48087031, 0.44519198, 0.4223638, 0.61505159,
          0.32308456, 0.9692297, 0.4471682, 0.77411992, 0.80441652,
          0.35994957, 0.75487856, 0.99973421, 0.65063887, 0.09626474]

    res = optimize.minimize(func, p0, method='Nelder-Mead')
    assert_equal(res.success, False)

    res = optimize.minimize(func, p0, method='Nelder-Mead',
                            options={'adaptive': True})
    assert_equal(res.success, True)


def test_bounded_powell_outsidebounds():
    # With the bounded Powell method if you start outside the bounds the final
    # should still be within the bounds (provided that the user doesn't make a
    # bad choice for the `direc` argument).
    func = lambda x: np.sum(x**2)
    bounds = (-1, 1), (-1, 1), (-1, 1)
    x0 = [-4, .5, -.8]

    # we're starting outside the bounds, so we should get a warning
    with assert_warns(optimize.OptimizeWarning):
        res = optimize.minimize(func, x0, bounds=bounds, method="Powell")
    assert_allclose(res.x, np.array([0.] * len(x0)), atol=1e-6)
    assert_equal(res.success, True)
    assert_equal(res.status, 0)

    # However, now if we change the `direc` argument such that the
    # set of vectors does not span the parameter space, then we may
    # not end up back within the bounds. Here we see that the first
    # parameter cannot be updated!
    direc = [[0, 0, 0], [0, 1, 0], [0, 0, 1]]
    # we're starting outside the bounds, so we should get a warning
    with assert_warns(optimize.OptimizeWarning):
        res = optimize.minimize(func, x0,
                                bounds=bounds, method="Powell",
                                options={'direc': direc})
    assert_allclose(res.x, np.array([-4., 0, 0]), atol=1e-6)
    assert_equal(res.success, False)
    assert_equal(res.status, 4)


def test_bounded_powell_vs_powell():
    # here we test an example where the bounded Powell method
    # will return a different result than the standard Powell
    # method.

    # first we test a simple example where the minimum is at
    # the origin and the minimum that is within the bounds is
    # larger than the minimum at the origin.
    func = lambda x: np.sum(x**2)
    bounds = (-5, -1), (-10, -0.1), (1, 9.2), (-4, 7.6), (-15.9, -2)
    x0 = [-2.1, -5.2, 1.9, 0, -2]

    options = {'ftol': 1e-10, 'xtol': 1e-10}

    res_powell = optimize.minimize(func, x0, method="Powell", options=options)
    assert_allclose(res_powell.x, 0., atol=1e-6)
    assert_allclose(res_powell.fun, 0., atol=1e-6)

    res_bounded_powell = optimize.minimize(func, x0, options=options,
                                           bounds=bounds,
                                           method="Powell")
    p = np.array([-1, -0.1, 1, 0, -2])
    assert_allclose(res_bounded_powell.x, p, atol=1e-6)
    assert_allclose(res_bounded_powell.fun, func(p), atol=1e-6)

    # now we test bounded Powell but with a mix of inf bounds.
    bounds = (None, -1), (-np.inf, -.1), (1, np.inf), (-4, None), (-15.9, -2)
    res_bounded_powell = optimize.minimize(func, x0, options=options,
                                           bounds=bounds,
                                           method="Powell")
    p = np.array([-1, -0.1, 1, 0, -2])
    assert_allclose(res_bounded_powell.x, p, atol=1e-6)
    assert_allclose(res_bounded_powell.fun, func(p), atol=1e-6)

    # next we test an example where the global minimum is within
    # the bounds, but the bounded Powell method performs better
    # than the standard Powell method.
    def func(x):
        t = np.sin(-x[0]) * np.cos(x[1]) * np.sin(-x[0] * x[1]) * np.cos(x[1])
        t -= np.cos(np.sin(x[1] * x[2]) * np.cos(x[2]))
        return t**2

    bounds = [(-2, 5)] * 3
    x0 = [-0.5, -0.5, -0.5]

    res_powell = optimize.minimize(func, x0, method="Powell")
    res_bounded_powell = optimize.minimize(func, x0,
                                           bounds=bounds,
                                           method="Powell")
    assert_allclose(res_powell.fun, 0.007136253919761627, atol=1e-6)
    assert_allclose(res_bounded_powell.fun, 0, atol=1e-6)

    # next we test the previous example where the we provide Powell
    # with (-inf, inf) bounds, and compare it to providing Powell
    # with no bounds. They should end up the same.
    bounds = [(-np.inf, np.inf)] * 3

    res_bounded_powell = optimize.minimize(func, x0,
                                           bounds=bounds,
                                           method="Powell")
    assert_allclose(res_powell.fun, res_bounded_powell.fun, atol=1e-6)
    assert_allclose(res_powell.nfev, res_bounded_powell.nfev, atol=1e-6)
    assert_allclose(res_powell.x, res_bounded_powell.x, atol=1e-6)

    # now test when x0 starts outside of the bounds.
    x0 = [45.46254415, -26.52351498, 31.74830248]
    bounds = [(-2, 5)] * 3
    # we're starting outside the bounds, so we should get a warning
    with assert_warns(optimize.OptimizeWarning):
        res_bounded_powell = optimize.minimize(func, x0,
                                               bounds=bounds,
                                               method="Powell")
    assert_allclose(res_bounded_powell.fun, 0, atol=1e-6)


def test_onesided_bounded_powell_stability():
    # When the Powell method is bounded on only one side, a
    # np.tan transform is done in order to convert it into a
    # completely bounded problem. Here we do some simple tests
    # of one-sided bounded Powell where the optimal solutions
    # are large to test the stability of the transformation.
    kwargs = {'method': 'Powell',
              'bounds': [(-np.inf, 1e6)] * 3,
              'options': {'ftol': 1e-8, 'xtol': 1e-8}}
    x0 = [1, 1, 1]

    # df/dx is constant.
    f = lambda x: -np.sum(x)
    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -3e6, atol=1e-4)

    # df/dx gets smaller and smaller.
    def f(x):
        return -np.abs(np.sum(x)) ** (0.1) * (1 if np.all(x > 0) else -1)

    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -(3e6) ** (0.1))

    # df/dx gets larger and larger.
    def f(x):
        return -np.abs(np.sum(x)) ** 10 * (1 if np.all(x > 0) else -1)

    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -(3e6) ** 10, rtol=1e-7)

    # df/dx gets larger for some of the variables and smaller for others.
    def f(x):
        t = -np.abs(np.sum(x[:2])) ** 5 - np.abs(np.sum(x[2:])) ** (0.1)
        t *= (1 if np.all(x > 0) else -1)
        return t

    kwargs['bounds'] = [(-np.inf, 1e3)] * 3
    res = optimize.minimize(f, x0, **kwargs)
    assert_allclose(res.fun, -(2e3) ** 5 - (1e6) ** (0.1), rtol=1e-7)


class TestOptimizeWrapperDisp(CheckOptimizeParameterized):
    use_wrapper = True
    disp = True


class TestOptimizeWrapperNoDisp(CheckOptimizeParameterized):
    use_wrapper = True
    disp = False


class TestOptimizeNoWrapperDisp(CheckOptimizeParameterized):
    use_wrapper = False
    disp = True


class TestOptimizeNoWrapperNoDisp(CheckOptimizeParameterized):
    use_wrapper = False
    disp = False


class TestOptimizeSimple(CheckOptimize):

    def test_bfgs_nan(self):
        # Test corner case where nan is fed to optimizer.  See gh-2067.
        func = lambda x: x
        fprime = lambda x: np.ones_like(x)
        x0 = [np.nan]
        with np.errstate(over='ignore', invalid='ignore'):
            x = optimize.fmin_bfgs(func, x0, fprime, disp=False)
            assert_(np.isnan(func(x)))

    def test_bfgs_nan_return(self):
        # Test corner cases where fun returns NaN. See gh-4793.

        # First case: NaN from first call.
        func = lambda x: np.nan
        with np.errstate(invalid='ignore'):
            result = optimize.minimize(func, 0)

        assert_(np.isnan(result['fun']))
        assert_(result['success'] is False)

        # Second case: NaN from second call.
        func = lambda x: 0 if x == 0 else np.nan
        fprime = lambda x: np.ones_like(x)  # Steer away from zero.
        with np.errstate(invalid='ignore'):
            result = optimize.minimize(func, 0, jac=fprime)

        assert_(np.isnan(result['fun']))
        assert_(result['success'] is False)

    def test_bfgs_numerical_jacobian(self):
        # BFGS with numerical Jacobian and a vector epsilon parameter.
        # define the epsilon parameter using a random vector
        epsilon = np.sqrt(np.spacing(1.)) * np.random.rand(len(self.solution))

        params = optimize.fmin_bfgs(self.func, self.startparams,
                                    epsilon=epsilon, args=(),
                                    maxiter=self.maxiter, disp=False)

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

    def test_finite_differences(self):
        methods = ['BFGS', 'CG', 'TNC']
        jacs = ['2-point', '3-point', None]
        for method, jac in itertools.product(methods, jacs):
            result = optimize.minimize(self.func, self.startparams,
                                       method=method, jac=jac)
            assert_allclose(self.func(result.x), self.func(self.solution),
                            atol=1e-6)

    def test_bfgs_gh_2169(self):
        def f(x):
            if x < 0:
                return 1.79769313e+308
            else:
                return x + 1./x
        xs = optimize.fmin_bfgs(f, [10.], disp=False)
        assert_allclose(xs, 1.0, rtol=1e-4, atol=1e-4)

    def test_bfgs_double_evaluations(self):
        # check BFGS does not evaluate twice in a row at same point
        def f(x):
            xp = float(x)
            assert xp not in seen
            seen.add(xp)
            return 10*x**2, 20*x

        seen = set()
        optimize.minimize(f, -100, method='bfgs', jac=True, tol=1e-7)

    def test_l_bfgs_b(self):
        # limited-memory bound-constrained BFGS algorithm
        retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
                                        self.grad, args=(),
                                        maxiter=self.maxiter)

        (params, fopt, d) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

        # Ensure that function call counts are 'known good'; these are from
        # SciPy 0.7.0. Don't allow them to increase.
        assert_(self.funccalls == 7, self.funccalls)
        assert_(self.gradcalls == 5, self.gradcalls)

        # Ensure that the function behaves the same; this is from SciPy 0.7.0
        # test fixed in gh10673
        assert_allclose(self.trace[3:5],
                        [[8.117083e-16, -5.196198e-01, 4.897617e-01],
                         [0., -0.52489628, 0.48753042]],
                        atol=1e-14, rtol=1e-7)

    def test_l_bfgs_b_numjac(self):
        # L-BFGS-B with numerical Jacobian
        retval = optimize.fmin_l_bfgs_b(self.func, self.startparams,
                                        approx_grad=True,
                                        maxiter=self.maxiter)

        (params, fopt, d) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

    def test_l_bfgs_b_funjac(self):
        # L-BFGS-B with combined objective function and Jacobian
        def fun(x):
            return self.func(x), self.grad(x)

        retval = optimize.fmin_l_bfgs_b(fun, self.startparams,
                                        maxiter=self.maxiter)

        (params, fopt, d) = retval

        assert_allclose(self.func(params), self.func(self.solution),
                        atol=1e-6)

    def test_l_bfgs_b_maxiter(self):
        # gh7854
        # Ensure that not more than maxiters are ever run.
        class Callback(object):
            def __init__(self):
                self.nit = 0
                self.fun = None
                self.x = None

            def __call__(self, x):
                self.x = x
                self.fun = optimize.rosen(x)
                self.nit += 1

        c = Callback()
        res = optimize.minimize(optimize.rosen, [0., 0.], method='l-bfgs-b',
                                callback=c, options={'maxiter': 5})

        assert_equal(res.nit, 5)
        assert_almost_equal(res.x, c.x)
        assert_almost_equal(res.fun, c.fun)
        assert_equal(res.status, 1)
        assert_(res.success is False)
        assert_equal(res.message.decode(),
                     'STOP: TOTAL NO. of ITERATIONS REACHED LIMIT')

    def test_minimize_l_bfgs_b(self):
        # Minimize with L-BFGS-B method
        opts = {'disp': False, 'maxiter': self.maxiter}
        r = optimize.minimize(self.func, self.startparams,
                              method='L-BFGS-B', jac=self.grad,
                              options=opts)
        assert_allclose(self.func(r.x), self.func(self.solution),
                        atol=1e-6)
        assert self.gradcalls == r.njev

        self.funccalls = self.gradcalls = 0
        # approximate jacobian
        ra = optimize.minimize(self.func, self.startparams,
                               method='L-BFGS-B', options=opts)
        # check that function evaluations in approximate jacobian are counted
        # assert_(ra.nfev > r.nfev)
        assert self.funccalls == ra.nfev
        assert_allclose(self.func(ra.x), self.func(self.solution),
                        atol=1e-6)

        self.funccalls = self.gradcalls = 0
        # approximate jacobian
        ra = optimize.minimize(self.func, self.startparams, jac='3-point',
                               method='L-BFGS-B', options=opts)
        assert self.funccalls == ra.nfev
        assert_allclose(self.func(ra.x), self.func(self.solution),
                        atol=1e-6)

    def test_minimize_l_bfgs_b_ftol(self):
        # Check that the `ftol` parameter in l_bfgs_b works as expected
        v0 = None
        for tol in [1e-1, 1e-4, 1e-7, 1e-10]:
            opts = {'disp': False, 'maxiter': self.maxiter, 'ftol': tol}
            sol = optimize.minimize(self.func, self.startparams,
                                    method='L-BFGS-B', jac=self.grad,
                                    options=opts)
            v = self.func(sol.x)

            if v0 is None:
                v0 = v
            else:
                assert_(v < v0)

            assert_allclose(v, self.func(self.solution), rtol=tol)

    def test_minimize_l_bfgs_maxls(self):
        # check that the maxls is passed down to the Fortran routine
        sol = optimize.minimize(optimize.rosen, np.array([-1.2, 1.0]),
                                method='L-BFGS-B', jac=optimize.rosen_der,
                                options={'disp': False, 'maxls': 1})
        assert_(not sol.success)

    def test_minimize_l_bfgs_b_maxfun_interruption(self):
        # gh-6162
        f = optimize.rosen
        g = optimize.rosen_der
        values = []
        x0 = np.full(7, 1000)

        def objfun(x):
            value = f(x)
            values.append(value)
            return value

        # Look for an interesting test case.
        # Request a maxfun that stops at a particularly bad function
        # evaluation somewhere between 100 and 300 evaluations.
        low, medium, high = 30, 100, 300
        optimize.fmin_l_bfgs_b(objfun, x0, fprime=g, maxfun=high)
        v, k = max((y, i) for i, y in enumerate(values[medium:]))
        maxfun = medium + k
        # If the minimization strategy is reasonable,
        # the minimize() result should not be worse than the best
        # of the first 30 function evaluations.
        target = min(values[:low])
        xmin, fmin, d = optimize.fmin_l_bfgs_b(f, x0, fprime=g, maxfun=maxfun)
        assert_array_less(fmin, target)

    def test_custom(self):
        # This function comes from the documentation example.
        def custmin(fun, x0, args=(), maxfev=None, stepsize=0.1,
                    maxiter=100, callback=None, **options):
            bestx = x0
            besty = fun(x0)
            funcalls = 1
            niter = 0
            improved = True
            stop = False

            while improved and not stop and niter < maxiter:
                improved = False
                niter += 1
                for dim in range(np.size(x0)):
                    for s in [bestx[dim] - stepsize, bestx[dim] + stepsize]:
                        testx = np.copy(bestx)
                        testx[dim] = s
                        testy = fun(testx, *args)
                        funcalls += 1
                        if testy < besty:
                            besty = testy
                            bestx = testx
                            improved = True
                    if callback is not None:
                        callback(bestx)
                    if maxfev is not None and funcalls >= maxfev:
                        stop = True
                        break

            return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
                                           nfev=funcalls, success=(niter > 1))

        x0 = [1.35, 0.9, 0.8, 1.1, 1.2]
        res = optimize.minimize(optimize.rosen, x0, method=custmin,
                                options=dict(stepsize=0.05))
        assert_allclose(res.x, 1.0, rtol=1e-4, atol=1e-4)

    def test_gh10771(self):
        # check that minimize passes bounds and constraints to a custom
        # minimizer without altering them.
        bounds = [(-2, 2), (0, 3)]
        constraints = 'constraints'

        def custmin(fun, x0, **options):
            assert options['bounds'] is bounds
            assert options['constraints'] is constraints
            return optimize.OptimizeResult()

        x0 = [1, 1]
        optimize.minimize(optimize.rosen, x0, method=custmin,
                          bounds=bounds, constraints=constraints)

    def test_minimize_tol_parameter(self):
        # Check that the minimize() tol= argument does something
        def func(z):
            x, y = z
            return x**2*y**2 + x**4 + 1

        def dfunc(z):
            x, y = z
            return np.array([2*x*y**2 + 4*x**3, 2*x**2*y])

        for method in ['nelder-mead', 'powell', 'cg', 'bfgs',
                       'newton-cg', 'l-bfgs-b', 'tnc',
                       'cobyla', 'slsqp']:
            if method in ('nelder-mead', 'powell', 'cobyla'):
                jac = None
            else:
                jac = dfunc

            sol1 = optimize.minimize(func, [1, 1], jac=jac, tol=1e-10,
                                     method=method)
            sol2 = optimize.minimize(func, [1, 1], jac=jac, tol=1.0,
                                     method=method)
            assert_(func(sol1.x) < func(sol2.x),
                    "%s: %s vs. %s" % (method, func(sol1.x), func(sol2.x)))

    @pytest.mark.parametrize('method',
                             ['fmin', 'fmin_powell', 'fmin_cg', 'fmin_bfgs',
                              'fmin_ncg', 'fmin_l_bfgs_b', 'fmin_tnc',
                              'fmin_slsqp'] + MINIMIZE_METHODS)
    def test_minimize_callback_copies_array(self, method):
        # Check that arrays passed to callbacks are not modified
        # inplace by the optimizer afterward

        # cobyla doesn't have callback
        if method == 'cobyla':
            return

        if method in ('fmin_tnc', 'fmin_l_bfgs_b'):
            func = lambda x: (optimize.rosen(x), optimize.rosen_der(x))
        else:
            func = optimize.rosen
            jac = optimize.rosen_der
            hess = optimize.rosen_hess

        x0 = np.zeros(10)

        # Set options
        kwargs = {}
        if method.startswith('fmin'):
            routine = getattr(optimize, method)
            if method == 'fmin_slsqp':
                kwargs['iter'] = 5
            elif method == 'fmin_tnc':
                kwargs['maxfun'] = 100
            else:
                kwargs['maxiter'] = 5
        else:
            def routine(*a, **kw):
                kw['method'] = method
                return optimize.minimize(*a, **kw)

            if method == 'tnc':
                kwargs['options'] = dict(maxfun=100)
            else:
                kwargs['options'] = dict(maxiter=5)

        if method in ('fmin_ncg',):
            kwargs['fprime'] = jac
        elif method in ('newton-cg',):
            kwargs['jac'] = jac
        elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg',
                        'trust-constr'):
            kwargs['jac'] = jac
            kwargs['hess'] = hess

        # Run with callback
        results = []

        def callback(x, *args, **kwargs):
            results.append((x, np.copy(x)))

        routine(func, x0, callback=callback, **kwargs)

        # Check returned arrays coincide with their copies
        # and have no memory overlap
        assert_(len(results) > 2)
        assert_(all(np.all(x == y) for x, y in results))
        assert_(not any(np.may_share_memory(x[0], y[0])
                        for x, y in itertools.combinations(results, 2)))

    @pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg',
                                        'bfgs', 'newton-cg', 'l-bfgs-b',
                                        'tnc', 'cobyla', 'slsqp'])
    def test_no_increase(self, method):
        # Check that the solver doesn't return a value worse than the
        # initial point.

        def func(x):
            return (x - 1)**2

        def bad_grad(x):
            # purposefully invalid gradient function, simulates a case
            # where line searches start failing
            return 2*(x - 1) * (-1) - 2

        x0 = np.array([2.0])
        f0 = func(x0)
        jac = bad_grad
        if method in ['nelder-mead', 'powell', 'cobyla']:
            jac = None
        sol = optimize.minimize(func, x0, jac=jac, method=method,
                                options=dict(maxiter=20))
        assert_equal(func(sol.x), sol.fun)

        if method == 'slsqp':
            pytest.xfail("SLSQP returns slightly worse")
        assert_(func(sol.x) <= f0)

    def test_slsqp_respect_bounds(self):
        # Regression test for gh-3108
        def f(x):
            return sum((x - np.array([1., 2., 3., 4.]))**2)

        def cons(x):
            a = np.array([[-1, -1, -1, -1], [-3, -3, -2, -1]])
            return np.concatenate([np.dot(a, x) + np.array([5, 10]), x])

        x0 = np.array([0.5, 1., 1.5, 2.])
        res = optimize.minimize(f, x0, method='slsqp',
                                constraints={'type': 'ineq', 'fun': cons})
        assert_allclose(res.x, np.array([0., 2, 5, 8])/3, atol=1e-12)

    @pytest.mark.parametrize('method', ['Nelder-Mead', 'Powell', 'CG', 'BFGS',
                                        'Newton-CG', 'L-BFGS-B', 'SLSQP',
                                        'trust-constr', 'dogleg', 'trust-ncg',
                                        'trust-exact', 'trust-krylov'])
    def test_respect_maxiter(self, method):
        # Check that the number of iterations equals max_iter, assuming
        # convergence doesn't establish before
        MAXITER = 4

        x0 = np.zeros(10)

        sf = ScalarFunction(optimize.rosen, x0, (), optimize.rosen_der,
                            optimize.rosen_hess, None, None)

        # Set options
        kwargs = {'method': method, 'options': dict(maxiter=MAXITER)}

        if method in ('Newton-CG',):
            kwargs['jac'] = sf.grad
        elif method in ('trust-krylov', 'trust-exact', 'trust-ncg', 'dogleg',
                        'trust-constr'):
            kwargs['jac'] = sf.grad
            kwargs['hess'] = sf.hess

        sol = optimize.minimize(sf.fun, x0, **kwargs)
        assert sol.nit == MAXITER
        assert sol.nfev >= sf.nfev
        if hasattr(sol, 'njev'):
            assert sol.njev >= sf.ngev

        # method specific tests
        if method == 'SLSQP':
            assert sol.status == 9  # Iteration limit reached

    def test_respect_maxiter_trust_constr_ineq_constraints(self):
        # special case of minimization with trust-constr and inequality
        # constraints to check maxiter limit is obeyed when using internal
        # method 'tr_interior_point'
        MAXITER = 4
        f = optimize.rosen
        jac = optimize.rosen_der
        hess = optimize.rosen_hess

        fun = lambda x: np.array([0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]])
        cons = ({'type': 'ineq',
                 'fun': fun},)

        x0 = np.zeros(10)
        sol = optimize.minimize(f, x0, constraints=cons, jac=jac, hess=hess,
                                method='trust-constr',
                                options=dict(maxiter=MAXITER))
        assert sol.nit == MAXITER

    def test_minimize_automethod(self):
        def f(x):
            return x**2

        def cons(x):
            return x - 2

        x0 = np.array([10.])
        sol_0 = optimize.minimize(f, x0)
        sol_1 = optimize.minimize(f, x0, constraints=[{'type': 'ineq',
                                                       'fun': cons}])
        sol_2 = optimize.minimize(f, x0, bounds=[(5, 10)])
        sol_3 = optimize.minimize(f, x0,
                                  constraints=[{'type': 'ineq', 'fun': cons}],
                                  bounds=[(5, 10)])
        sol_4 = optimize.minimize(f, x0,
                                  constraints=[{'type': 'ineq', 'fun': cons}],
                                  bounds=[(1, 10)])
        for sol in [sol_0, sol_1, sol_2, sol_3, sol_4]:
            assert_(sol.success)
        assert_allclose(sol_0.x, 0, atol=1e-7)
        assert_allclose(sol_1.x, 2, atol=1e-7)
        assert_allclose(sol_2.x, 5, atol=1e-7)
        assert_allclose(sol_3.x, 5, atol=1e-7)
        assert_allclose(sol_4.x, 2, atol=1e-7)

    def test_minimize_coerce_args_param(self):
        # Regression test for gh-3503
        def Y(x, c):
            return np.sum((x-c)**2)

        def dY_dx(x, c=None):
            return 2*(x-c)

        c = np.array([3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5])
        xinit = np.random.randn(len(c))
        optimize.minimize(Y, xinit, jac=dY_dx, args=(c), method="BFGS")

    def test_initial_step_scaling(self):
        # Check that optimizer initial step is not huge even if the
        # function and gradients are

        scales = [1e-50, 1, 1e50]
        methods = ['CG', 'BFGS', 'L-BFGS-B', 'Newton-CG']

        def f(x):
            if first_step_size[0] is None and x[0] != x0[0]:
                first_step_size[0] = abs(x[0] - x0[0])
            if abs(x).max() > 1e4:
                raise AssertionError("Optimization stepped far away!")
            return scale*(x[0] - 1)**2

        def g(x):
            return np.array([scale*(x[0] - 1)])

        for scale, method in itertools.product(scales, methods):
            if method in ('CG', 'BFGS'):
                options = dict(gtol=scale*1e-8)
            else:
                options = dict()

            if scale < 1e-10 and method in ('L-BFGS-B', 'Newton-CG'):
                # XXX: return initial point if they see small gradient
                continue

            x0 = [-1.0]
            first_step_size = [None]
            res = optimize.minimize(f, x0, jac=g, method=method,
                                    options=options)

            err_msg = "{0} {1}: {2}: {3}".format(method, scale,
                                                 first_step_size,
                                                 res)

            assert_(res.success, err_msg)
            assert_allclose(res.x, [1.0], err_msg=err_msg)
            assert_(res.nit <= 3, err_msg)

            if scale > 1e-10:
                if method in ('CG', 'BFGS'):
                    assert_allclose(first_step_size[0], 1.01, err_msg=err_msg)
                else:
                    # Newton-CG and L-BFGS-B use different logic for the first
                    # step, but are both scaling invariant with step sizes ~ 1
                    assert_(first_step_size[0] > 0.5 and
                            first_step_size[0] < 3, err_msg)
            else:
                # step size has upper bound of ||grad||, so line
                # search makes many small steps
                pass

    @pytest.mark.parametrize('method', ['nelder-mead', 'powell', 'cg', 'bfgs',
                                        'newton-cg', 'l-bfgs-b', 'tnc',
                                        'cobyla', 'slsqp', 'trust-constr',
                                        'dogleg', 'trust-ncg', 'trust-exact',
                                        'trust-krylov'])
    def test_nan_values(self, method):
        # Check nan values result to failed exit status
        np.random.seed(1234)

        count = [0]

        def func(x):
            return np.nan

        def func2(x):
            count[0] += 1
            if count[0] > 2:
                return np.nan
            else:
                return np.random.rand()

        def grad(x):
            return np.array([1.0])

        def hess(x):
            return np.array([[1.0]])

        x0 = np.array([1.0])

        needs_grad = method in ('newton-cg', 'trust-krylov', 'trust-exact',
                                'trust-ncg', 'dogleg')
        needs_hess = method in ('trust-krylov', 'trust-exact', 'trust-ncg',
                                'dogleg')

        funcs = [func, func2]
        grads = [grad] if needs_grad else [grad, None]
        hesss = [hess] if needs_hess else [hess, None]

        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            sup.filter(UserWarning, "delta_grad == 0.*")
            sup.filter(RuntimeWarning, ".*does not use Hessian.*")
            sup.filter(RuntimeWarning, ".*does not use gradient.*")

            for f, g, h in itertools.product(funcs, grads, hesss):
                count = [0]
                sol = optimize.minimize(f, x0, jac=g, hess=h, method=method,
                                        options=dict(maxiter=20))
                assert_equal(sol.success, False)

    @pytest.mark.parametrize('method', ['nelder-mead', 'cg', 'bfgs',
                                        'l-bfgs-b', 'tnc',
                                        'cobyla', 'slsqp', 'trust-constr',
                                        'dogleg', 'trust-ncg', 'trust-exact',
                                        'trust-krylov'])
    def test_duplicate_evaluations(self, method):
        # check that there are no duplicate evaluations for any methods
        jac = hess = None
        if method in ('newton-cg', 'trust-krylov', 'trust-exact',
                      'trust-ncg', 'dogleg'):
            jac = self.grad
        if method in ('trust-krylov', 'trust-exact', 'trust-ncg',
                      'dogleg'):
            hess = self.hess

        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            # for trust-constr
            sup.filter(UserWarning, "delta_grad == 0.*")
            optimize.minimize(self.func, self.startparams,
                              method=method, jac=jac, hess=hess)

        for i in range(1, len(self.trace)):
            if np.array_equal(self.trace[i - 1], self.trace[i]):
                raise RuntimeError(
                    "Duplicate evaluations made by {}".format(method))


class TestLBFGSBBounds(object):
    def setup_method(self):
        self.bounds = ((1, None), (None, None))
        self.solution = (1, 0)

    def fun(self, x, p=2.0):
        return 1.0 / p * (x[0]**p + x[1]**p)

    def jac(self, x, p=2.0):
        return x**(p - 1)

    def fj(self, x, p=2.0):
        return self.fun(x, p), self.jac(x, p)

    def test_l_bfgs_b_bounds(self):
        x, f, d = optimize.fmin_l_bfgs_b(self.fun, [0, -1],
                                         fprime=self.jac,
                                         bounds=self.bounds)
        assert_(d['warnflag'] == 0, d['task'])
        assert_allclose(x, self.solution, atol=1e-6)

    def test_l_bfgs_b_funjac(self):
        # L-BFGS-B with fun and jac combined and extra arguments
        x, f, d = optimize.fmin_l_bfgs_b(self.fj, [0, -1], args=(2.0, ),
                                         bounds=self.bounds)
        assert_(d['warnflag'] == 0, d['task'])
        assert_allclose(x, self.solution, atol=1e-6)

    def test_minimize_l_bfgs_b_bounds(self):
        # Minimize with method='L-BFGS-B' with bounds
        res = optimize.minimize(self.fun, [0, -1], method='L-BFGS-B',
                                jac=self.jac, bounds=self.bounds)
        assert_(res['success'], res['message'])
        assert_allclose(res.x, self.solution, atol=1e-6)

    @pytest.mark.parametrize('bounds', [
        ([(10, 1), (1, 10)]),
        ([(1, 10), (10, 1)]),
        ([(10, 1), (10, 1)])
    ])
    def test_minimize_l_bfgs_b_incorrect_bounds(self, bounds):
        with pytest.raises(ValueError, match='.*bounds.*'):
            optimize.minimize(self.fun, [0, -1], method='L-BFGS-B',
                              jac=self.jac, bounds=bounds)

    def test_minimize_l_bfgs_b_bounds_FD(self):
        # test that initial starting value outside bounds doesn't raise
        # an error (done with clipping).
        # test all different finite differences combos, with and without args

        jacs = ['2-point', '3-point', None]
        argss = [(2.,), ()]
        for jac, args in itertools.product(jacs, argss):
            res = optimize.minimize(self.fun, [0, -1], args=args,
                                    method='L-BFGS-B',
                                    jac=jac, bounds=self.bounds,
                                    options={'finite_diff_rel_step': None})
            assert_(res['success'], res['message'])
            assert_allclose(res.x, self.solution, atol=1e-6)


class TestOptimizeScalar(object):
    def setup_method(self):
        self.solution = 1.5

    def fun(self, x, a=1.5):
        """Objective function"""
        return (x - a)**2 - 0.8

    def test_brent(self):
        x = optimize.brent(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.brent(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.brent(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6)

    def test_golden(self):
        x = optimize.golden(self.fun)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-3, -2))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, full_output=True)
        assert_allclose(x[0], self.solution, atol=1e-6)

        x = optimize.golden(self.fun, brack=(-15, -1, 15))
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.golden(self.fun, tol=0)
        assert_allclose(x, self.solution)

        maxiter_test_cases = [0, 1, 5]
        for maxiter in maxiter_test_cases:
            x0 = optimize.golden(self.fun, maxiter=0, full_output=True)
            x = optimize.golden(self.fun, maxiter=maxiter, full_output=True)
            nfev0, nfev = x0[2], x[2]
            assert_equal(nfev - nfev0, maxiter)

    def test_fminbound(self):
        x = optimize.fminbound(self.fun, 0, 1)
        assert_allclose(x, 1, atol=1e-4)

        x = optimize.fminbound(self.fun, 1, 5)
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.fminbound(self.fun, np.array([1]), np.array([5]))
        assert_allclose(x, self.solution, atol=1e-6)
        assert_raises(ValueError, optimize.fminbound, self.fun, 5, 1)

    def test_fminbound_scalar(self):
        with pytest.raises(ValueError, match='.*must be scalar.*'):
            optimize.fminbound(self.fun, np.zeros((1, 2)), 1)

        x = optimize.fminbound(self.fun, 1, np.array(5))
        assert_allclose(x, self.solution, atol=1e-6)

    def test_gh11207(self):
        def fun(x):
            return x**2
        optimize.fminbound(fun, 0, 0)

    def test_minimize_scalar(self):
        # combine all tests above for the minimize_scalar wrapper
        x = optimize.minimize_scalar(self.fun).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent')
        assert_(x.success)

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                     options=dict(maxiter=3))
        assert_(not x.success)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                     args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='Brent',
                                     args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                     args=(1.5, ), method='Brent').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-3, -2),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, method='golden',
                                     args=(1.5,)).x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bracket=(-15, -1, 15),
                                     args=(1.5, ), method='golden').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(0, 1), args=(1.5,),
                                     method='Bounded').x
        assert_allclose(x, 1, atol=1e-4)

        x = optimize.minimize_scalar(self.fun, bounds=(1, 5), args=(1.5, ),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        x = optimize.minimize_scalar(self.fun, bounds=(np.array([1]),
                                                       np.array([5])),
                                     args=(np.array([1.5]), ),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(5, 1), method='bounded', args=(1.5, ))

        assert_raises(ValueError, optimize.minimize_scalar, self.fun,
                      bounds=(np.zeros(2), 1), method='bounded', args=(1.5, ))

        x = optimize.minimize_scalar(self.fun, bounds=(1, np.array(5)),
                                     method='bounded').x
        assert_allclose(x, self.solution, atol=1e-6)

    def test_minimize_scalar_custom(self):
        # This function comes from the documentation example.
        def custmin(fun, bracket, args=(), maxfev=None, stepsize=0.1,
                    maxiter=100, callback=None, **options):
            bestx = (bracket[1] + bracket[0]) / 2.0
            besty = fun(bestx)
            funcalls = 1
            niter = 0
            improved = True
            stop = False

            while improved and not stop and niter < maxiter:
                improved = False
                niter += 1
                for testx in [bestx - stepsize, bestx + stepsize]:
                    testy = fun(testx, *args)
                    funcalls += 1
                    if testy < besty:
                        besty = testy
                        bestx = testx
                        improved = True
                if callback is not None:
                    callback(bestx)
                if maxfev is not None and funcalls >= maxfev:
                    stop = True
                    break

            return optimize.OptimizeResult(fun=besty, x=bestx, nit=niter,
                                           nfev=funcalls, success=(niter > 1))

        res = optimize.minimize_scalar(self.fun, bracket=(0, 4),
                                       method=custmin,
                                       options=dict(stepsize=0.05))
        assert_allclose(res.x, self.solution, atol=1e-6)

    def test_minimize_scalar_coerce_args_param(self):
        # Regression test for gh-3503
        optimize.minimize_scalar(self.fun, args=1.5)

    @pytest.mark.parametrize('method', ['brent', 'bounded', 'golden'])
    def test_nan_values(self, method):
        # Check nan values result to failed exit status
        np.random.seed(1234)

        count = [0]

        def func(x):
            count[0] += 1
            if count[0] > 4:
                return np.nan
            else:
                return x**2 + 0.1 * np.sin(x)

        bracket = (-1, 0, 1)
        bounds = (-1, 1)

        with np.errstate(invalid='ignore'), suppress_warnings() as sup:
            sup.filter(UserWarning, "delta_grad == 0.*")
            sup.filter(RuntimeWarning, ".*does not use Hessian.*")
            sup.filter(RuntimeWarning, ".*does not use gradient.*")

            count = [0]
            sol = optimize.minimize_scalar(func, bracket=bracket,
                                           bounds=bounds, method=method,
                                           options=dict(maxiter=20))
            assert_equal(sol.success, False)


def test_brent_negative_tolerance():
    assert_raises(ValueError, optimize.brent, np.cos, tol=-.01)


class TestNewtonCg(object):
    def test_rosenbrock(self):
        x0 = np.array([-1.2, 1.0])
        sol = optimize.minimize(optimize.rosen, x0,
                                jac=optimize.rosen_der,
                                hess=optimize.rosen_hess,
                                tol=1e-5,
                                method='Newton-CG')
        assert_(sol.success, sol.message)
        assert_allclose(sol.x, np.array([1, 1]), rtol=1e-4)

    def test_himmelblau(self):
        x0 = np.array(himmelblau_x0)
        sol = optimize.minimize(himmelblau,
                                x0,
                                jac=himmelblau_grad,
                                hess=himmelblau_hess,
                                method='Newton-CG',
                                tol=1e-6)
        assert_(sol.success, sol.message)
        assert_allclose(sol.x, himmelblau_xopt, rtol=1e-4)
        assert_allclose(sol.fun, himmelblau_min, atol=1e-4)


def test_line_for_search():
    # _line_for_search is only used in _linesearch_powell, which is also
    # tested below. Thus there are more tests of _line_for_search in the
    # test_linesearch_powell_bounded function.

    line_for_search = optimize.optimize._line_for_search
    # args are x0, alpha, lower_bound, upper_bound
    # returns lmin, lmax

    lower_bound = np.array([-5.3, -1, -1.5, -3])
    upper_bound = np.array([1.9, 1, 2.8, 3])

    # test when starting in the bounds
    x0 = np.array([0., 0, 0, 0])
    # and when starting outside of the bounds
    x1 = np.array([0., 2, -3, 0])

    all_tests = (
        (x0, np.array([1., 0, 0, 0]), -5.3, 1.9),
        (x0, np.array([0., 1, 0, 0]), -1, 1),
        (x0, np.array([0., 0, 1, 0]), -1.5, 2.8),
        (x0, np.array([0., 0, 0, 1]), -3, 3),
        (x0, np.array([1., 1, 0, 0]), -1, 1),
        (x0, np.array([1., 0, -1, 2]), -1.5, 1.5),
        (x0, np.array([2., 0, -1, 2]), -1.5, 0.95),
        (x1, np.array([1., 0, 0, 0]), -5.3, 1.9),
        (x1, np.array([0., 1, 0, 0]), -3, -1),
        (x1, np.array([0., 0, 1, 0]), 1.5, 5.8),
        (x1, np.array([0., 0, 0, 1]), -3, 3),
        (x1, np.array([1., 1, 0, 0]), -3, -1),
        (x1, np.array([1., 0, -1, 0]), -5.3, -1.5),
    )

    for x, alpha, lmin, lmax in all_tests:
        mi, ma = line_for_search(x, alpha, lower_bound, upper_bound)
        assert_allclose(mi, lmin, atol=1e-6)
        assert_allclose(ma, lmax, atol=1e-6)

    # now with infinite bounds
    lower_bound = np.array([-np.inf, -1, -np.inf, -3])
    upper_bound = np.array([np.inf, 1, 2.8, np.inf])

    all_tests = (
        (x0, np.array([1., 0, 0, 0]), -np.inf, np.inf),
        (x0, np.array([0., 1, 0, 0]), -1, 1),
        (x0, np.array([0., 0, 1, 0]), -np.inf, 2.8),
        (x0, np.array([0., 0, 0, 1]), -3, np.inf),
        (x0, np.array([1., 1, 0, 0]), -1, 1),
        (x0, np.array([1., 0, -1, 2]), -1.5, np.inf),
        (x1, np.array([1., 0, 0, 0]), -np.inf, np.inf),
        (x1, np.array([0., 1, 0, 0]), -3, -1),
        (x1, np.array([0., 0, 1, 0]), -np.inf, 5.8),
        (x1, np.array([0., 0, 0, 1]), -3, np.inf),
        (x1, np.array([1., 1, 0, 0]), -3, -1),
        (x1, np.array([1., 0, -1, 0]), -5.8, np.inf),
    )

    for x, alpha, lmin, lmax in all_tests:
        mi, ma = line_for_search(x, alpha, lower_bound, upper_bound)
        assert_allclose(mi, lmin, atol=1e-6)
        assert_allclose(ma, lmax, atol=1e-6)


def test_linesearch_powell():
    # helper function in optimize.py, not a public function.
    linesearch_powell = optimize.optimize._linesearch_powell
    # args are func, p, xi, fval, lower_bound=None, upper_bound=None, tol=1e-3
    # returns new_fval, p + direction, direction
    func = lambda x: np.sum((x - np.array([-1., 2., 1.5, -.4]))**2)
    p0 = np.array([0., 0, 0, 0])
    fval = func(p0)
    lower_bound = np.array([-np.inf] * 4)
    upper_bound = np.array([np.inf] * 4)

    all_tests = (
        (np.array([1., 0, 0, 0]), -1),
        (np.array([0., 1, 0, 0]), 2),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), 1.25),
        (np.array([0., 0, 1, 1]), .55),
        (np.array([2., 0, -1, 1]), -.65),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi,
                                            fval=fval, tol=1e-5)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)


def test_linesearch_powell_bounded():
    # helper function in optimize.py, not a public function.
    linesearch_powell = optimize.optimize._linesearch_powell
    # args are func, p, xi, fval, lower_bound=None, upper_bound=None, tol=1e-3
    # returns new_fval, p+direction, direction
    func = lambda x: np.sum((x-np.array([-1., 2., 1.5, -.4]))**2)
    p0 = np.array([0., 0, 0, 0])
    fval = func(p0)

    # first choose bounds such that the same tests from
    # test_linesearch_powell should pass.
    lower_bound = np.array([-2.]*4)
    upper_bound = np.array([2.]*4)

    all_tests = (
        (np.array([1., 0, 0, 0]), -1),
        (np.array([0., 1, 0, 0]), 2),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), 1.25),
        (np.array([0., 0, 1, 1]), .55),
        (np.array([2., 0, -1, 1]), -.65),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now choose bounds such that unbounded vs bounded gives different results
    lower_bound = np.array([-.3]*3 + [-1])
    upper_bound = np.array([.45]*3 + [.9])

    all_tests = (
        (np.array([1., 0, 0, 0]), -.3),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), .45),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), .3),
        (np.array([0., 0, 1, 1]), .45),
        (np.array([2., 0, -1, 1]), -.15),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now choose as above but start outside the bounds
    p0 = np.array([-1., 0, 0, 2])
    fval = func(p0)

    all_tests = (
        (np.array([1., 0, 0, 0]), .7),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), .45),
        (np.array([0., 0, 0, 1]), -2.4),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(p0 + l * xi), atol=1e-6)
        assert_allclose(p, p0 + l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now mix in inf
    p0 = np.array([0., 0, 0, 0])
    fval = func(p0)

    # now choose bounds that mix inf
    lower_bound = np.array([-.3, -np.inf, -np.inf, -1])
    upper_bound = np.array([np.inf, .45, np.inf, .9])

    all_tests = (
        (np.array([1., 0, 0, 0]), -.3),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -.4),
        (np.array([-1., 0, 1, 0]), .3),
        (np.array([0., 0, 1, 1]), .55),
        (np.array([2., 0, -1, 1]), -.15),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(l * xi), atol=1e-6)
        assert_allclose(p, l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)

    # now choose as above but start outside the bounds
    p0 = np.array([-1., 0, 0, 2])
    fval = func(p0)

    all_tests = (
        (np.array([1., 0, 0, 0]), .7),
        (np.array([0., 1, 0, 0]), .45),
        (np.array([0., 0, 1, 0]), 1.5),
        (np.array([0., 0, 0, 1]), -2.4),
    )

    for xi, l in all_tests:
        f, p, direction = linesearch_powell(func, p0, xi, tol=1e-5,
                                            lower_bound=lower_bound,
                                            upper_bound=upper_bound,
                                            fval=fval)
        assert_allclose(f, func(p0 + l * xi), atol=1e-6)
        assert_allclose(p, p0 + l * xi, atol=1e-6)
        assert_allclose(direction, l * xi, atol=1e-6)


class TestRosen(object):

    def test_hess(self):
        # Compare rosen_hess(x) times p with rosen_hess_prod(x,p). See gh-1775.
        x = np.array([3, 4, 5])
        p = np.array([2, 2, 2])
        hp = optimize.rosen_hess_prod(x, p)
        dothp = np.dot(optimize.rosen_hess(x), p)
        assert_equal(hp, dothp)


def himmelblau(p):
    """
    R^2 -> R^1 test function for optimization. The function has four local
    minima where himmelblau(xopt) == 0.
    """
    x, y = p
    a = x*x + y - 11
    b = x + y*y - 7
    return a*a + b*b


def himmelblau_grad(p):
    x, y = p
    return np.array([4*x**3 + 4*x*y - 42*x + 2*y**2 - 14,
                     2*x**2 + 4*x*y + 4*y**3 - 26*y - 22])


def himmelblau_hess(p):
    x, y = p
    return np.array([[12*x**2 + 4*y - 42, 4*x + 4*y],
                     [4*x + 4*y, 4*x + 12*y**2 - 26]])


himmelblau_x0 = [-0.27, -0.9]
himmelblau_xopt = [3, 2]
himmelblau_min = 0.0


def test_minimize_multiple_constraints():
    # Regression test for gh-4240.
    def func(x):
        return np.array([25 - 0.2 * x[0] - 0.4 * x[1] - 0.33 * x[2]])

    def func1(x):
        return np.array([x[1]])

    def func2(x):
        return np.array([x[2]])

    cons = ({'type': 'ineq', 'fun': func},
            {'type': 'ineq', 'fun': func1},
            {'type': 'ineq', 'fun': func2})

    f = lambda x: -1 * (x[0] + x[1] + x[2])

    res = optimize.minimize(f, [0, 0, 0], method='SLSQP', constraints=cons)
    assert_allclose(res.x, [125, 0, 0], atol=1e-10)


class TestOptimizeResultAttributes(object):
    # Test that all minimizers return an OptimizeResult containing
    # all the OptimizeResult attributes
    def setup_method(self):
        self.x0 = [5, 5]
        self.func = optimize.rosen
        self.jac = optimize.rosen_der
        self.hess = optimize.rosen_hess
        self.hessp = optimize.rosen_hess_prod
        self.bounds = [(0., 10.), (0., 10.)]

    def test_attributes_present(self):
        attributes = ['nit', 'nfev', 'x', 'success', 'status', 'fun',
                      'message']
        skip = {'cobyla': ['nit']}
        for method in MINIMIZE_METHODS:
            with suppress_warnings() as sup:
                sup.filter(RuntimeWarning,
                           ("Method .+ does not use (gradient|Hessian.*)"
                            " information"))
                res = optimize.minimize(self.func, self.x0, method=method,
                                        jac=self.jac, hess=self.hess,
                                        hessp=self.hessp)
            for attribute in attributes:
                if method in skip and attribute in skip[method]:
                    continue

                assert_(hasattr(res, attribute))
                assert_(attribute in dir(res))


def f1(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    return (a * x**2 + b * x * y + c * y**2 + d*x + e*y + f)


def f2(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    return (-g*np.exp(-((x-h)**2 + (y-i)**2) / scale))


def f3(z, *params):
    x, y = z
    a, b, c, d, e, f, g, h, i, j, k, l, scale = params
    return (-j*np.exp(-((x-k)**2 + (y-l)**2) / scale))


def brute_func(z, *params):
    return f1(z, *params) + f2(z, *params) + f3(z, *params)


class TestBrute:
    # Test the "brute force" method
    def setup_method(self):
        self.params = (2, 3, 7, 8, 9, 10, 44, -1, 2, 26, 1, -2, 0.5)
        self.rranges = (slice(-4, 4, 0.25), slice(-4, 4, 0.25))
        self.solution = np.array([-1.05665192, 1.80834843])

    def brute_func(self, z, *params):
        # an instance method optimizing
        return brute_func(z, *params)

    def test_brute(self):
        # test fmin
        resbrute = optimize.brute(brute_func, self.rranges, args=self.params,
                                  full_output=True, finish=optimize.fmin)
        assert_allclose(resbrute[0], self.solution, atol=1e-3)
        assert_allclose(resbrute[1], brute_func(self.solution, *self.params),
                        atol=1e-3)

        # test minimize
        resbrute = optimize.brute(brute_func, self.rranges, args=self.params,
                                  full_output=True,
                                  finish=optimize.minimize)
        assert_allclose(resbrute[0], self.solution, atol=1e-3)
        assert_allclose(resbrute[1], brute_func(self.solution, *self.params),
                        atol=1e-3)

        # test that brute can optimize an instance method (the other tests use
        # a non-class based function
        resbrute = optimize.brute(self.brute_func, self.rranges,
                                  args=self.params, full_output=True,
                                  finish=optimize.minimize)
        assert_allclose(resbrute[0], self.solution, atol=1e-3)

    def test_1D(self):
        # test that for a 1-D problem the test function is passed an array,
        # not a scalar.
        def f(x):
            assert_(len(x.shape) == 1)
            assert_(x.shape[0] == 1)
            return x ** 2

        optimize.brute(f, [(-1, 1)], Ns=3, finish=None)

    def test_workers(self):
        # check that parallel evaluation works
        resbrute = optimize.brute(brute_func, self.rranges, args=self.params,
                                  full_output=True, finish=None)

        resbrute1 = optimize.brute(brute_func, self.rranges, args=self.params,
                                   full_output=True, finish=None, workers=2)

        assert_allclose(resbrute1[-1], resbrute[-1])
        assert_allclose(resbrute1[0], resbrute[0])

         
def test_cobyla_threadsafe():
   
    # Verify that cobyla is threadsafe. Will segfault if it is not.

    import concurrent.futures
    import time

    def objective1(x):
        time.sleep(0.1)
        return x[0]**2

    def objective2(x):
        time.sleep(0.1)
        return (x[0]-1)**2

    min_method = "COBYLA"

    def minimizer1():
        return optimize.minimize(objective1,
                                      [0.0],
                                      method=min_method)

    def minimizer2():
        return optimize.minimize(objective2,
                                      [0.0],
                                      method=min_method)

    with concurrent.futures.ThreadPoolExecutor() as pool:
        tasks = []
        tasks.append(pool.submit(minimizer1))
        tasks.append(pool.submit(minimizer2))
        for t in tasks:
            res = t.result()
   
   
class TestIterationLimits(object):
    # Tests that optimisation does not give up before trying requested
    # number of iterations or evaluations. And that it does not succeed
    # by exceeding the limits.
    def setup_method(self):
        self.funcalls = 0

    def slow_func(self, v):
        self.funcalls += 1
        r, t = np.sqrt(v[0]**2+v[1]**2), np.arctan2(v[0], v[1])
        return np.sin(r*20 + t)+r*0.5

    def test_neldermead_limit(self):
        self.check_limits("Nelder-Mead", 200)

    def test_powell_limit(self):
        self.check_limits("powell", 1000)

    def check_limits(self, method, default_iters):
        for start_v in [[0.1, 0.1], [1, 1], [2, 2]]:
            for mfev in [50, 500, 5000]:
                self.funcalls = 0
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxfev": mfev})
                assert_(self.funcalls == res["nfev"])
                if res["success"]:
                    assert_(res["nfev"] < mfev)
                else:
                    assert_(res["nfev"] >= mfev)
            for mit in [50, 500, 5000]:
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxiter": mit})
                if res["success"]:
                    assert_(res["nit"] <= mit)
                else:
                    assert_(res["nit"] >= mit)
            for mfev, mit in [[50, 50], [5000, 5000], [5000, np.inf]]:
                self.funcalls = 0
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxiter": mit,
                                                 "maxfev": mfev})
                assert_(self.funcalls == res["nfev"])
                if res["success"]:
                    assert_(res["nfev"] < mfev and res["nit"] <= mit)
                else:
                    assert_(res["nfev"] >= mfev or res["nit"] >= mit)
            for mfev, mit in [[np.inf, None], [None, np.inf]]:
                self.funcalls = 0
                res = optimize.minimize(self.slow_func, start_v,
                                        method=method,
                                        options={"maxiter": mit,
                                                 "maxfev": mfev})
                assert_(self.funcalls == res["nfev"])
                if res["success"]:
                    if mfev is None:
                        assert_(res["nfev"] < default_iters*2)
                    else:
                        assert_(res["nit"] <= default_iters*2)
                else:
                    assert_(res["nfev"] >= default_iters*2 or
                        res["nit"] >= default_iters*2)


def test_result_x_shape_when_len_x_is_one():
    def fun(x):
        return x * x

    def jac(x):
        return 2. * x

    def hess(x):
        return np.array([[2.]])

    methods = ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'L-BFGS-B', 'TNC',
               'COBYLA', 'SLSQP']
    for method in methods:
        res = optimize.minimize(fun, np.array([0.1]), method=method)
        assert res.x.shape == (1,)

    # use jac + hess
    methods = ['trust-constr', 'dogleg', 'trust-ncg', 'trust-exact',
               'trust-krylov', 'Newton-CG']
    for method in methods:
        res = optimize.minimize(fun, np.array([0.1]), method=method, jac=jac,
                                hess=hess)
        assert res.x.shape == (1,)


class FunctionWithGradient(object):
    def __init__(self):
        self.number_of_calls = 0

    def __call__(self, x):
        self.number_of_calls += 1
        return np.sum(x**2), 2 * x


@pytest.fixture
def function_with_gradient():
    return FunctionWithGradient()


def test_memoize_jac_function_before_gradient(function_with_gradient):
    memoized_function = MemoizeJac(function_with_gradient)

    x0 = np.array([1.0, 2.0])
    assert_allclose(memoized_function(x0), 5.0)
    assert function_with_gradient.number_of_calls == 1

    assert_allclose(memoized_function.derivative(x0), 2 * x0)
    assert function_with_gradient.number_of_calls == 1, \
        "function is not recomputed " \
        "if gradient is requested after function value"

    assert_allclose(
        memoized_function(2 * x0), 20.0,
        err_msg="different input triggers new computation")
    assert function_with_gradient.number_of_calls == 2, \
        "different input triggers new computation"


def test_memoize_jac_gradient_before_function(function_with_gradient):
    memoized_function = MemoizeJac(function_with_gradient)

    x0 = np.array([1.0, 2.0])
    assert_allclose(memoized_function.derivative(x0), 2 * x0)
    assert function_with_gradient.number_of_calls == 1

    assert_allclose(memoized_function(x0), 5.0)
    assert function_with_gradient.number_of_calls == 1, \
        "function is not recomputed " \
        "if function value is requested after gradient"

    assert_allclose(
        memoized_function.derivative(2 * x0), 4 * x0,
        err_msg="different input triggers new computation")
    assert function_with_gradient.number_of_calls == 2, \
        "different input triggers new computation"


def test_memoize_jac_with_bfgs(function_with_gradient):
    """ Tests that using MemoizedJac in combination with ScalarFunction
        and BFGS does not lead to repeated function evaluations.
        Tests changes made in response to GH11868.
    """
    memoized_function = MemoizeJac(function_with_gradient)
    jac = memoized_function.derivative
    hess = optimize.BFGS()

    x0 = np.array([1.0, 0.5])
    scalar_function = ScalarFunction(
        memoized_function, x0, (), jac, hess, None, None)
    assert function_with_gradient.number_of_calls == 1

    scalar_function.fun(x0 + 0.1)
    assert function_with_gradient.number_of_calls == 2

    scalar_function.fun(x0 + 0.2)
    assert function_with_gradient.number_of_calls == 3