interpolative.py
30.2 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
#******************************************************************************
# Copyright (C) 2013 Kenneth L. Ho
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer. Redistributions in binary
# form must reproduce the above copyright notice, this list of conditions and
# the following disclaimer in the documentation and/or other materials
# provided with the distribution.
#
# None of the names of the copyright holders may be used to endorse or
# promote products derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#******************************************************************************
# Python module for interfacing with `id_dist`.
r"""
======================================================================
Interpolative matrix decomposition (:mod:`scipy.linalg.interpolative`)
======================================================================
.. moduleauthor:: Kenneth L. Ho <klho@stanford.edu>
.. versionadded:: 0.13
.. currentmodule:: scipy.linalg.interpolative
An interpolative decomposition (ID) of a matrix :math:`A \in
\mathbb{C}^{m \times n}` of rank :math:`k \leq \min \{ m, n \}` is a
factorization
.. math::
A \Pi =
\begin{bmatrix}
A \Pi_{1} & A \Pi_{2}
\end{bmatrix} =
A \Pi_{1}
\begin{bmatrix}
I & T
\end{bmatrix},
where :math:`\Pi = [\Pi_{1}, \Pi_{2}]` is a permutation matrix with
:math:`\Pi_{1} \in \{ 0, 1 \}^{n \times k}`, i.e., :math:`A \Pi_{2} =
A \Pi_{1} T`. This can equivalently be written as :math:`A = BP`,
where :math:`B = A \Pi_{1}` and :math:`P = [I, T] \Pi^{\mathsf{T}}`
are the *skeleton* and *interpolation matrices*, respectively.
If :math:`A` does not have exact rank :math:`k`, then there exists an
approximation in the form of an ID such that :math:`A = BP + E`, where
:math:`\| E \| \sim \sigma_{k + 1}` is on the order of the :math:`(k +
1)`-th largest singular value of :math:`A`. Note that :math:`\sigma_{k
+ 1}` is the best possible error for a rank-:math:`k` approximation
and, in fact, is achieved by the singular value decomposition (SVD)
:math:`A \approx U S V^{*}`, where :math:`U \in \mathbb{C}^{m \times
k}` and :math:`V \in \mathbb{C}^{n \times k}` have orthonormal columns
and :math:`S = \mathop{\mathrm{diag}} (\sigma_{i}) \in \mathbb{C}^{k
\times k}` is diagonal with nonnegative entries. The principal
advantages of using an ID over an SVD are that:
- it is cheaper to construct;
- it preserves the structure of :math:`A`; and
- it is more efficient to compute with in light of the identity submatrix of :math:`P`.
Routines
========
Main functionality:
.. autosummary::
:toctree: generated/
interp_decomp
reconstruct_matrix_from_id
reconstruct_interp_matrix
reconstruct_skel_matrix
id_to_svd
svd
estimate_spectral_norm
estimate_spectral_norm_diff
estimate_rank
Support functions:
.. autosummary::
:toctree: generated/
seed
rand
References
==========
This module uses the ID software package [1]_ by Martinsson, Rokhlin,
Shkolnisky, and Tygert, which is a Fortran library for computing IDs
using various algorithms, including the rank-revealing QR approach of
[2]_ and the more recent randomized methods described in [3]_, [4]_,
and [5]_. This module exposes its functionality in a way convenient
for Python users. Note that this module does not add any functionality
beyond that of organizing a simpler and more consistent interface.
We advise the user to consult also the `documentation for the ID package
<http://tygert.com/id_doc.4.pdf>`_.
.. [1] P.G. Martinsson, V. Rokhlin, Y. Shkolnisky, M. Tygert. "ID: a
software package for low-rank approximation of matrices via interpolative
decompositions, version 0.2." http://tygert.com/id_doc.4.pdf.
.. [2] H. Cheng, Z. Gimbutas, P.G. Martinsson, V. Rokhlin. "On the
compression of low rank matrices." *SIAM J. Sci. Comput.* 26 (4): 1389--1404,
2005. :doi:`10.1137/030602678`.
.. [3] E. Liberty, F. Woolfe, P.G. Martinsson, V. Rokhlin, M.
Tygert. "Randomized algorithms for the low-rank approximation of matrices."
*Proc. Natl. Acad. Sci. U.S.A.* 104 (51): 20167--20172, 2007.
:doi:`10.1073/pnas.0709640104`.
.. [4] P.G. Martinsson, V. Rokhlin, M. Tygert. "A randomized
algorithm for the decomposition of matrices." *Appl. Comput. Harmon. Anal.* 30
(1): 47--68, 2011. :doi:`10.1016/j.acha.2010.02.003`.
.. [5] F. Woolfe, E. Liberty, V. Rokhlin, M. Tygert. "A fast
randomized algorithm for the approximation of matrices." *Appl. Comput.
Harmon. Anal.* 25 (3): 335--366, 2008. :doi:`10.1016/j.acha.2007.12.002`.
Tutorial
========
Initializing
------------
The first step is to import :mod:`scipy.linalg.interpolative` by issuing the
command:
>>> import scipy.linalg.interpolative as sli
Now let's build a matrix. For this, we consider a Hilbert matrix, which is well
know to have low rank:
>>> from scipy.linalg import hilbert
>>> n = 1000
>>> A = hilbert(n)
We can also do this explicitly via:
>>> import numpy as np
>>> n = 1000
>>> A = np.empty((n, n), order='F')
>>> for j in range(n):
>>> for i in range(m):
>>> A[i,j] = 1. / (i + j + 1)
Note the use of the flag ``order='F'`` in :func:`numpy.empty`. This
instantiates the matrix in Fortran-contiguous order and is important for
avoiding data copying when passing to the backend.
We then define multiplication routines for the matrix by regarding it as a
:class:`scipy.sparse.linalg.LinearOperator`:
>>> from scipy.sparse.linalg import aslinearoperator
>>> L = aslinearoperator(A)
This automatically sets up methods describing the action of the matrix and its
adjoint on a vector.
Computing an ID
---------------
We have several choices of algorithm to compute an ID. These fall largely
according to two dichotomies:
1. how the matrix is represented, i.e., via its entries or via its action on a
vector; and
2. whether to approximate it to a fixed relative precision or to a fixed rank.
We step through each choice in turn below.
In all cases, the ID is represented by three parameters:
1. a rank ``k``;
2. an index array ``idx``; and
3. interpolation coefficients ``proj``.
The ID is specified by the relation
``np.dot(A[:,idx[:k]], proj) == A[:,idx[k:]]``.
From matrix entries
...................
We first consider a matrix given in terms of its entries.
To compute an ID to a fixed precision, type:
>>> k, idx, proj = sli.interp_decomp(A, eps)
where ``eps < 1`` is the desired precision.
To compute an ID to a fixed rank, use:
>>> idx, proj = sli.interp_decomp(A, k)
where ``k >= 1`` is the desired rank.
Both algorithms use random sampling and are usually faster than the
corresponding older, deterministic algorithms, which can be accessed via the
commands:
>>> k, idx, proj = sli.interp_decomp(A, eps, rand=False)
and:
>>> idx, proj = sli.interp_decomp(A, k, rand=False)
respectively.
From matrix action
..................
Now consider a matrix given in terms of its action on a vector as a
:class:`scipy.sparse.linalg.LinearOperator`.
To compute an ID to a fixed precision, type:
>>> k, idx, proj = sli.interp_decomp(L, eps)
To compute an ID to a fixed rank, use:
>>> idx, proj = sli.interp_decomp(L, k)
These algorithms are randomized.
Reconstructing an ID
--------------------
The ID routines above do not output the skeleton and interpolation matrices
explicitly but instead return the relevant information in a more compact (and
sometimes more useful) form. To build these matrices, write:
>>> B = sli.reconstruct_skel_matrix(A, k, idx)
for the skeleton matrix and:
>>> P = sli.reconstruct_interp_matrix(idx, proj)
for the interpolation matrix. The ID approximation can then be computed as:
>>> C = np.dot(B, P)
This can also be constructed directly using:
>>> C = sli.reconstruct_matrix_from_id(B, idx, proj)
without having to first compute ``P``.
Alternatively, this can be done explicitly as well using:
>>> B = A[:,idx[:k]]
>>> P = np.hstack([np.eye(k), proj])[:,np.argsort(idx)]
>>> C = np.dot(B, P)
Computing an SVD
----------------
An ID can be converted to an SVD via the command:
>>> U, S, V = sli.id_to_svd(B, idx, proj)
The SVD approximation is then:
>>> C = np.dot(U, np.dot(np.diag(S), np.dot(V.conj().T)))
The SVD can also be computed "fresh" by combining both the ID and conversion
steps into one command. Following the various ID algorithms above, there are
correspondingly various SVD algorithms that one can employ.
From matrix entries
...................
We consider first SVD algorithms for a matrix given in terms of its entries.
To compute an SVD to a fixed precision, type:
>>> U, S, V = sli.svd(A, eps)
To compute an SVD to a fixed rank, use:
>>> U, S, V = sli.svd(A, k)
Both algorithms use random sampling; for the determinstic versions, issue the
keyword ``rand=False`` as above.
From matrix action
..................
Now consider a matrix given in terms of its action on a vector.
To compute an SVD to a fixed precision, type:
>>> U, S, V = sli.svd(L, eps)
To compute an SVD to a fixed rank, use:
>>> U, S, V = sli.svd(L, k)
Utility routines
----------------
Several utility routines are also available.
To estimate the spectral norm of a matrix, use:
>>> snorm = sli.estimate_spectral_norm(A)
This algorithm is based on the randomized power method and thus requires only
matrix-vector products. The number of iterations to take can be set using the
keyword ``its`` (default: ``its=20``). The matrix is interpreted as a
:class:`scipy.sparse.linalg.LinearOperator`, but it is also valid to supply it
as a :class:`numpy.ndarray`, in which case it is trivially converted using
:func:`scipy.sparse.linalg.aslinearoperator`.
The same algorithm can also estimate the spectral norm of the difference of two
matrices ``A1`` and ``A2`` as follows:
>>> diff = sli.estimate_spectral_norm_diff(A1, A2)
This is often useful for checking the accuracy of a matrix approximation.
Some routines in :mod:`scipy.linalg.interpolative` require estimating the rank
of a matrix as well. This can be done with either:
>>> k = sli.estimate_rank(A, eps)
or:
>>> k = sli.estimate_rank(L, eps)
depending on the representation. The parameter ``eps`` controls the definition
of the numerical rank.
Finally, the random number generation required for all randomized routines can
be controlled via :func:`scipy.linalg.interpolative.seed`. To reset the seed
values to their original values, use:
>>> sli.seed('default')
To specify the seed values, use:
>>> sli.seed(s)
where ``s`` must be an integer or array of 55 floats. If an integer, the array
of floats is obtained by using ``numpy.random.rand`` with the given integer
seed.
To simply generate some random numbers, type:
>>> sli.rand(n)
where ``n`` is the number of random numbers to generate.
Remarks
-------
The above functions all automatically detect the appropriate interface and work
with both real and complex data types, passing input arguments to the proper
backend routine.
"""
import scipy.linalg._interpolative_backend as backend
import numpy as np
_DTYPE_ERROR = ValueError("invalid input dtype (input must be float64 or complex128)")
_TYPE_ERROR = TypeError("invalid input type (must be array or LinearOperator)")
def _is_real(A):
try:
if A.dtype == np.complex128:
return False
elif A.dtype == np.float64:
return True
else:
raise _DTYPE_ERROR
except AttributeError:
raise _TYPE_ERROR
def seed(seed=None):
"""
Seed the internal random number generator used in this ID package.
The generator is a lagged Fibonacci method with 55-element internal state.
Parameters
----------
seed : int, sequence, 'default', optional
If 'default', the random seed is reset to a default value.
If `seed` is a sequence containing 55 floating-point numbers
in range [0,1], these are used to set the internal state of
the generator.
If the value is an integer, the internal state is obtained
from `numpy.random.RandomState` (MT19937) with the integer
used as the initial seed.
If `seed` is omitted (None), ``numpy.random.rand`` is used to
initialize the generator.
"""
# For details, see :func:`backend.id_srand`, :func:`backend.id_srandi`,
# and :func:`backend.id_srando`.
if isinstance(seed, str) and seed == 'default':
backend.id_srando()
elif hasattr(seed, '__len__'):
state = np.asfortranarray(seed, dtype=float)
if state.shape != (55,):
raise ValueError("invalid input size")
elif state.min() < 0 or state.max() > 1:
raise ValueError("values not in range [0,1]")
backend.id_srandi(state)
elif seed is None:
backend.id_srandi(np.random.rand(55))
else:
rnd = np.random.RandomState(seed)
backend.id_srandi(rnd.rand(55))
def rand(*shape):
"""
Generate standard uniform pseudorandom numbers via a very efficient lagged
Fibonacci method.
This routine is used for all random number generation in this package and
can affect ID and SVD results.
Parameters
----------
shape
Shape of output array
"""
# For details, see :func:`backend.id_srand`, and :func:`backend.id_srando`.
return backend.id_srand(np.prod(shape)).reshape(shape)
def interp_decomp(A, eps_or_k, rand=True):
"""
Compute ID of a matrix.
An ID of a matrix `A` is a factorization defined by a rank `k`, a column
index array `idx`, and interpolation coefficients `proj` such that::
numpy.dot(A[:,idx[:k]], proj) = A[:,idx[k:]]
The original matrix can then be reconstructed as::
numpy.hstack([A[:,idx[:k]],
numpy.dot(A[:,idx[:k]], proj)]
)[:,numpy.argsort(idx)]
or via the routine :func:`reconstruct_matrix_from_id`. This can
equivalently be written as::
numpy.dot(A[:,idx[:k]],
numpy.hstack([numpy.eye(k), proj])
)[:,np.argsort(idx)]
in terms of the skeleton and interpolation matrices::
B = A[:,idx[:k]]
and::
P = numpy.hstack([numpy.eye(k), proj])[:,np.argsort(idx)]
respectively. See also :func:`reconstruct_interp_matrix` and
:func:`reconstruct_skel_matrix`.
The ID can be computed to any relative precision or rank (depending on the
value of `eps_or_k`). If a precision is specified (`eps_or_k < 1`), then
this function has the output signature::
k, idx, proj = interp_decomp(A, eps_or_k)
Otherwise, if a rank is specified (`eps_or_k >= 1`), then the output
signature is::
idx, proj = interp_decomp(A, eps_or_k)
.. This function automatically detects the form of the input parameters
and passes them to the appropriate backend. For details, see
:func:`backend.iddp_id`, :func:`backend.iddp_aid`,
:func:`backend.iddp_rid`, :func:`backend.iddr_id`,
:func:`backend.iddr_aid`, :func:`backend.iddr_rid`,
:func:`backend.idzp_id`, :func:`backend.idzp_aid`,
:func:`backend.idzp_rid`, :func:`backend.idzr_id`,
:func:`backend.idzr_aid`, and :func:`backend.idzr_rid`.
Parameters
----------
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator` with `rmatvec`
Matrix to be factored
eps_or_k : float or int
Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
approximation.
rand : bool, optional
Whether to use random sampling if `A` is of type :class:`numpy.ndarray`
(randomized algorithms are always used if `A` is of type
:class:`scipy.sparse.linalg.LinearOperator`).
Returns
-------
k : int
Rank required to achieve specified relative precision if
`eps_or_k < 1`.
idx : :class:`numpy.ndarray`
Column index array.
proj : :class:`numpy.ndarray`
Interpolation coefficients.
"""
from scipy.sparse.linalg import LinearOperator
real = _is_real(A)
if isinstance(A, np.ndarray):
if eps_or_k < 1:
eps = eps_or_k
if rand:
if real:
k, idx, proj = backend.iddp_aid(eps, A)
else:
k, idx, proj = backend.idzp_aid(eps, A)
else:
if real:
k, idx, proj = backend.iddp_id(eps, A)
else:
k, idx, proj = backend.idzp_id(eps, A)
return k, idx - 1, proj
else:
k = int(eps_or_k)
if rand:
if real:
idx, proj = backend.iddr_aid(A, k)
else:
idx, proj = backend.idzr_aid(A, k)
else:
if real:
idx, proj = backend.iddr_id(A, k)
else:
idx, proj = backend.idzr_id(A, k)
return idx - 1, proj
elif isinstance(A, LinearOperator):
m, n = A.shape
matveca = A.rmatvec
if eps_or_k < 1:
eps = eps_or_k
if real:
k, idx, proj = backend.iddp_rid(eps, m, n, matveca)
else:
k, idx, proj = backend.idzp_rid(eps, m, n, matveca)
return k, idx - 1, proj
else:
k = int(eps_or_k)
if real:
idx, proj = backend.iddr_rid(m, n, matveca, k)
else:
idx, proj = backend.idzr_rid(m, n, matveca, k)
return idx - 1, proj
else:
raise _TYPE_ERROR
def reconstruct_matrix_from_id(B, idx, proj):
"""
Reconstruct matrix from its ID.
A matrix `A` with skeleton matrix `B` and ID indices and coefficients `idx`
and `proj`, respectively, can be reconstructed as::
numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]
See also :func:`reconstruct_interp_matrix` and
:func:`reconstruct_skel_matrix`.
.. This function automatically detects the matrix data type and calls the
appropriate backend. For details, see :func:`backend.idd_reconid` and
:func:`backend.idz_reconid`.
Parameters
----------
B : :class:`numpy.ndarray`
Skeleton matrix.
idx : :class:`numpy.ndarray`
Column index array.
proj : :class:`numpy.ndarray`
Interpolation coefficients.
Returns
-------
:class:`numpy.ndarray`
Reconstructed matrix.
"""
if _is_real(B):
return backend.idd_reconid(B, idx + 1, proj)
else:
return backend.idz_reconid(B, idx + 1, proj)
def reconstruct_interp_matrix(idx, proj):
"""
Reconstruct interpolation matrix from ID.
The interpolation matrix can be reconstructed from the ID indices and
coefficients `idx` and `proj`, respectively, as::
P = numpy.hstack([numpy.eye(proj.shape[0]), proj])[:,numpy.argsort(idx)]
The original matrix can then be reconstructed from its skeleton matrix `B`
via::
numpy.dot(B, P)
See also :func:`reconstruct_matrix_from_id` and
:func:`reconstruct_skel_matrix`.
.. This function automatically detects the matrix data type and calls the
appropriate backend. For details, see :func:`backend.idd_reconint` and
:func:`backend.idz_reconint`.
Parameters
----------
idx : :class:`numpy.ndarray`
Column index array.
proj : :class:`numpy.ndarray`
Interpolation coefficients.
Returns
-------
:class:`numpy.ndarray`
Interpolation matrix.
"""
if _is_real(proj):
return backend.idd_reconint(idx + 1, proj)
else:
return backend.idz_reconint(idx + 1, proj)
def reconstruct_skel_matrix(A, k, idx):
"""
Reconstruct skeleton matrix from ID.
The skeleton matrix can be reconstructed from the original matrix `A` and its
ID rank and indices `k` and `idx`, respectively, as::
B = A[:,idx[:k]]
The original matrix can then be reconstructed via::
numpy.hstack([B, numpy.dot(B, proj)])[:,numpy.argsort(idx)]
See also :func:`reconstruct_matrix_from_id` and
:func:`reconstruct_interp_matrix`.
.. This function automatically detects the matrix data type and calls the
appropriate backend. For details, see :func:`backend.idd_copycols` and
:func:`backend.idz_copycols`.
Parameters
----------
A : :class:`numpy.ndarray`
Original matrix.
k : int
Rank of ID.
idx : :class:`numpy.ndarray`
Column index array.
Returns
-------
:class:`numpy.ndarray`
Skeleton matrix.
"""
if _is_real(A):
return backend.idd_copycols(A, k, idx + 1)
else:
return backend.idz_copycols(A, k, idx + 1)
def id_to_svd(B, idx, proj):
"""
Convert ID to SVD.
The SVD reconstruction of a matrix with skeleton matrix `B` and ID indices and
coefficients `idx` and `proj`, respectively, is::
U, S, V = id_to_svd(B, idx, proj)
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
See also :func:`svd`.
.. This function automatically detects the matrix data type and calls the
appropriate backend. For details, see :func:`backend.idd_id2svd` and
:func:`backend.idz_id2svd`.
Parameters
----------
B : :class:`numpy.ndarray`
Skeleton matrix.
idx : :class:`numpy.ndarray`
Column index array.
proj : :class:`numpy.ndarray`
Interpolation coefficients.
Returns
-------
U : :class:`numpy.ndarray`
Left singular vectors.
S : :class:`numpy.ndarray`
Singular values.
V : :class:`numpy.ndarray`
Right singular vectors.
"""
if _is_real(B):
U, V, S = backend.idd_id2svd(B, idx + 1, proj)
else:
U, V, S = backend.idz_id2svd(B, idx + 1, proj)
return U, S, V
def estimate_spectral_norm(A, its=20):
"""
Estimate spectral norm of a matrix by the randomized power method.
.. This function automatically detects the matrix data type and calls the
appropriate backend. For details, see :func:`backend.idd_snorm` and
:func:`backend.idz_snorm`.
Parameters
----------
A : :class:`scipy.sparse.linalg.LinearOperator`
Matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
`matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
its : int, optional
Number of power method iterations.
Returns
-------
float
Spectral norm estimate.
"""
from scipy.sparse.linalg import aslinearoperator
A = aslinearoperator(A)
m, n = A.shape
matvec = lambda x: A. matvec(x)
matveca = lambda x: A.rmatvec(x)
if _is_real(A):
return backend.idd_snorm(m, n, matveca, matvec, its=its)
else:
return backend.idz_snorm(m, n, matveca, matvec, its=its)
def estimate_spectral_norm_diff(A, B, its=20):
"""
Estimate spectral norm of the difference of two matrices by the randomized
power method.
.. This function automatically detects the matrix data type and calls the
appropriate backend. For details, see :func:`backend.idd_diffsnorm` and
:func:`backend.idz_diffsnorm`.
Parameters
----------
A : :class:`scipy.sparse.linalg.LinearOperator`
First matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with the
`matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
B : :class:`scipy.sparse.linalg.LinearOperator`
Second matrix given as a :class:`scipy.sparse.linalg.LinearOperator` with
the `matvec` and `rmatvec` methods (to apply the matrix and its adjoint).
its : int, optional
Number of power method iterations.
Returns
-------
float
Spectral norm estimate of matrix difference.
"""
from scipy.sparse.linalg import aslinearoperator
A = aslinearoperator(A)
B = aslinearoperator(B)
m, n = A.shape
matvec1 = lambda x: A. matvec(x)
matveca1 = lambda x: A.rmatvec(x)
matvec2 = lambda x: B. matvec(x)
matveca2 = lambda x: B.rmatvec(x)
if _is_real(A):
return backend.idd_diffsnorm(
m, n, matveca1, matveca2, matvec1, matvec2, its=its)
else:
return backend.idz_diffsnorm(
m, n, matveca1, matveca2, matvec1, matvec2, its=its)
def svd(A, eps_or_k, rand=True):
"""
Compute SVD of a matrix via an ID.
An SVD of a matrix `A` is a factorization::
A = numpy.dot(U, numpy.dot(numpy.diag(S), V.conj().T))
where `U` and `V` have orthonormal columns and `S` is nonnegative.
The SVD can be computed to any relative precision or rank (depending on the
value of `eps_or_k`).
See also :func:`interp_decomp` and :func:`id_to_svd`.
.. This function automatically detects the form of the input parameters and
passes them to the appropriate backend. For details, see
:func:`backend.iddp_svd`, :func:`backend.iddp_asvd`,
:func:`backend.iddp_rsvd`, :func:`backend.iddr_svd`,
:func:`backend.iddr_asvd`, :func:`backend.iddr_rsvd`,
:func:`backend.idzp_svd`, :func:`backend.idzp_asvd`,
:func:`backend.idzp_rsvd`, :func:`backend.idzr_svd`,
:func:`backend.idzr_asvd`, and :func:`backend.idzr_rsvd`.
Parameters
----------
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator`
Matrix to be factored, given as either a :class:`numpy.ndarray` or a
:class:`scipy.sparse.linalg.LinearOperator` with the `matvec` and
`rmatvec` methods (to apply the matrix and its adjoint).
eps_or_k : float or int
Relative error (if `eps_or_k < 1`) or rank (if `eps_or_k >= 1`) of
approximation.
rand : bool, optional
Whether to use random sampling if `A` is of type :class:`numpy.ndarray`
(randomized algorithms are always used if `A` is of type
:class:`scipy.sparse.linalg.LinearOperator`).
Returns
-------
U : :class:`numpy.ndarray`
Left singular vectors.
S : :class:`numpy.ndarray`
Singular values.
V : :class:`numpy.ndarray`
Right singular vectors.
"""
from scipy.sparse.linalg import LinearOperator
real = _is_real(A)
if isinstance(A, np.ndarray):
if eps_or_k < 1:
eps = eps_or_k
if rand:
if real:
U, V, S = backend.iddp_asvd(eps, A)
else:
U, V, S = backend.idzp_asvd(eps, A)
else:
if real:
U, V, S = backend.iddp_svd(eps, A)
else:
U, V, S = backend.idzp_svd(eps, A)
else:
k = int(eps_or_k)
if k > min(A.shape):
raise ValueError("Approximation rank %s exceeds min(A.shape) = "
" %s " % (k, min(A.shape)))
if rand:
if real:
U, V, S = backend.iddr_asvd(A, k)
else:
U, V, S = backend.idzr_asvd(A, k)
else:
if real:
U, V, S = backend.iddr_svd(A, k)
else:
U, V, S = backend.idzr_svd(A, k)
elif isinstance(A, LinearOperator):
m, n = A.shape
matvec = lambda x: A.matvec(x)
matveca = lambda x: A.rmatvec(x)
if eps_or_k < 1:
eps = eps_or_k
if real:
U, V, S = backend.iddp_rsvd(eps, m, n, matveca, matvec)
else:
U, V, S = backend.idzp_rsvd(eps, m, n, matveca, matvec)
else:
k = int(eps_or_k)
if real:
U, V, S = backend.iddr_rsvd(m, n, matveca, matvec, k)
else:
U, V, S = backend.idzr_rsvd(m, n, matveca, matvec, k)
else:
raise _TYPE_ERROR
return U, S, V
def estimate_rank(A, eps):
"""
Estimate matrix rank to a specified relative precision using randomized
methods.
The matrix `A` can be given as either a :class:`numpy.ndarray` or a
:class:`scipy.sparse.linalg.LinearOperator`, with different algorithms used
for each case. If `A` is of type :class:`numpy.ndarray`, then the output
rank is typically about 8 higher than the actual numerical rank.
.. This function automatically detects the form of the input parameters and
passes them to the appropriate backend. For details,
see :func:`backend.idd_estrank`, :func:`backend.idd_findrank`,
:func:`backend.idz_estrank`, and :func:`backend.idz_findrank`.
Parameters
----------
A : :class:`numpy.ndarray` or :class:`scipy.sparse.linalg.LinearOperator`
Matrix whose rank is to be estimated, given as either a
:class:`numpy.ndarray` or a :class:`scipy.sparse.linalg.LinearOperator`
with the `rmatvec` method (to apply the matrix adjoint).
eps : float
Relative error for numerical rank definition.
Returns
-------
int
Estimated matrix rank.
"""
from scipy.sparse.linalg import LinearOperator
real = _is_real(A)
if isinstance(A, np.ndarray):
if real:
rank = backend.idd_estrank(eps, A)
else:
rank = backend.idz_estrank(eps, A)
if rank == 0:
# special return value for nearly full rank
rank = min(A.shape)
return rank
elif isinstance(A, LinearOperator):
m, n = A.shape
matveca = A.rmatvec
if real:
return backend.idd_findrank(eps, m, n, matveca)
else:
return backend.idz_findrank(eps, m, n, matveca)
else:
raise _TYPE_ERROR