_minimize.py
36.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
"""
Unified interfaces to minimization algorithms.
Functions
---------
- minimize : minimization of a function of several variables.
- minimize_scalar : minimization of a function of one variable.
"""
__all__ = ['minimize', 'minimize_scalar']
from warnings import warn
import numpy as np
# unconstrained minimization
from .optimize import (_minimize_neldermead, _minimize_powell, _minimize_cg,
_minimize_bfgs, _minimize_newtoncg,
_minimize_scalar_brent, _minimize_scalar_bounded,
_minimize_scalar_golden, MemoizeJac)
from ._trustregion_dogleg import _minimize_dogleg
from ._trustregion_ncg import _minimize_trust_ncg
from ._trustregion_krylov import _minimize_trust_krylov
from ._trustregion_exact import _minimize_trustregion_exact
from ._trustregion_constr import _minimize_trustregion_constr
# constrained minimization
from .lbfgsb import _minimize_lbfgsb
from .tnc import _minimize_tnc
from .cobyla import _minimize_cobyla
from .slsqp import _minimize_slsqp
from ._constraints import (old_bound_to_new, new_bounds_to_old,
old_constraint_to_new, new_constraint_to_old,
NonlinearConstraint, LinearConstraint, Bounds)
from ._differentiable_functions import FD_METHODS
MINIMIZE_METHODS = ['nelder-mead', 'powell', 'cg', 'bfgs', 'newton-cg',
'l-bfgs-b', 'tnc', 'cobyla', 'slsqp', 'trust-constr',
'dogleg', 'trust-ncg', 'trust-exact', 'trust-krylov']
def minimize(fun, x0, args=(), method=None, jac=None, hess=None,
hessp=None, bounds=None, constraints=(), tol=None,
callback=None, options=None):
"""Minimization of scalar function of one or more variables.
Parameters
----------
fun : callable
The objective function to be minimized.
``fun(x, *args) -> float``
where ``x`` is an 1-D array with shape (n,) and ``args``
is a tuple of the fixed parameters needed to completely
specify the function.
x0 : ndarray, shape (n,)
Initial guess. Array of real elements of size (n,),
where 'n' is the number of independent variables.
args : tuple, optional
Extra arguments passed to the objective function and its
derivatives (`fun`, `jac` and `hess` functions).
method : str or callable, optional
Type of solver. Should be one of
- 'Nelder-Mead' :ref:`(see here) <optimize.minimize-neldermead>`
- 'Powell' :ref:`(see here) <optimize.minimize-powell>`
- 'CG' :ref:`(see here) <optimize.minimize-cg>`
- 'BFGS' :ref:`(see here) <optimize.minimize-bfgs>`
- 'Newton-CG' :ref:`(see here) <optimize.minimize-newtoncg>`
- 'L-BFGS-B' :ref:`(see here) <optimize.minimize-lbfgsb>`
- 'TNC' :ref:`(see here) <optimize.minimize-tnc>`
- 'COBYLA' :ref:`(see here) <optimize.minimize-cobyla>`
- 'SLSQP' :ref:`(see here) <optimize.minimize-slsqp>`
- 'trust-constr':ref:`(see here) <optimize.minimize-trustconstr>`
- 'dogleg' :ref:`(see here) <optimize.minimize-dogleg>`
- 'trust-ncg' :ref:`(see here) <optimize.minimize-trustncg>`
- 'trust-exact' :ref:`(see here) <optimize.minimize-trustexact>`
- 'trust-krylov' :ref:`(see here) <optimize.minimize-trustkrylov>`
- custom - a callable object (added in version 0.14.0),
see below for description.
If not given, chosen to be one of ``BFGS``, ``L-BFGS-B``, ``SLSQP``,
depending if the problem has constraints or bounds.
jac : {callable, '2-point', '3-point', 'cs', bool}, optional
Method for computing the gradient vector. Only for CG, BFGS,
Newton-CG, L-BFGS-B, TNC, SLSQP, dogleg, trust-ncg, trust-krylov,
trust-exact and trust-constr.
If it is a callable, it should be a function that returns the gradient
vector:
``jac(x, *args) -> array_like, shape (n,)``
where ``x`` is an array with shape (n,) and ``args`` is a tuple with
the fixed parameters. If `jac` is a Boolean and is True, `fun` is
assumed to return and objective and gradient as and ``(f, g)`` tuple.
Methods 'Newton-CG', 'trust-ncg', 'dogleg', 'trust-exact', and
'trust-krylov' require that either a callable be supplied, or that
`fun` return the objective and gradient.
If None or False, the gradient will be estimated using 2-point finite
difference estimation with an absolute step size.
Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used
to select a finite difference scheme for numerical estimation of the
gradient with a relative step size. These finite difference schemes
obey any specified `bounds`.
hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}, optional
Method for computing the Hessian matrix. Only for Newton-CG, dogleg,
trust-ncg, trust-krylov, trust-exact and trust-constr. If it is
callable, it should return the Hessian matrix:
``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``
where x is a (n,) ndarray and `args` is a tuple with the fixed
parameters. LinearOperator and sparse matrix returns are
allowed only for 'trust-constr' method. Alternatively, the keywords
{'2-point', '3-point', 'cs'} select a finite difference scheme
for numerical estimation. Or, objects implementing
`HessianUpdateStrategy` interface can be used to approximate
the Hessian. Available quasi-Newton methods implementing
this interface are:
- `BFGS`;
- `SR1`.
Whenever the gradient is estimated via finite-differences,
the Hessian cannot be estimated with options
{'2-point', '3-point', 'cs'} and needs to be
estimated using one of the quasi-Newton strategies.
Finite-difference options {'2-point', '3-point', 'cs'} and
`HessianUpdateStrategy` are available only for 'trust-constr' method.
hessp : callable, optional
Hessian of objective function times an arbitrary vector p. Only for
Newton-CG, trust-ncg, trust-krylov, trust-constr.
Only one of `hessp` or `hess` needs to be given. If `hess` is
provided, then `hessp` will be ignored. `hessp` must compute the
Hessian times an arbitrary vector:
``hessp(x, p, *args) -> ndarray shape (n,)``
where x is a (n,) ndarray, p is an arbitrary vector with
dimension (n,) and `args` is a tuple with the fixed
parameters.
bounds : sequence or `Bounds`, optional
Bounds on variables for L-BFGS-B, TNC, SLSQP, Powell, and
trust-constr methods. There are two ways to specify the bounds:
1. Instance of `Bounds` class.
2. Sequence of ``(min, max)`` pairs for each element in `x`. None
is used to specify no bound.
constraints : {Constraint, dict} or List of {Constraint, dict}, optional
Constraints definition (only for COBYLA, SLSQP and trust-constr).
Constraints for 'trust-constr' are defined as a single object or a
list of objects specifying constraints to the optimization problem.
Available constraints are:
- `LinearConstraint`
- `NonlinearConstraint`
Constraints for COBYLA, SLSQP are defined as a list of dictionaries.
Each dictionary with fields:
type : str
Constraint type: 'eq' for equality, 'ineq' for inequality.
fun : callable
The function defining the constraint.
jac : callable, optional
The Jacobian of `fun` (only for SLSQP).
args : sequence, optional
Extra arguments to be passed to the function and Jacobian.
Equality constraint means that the constraint function result is to
be zero whereas inequality means that it is to be non-negative.
Note that COBYLA only supports inequality constraints.
tol : float, optional
Tolerance for termination. For detailed control, use solver-specific
options.
options : dict, optional
A dictionary of solver options. All methods accept the following
generic options:
maxiter : int
Maximum number of iterations to perform. Depending on the
method each iteration may use several function evaluations.
disp : bool
Set to True to print convergence messages.
For method-specific options, see :func:`show_options()`.
callback : callable, optional
Called after each iteration. For 'trust-constr' it is a callable with
the signature:
``callback(xk, OptimizeResult state) -> bool``
where ``xk`` is the current parameter vector. and ``state``
is an `OptimizeResult` object, with the same fields
as the ones from the return. If callback returns True
the algorithm execution is terminated.
For all the other methods, the signature is:
``callback(xk)``
where ``xk`` is the current parameter vector.
Returns
-------
res : OptimizeResult
The optimization result represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the optimizer exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes.
See also
--------
minimize_scalar : Interface to minimization algorithms for scalar
univariate functions
show_options : Additional options accepted by the solvers
Notes
-----
This section describes the available solvers that can be selected by the
'method' parameter. The default method is *BFGS*.
**Unconstrained minimization**
Method :ref:`Nelder-Mead <optimize.minimize-neldermead>` uses the
Simplex algorithm [1]_, [2]_. This algorithm is robust in many
applications. However, if numerical computation of derivative can be
trusted, other algorithms using the first and/or second derivatives
information might be preferred for their better performance in
general.
Method :ref:`CG <optimize.minimize-cg>` uses a nonlinear conjugate
gradient algorithm by Polak and Ribiere, a variant of the
Fletcher-Reeves method described in [5]_ pp.120-122. Only the
first derivatives are used.
Method :ref:`BFGS <optimize.minimize-bfgs>` uses the quasi-Newton
method of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) [5]_
pp. 136. It uses the first derivatives only. BFGS has proven good
performance even for non-smooth optimizations. This method also
returns an approximation of the Hessian inverse, stored as
`hess_inv` in the OptimizeResult object.
Method :ref:`Newton-CG <optimize.minimize-newtoncg>` uses a
Newton-CG algorithm [5]_ pp. 168 (also known as the truncated
Newton method). It uses a CG method to the compute the search
direction. See also *TNC* method for a box-constrained
minimization with a similar algorithm. Suitable for large-scale
problems.
Method :ref:`dogleg <optimize.minimize-dogleg>` uses the dog-leg
trust-region algorithm [5]_ for unconstrained minimization. This
algorithm requires the gradient and Hessian; furthermore the
Hessian is required to be positive definite.
Method :ref:`trust-ncg <optimize.minimize-trustncg>` uses the
Newton conjugate gradient trust-region algorithm [5]_ for
unconstrained minimization. This algorithm requires the gradient
and either the Hessian or a function that computes the product of
the Hessian with a given vector. Suitable for large-scale problems.
Method :ref:`trust-krylov <optimize.minimize-trustkrylov>` uses
the Newton GLTR trust-region algorithm [14]_, [15]_ for unconstrained
minimization. This algorithm requires the gradient
and either the Hessian or a function that computes the product of
the Hessian with a given vector. Suitable for large-scale problems.
On indefinite problems it requires usually less iterations than the
`trust-ncg` method and is recommended for medium and large-scale problems.
Method :ref:`trust-exact <optimize.minimize-trustexact>`
is a trust-region method for unconstrained minimization in which
quadratic subproblems are solved almost exactly [13]_. This
algorithm requires the gradient and the Hessian (which is
*not* required to be positive definite). It is, in many
situations, the Newton method to converge in fewer iteraction
and the most recommended for small and medium-size problems.
**Bound-Constrained minimization**
Method :ref:`L-BFGS-B <optimize.minimize-lbfgsb>` uses the L-BFGS-B
algorithm [6]_, [7]_ for bound constrained minimization.
Method :ref:`Powell <optimize.minimize-powell>` is a modification
of Powell's method [3]_, [4]_ which is a conjugate direction
method. It performs sequential one-dimensional minimizations along
each vector of the directions set (`direc` field in `options` and
`info`), which is updated at each iteration of the main
minimization loop. The function need not be differentiable, and no
derivatives are taken. If bounds are not provided, then an
unbounded line search will be used. If bounds are provided and
the initial guess is within the bounds, then every function
evaluation throughout the minimization procedure will be within
the bounds. If bounds are provided, the initial guess is outside
the bounds, and `direc` is full rank (default has full rank), then
some function evaluations during the first iteration may be
outside the bounds, but every function evaluation after the first
iteration will be within the bounds. If `direc` is not full rank,
then some parameters may not be optimized and the solution is not
guaranteed to be within the bounds.
Method :ref:`TNC <optimize.minimize-tnc>` uses a truncated Newton
algorithm [5]_, [8]_ to minimize a function with variables subject
to bounds. This algorithm uses gradient information; it is also
called Newton Conjugate-Gradient. It differs from the *Newton-CG*
method described above as it wraps a C implementation and allows
each variable to be given upper and lower bounds.
**Constrained Minimization**
Method :ref:`COBYLA <optimize.minimize-cobyla>` uses the
Constrained Optimization BY Linear Approximation (COBYLA) method
[9]_, [10]_, [11]_. The algorithm is based on linear
approximations to the objective function and each constraint. The
method wraps a FORTRAN implementation of the algorithm. The
constraints functions 'fun' may return either a single number
or an array or list of numbers.
Method :ref:`SLSQP <optimize.minimize-slsqp>` uses Sequential
Least SQuares Programming to minimize a function of several
variables with any combination of bounds, equality and inequality
constraints. The method wraps the SLSQP Optimization subroutine
originally implemented by Dieter Kraft [12]_. Note that the
wrapper handles infinite values in bounds by converting them into
large floating values.
Method :ref:`trust-constr <optimize.minimize-trustconstr>` is a
trust-region algorithm for constrained optimization. It swiches
between two implementations depending on the problem definition.
It is the most versatile constrained minimization algorithm
implemented in SciPy and the most appropriate for large-scale problems.
For equality constrained problems it is an implementation of Byrd-Omojokun
Trust-Region SQP method described in [17]_ and in [5]_, p. 549. When
inequality constraints are imposed as well, it swiches to the trust-region
interior point method described in [16]_. This interior point algorithm,
in turn, solves inequality constraints by introducing slack variables
and solving a sequence of equality-constrained barrier problems
for progressively smaller values of the barrier parameter.
The previously described equality constrained SQP method is
used to solve the subproblems with increasing levels of accuracy
as the iterate gets closer to a solution.
**Finite-Difference Options**
For Method :ref:`trust-constr <optimize.minimize-trustconstr>`
the gradient and the Hessian may be approximated using
three finite-difference schemes: {'2-point', '3-point', 'cs'}.
The scheme 'cs' is, potentially, the most accurate but it
requires the function to correctly handles complex inputs and to
be differentiable in the complex plane. The scheme '3-point' is more
accurate than '2-point' but requires twice as many operations.
**Custom minimizers**
It may be useful to pass a custom minimization method, for example
when using a frontend to this method such as `scipy.optimize.basinhopping`
or a different library. You can simply pass a callable as the ``method``
parameter.
The callable is called as ``method(fun, x0, args, **kwargs, **options)``
where ``kwargs`` corresponds to any other parameters passed to `minimize`
(such as `callback`, `hess`, etc.), except the `options` dict, which has
its contents also passed as `method` parameters pair by pair. Also, if
`jac` has been passed as a bool type, `jac` and `fun` are mangled so that
`fun` returns just the function values and `jac` is converted to a function
returning the Jacobian. The method shall return an `OptimizeResult`
object.
The provided `method` callable must be able to accept (and possibly ignore)
arbitrary parameters; the set of parameters accepted by `minimize` may
expand in future versions and then these parameters will be passed to
the method. You can find an example in the scipy.optimize tutorial.
.. versionadded:: 0.11.0
References
----------
.. [1] Nelder, J A, and R Mead. 1965. A Simplex Method for Function
Minimization. The Computer Journal 7: 308-13.
.. [2] Wright M H. 1996. Direct search methods: Once scorned, now
respectable, in Numerical Analysis 1995: Proceedings of the 1995
Dundee Biennial Conference in Numerical Analysis (Eds. D F
Griffiths and G A Watson). Addison Wesley Longman, Harlow, UK.
191-208.
.. [3] Powell, M J D. 1964. An efficient method for finding the minimum of
a function of several variables without calculating derivatives. The
Computer Journal 7: 155-162.
.. [4] Press W, S A Teukolsky, W T Vetterling and B P Flannery.
Numerical Recipes (any edition), Cambridge University Press.
.. [5] Nocedal, J, and S J Wright. 2006. Numerical Optimization.
Springer New York.
.. [6] Byrd, R H and P Lu and J. Nocedal. 1995. A Limited Memory
Algorithm for Bound Constrained Optimization. SIAM Journal on
Scientific and Statistical Computing 16 (5): 1190-1208.
.. [7] Zhu, C and R H Byrd and J Nocedal. 1997. L-BFGS-B: Algorithm
778: L-BFGS-B, FORTRAN routines for large scale bound constrained
optimization. ACM Transactions on Mathematical Software 23 (4):
550-560.
.. [8] Nash, S G. Newton-Type Minimization Via the Lanczos Method.
1984. SIAM Journal of Numerical Analysis 21: 770-778.
.. [9] Powell, M J D. A direct search optimization method that models
the objective and constraint functions by linear interpolation.
1994. Advances in Optimization and Numerical Analysis, eds. S. Gomez
and J-P Hennart, Kluwer Academic (Dordrecht), 51-67.
.. [10] Powell M J D. Direct search algorithms for optimization
calculations. 1998. Acta Numerica 7: 287-336.
.. [11] Powell M J D. A view of algorithms for optimization without
derivatives. 2007.Cambridge University Technical Report DAMTP
2007/NA03
.. [12] Kraft, D. A software package for sequential quadratic
programming. 1988. Tech. Rep. DFVLR-FB 88-28, DLR German Aerospace
Center -- Institute for Flight Mechanics, Koln, Germany.
.. [13] Conn, A. R., Gould, N. I., and Toint, P. L.
Trust region methods. 2000. Siam. pp. 169-200.
.. [14] F. Lenders, C. Kirches, A. Potschka: "trlib: A vector-free
implementation of the GLTR method for iterative solution of
the trust region problem", https://arxiv.org/abs/1611.04718
.. [15] N. Gould, S. Lucidi, M. Roma, P. Toint: "Solving the
Trust-Region Subproblem using the Lanczos Method",
SIAM J. Optim., 9(2), 504--525, (1999).
.. [16] Byrd, Richard H., Mary E. Hribar, and Jorge Nocedal. 1999.
An interior point algorithm for large-scale nonlinear programming.
SIAM Journal on Optimization 9.4: 877-900.
.. [17] Lalee, Marucha, Jorge Nocedal, and Todd Plantega. 1998. On the
implementation of an algorithm for large-scale equality constrained
optimization. SIAM Journal on Optimization 8.3: 682-706.
Examples
--------
Let us consider the problem of minimizing the Rosenbrock function. This
function (and its respective derivatives) is implemented in `rosen`
(resp. `rosen_der`, `rosen_hess`) in the `scipy.optimize`.
>>> from scipy.optimize import minimize, rosen, rosen_der
A simple application of the *Nelder-Mead* method is:
>>> x0 = [1.3, 0.7, 0.8, 1.9, 1.2]
>>> res = minimize(rosen, x0, method='Nelder-Mead', tol=1e-6)
>>> res.x
array([ 1., 1., 1., 1., 1.])
Now using the *BFGS* algorithm, using the first derivative and a few
options:
>>> res = minimize(rosen, x0, method='BFGS', jac=rosen_der,
... options={'gtol': 1e-6, 'disp': True})
Optimization terminated successfully.
Current function value: 0.000000
Iterations: 26
Function evaluations: 31
Gradient evaluations: 31
>>> res.x
array([ 1., 1., 1., 1., 1.])
>>> print(res.message)
Optimization terminated successfully.
>>> res.hess_inv
array([[ 0.00749589, 0.01255155, 0.02396251, 0.04750988, 0.09495377], # may vary
[ 0.01255155, 0.02510441, 0.04794055, 0.09502834, 0.18996269],
[ 0.02396251, 0.04794055, 0.09631614, 0.19092151, 0.38165151],
[ 0.04750988, 0.09502834, 0.19092151, 0.38341252, 0.7664427 ],
[ 0.09495377, 0.18996269, 0.38165151, 0.7664427, 1.53713523]])
Next, consider a minimization problem with several constraints (namely
Example 16.4 from [5]_). The objective function is:
>>> fun = lambda x: (x[0] - 1)**2 + (x[1] - 2.5)**2
There are three constraints defined as:
>>> cons = ({'type': 'ineq', 'fun': lambda x: x[0] - 2 * x[1] + 2},
... {'type': 'ineq', 'fun': lambda x: -x[0] - 2 * x[1] + 6},
... {'type': 'ineq', 'fun': lambda x: -x[0] + 2 * x[1] + 2})
And variables must be positive, hence the following bounds:
>>> bnds = ((0, None), (0, None))
The optimization problem is solved using the SLSQP method as:
>>> res = minimize(fun, (2, 0), method='SLSQP', bounds=bnds,
... constraints=cons)
It should converge to the theoretical solution (1.4 ,1.7).
"""
x0 = np.asarray(x0)
if x0.dtype.kind in np.typecodes["AllInteger"]:
x0 = np.asarray(x0, dtype=float)
if not isinstance(args, tuple):
args = (args,)
if method is None:
# Select automatically
if constraints:
method = 'SLSQP'
elif bounds is not None:
method = 'L-BFGS-B'
else:
method = 'BFGS'
if callable(method):
meth = "_custom"
else:
meth = method.lower()
if options is None:
options = {}
# check if optional parameters are supported by the selected method
# - jac
if meth in ('nelder-mead', 'powell', 'cobyla') and bool(jac):
warn('Method %s does not use gradient information (jac).' % method,
RuntimeWarning)
# - hess
if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
'trust-krylov', 'trust-exact', '_custom') and hess is not None:
warn('Method %s does not use Hessian information (hess).' % method,
RuntimeWarning)
# - hessp
if meth not in ('newton-cg', 'dogleg', 'trust-ncg', 'trust-constr',
'trust-krylov', '_custom') \
and hessp is not None:
warn('Method %s does not use Hessian-vector product '
'information (hessp).' % method, RuntimeWarning)
# - constraints or bounds
if (meth in ('nelder-mead', 'cg', 'bfgs', 'newton-cg', 'dogleg',
'trust-ncg') and (bounds is not None or np.any(constraints))):
warn('Method %s cannot handle constraints nor bounds.' % method,
RuntimeWarning)
if meth in ('l-bfgs-b', 'tnc', 'powell') and np.any(constraints):
warn('Method %s cannot handle constraints.' % method,
RuntimeWarning)
if meth == 'cobyla' and bounds is not None:
warn('Method %s cannot handle bounds.' % method,
RuntimeWarning)
# - callback
if (meth in ('cobyla',) and callback is not None):
warn('Method %s does not support callback.' % method, RuntimeWarning)
# - return_all
if (meth in ('l-bfgs-b', 'tnc', 'cobyla', 'slsqp') and
options.get('return_all', False)):
warn('Method %s does not support the return_all option.' % method,
RuntimeWarning)
# check gradient vector
if callable(jac):
pass
elif jac is True:
# fun returns func and grad
fun = MemoizeJac(fun)
jac = fun.derivative
elif (jac in FD_METHODS and
meth in ['trust-constr', 'bfgs', 'cg', 'l-bfgs-b', 'tnc']):
# finite differences
pass
elif meth in ['trust-constr']:
# default jac calculation for this method
jac = '2-point'
elif jac is None or bool(jac) is False:
# this will cause e.g. LBFGS to use forward difference, absolute step
jac = None
else:
# default if jac option is not understood
jac = None
# set default tolerances
if tol is not None:
options = dict(options)
if meth == 'nelder-mead':
options.setdefault('xatol', tol)
options.setdefault('fatol', tol)
if meth in ('newton-cg', 'powell', 'tnc'):
options.setdefault('xtol', tol)
if meth in ('powell', 'l-bfgs-b', 'tnc', 'slsqp'):
options.setdefault('ftol', tol)
if meth in ('bfgs', 'cg', 'l-bfgs-b', 'tnc', 'dogleg',
'trust-ncg', 'trust-exact', 'trust-krylov'):
options.setdefault('gtol', tol)
if meth in ('cobyla', '_custom'):
options.setdefault('tol', tol)
if meth == 'trust-constr':
options.setdefault('xtol', tol)
options.setdefault('gtol', tol)
options.setdefault('barrier_tol', tol)
if meth == '_custom':
# custom method called before bounds and constraints are 'standardised'
# custom method should be able to accept whatever bounds/constraints
# are provided to it.
return method(fun, x0, args=args, jac=jac, hess=hess, hessp=hessp,
bounds=bounds, constraints=constraints,
callback=callback, **options)
if bounds is not None:
bounds = standardize_bounds(bounds, x0, meth)
if constraints is not None:
constraints = standardize_constraints(constraints, x0, meth)
if meth == 'nelder-mead':
return _minimize_neldermead(fun, x0, args, callback, **options)
elif meth == 'powell':
return _minimize_powell(fun, x0, args, callback, bounds, **options)
elif meth == 'cg':
return _minimize_cg(fun, x0, args, jac, callback, **options)
elif meth == 'bfgs':
return _minimize_bfgs(fun, x0, args, jac, callback, **options)
elif meth == 'newton-cg':
return _minimize_newtoncg(fun, x0, args, jac, hess, hessp, callback,
**options)
elif meth == 'l-bfgs-b':
return _minimize_lbfgsb(fun, x0, args, jac, bounds,
callback=callback, **options)
elif meth == 'tnc':
return _minimize_tnc(fun, x0, args, jac, bounds, callback=callback,
**options)
elif meth == 'cobyla':
return _minimize_cobyla(fun, x0, args, constraints, **options)
elif meth == 'slsqp':
return _minimize_slsqp(fun, x0, args, jac, bounds,
constraints, callback=callback, **options)
elif meth == 'trust-constr':
return _minimize_trustregion_constr(fun, x0, args, jac, hess, hessp,
bounds, constraints,
callback=callback, **options)
elif meth == 'dogleg':
return _minimize_dogleg(fun, x0, args, jac, hess,
callback=callback, **options)
elif meth == 'trust-ncg':
return _minimize_trust_ncg(fun, x0, args, jac, hess, hessp,
callback=callback, **options)
elif meth == 'trust-krylov':
return _minimize_trust_krylov(fun, x0, args, jac, hess, hessp,
callback=callback, **options)
elif meth == 'trust-exact':
return _minimize_trustregion_exact(fun, x0, args, jac, hess,
callback=callback, **options)
else:
raise ValueError('Unknown solver %s' % method)
def minimize_scalar(fun, bracket=None, bounds=None, args=(),
method='brent', tol=None, options=None):
"""Minimization of scalar function of one variable.
Parameters
----------
fun : callable
Objective function.
Scalar function, must return a scalar.
bracket : sequence, optional
For methods 'brent' and 'golden', `bracket` defines the bracketing
interval and can either have three items ``(a, b, c)`` so that
``a < b < c`` and ``fun(b) < fun(a), fun(c)`` or two items ``a`` and
``c`` which are assumed to be a starting interval for a downhill
bracket search (see `bracket`); it doesn't always mean that the
obtained solution will satisfy ``a <= x <= c``.
bounds : sequence, optional
For method 'bounded', `bounds` is mandatory and must have two items
corresponding to the optimization bounds.
args : tuple, optional
Extra arguments passed to the objective function.
method : str or callable, optional
Type of solver. Should be one of:
- 'Brent' :ref:`(see here) <optimize.minimize_scalar-brent>`
- 'Bounded' :ref:`(see here) <optimize.minimize_scalar-bounded>`
- 'Golden' :ref:`(see here) <optimize.minimize_scalar-golden>`
- custom - a callable object (added in version 0.14.0), see below
tol : float, optional
Tolerance for termination. For detailed control, use solver-specific
options.
options : dict, optional
A dictionary of solver options.
maxiter : int
Maximum number of iterations to perform.
disp : bool
Set to True to print convergence messages.
See :func:`show_options()` for solver-specific options.
Returns
-------
res : OptimizeResult
The optimization result represented as a ``OptimizeResult`` object.
Important attributes are: ``x`` the solution array, ``success`` a
Boolean flag indicating if the optimizer exited successfully and
``message`` which describes the cause of the termination. See
`OptimizeResult` for a description of other attributes.
See also
--------
minimize : Interface to minimization algorithms for scalar multivariate
functions
show_options : Additional options accepted by the solvers
Notes
-----
This section describes the available solvers that can be selected by the
'method' parameter. The default method is *Brent*.
Method :ref:`Brent <optimize.minimize_scalar-brent>` uses Brent's
algorithm to find a local minimum. The algorithm uses inverse
parabolic interpolation when possible to speed up convergence of
the golden section method.
Method :ref:`Golden <optimize.minimize_scalar-golden>` uses the
golden section search technique. It uses analog of the bisection
method to decrease the bracketed interval. It is usually
preferable to use the *Brent* method.
Method :ref:`Bounded <optimize.minimize_scalar-bounded>` can
perform bounded minimization. It uses the Brent method to find a
local minimum in the interval x1 < xopt < x2.
**Custom minimizers**
It may be useful to pass a custom minimization method, for example
when using some library frontend to minimize_scalar. You can simply
pass a callable as the ``method`` parameter.
The callable is called as ``method(fun, args, **kwargs, **options)``
where ``kwargs`` corresponds to any other parameters passed to `minimize`
(such as `bracket`, `tol`, etc.), except the `options` dict, which has
its contents also passed as `method` parameters pair by pair. The method
shall return an `OptimizeResult` object.
The provided `method` callable must be able to accept (and possibly ignore)
arbitrary parameters; the set of parameters accepted by `minimize` may
expand in future versions and then these parameters will be passed to
the method. You can find an example in the scipy.optimize tutorial.
.. versionadded:: 0.11.0
Examples
--------
Consider the problem of minimizing the following function.
>>> def f(x):
... return (x - 2) * x * (x + 2)**2
Using the *Brent* method, we find the local minimum as:
>>> from scipy.optimize import minimize_scalar
>>> res = minimize_scalar(f)
>>> res.x
1.28077640403
Using the *Bounded* method, we find a local minimum with specified
bounds as:
>>> res = minimize_scalar(f, bounds=(-3, -1), method='bounded')
>>> res.x
-2.0000002026
"""
if not isinstance(args, tuple):
args = (args,)
if callable(method):
meth = "_custom"
else:
meth = method.lower()
if options is None:
options = {}
if tol is not None:
options = dict(options)
if meth == 'bounded' and 'xatol' not in options:
warn("Method 'bounded' does not support relative tolerance in x; "
"defaulting to absolute tolerance.", RuntimeWarning)
options['xatol'] = tol
elif meth == '_custom':
options.setdefault('tol', tol)
else:
options.setdefault('xtol', tol)
if meth == '_custom':
return method(fun, args=args, bracket=bracket, bounds=bounds, **options)
elif meth == 'brent':
return _minimize_scalar_brent(fun, bracket, args, **options)
elif meth == 'bounded':
if bounds is None:
raise ValueError('The `bounds` parameter is mandatory for '
'method `bounded`.')
# replace boolean "disp" option, if specified, by an integer value, as
# expected by _minimize_scalar_bounded()
disp = options.get('disp')
if isinstance(disp, bool):
options['disp'] = 2 * int(disp)
return _minimize_scalar_bounded(fun, bounds, args, **options)
elif meth == 'golden':
return _minimize_scalar_golden(fun, bracket, args, **options)
else:
raise ValueError('Unknown solver %s' % method)
def standardize_bounds(bounds, x0, meth):
"""Converts bounds to the form required by the solver."""
if meth in {'trust-constr', 'powell'}:
if not isinstance(bounds, Bounds):
lb, ub = old_bound_to_new(bounds)
bounds = Bounds(lb, ub)
elif meth in ('l-bfgs-b', 'tnc', 'slsqp'):
if isinstance(bounds, Bounds):
bounds = new_bounds_to_old(bounds.lb, bounds.ub, x0.shape[0])
return bounds
def standardize_constraints(constraints, x0, meth):
"""Converts constraints to the form required by the solver."""
all_constraint_types = (NonlinearConstraint, LinearConstraint, dict)
new_constraint_types = all_constraint_types[:-1]
if isinstance(constraints, all_constraint_types):
constraints = [constraints]
constraints = list(constraints) # ensure it's a mutable sequence
if meth == 'trust-constr':
for i, con in enumerate(constraints):
if not isinstance(con, new_constraint_types):
constraints[i] = old_constraint_to_new(i, con)
else:
# iterate over copy, changing original
for i, con in enumerate(list(constraints)):
if isinstance(con, new_constraint_types):
old_constraints = new_constraint_to_old(con, x0)
constraints[i] = old_constraints[0]
constraints.extend(old_constraints[1:]) # appends 1 if present
return constraints