_trustregion.py
9.01 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
"""Trust-region optimization."""
import math
import numpy as np
import scipy.linalg
from .optimize import (_check_unknown_options, wrap_function, _status_message,
OptimizeResult, _prepare_scalar_function)
__all__ = []
class BaseQuadraticSubproblem(object):
"""
Base/abstract class defining the quadratic model for trust-region
minimization. Child classes must implement the ``solve`` method.
Values of the objective function, Jacobian and Hessian (if provided) at
the current iterate ``x`` are evaluated on demand and then stored as
attributes ``fun``, ``jac``, ``hess``.
"""
def __init__(self, x, fun, jac, hess=None, hessp=None):
self._x = x
self._f = None
self._g = None
self._h = None
self._g_mag = None
self._cauchy_point = None
self._newton_point = None
self._fun = fun
self._jac = jac
self._hess = hess
self._hessp = hessp
def __call__(self, p):
return self.fun + np.dot(self.jac, p) + 0.5 * np.dot(p, self.hessp(p))
@property
def fun(self):
"""Value of objective function at current iteration."""
if self._f is None:
self._f = self._fun(self._x)
return self._f
@property
def jac(self):
"""Value of Jacobian of objective function at current iteration."""
if self._g is None:
self._g = self._jac(self._x)
return self._g
@property
def hess(self):
"""Value of Hessian of objective function at current iteration."""
if self._h is None:
self._h = self._hess(self._x)
return self._h
def hessp(self, p):
if self._hessp is not None:
return self._hessp(self._x, p)
else:
return np.dot(self.hess, p)
@property
def jac_mag(self):
"""Magnitude of jacobian of objective function at current iteration."""
if self._g_mag is None:
self._g_mag = scipy.linalg.norm(self.jac)
return self._g_mag
def get_boundaries_intersections(self, z, d, trust_radius):
"""
Solve the scalar quadratic equation ||z + t d|| == trust_radius.
This is like a line-sphere intersection.
Return the two values of t, sorted from low to high.
"""
a = np.dot(d, d)
b = 2 * np.dot(z, d)
c = np.dot(z, z) - trust_radius**2
sqrt_discriminant = math.sqrt(b*b - 4*a*c)
# The following calculation is mathematically
# equivalent to:
# ta = (-b - sqrt_discriminant) / (2*a)
# tb = (-b + sqrt_discriminant) / (2*a)
# but produce smaller round off errors.
# Look at Matrix Computation p.97
# for a better justification.
aux = b + math.copysign(sqrt_discriminant, b)
ta = -aux / (2*a)
tb = -2*c / aux
return sorted([ta, tb])
def solve(self, trust_radius):
raise NotImplementedError('The solve method should be implemented by '
'the child class')
def _minimize_trust_region(fun, x0, args=(), jac=None, hess=None, hessp=None,
subproblem=None, initial_trust_radius=1.0,
max_trust_radius=1000.0, eta=0.15, gtol=1e-4,
maxiter=None, disp=False, return_all=False,
callback=None, inexact=True, **unknown_options):
"""
Minimization of scalar function of one or more variables using a
trust-region algorithm.
Options for the trust-region algorithm are:
initial_trust_radius : float
Initial trust radius.
max_trust_radius : float
Never propose steps that are longer than this value.
eta : float
Trust region related acceptance stringency for proposed steps.
gtol : float
Gradient norm must be less than `gtol`
before successful termination.
maxiter : int
Maximum number of iterations to perform.
disp : bool
If True, print convergence message.
inexact : bool
Accuracy to solve subproblems. If True requires less nonlinear
iterations, but more vector products. Only effective for method
trust-krylov.
This function is called by the `minimize` function.
It is not supposed to be called directly.
"""
_check_unknown_options(unknown_options)
if jac is None:
raise ValueError('Jacobian is currently required for trust-region '
'methods')
if hess is None and hessp is None:
raise ValueError('Either the Hessian or the Hessian-vector product '
'is currently required for trust-region methods')
if subproblem is None:
raise ValueError('A subproblem solving strategy is required for '
'trust-region methods')
if not (0 <= eta < 0.25):
raise Exception('invalid acceptance stringency')
if max_trust_radius <= 0:
raise Exception('the max trust radius must be positive')
if initial_trust_radius <= 0:
raise ValueError('the initial trust radius must be positive')
if initial_trust_radius >= max_trust_radius:
raise ValueError('the initial trust radius must be less than the '
'max trust radius')
# force the initial guess into a nice format
x0 = np.asarray(x0).flatten()
# A ScalarFunction representing the problem. This caches calls to fun, jac,
# hess.
sf = _prepare_scalar_function(fun, x0, jac=jac, hess=hess, args=args)
fun = sf.fun
jac = sf.grad
if hess is not None:
hess = sf.hess
# ScalarFunction doesn't represent hessp
nhessp, hessp = wrap_function(hessp, args)
# limit the number of iterations
if maxiter is None:
maxiter = len(x0)*200
# init the search status
warnflag = 0
# initialize the search
trust_radius = initial_trust_radius
x = x0
if return_all:
allvecs = [x]
m = subproblem(x, fun, jac, hess, hessp)
k = 0
# search for the function min
# do not even start if the gradient is small enough
while m.jac_mag >= gtol:
# Solve the sub-problem.
# This gives us the proposed step relative to the current position
# and it tells us whether the proposed step
# has reached the trust region boundary or not.
try:
p, hits_boundary = m.solve(trust_radius)
except np.linalg.linalg.LinAlgError:
warnflag = 3
break
# calculate the predicted value at the proposed point
predicted_value = m(p)
# define the local approximation at the proposed point
x_proposed = x + p
m_proposed = subproblem(x_proposed, fun, jac, hess, hessp)
# evaluate the ratio defined in equation (4.4)
actual_reduction = m.fun - m_proposed.fun
predicted_reduction = m.fun - predicted_value
if predicted_reduction <= 0:
warnflag = 2
break
rho = actual_reduction / predicted_reduction
# update the trust radius according to the actual/predicted ratio
if rho < 0.25:
trust_radius *= 0.25
elif rho > 0.75 and hits_boundary:
trust_radius = min(2*trust_radius, max_trust_radius)
# if the ratio is high enough then accept the proposed step
if rho > eta:
x = x_proposed
m = m_proposed
# append the best guess, call back, increment the iteration count
if return_all:
allvecs.append(np.copy(x))
if callback is not None:
callback(np.copy(x))
k += 1
# check if the gradient is small enough to stop
if m.jac_mag < gtol:
warnflag = 0
break
# check if we have looked at enough iterations
if k >= maxiter:
warnflag = 1
break
# print some stuff if requested
status_messages = (
_status_message['success'],
_status_message['maxiter'],
'A bad approximation caused failure to predict improvement.',
'A linalg error occurred, such as a non-psd Hessian.',
)
if disp:
if warnflag == 0:
print(status_messages[warnflag])
else:
print('Warning: ' + status_messages[warnflag])
print(" Current function value: %f" % m.fun)
print(" Iterations: %d" % k)
print(" Function evaluations: %d" % sf.nfev)
print(" Gradient evaluations: %d" % sf.ngev)
print(" Hessian evaluations: %d" % (sf.nhev + nhessp[0]))
result = OptimizeResult(x=x, success=(warnflag == 0), status=warnflag,
fun=m.fun, jac=m.jac, nfev=sf.nfev, njev=sf.ngev,
nhev=sf.nhev + nhessp[0], nit=k,
message=status_messages[warnflag])
if hess is not None:
result['hess'] = m.hess
if return_all:
result['allvecs'] = allvecs
return result