test__shgo.py 26.5 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
import logging
import numpy
import pytest
from pytest import raises as assert_raises, warns
from scipy.optimize import shgo
from scipy.optimize._shgo import SHGO


class StructTestFunction(object):
    def __init__(self, bounds, expected_x, expected_fun=None,
                 expected_xl=None, expected_funl=None):
        self.bounds = bounds
        self.expected_x = expected_x
        self.expected_fun = expected_fun
        self.expected_xl = expected_xl
        self.expected_funl = expected_funl


def wrap_constraints(g):
    cons = []
    if g is not None:
        if (type(g) is not tuple) and (type(g) is not list):
            g = (g,)
        else:
            pass
        for g in g:
            cons.append({'type': 'ineq',
                         'fun': g})
        cons = tuple(cons)
    else:
        cons = None
    return cons


class StructTest1(StructTestFunction):
    def f(self, x):
        return x[0] ** 2 + x[1] ** 2

    def g(x):
        return -(numpy.sum(x, axis=0) - 6.0)

    cons = wrap_constraints(g)


test1_1 = StructTest1(bounds=[(-1, 6), (-1, 6)],
                      expected_x=[0, 0])
test1_2 = StructTest1(bounds=[(0, 1), (0, 1)],
                      expected_x=[0, 0])
test1_3 = StructTest1(bounds=[(None, None), (None, None)],
                      expected_x=[0, 0])


class StructTest2(StructTestFunction):
    """
    Scalar function with several minima to test all minimizer retrievals
    """

    def f(self, x):
        return (x - 30) * numpy.sin(x)

    def g(x):
        return 58 - numpy.sum(x, axis=0)

    cons = wrap_constraints(g)


test2_1 = StructTest2(bounds=[(0, 60)],
                      expected_x=[1.53567906],
                      expected_fun=-28.44677132,
                      # Important: test that funl return is in the correct order
                      expected_xl=numpy.array([[1.53567906],
                                               [55.01782167],
                                               [7.80894889],
                                               [48.74797493],
                                               [14.07445705],
                                               [42.4913859],
                                               [20.31743841],
                                               [36.28607535],
                                               [26.43039605],
                                               [30.76371366]]),

                      expected_funl=numpy.array([-28.44677132, -24.99785984,
                                                 -22.16855376, -18.72136195,
                                                 -15.89423937, -12.45154942,
                                                 -9.63133158, -6.20801301,
                                                 -3.43727232, -0.46353338])
                      )

test2_2 = StructTest2(bounds=[(0, 4.5)],
                      expected_x=[1.53567906],
                      expected_fun=[-28.44677132],
                      expected_xl=numpy.array([[1.53567906]]),
                      expected_funl=numpy.array([-28.44677132])
                      )


class StructTest3(StructTestFunction):
    """
    Hock and Schittkowski 18 problem (HS18). Hoch and Schittkowski (1981)
    http://www.ai7.uni-bayreuth.de/test_problem_coll.pdf
    Minimize: f = 0.01 * (x_1)**2 + (x_2)**2

    Subject to: x_1 * x_2 - 25.0 >= 0,
                (x_1)**2 + (x_2)**2 - 25.0 >= 0,
                2 <= x_1 <= 50,
                0 <= x_2 <= 50.

    Approx. Answer:
        f([(250)**0.5 , (2.5)**0.5]) = 5.0


    """

    def f(self, x):
        return 0.01 * (x[0]) ** 2 + (x[1]) ** 2

    def g1(x):
        return x[0] * x[1] - 25.0

    def g2(x):
        return x[0] ** 2 + x[1] ** 2 - 25.0

    g = (g1, g2)

    cons = wrap_constraints(g)


test3_1 = StructTest3(bounds=[(2, 50), (0, 50)],
                      expected_x=[250 ** 0.5, 2.5 ** 0.5],
                      expected_fun=5.0
                      )


class StructTest4(StructTestFunction):
    """
    Hock and Schittkowski 11 problem (HS11). Hoch and Schittkowski (1981)

    NOTE: Did not find in original reference to HS collection, refer to
          Henderson (2015) problem 7 instead. 02.03.2016
    """

    def f(self, x):
        return ((x[0] - 10) ** 2 + 5 * (x[1] - 12) ** 2 + x[2] ** 4
                + 3 * (x[3] - 11) ** 2 + 10 * x[4] ** 6 + 7 * x[5] ** 2 + x[
                    6] ** 4
                - 4 * x[5] * x[6] - 10 * x[5] - 8 * x[6]
                )

    def g1(x):
        return -(2 * x[0] ** 2 + 3 * x[1] ** 4 + x[2] + 4 * x[3] ** 2
                 + 5 * x[4] - 127)

    def g2(x):
        return -(7 * x[0] + 3 * x[1] + 10 * x[2] ** 2 + x[3] - x[4] - 282.0)

    def g3(x):
        return -(23 * x[0] + x[1] ** 2 + 6 * x[5] ** 2 - 8 * x[6] - 196)

    def g4(x):
        return -(4 * x[0] ** 2 + x[1] ** 2 - 3 * x[0] * x[1] + 2 * x[2] ** 2
                 + 5 * x[5] - 11 * x[6])

    g = (g1, g2, g3, g4)

    cons = wrap_constraints(g)


test4_1 = StructTest4(bounds=[(-10, 10), ] * 7,
                      expected_x=[2.330499, 1.951372, -0.4775414,
                                  4.365726, -0.6244870, 1.038131, 1.594227],
                      expected_fun=680.6300573
                      )


class StructTest5(StructTestFunction):
    def f(self, x):
        return (-(x[1] + 47.0)
                * numpy.sin(numpy.sqrt(abs(x[0] / 2.0 + (x[1] + 47.0))))
                - x[0] * numpy.sin(numpy.sqrt(abs(x[0] - (x[1] + 47.0))))
                )

    g = None
    cons = wrap_constraints(g)


test5_1 = StructTest5(bounds=[(-512, 512), (-512, 512)],
                      expected_fun=[-959.64066272085051],
                      expected_x=[512., 404.23180542])


class StructTestLJ(StructTestFunction):
    """
    LennardJones objective function. Used to test symmetry constraints settings.
    """

    def f(self, x, *args):
        self.N = args[0]
        k = int(self.N / 3)
        s = 0.0

        for i in range(k - 1):
            for j in range(i + 1, k):
                a = 3 * i
                b = 3 * j
                xd = x[a] - x[b]
                yd = x[a + 1] - x[b + 1]
                zd = x[a + 2] - x[b + 2]
                ed = xd * xd + yd * yd + zd * zd
                ud = ed * ed * ed
                if ed > 0.0:
                    s += (1.0 / ud - 2.0) / ud

        return s

    g = None
    cons = wrap_constraints(g)


N = 6
boundsLJ = list(zip([-4.0] * 6, [4.0] * 6))

testLJ = StructTestLJ(bounds=boundsLJ,
                      expected_fun=[-1.0],
                      expected_x=[-2.71247337e-08,
                                  -2.71247337e-08,
                                  -2.50000222e+00,
                                  -2.71247337e-08,
                                  -2.71247337e-08,
                                  -1.50000222e+00]
                      )


class StructTestTable(StructTestFunction):
    def f(self, x):
        if x[0] == 3.0 and x[1] == 3.0:
            return 50
        else:
            return 100

    g = None
    cons = wrap_constraints(g)


test_table = StructTestTable(bounds=[(-10, 10), (-10, 10)],
                             expected_fun=[50],
                             expected_x=[3.0, 3.0])


class StructTestInfeasible(StructTestFunction):
    """
    Test function with no feasible domain.
    """

    def f(self, x, *args):
        return x[0] ** 2 + x[1] ** 2

    def g1(x):
        return x[0] + x[1] - 1

    def g2(x):
        return -(x[0] + x[1] - 1)

    def g3(x):
        return -x[0] + x[1] - 1

    def g4(x):
        return -(-x[0] + x[1] - 1)

    g = (g1, g2, g3, g4)
    cons = wrap_constraints(g)


test_infeasible = StructTestInfeasible(bounds=[(2, 50), (-1, 1)],
                                       expected_fun=None,
                                       expected_x=None
                                       )


def run_test(test, args=(), test_atol=1e-5, n=100, iters=None,
             callback=None, minimizer_kwargs=None, options=None,
             sampling_method='sobol'):
    res = shgo(test.f, test.bounds, args=args, constraints=test.cons,
               n=n, iters=iters, callback=callback,
               minimizer_kwargs=minimizer_kwargs, options=options,
               sampling_method=sampling_method)

    logging.info(res)

    if test.expected_x is not None:
        numpy.testing.assert_allclose(res.x, test.expected_x,
                                      rtol=test_atol,
                                      atol=test_atol)

    # (Optional tests)
    if test.expected_fun is not None:
        numpy.testing.assert_allclose(res.fun,
                                      test.expected_fun,
                                      atol=test_atol)

    if test.expected_xl is not None:
        numpy.testing.assert_allclose(res.xl,
                                      test.expected_xl,
                                      atol=test_atol)

    if test.expected_funl is not None:
        numpy.testing.assert_allclose(res.funl,
                                      test.expected_funl,
                                      atol=test_atol)
    return


# Base test functions:
class TestShgoSobolTestFunctions(object):
    """
    Global optimization tests with Sobol sampling:
    """

    # Sobol algorithm
    def test_f1_1_sobol(self):
        """Multivariate test function 1:
        x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]"""
        run_test(test1_1)

    def test_f1_2_sobol(self):
        """Multivariate test function 1:
         x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]"""
        run_test(test1_2)

    def test_f1_3_sobol(self):
        """Multivariate test function 1:
        x[0]**2 + x[1]**2 with bounds=[(None, None),(None, None)]"""
        run_test(test1_3)

    def test_f2_1_sobol(self):
        """Univariate test function on
        f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]"""
        run_test(test2_1)

    def test_f2_2_sobol(self):
        """Univariate test function on
        f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]"""
        run_test(test2_2)

    def test_f3_sobol(self):
        """NLP: Hock and Schittkowski problem 18"""
        run_test(test3_1)

    @pytest.mark.slow
    def test_f4_sobol(self):
        """NLP: (High-dimensional) Hock and Schittkowski 11 problem (HS11)"""
        # run_test(test4_1, n=500)
        # run_test(test4_1, n=800)
        options = {'infty_constraints': False}
        run_test(test4_1, n=990, options=options)

    def test_f5_1_sobol(self):
        """NLP: Eggholder, multimodal"""
        run_test(test5_1, n=30)

    def test_f5_2_sobol(self):
        """NLP: Eggholder, multimodal"""
        # run_test(test5_1, n=60, iters=5)
        run_test(test5_1, n=60, iters=5)

        # def test_t911(self):
        #    """1-D tabletop function"""
        #    run_test(test11_1)


class TestShgoSimplicialTestFunctions(object):
    """
    Global optimization tests with Simplicial sampling:
    """

    def test_f1_1_simplicial(self):
        """Multivariate test function 1:
        x[0]**2 + x[1]**2 with bounds=[(-1, 6), (-1, 6)]"""
        run_test(test1_1, n=1, sampling_method='simplicial')

    def test_f1_2_simplicial(self):
        """Multivariate test function 1:
        x[0]**2 + x[1]**2 with bounds=[(0, 1), (0, 1)]"""
        run_test(test1_2, n=1, sampling_method='simplicial')

    def test_f1_3_simplicial(self):
        """Multivariate test function 1: x[0]**2 + x[1]**2
        with bounds=[(None, None),(None, None)]"""
        run_test(test1_3, n=1, sampling_method='simplicial')

    def test_f2_1_simplicial(self):
        """Univariate test function on
        f(x) = (x - 30) * sin(x) with bounds=[(0, 60)]"""
        options = {'minimize_every_iter': False}
        run_test(test2_1, iters=7, options=options,
                 sampling_method='simplicial')

    def test_f2_2_simplicial(self):
        """Univariate test function on
        f(x) = (x - 30) * sin(x) bounds=[(0, 4.5)]"""
        run_test(test2_2, n=1, sampling_method='simplicial')

    def test_f3_simplicial(self):
        """NLP: Hock and Schittkowski problem 18"""
        run_test(test3_1, n=1, sampling_method='simplicial')

    @pytest.mark.slow
    def test_f4_simplicial(self):
        """NLP: (High-dimensional) Hock and Schittkowski 11 problem (HS11)"""
        run_test(test4_1, n=1, sampling_method='simplicial')

    def test_lj_symmetry(self):
        """LJ: Symmetry-constrained test function"""
        options = {'symmetry': True,
                   'disp': True}
        args = (6,)  # Number of atoms
        run_test(testLJ, args=args, n=None,
                 options=options, iters=4,
                 sampling_method='simplicial')


# Argument test functions
class TestShgoArguments(object):
    def test_1_1_simpl_iter(self):
        """Iterative simplicial sampling on TestFunction 1 (multivariate)"""
        run_test(test1_2, n=None, iters=2, sampling_method='simplicial')

    def test_1_2_simpl_iter(self):
        """Iterative simplicial on TestFunction 2 (univariate)"""
        options = {'minimize_every_iter': False}
        run_test(test2_1, n=None, iters=7, options=options,
                 sampling_method='simplicial')

    def test_2_1_sobol_iter(self):
        """Iterative Sobol sampling on TestFunction 1 (multivariate)"""
        run_test(test1_2, n=None, iters=1, sampling_method='sobol')

    def test_2_2_sobol_iter(self):
        """Iterative Sobol sampling on TestFunction 2 (univariate)"""
        res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons,
                   n=None, iters=1, sampling_method='sobol')

        numpy.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5,
                                      atol=1e-5)
        numpy.testing.assert_allclose(res.fun, test2_1.expected_fun, atol=1e-5)

    def test_3_1_disp_simplicial(self):
        """Iterative sampling on TestFunction 1 and 2  (multi- and univariate)"""

        def callback_func(x):
            print("Local minimization callback test")

        for test in [test1_1, test2_1]:
            shgo(test.f, test.bounds, iters=1,
                 sampling_method='simplicial',
                 callback=callback_func, options={'disp': True})
            shgo(test.f, test.bounds, n=1, sampling_method='simplicial',
                 callback=callback_func, options={'disp': True})

    def test_3_2_disp_sobol(self):
        """Iterative sampling on TestFunction 1 and 2 (multi- and univariate)"""

        def callback_func(x):
            print("Local minimization callback test")

        for test in [test1_1, test2_1]:
            shgo(test.f, test.bounds, iters=1, sampling_method='sobol',
                 callback=callback_func, options={'disp': True})

            shgo(test.f, test.bounds, n=1, sampling_method='simplicial',
                 callback=callback_func, options={'disp': True})

    @pytest.mark.slow
    def test_4_1_known_f_min(self):
        """Test known function minima stopping criteria"""
        # Specify known function value
        options = {'f_min': test4_1.expected_fun,
                   'f_tol': 1e-6,
                   'minimize_every_iter': True}
        # TODO: Make default n higher for faster tests
        run_test(test4_1, n=None, test_atol=1e-5, options=options,
                 sampling_method='simplicial')

    @pytest.mark.slow
    def test_4_2_known_f_min(self):
        """Test Global mode limiting local evalutions"""
        options = {  # Specify known function value
            'f_min': test4_1.expected_fun,
            'f_tol': 1e-6,
            # Specify number of local iterations to perform
            'minimize_every_iter': True,
            'local_iter': 1}

        run_test(test4_1, n=None, test_atol=1e-5, options=options,
                 sampling_method='simplicial')

    @pytest.mark.slow
    def test_4_3_known_f_min(self):
        """Test Global mode limiting local evalutions"""
        options = {  # Specify known function value
            'f_min': test4_1.expected_fun,
            'f_tol': 1e-6,
            # Specify number of local iterations to perform+
            'minimize_every_iter': True,
            'local_iter': 1,
            'infty_constraints': False}

        run_test(test4_1, n=300, test_atol=1e-5, options=options,
                 sampling_method='sobol')

    def test_4_4_known_f_min(self):
        """Test Global mode limiting local evalutions for 1-D functions"""
        options = {  # Specify known function value
            'f_min': test2_1.expected_fun,
            'f_tol': 1e-6,
            # Specify number of local iterations to perform+
            'minimize_every_iter': True,
            'local_iter': 1,
            'infty_constraints': False}

        res = shgo(test2_1.f, test2_1.bounds, constraints=test2_1.cons,
                   n=None, iters=None, options=options,
                   sampling_method='sobol')
        numpy.testing.assert_allclose(res.x, test2_1.expected_x, rtol=1e-5,
                                      atol=1e-5)

    def test_5_1_simplicial_argless(self):
        """Test Default simplicial sampling settings on TestFunction 1"""
        res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons)
        numpy.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5,
                                      atol=1e-5)

    def test_5_2_sobol_argless(self):
        """Test Default sobol sampling settings on TestFunction 1"""
        res = shgo(test1_1.f, test1_1.bounds, constraints=test1_1.cons,
                   sampling_method='sobol')
        numpy.testing.assert_allclose(res.x, test1_1.expected_x, rtol=1e-5,
                                      atol=1e-5)

    def test_6_1_simplicial_max_iter(self):
        """Test that maximum iteration option works on TestFunction 3"""
        options = {'max_iter': 2}
        res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons,
                   options=options, sampling_method='simplicial')
        numpy.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5,
                                      atol=1e-5)
        numpy.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5)

    def test_6_2_simplicial_min_iter(self):
        """Test that maximum iteration option works on TestFunction 3"""
        options = {'min_iter': 2}
        res = shgo(test3_1.f, test3_1.bounds, constraints=test3_1.cons,
                   options=options, sampling_method='simplicial')
        numpy.testing.assert_allclose(res.x, test3_1.expected_x, rtol=1e-5,
                                      atol=1e-5)
        numpy.testing.assert_allclose(res.fun, test3_1.expected_fun, atol=1e-5)

    def test_7_1_minkwargs(self):
        """Test the minimizer_kwargs arguments for solvers with constraints"""
        # Test solvers
        for solver in ['COBYLA', 'SLSQP']:
            # Note that passing global constraints to SLSQP is tested in other
            # unittests which run test4_1 normally
            minimizer_kwargs = {'method': solver,
                                'constraints': test3_1.cons}
            print("Solver = {}".format(solver))
            print("=" * 100)
            run_test(test3_1, n=100, test_atol=1e-3,
                     minimizer_kwargs=minimizer_kwargs, sampling_method='sobol')

    def test_7_2_minkwargs(self):
        """Test the minimizer_kwargs default inits"""
        minimizer_kwargs = {'ftol': 1e-5}
        options = {'disp': True}  # For coverage purposes
        SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0],
             minimizer_kwargs=minimizer_kwargs, options=options)

    def test_7_3_minkwargs(self):
        """Test minimizer_kwargs arguments for solvers without constraints"""
        for solver in ['Nelder-Mead', 'Powell', 'CG', 'BFGS', 'Newton-CG',
                       'L-BFGS-B', 'TNC', 'dogleg', 'trust-ncg', 'trust-exact',
                       'trust-krylov']:
            def jac(x):
                return numpy.array([2 * x[0], 2 * x[1]]).T

            def hess(x):
                return numpy.array([[2, 0], [0, 2]])

            minimizer_kwargs = {'method': solver,
                                'jac': jac,
                                'hess': hess}
            logging.info("Solver = {}".format(solver))
            logging.info("=" * 100)
            run_test(test1_1, n=100, test_atol=1e-3,
                     minimizer_kwargs=minimizer_kwargs, sampling_method='sobol')

    def test_8_homology_group_diff(self):
        options = {'minhgrd': 1,
                   'minimize_every_iter': True}

        run_test(test1_1, n=None, iters=None, options=options,
                 sampling_method='simplicial')

    def test_9_cons_g(self):
        """Test single function constraint passing"""
        SHGO(test3_1.f, test3_1.bounds, constraints=test3_1.cons[0])

    def test_10_finite_time(self):
        """Test single function constraint passing"""
        options = {'maxtime': 1e-15}
        shgo(test1_1.f, test1_1.bounds, n=1, iters=None,
             options=options, sampling_method='sobol')

    def test_11_f_min_time(self):
        """Test to cover the case where f_lowest == 0"""
        options = {'maxtime': 1e-15,
                   'f_min': 0.0}
        shgo(test1_2.f, test1_2.bounds, n=1, iters=None,
             options=options, sampling_method='sobol')

    def test_12_sobol_inf_cons(self):
        """Test to cover the case where f_lowest == 0"""
        options = {'maxtime': 1e-15,
                   'f_min': 0.0}
        shgo(test1_2.f, test1_2.bounds, n=1, iters=None,
             options=options, sampling_method='sobol')

    def test_13_high_sobol(self):
        """Test init of high-dimensional sobol sequences"""

        def f(x):
            return 0

        bounds = [(None, None), ] * 41
        SHGOc = SHGO(f, bounds)
        SHGOc.sobol_points(2, 50)

    def test_14_local_iter(self):
        """Test limited local iterations for a pseudo-global mode"""
        options = {'local_iter': 4}
        run_test(test5_1, n=30, options=options)

    def test_15_min_every_iter(self):
        """Test minimize every iter options and cover function cache"""
        options = {'minimize_every_iter': True}
        run_test(test1_1, n=1, iters=7, options=options,
                 sampling_method='sobol')

    def test_16_disp_bounds_minimizer(self):
        """Test disp=True with minimizers that do not support bounds """
        options = {'disp': True}
        minimizer_kwargs = {'method': 'nelder-mead'}
        run_test(test1_2, sampling_method='simplicial',
                 options=options, minimizer_kwargs=minimizer_kwargs)

    def test_17_custom_sampling(self):
        """Test the functionality to add custom sampling methods to shgo"""
        def sample(n, d):
            return numpy.random.uniform(size=(n,d))

        run_test(test1_1, n=30, sampling_method=sample)

# Failure test functions
class TestShgoFailures(object):
    def test_1_maxiter(self):
        """Test failure on insufficient iterations"""
        options = {'maxiter': 2}
        res = shgo(test4_1.f, test4_1.bounds, n=2, iters=None,
                   options=options, sampling_method='sobol')

        numpy.testing.assert_equal(False, res.success)
        numpy.testing.assert_equal(4, res.nfev)

    def test_2_sampling(self):
        """Rejection of unknown sampling method"""
        assert_raises(ValueError, shgo, test1_1.f, test1_1.bounds,
                      sampling_method='not_Sobol')

    def test_3_1_no_min_pool_sobol(self):
        """Check that the routine stops when no minimiser is found
           after maximum specified function evaluations"""
        options = {'maxfev': 10,
                   'disp': True}
        res = shgo(test_table.f, test_table.bounds, n=3, options=options,
                   sampling_method='sobol')
        numpy.testing.assert_equal(False, res.success)
        # numpy.testing.assert_equal(9, res.nfev)
        numpy.testing.assert_equal(12, res.nfev)

    def test_3_2_no_min_pool_simplicial(self):
        """Check that the routine stops when no minimiser is found
           after maximum specified sampling evaluations"""
        options = {'maxev': 10,
                   'disp': True}
        res = shgo(test_table.f, test_table.bounds, n=3, options=options,
                   sampling_method='simplicial')
        numpy.testing.assert_equal(False, res.success)

    def test_4_1_bound_err(self):
        """Specified bounds ub > lb"""
        bounds = [(6, 3), (3, 5)]
        assert_raises(ValueError, shgo, test1_1.f, bounds)

    def test_4_2_bound_err(self):
        """Specified bounds are of the form (lb, ub)"""
        bounds = [(3, 5, 5), (3, 5)]
        assert_raises(ValueError, shgo, test1_1.f, bounds)

    def test_5_1_1_infeasible_sobol(self):
        """Ensures the algorithm terminates on infeasible problems
           after maxev is exceeded. Use infty constraints option"""
        options = {'maxev': 100,
                   'disp': True}

        res = shgo(test_infeasible.f, test_infeasible.bounds,
                   constraints=test_infeasible.cons, n=100, options=options,
                   sampling_method='sobol')

        numpy.testing.assert_equal(False, res.success)

    def test_5_1_2_infeasible_sobol(self):
        """Ensures the algorithm terminates on infeasible problems
           after maxev is exceeded. Do not use infty constraints option"""
        options = {'maxev': 100,
                   'disp': True,
                   'infty_constraints': False}

        res = shgo(test_infeasible.f, test_infeasible.bounds,
                   constraints=test_infeasible.cons, n=100, options=options,
                   sampling_method='sobol')

        numpy.testing.assert_equal(False, res.success)

    def test_5_2_infeasible_simplicial(self):
        """Ensures the algorithm terminates on infeasible problems
           after maxev is exceeded."""
        options = {'maxev': 1000,
                   'disp': False}

        res = shgo(test_infeasible.f, test_infeasible.bounds,
                   constraints=test_infeasible.cons, n=100, options=options,
                   sampling_method='simplicial')

        numpy.testing.assert_equal(False, res.success)

    def test_6_1_lower_known_f_min(self):
        """Test Global mode limiting local evalutions with f* too high"""
        options = {  # Specify known function value
            'f_min': test2_1.expected_fun + 2.0,
            'f_tol': 1e-6,
            # Specify number of local iterations to perform+
            'minimize_every_iter': True,
            'local_iter': 1,
            'infty_constraints': False}
        args = (test2_1.f, test2_1.bounds)
        kwargs = {'constraints': test2_1.cons,
                  'n': None,
                  'iters': None,
                  'options': options,
                  'sampling_method': 'sobol'
                  }
        warns(UserWarning, shgo, *args, **kwargs)