test_nonlin.py
14.6 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
""" Unit tests for nonlinear solvers
Author: Ondrej Certik
May 2007
"""
from numpy.testing import assert_
import pytest
from scipy.optimize import nonlin, root
from numpy import diag, dot
from numpy.linalg import inv
import numpy as np
from .test_minpack import pressure_network
SOLVERS = {'anderson': nonlin.anderson, 'diagbroyden': nonlin.diagbroyden,
'linearmixing': nonlin.linearmixing, 'excitingmixing': nonlin.excitingmixing,
'broyden1': nonlin.broyden1, 'broyden2': nonlin.broyden2,
'krylov': nonlin.newton_krylov}
MUST_WORK = {'anderson': nonlin.anderson, 'broyden1': nonlin.broyden1,
'broyden2': nonlin.broyden2, 'krylov': nonlin.newton_krylov}
#-------------------------------------------------------------------------------
# Test problems
#-------------------------------------------------------------------------------
def F(x):
x = np.asarray(x).T
d = diag([3,2,1.5,1,0.5])
c = 0.01
f = -d @ x - c * float(x.T @ x) * x
return f
F.xin = [1,1,1,1,1]
F.KNOWN_BAD = {}
def F2(x):
return x
F2.xin = [1,2,3,4,5,6]
F2.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
'excitingmixing': nonlin.excitingmixing}
def F2_lucky(x):
return x
F2_lucky.xin = [0,0,0,0,0,0]
F2_lucky.KNOWN_BAD = {}
def F3(x):
A = np.array([[-2, 1, 0.], [1, -2, 1], [0, 1, -2]])
b = np.array([1, 2, 3.])
return A @ x - b
F3.xin = [1,2,3]
F3.KNOWN_BAD = {}
def F4_powell(x):
A = 1e4
return [A*x[0]*x[1] - 1, np.exp(-x[0]) + np.exp(-x[1]) - (1 + 1/A)]
F4_powell.xin = [-1, -2]
F4_powell.KNOWN_BAD = {'linearmixing': nonlin.linearmixing,
'excitingmixing': nonlin.excitingmixing,
'diagbroyden': nonlin.diagbroyden}
def F5(x):
return pressure_network(x, 4, np.array([.5, .5, .5, .5]))
F5.xin = [2., 0, 2, 0]
F5.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
'linearmixing': nonlin.linearmixing,
'diagbroyden': nonlin.diagbroyden}
def F6(x):
x1, x2 = x
J0 = np.array([[-4.256, 14.7],
[0.8394989, 0.59964207]])
v = np.array([(x1 + 3) * (x2**5 - 7) + 3*6,
np.sin(x2 * np.exp(x1) - 1)])
return -np.linalg.solve(J0, v)
F6.xin = [-0.5, 1.4]
F6.KNOWN_BAD = {'excitingmixing': nonlin.excitingmixing,
'linearmixing': nonlin.linearmixing,
'diagbroyden': nonlin.diagbroyden}
#-------------------------------------------------------------------------------
# Tests
#-------------------------------------------------------------------------------
class TestNonlin(object):
"""
Check the Broyden methods for a few test problems.
broyden1, broyden2, and newton_krylov must succeed for
all functions. Some of the others don't -- tests in KNOWN_BAD are skipped.
"""
def _check_nonlin_func(self, f, func, f_tol=1e-2):
x = func(f, f.xin, f_tol=f_tol, maxiter=200, verbose=0)
assert_(np.absolute(f(x)).max() < f_tol)
def _check_root(self, f, method, f_tol=1e-2):
res = root(f, f.xin, method=method,
options={'ftol': f_tol, 'maxiter': 200, 'disp': 0})
assert_(np.absolute(res.fun).max() < f_tol)
@pytest.mark.xfail
def _check_func_fail(self, *a, **kw):
pass
def test_problem_nonlin(self):
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
for func in SOLVERS.values():
if func in f.KNOWN_BAD.values():
if func in MUST_WORK.values():
self._check_func_fail(f, func)
continue
self._check_nonlin_func(f, func)
def test_tol_norm_called(self):
# Check that supplying tol_norm keyword to nonlin_solve works
self._tol_norm_used = False
def local_norm_func(x):
self._tol_norm_used = True
return np.absolute(x).max()
nonlin.newton_krylov(F, F.xin, f_tol=1e-2, maxiter=200, verbose=0,
tol_norm=local_norm_func)
assert_(self._tol_norm_used)
def test_problem_root(self):
for f in [F, F2, F2_lucky, F3, F4_powell, F5, F6]:
for meth in SOLVERS:
if meth in f.KNOWN_BAD:
if meth in MUST_WORK:
self._check_func_fail(f, meth)
continue
self._check_root(f, meth)
class TestSecant(object):
"""Check that some Jacobian approximations satisfy the secant condition"""
xs = [np.array([1,2,3,4,5], float),
np.array([2,3,4,5,1], float),
np.array([3,4,5,1,2], float),
np.array([4,5,1,2,3], float),
np.array([9,1,9,1,3], float),
np.array([0,1,9,1,3], float),
np.array([5,5,7,1,1], float),
np.array([1,2,7,5,1], float),]
fs = [x**2 - 1 for x in xs]
def _check_secant(self, jac_cls, npoints=1, **kw):
"""
Check that the given Jacobian approximation satisfies secant
conditions for last `npoints` points.
"""
jac = jac_cls(**kw)
jac.setup(self.xs[0], self.fs[0], None)
for j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
jac.update(x, f)
for k in range(min(npoints, j+1)):
dx = self.xs[j-k+1] - self.xs[j-k]
df = self.fs[j-k+1] - self.fs[j-k]
assert_(np.allclose(dx, jac.solve(df)))
# Check that the `npoints` secant bound is strict
if j >= npoints:
dx = self.xs[j-npoints+1] - self.xs[j-npoints]
df = self.fs[j-npoints+1] - self.fs[j-npoints]
assert_(not np.allclose(dx, jac.solve(df)))
def test_broyden1(self):
self._check_secant(nonlin.BroydenFirst)
def test_broyden2(self):
self._check_secant(nonlin.BroydenSecond)
def test_broyden1_update(self):
# Check that BroydenFirst update works as for a dense matrix
jac = nonlin.BroydenFirst(alpha=0.1)
jac.setup(self.xs[0], self.fs[0], None)
B = np.identity(5) * (-1/0.1)
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
df = f - self.fs[last_j]
dx = x - self.xs[last_j]
B += (df - dot(B, dx))[:,None] * dx[None,:] / dot(dx, dx)
jac.update(x, f)
assert_(np.allclose(jac.todense(), B, rtol=1e-10, atol=1e-13))
def test_broyden2_update(self):
# Check that BroydenSecond update works as for a dense matrix
jac = nonlin.BroydenSecond(alpha=0.1)
jac.setup(self.xs[0], self.fs[0], None)
H = np.identity(5) * (-0.1)
for last_j, (x, f) in enumerate(zip(self.xs[1:], self.fs[1:])):
df = f - self.fs[last_j]
dx = x - self.xs[last_j]
H += (dx - dot(H, df))[:,None] * df[None,:] / dot(df, df)
jac.update(x, f)
assert_(np.allclose(jac.todense(), inv(H), rtol=1e-10, atol=1e-13))
def test_anderson(self):
# Anderson mixing (with w0=0) satisfies secant conditions
# for the last M iterates, see [Ey]_
#
# .. [Ey] V. Eyert, J. Comp. Phys., 124, 271 (1996).
self._check_secant(nonlin.Anderson, M=3, w0=0, npoints=3)
class TestLinear(object):
"""Solve a linear equation;
some methods find the exact solution in a finite number of steps"""
def _check(self, jac, N, maxiter, complex=False, **kw):
np.random.seed(123)
A = np.random.randn(N, N)
if complex:
A = A + 1j*np.random.randn(N, N)
b = np.random.randn(N)
if complex:
b = b + 1j*np.random.randn(N)
def func(x):
return dot(A, x) - b
sol = nonlin.nonlin_solve(func, np.zeros(N), jac, maxiter=maxiter,
f_tol=1e-6, line_search=None, verbose=0)
assert_(np.allclose(dot(A, sol), b, atol=1e-6))
def test_broyden1(self):
# Broyden methods solve linear systems exactly in 2*N steps
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, False)
self._check(nonlin.BroydenFirst(alpha=1.0), 20, 41, True)
def test_broyden2(self):
# Broyden methods solve linear systems exactly in 2*N steps
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, False)
self._check(nonlin.BroydenSecond(alpha=1.0), 20, 41, True)
def test_anderson(self):
# Anderson is rather similar to Broyden, if given enough storage space
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, False)
self._check(nonlin.Anderson(M=50, alpha=1.0), 20, 29, True)
def test_krylov(self):
# Krylov methods solve linear systems exactly in N inner steps
self._check(nonlin.KrylovJacobian, 20, 2, False, inner_m=10)
self._check(nonlin.KrylovJacobian, 20, 2, True, inner_m=10)
class TestJacobianDotSolve(object):
"""Check that solve/dot methods in Jacobian approximations are consistent"""
def _func(self, x):
return x**2 - 1 + np.dot(self.A, x)
def _check_dot(self, jac_cls, complex=False, tol=1e-6, **kw):
np.random.seed(123)
N = 7
def rand(*a):
q = np.random.rand(*a)
if complex:
q = q + 1j*np.random.rand(*a)
return q
def assert_close(a, b, msg):
d = abs(a - b).max()
f = tol + abs(b).max()*tol
if d > f:
raise AssertionError('%s: err %g' % (msg, d))
self.A = rand(N, N)
# initialize
x0 = np.random.rand(N)
jac = jac_cls(**kw)
jac.setup(x0, self._func(x0), self._func)
# check consistency
for k in range(2*N):
v = rand(N)
if hasattr(jac, '__array__'):
Jd = np.array(jac)
if hasattr(jac, 'solve'):
Gv = jac.solve(v)
Gv2 = np.linalg.solve(Jd, v)
assert_close(Gv, Gv2, 'solve vs array')
if hasattr(jac, 'rsolve'):
Gv = jac.rsolve(v)
Gv2 = np.linalg.solve(Jd.T.conj(), v)
assert_close(Gv, Gv2, 'rsolve vs array')
if hasattr(jac, 'matvec'):
Jv = jac.matvec(v)
Jv2 = np.dot(Jd, v)
assert_close(Jv, Jv2, 'dot vs array')
if hasattr(jac, 'rmatvec'):
Jv = jac.rmatvec(v)
Jv2 = np.dot(Jd.T.conj(), v)
assert_close(Jv, Jv2, 'rmatvec vs array')
if hasattr(jac, 'matvec') and hasattr(jac, 'solve'):
Jv = jac.matvec(v)
Jv2 = jac.solve(jac.matvec(Jv))
assert_close(Jv, Jv2, 'dot vs solve')
if hasattr(jac, 'rmatvec') and hasattr(jac, 'rsolve'):
Jv = jac.rmatvec(v)
Jv2 = jac.rmatvec(jac.rsolve(Jv))
assert_close(Jv, Jv2, 'rmatvec vs rsolve')
x = rand(N)
jac.update(x, self._func(x))
def test_broyden1(self):
self._check_dot(nonlin.BroydenFirst, complex=False)
self._check_dot(nonlin.BroydenFirst, complex=True)
def test_broyden2(self):
self._check_dot(nonlin.BroydenSecond, complex=False)
self._check_dot(nonlin.BroydenSecond, complex=True)
def test_anderson(self):
self._check_dot(nonlin.Anderson, complex=False)
self._check_dot(nonlin.Anderson, complex=True)
def test_diagbroyden(self):
self._check_dot(nonlin.DiagBroyden, complex=False)
self._check_dot(nonlin.DiagBroyden, complex=True)
def test_linearmixing(self):
self._check_dot(nonlin.LinearMixing, complex=False)
self._check_dot(nonlin.LinearMixing, complex=True)
def test_excitingmixing(self):
self._check_dot(nonlin.ExcitingMixing, complex=False)
self._check_dot(nonlin.ExcitingMixing, complex=True)
def test_krylov(self):
self._check_dot(nonlin.KrylovJacobian, complex=False, tol=1e-3)
self._check_dot(nonlin.KrylovJacobian, complex=True, tol=1e-3)
class TestNonlinOldTests(object):
""" Test case for a simple constrained entropy maximization problem
(the machine translation example of Berger et al in
Computational Linguistics, vol 22, num 1, pp 39--72, 1996.)
"""
def test_broyden1(self):
x = nonlin.broyden1(F,F.xin,iter=12,alpha=1)
assert_(nonlin.norm(x) < 1e-9)
assert_(nonlin.norm(F(x)) < 1e-9)
def test_broyden2(self):
x = nonlin.broyden2(F,F.xin,iter=12,alpha=1)
assert_(nonlin.norm(x) < 1e-9)
assert_(nonlin.norm(F(x)) < 1e-9)
def test_anderson(self):
x = nonlin.anderson(F,F.xin,iter=12,alpha=0.03,M=5)
assert_(nonlin.norm(x) < 0.33)
def test_linearmixing(self):
x = nonlin.linearmixing(F,F.xin,iter=60,alpha=0.5)
assert_(nonlin.norm(x) < 1e-7)
assert_(nonlin.norm(F(x)) < 1e-7)
def test_exciting(self):
x = nonlin.excitingmixing(F,F.xin,iter=20,alpha=0.5)
assert_(nonlin.norm(x) < 1e-5)
assert_(nonlin.norm(F(x)) < 1e-5)
def test_diagbroyden(self):
x = nonlin.diagbroyden(F,F.xin,iter=11,alpha=1)
assert_(nonlin.norm(x) < 1e-8)
assert_(nonlin.norm(F(x)) < 1e-8)
def test_root_broyden1(self):
res = root(F, F.xin, method='broyden1',
options={'nit': 12, 'jac_options': {'alpha': 1}})
assert_(nonlin.norm(res.x) < 1e-9)
assert_(nonlin.norm(res.fun) < 1e-9)
def test_root_broyden2(self):
res = root(F, F.xin, method='broyden2',
options={'nit': 12, 'jac_options': {'alpha': 1}})
assert_(nonlin.norm(res.x) < 1e-9)
assert_(nonlin.norm(res.fun) < 1e-9)
def test_root_anderson(self):
res = root(F, F.xin, method='anderson',
options={'nit': 12,
'jac_options': {'alpha': 0.03, 'M': 5}})
assert_(nonlin.norm(res.x) < 0.33)
def test_root_linearmixing(self):
res = root(F, F.xin, method='linearmixing',
options={'nit': 60,
'jac_options': {'alpha': 0.5}})
assert_(nonlin.norm(res.x) < 1e-7)
assert_(nonlin.norm(res.fun) < 1e-7)
def test_root_excitingmixing(self):
res = root(F, F.xin, method='excitingmixing',
options={'nit': 20,
'jac_options': {'alpha': 0.5}})
assert_(nonlin.norm(res.x) < 1e-5)
assert_(nonlin.norm(res.fun) < 1e-5)
def test_root_diagbroyden(self):
res = root(F, F.xin, method='diagbroyden',
options={'nit': 11,
'jac_options': {'alpha': 1}})
assert_(nonlin.norm(res.x) < 1e-8)
assert_(nonlin.norm(res.fun) < 1e-8)