test_netcdf.py
18.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
''' Tests for netcdf '''
import os
from os.path import join as pjoin, dirname
import shutil
import tempfile
import warnings
from io import BytesIO
from glob import glob
from contextlib import contextmanager
import numpy as np
from numpy.testing import (assert_, assert_allclose, assert_equal,
suppress_warnings)
from pytest import raises as assert_raises
from scipy.io.netcdf import netcdf_file, IS_PYPY
from scipy._lib._tmpdirs import in_tempdir
TEST_DATA_PATH = pjoin(dirname(__file__), 'data')
N_EG_ELS = 11 # number of elements for example variable
VARTYPE_EG = 'b' # var type for example variable
@contextmanager
def make_simple(*args, **kwargs):
f = netcdf_file(*args, **kwargs)
f.history = 'Created for a test'
f.createDimension('time', N_EG_ELS)
time = f.createVariable('time', VARTYPE_EG, ('time',))
time[:] = np.arange(N_EG_ELS)
time.units = 'days since 2008-01-01'
f.flush()
yield f
f.close()
def check_simple(ncfileobj):
'''Example fileobj tests '''
assert_equal(ncfileobj.history, b'Created for a test')
time = ncfileobj.variables['time']
assert_equal(time.units, b'days since 2008-01-01')
assert_equal(time.shape, (N_EG_ELS,))
assert_equal(time[-1], N_EG_ELS-1)
def assert_mask_matches(arr, expected_mask):
'''
Asserts that the mask of arr is effectively the same as expected_mask.
In contrast to numpy.ma.testutils.assert_mask_equal, this function allows
testing the 'mask' of a standard numpy array (the mask in this case is treated
as all False).
Parameters
----------
arr: ndarray or MaskedArray
Array to test.
expected_mask: array_like of booleans
A list giving the expected mask.
'''
mask = np.ma.getmaskarray(arr)
assert_equal(mask, expected_mask)
def test_read_write_files():
# test round trip for example file
cwd = os.getcwd()
try:
tmpdir = tempfile.mkdtemp()
os.chdir(tmpdir)
with make_simple('simple.nc', 'w') as f:
pass
# read the file we just created in 'a' mode
with netcdf_file('simple.nc', 'a') as f:
check_simple(f)
# add something
f._attributes['appendRan'] = 1
# To read the NetCDF file we just created::
with netcdf_file('simple.nc') as f:
# Using mmap is the default (but not on pypy)
assert_equal(f.use_mmap, not IS_PYPY)
check_simple(f)
assert_equal(f._attributes['appendRan'], 1)
# Read it in append (and check mmap is off)
with netcdf_file('simple.nc', 'a') as f:
assert_(not f.use_mmap)
check_simple(f)
assert_equal(f._attributes['appendRan'], 1)
# Now without mmap
with netcdf_file('simple.nc', mmap=False) as f:
# Using mmap is the default
assert_(not f.use_mmap)
check_simple(f)
# To read the NetCDF file we just created, as file object, no
# mmap. When n * n_bytes(var_type) is not divisible by 4, this
# raised an error in pupynere 1.0.12 and scipy rev 5893, because
# calculated vsize was rounding up in units of 4 - see
# https://www.unidata.ucar.edu/software/netcdf/guide_toc.html
with open('simple.nc', 'rb') as fobj:
with netcdf_file(fobj) as f:
# by default, don't use mmap for file-like
assert_(not f.use_mmap)
check_simple(f)
# Read file from fileobj, with mmap
with suppress_warnings() as sup:
if IS_PYPY:
sup.filter(RuntimeWarning,
"Cannot close a netcdf_file opened with mmap=True.*")
with open('simple.nc', 'rb') as fobj:
with netcdf_file(fobj, mmap=True) as f:
assert_(f.use_mmap)
check_simple(f)
# Again read it in append mode (adding another att)
with open('simple.nc', 'r+b') as fobj:
with netcdf_file(fobj, 'a') as f:
assert_(not f.use_mmap)
check_simple(f)
f.createDimension('app_dim', 1)
var = f.createVariable('app_var', 'i', ('app_dim',))
var[:] = 42
# And... check that app_var made it in...
with netcdf_file('simple.nc') as f:
check_simple(f)
assert_equal(f.variables['app_var'][:], 42)
except: # noqa: E722
os.chdir(cwd)
shutil.rmtree(tmpdir)
raise
os.chdir(cwd)
shutil.rmtree(tmpdir)
def test_read_write_sio():
eg_sio1 = BytesIO()
with make_simple(eg_sio1, 'w'):
str_val = eg_sio1.getvalue()
eg_sio2 = BytesIO(str_val)
with netcdf_file(eg_sio2) as f2:
check_simple(f2)
# Test that error is raised if attempting mmap for sio
eg_sio3 = BytesIO(str_val)
assert_raises(ValueError, netcdf_file, eg_sio3, 'r', True)
# Test 64-bit offset write / read
eg_sio_64 = BytesIO()
with make_simple(eg_sio_64, 'w', version=2) as f_64:
str_val = eg_sio_64.getvalue()
eg_sio_64 = BytesIO(str_val)
with netcdf_file(eg_sio_64) as f_64:
check_simple(f_64)
assert_equal(f_64.version_byte, 2)
# also when version 2 explicitly specified
eg_sio_64 = BytesIO(str_val)
with netcdf_file(eg_sio_64, version=2) as f_64:
check_simple(f_64)
assert_equal(f_64.version_byte, 2)
def test_bytes():
raw_file = BytesIO()
f = netcdf_file(raw_file, mode='w')
# Dataset only has a single variable, dimension and attribute to avoid
# any ambiguity related to order.
f.a = 'b'
f.createDimension('dim', 1)
var = f.createVariable('var', np.int16, ('dim',))
var[0] = -9999
var.c = 'd'
f.sync()
actual = raw_file.getvalue()
expected = (b'CDF\x01'
b'\x00\x00\x00\x00'
b'\x00\x00\x00\x0a'
b'\x00\x00\x00\x01'
b'\x00\x00\x00\x03'
b'dim\x00'
b'\x00\x00\x00\x01'
b'\x00\x00\x00\x0c'
b'\x00\x00\x00\x01'
b'\x00\x00\x00\x01'
b'a\x00\x00\x00'
b'\x00\x00\x00\x02'
b'\x00\x00\x00\x01'
b'b\x00\x00\x00'
b'\x00\x00\x00\x0b'
b'\x00\x00\x00\x01'
b'\x00\x00\x00\x03'
b'var\x00'
b'\x00\x00\x00\x01'
b'\x00\x00\x00\x00'
b'\x00\x00\x00\x0c'
b'\x00\x00\x00\x01'
b'\x00\x00\x00\x01'
b'c\x00\x00\x00'
b'\x00\x00\x00\x02'
b'\x00\x00\x00\x01'
b'd\x00\x00\x00'
b'\x00\x00\x00\x03'
b'\x00\x00\x00\x04'
b'\x00\x00\x00\x78'
b'\xd8\xf1\x80\x01')
assert_equal(actual, expected)
def test_encoded_fill_value():
with netcdf_file(BytesIO(), mode='w') as f:
f.createDimension('x', 1)
var = f.createVariable('var', 'S1', ('x',))
assert_equal(var._get_encoded_fill_value(), b'\x00')
var._FillValue = b'\x01'
assert_equal(var._get_encoded_fill_value(), b'\x01')
var._FillValue = b'\x00\x00' # invalid, wrong size
assert_equal(var._get_encoded_fill_value(), b'\x00')
def test_read_example_data():
# read any example data files
for fname in glob(pjoin(TEST_DATA_PATH, '*.nc')):
with netcdf_file(fname, 'r'):
pass
with netcdf_file(fname, 'r', mmap=False):
pass
def test_itemset_no_segfault_on_readonly():
# Regression test for ticket #1202.
# Open the test file in read-only mode.
filename = pjoin(TEST_DATA_PATH, 'example_1.nc')
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
"Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist")
with netcdf_file(filename, 'r', mmap=True) as f:
time_var = f.variables['time']
# time_var.assignValue(42) should raise a RuntimeError--not seg. fault!
assert_raises(RuntimeError, time_var.assignValue, 42)
def test_appending_issue_gh_8625():
stream = BytesIO()
with make_simple(stream, mode='w') as f:
f.createDimension('x', 2)
f.createVariable('x', float, ('x',))
f.variables['x'][...] = 1
f.flush()
contents = stream.getvalue()
stream = BytesIO(contents)
with netcdf_file(stream, mode='a') as f:
f.variables['x'][...] = 2
def test_write_invalid_dtype():
dtypes = ['int64', 'uint64']
if np.dtype('int').itemsize == 8: # 64-bit machines
dtypes.append('int')
if np.dtype('uint').itemsize == 8: # 64-bit machines
dtypes.append('uint')
with netcdf_file(BytesIO(), 'w') as f:
f.createDimension('time', N_EG_ELS)
for dt in dtypes:
assert_raises(ValueError, f.createVariable, 'time', dt, ('time',))
def test_flush_rewind():
stream = BytesIO()
with make_simple(stream, mode='w') as f:
x = f.createDimension('x',4) # x is used in createVariable
v = f.createVariable('v', 'i2', ['x'])
v[:] = 1
f.flush()
len_single = len(stream.getvalue())
f.flush()
len_double = len(stream.getvalue())
assert_(len_single == len_double)
def test_dtype_specifiers():
# Numpy 1.7.0-dev had a bug where 'i2' wouldn't work.
# Specifying np.int16 or similar only works from the same commit as this
# comment was made.
with make_simple(BytesIO(), mode='w') as f:
f.createDimension('x',4)
f.createVariable('v1', 'i2', ['x'])
f.createVariable('v2', np.int16, ['x'])
f.createVariable('v3', np.dtype(np.int16), ['x'])
def test_ticket_1720():
io = BytesIO()
items = [0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
with netcdf_file(io, 'w') as f:
f.history = 'Created for a test'
f.createDimension('float_var', 10)
float_var = f.createVariable('float_var', 'f', ('float_var',))
float_var[:] = items
float_var.units = 'metres'
f.flush()
contents = io.getvalue()
io = BytesIO(contents)
with netcdf_file(io, 'r') as f:
assert_equal(f.history, b'Created for a test')
float_var = f.variables['float_var']
assert_equal(float_var.units, b'metres')
assert_equal(float_var.shape, (10,))
assert_allclose(float_var[:], items)
def test_mmaps_segfault():
filename = pjoin(TEST_DATA_PATH, 'example_1.nc')
if not IS_PYPY:
with warnings.catch_warnings():
warnings.simplefilter("error")
with netcdf_file(filename, mmap=True) as f:
x = f.variables['lat'][:]
# should not raise warnings
del x
def doit():
with netcdf_file(filename, mmap=True) as f:
return f.variables['lat'][:]
# should not crash
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
"Cannot close a netcdf_file opened with mmap=True, when netcdf_variables or arrays referring to its data still exist")
x = doit()
x.sum()
def test_zero_dimensional_var():
io = BytesIO()
with make_simple(io, 'w') as f:
v = f.createVariable('zerodim', 'i2', [])
# This is checking that .isrec returns a boolean - don't simplify it
# to 'assert not ...'
assert v.isrec is False, v.isrec
f.flush()
def test_byte_gatts():
# Check that global "string" atts work like they did before py3k
# unicode and general bytes confusion
with in_tempdir():
filename = 'g_byte_atts.nc'
f = netcdf_file(filename, 'w')
f._attributes['holy'] = b'grail'
f._attributes['witch'] = 'floats'
f.close()
f = netcdf_file(filename, 'r')
assert_equal(f._attributes['holy'], b'grail')
assert_equal(f._attributes['witch'], b'floats')
f.close()
def test_open_append():
# open 'w' put one attr
with in_tempdir():
filename = 'append_dat.nc'
f = netcdf_file(filename, 'w')
f._attributes['Kilroy'] = 'was here'
f.close()
# open again in 'a', read the att and and a new one
f = netcdf_file(filename, 'a')
assert_equal(f._attributes['Kilroy'], b'was here')
f._attributes['naughty'] = b'Zoot'
f.close()
# open yet again in 'r' and check both atts
f = netcdf_file(filename, 'r')
assert_equal(f._attributes['Kilroy'], b'was here')
assert_equal(f._attributes['naughty'], b'Zoot')
f.close()
def test_append_recordDimension():
dataSize = 100
with in_tempdir():
# Create file with record time dimension
with netcdf_file('withRecordDimension.nc', 'w') as f:
f.createDimension('time', None)
f.createVariable('time', 'd', ('time',))
f.createDimension('x', dataSize)
x = f.createVariable('x', 'd', ('x',))
x[:] = np.array(range(dataSize))
f.createDimension('y', dataSize)
y = f.createVariable('y', 'd', ('y',))
y[:] = np.array(range(dataSize))
f.createVariable('testData', 'i', ('time', 'x', 'y'))
f.flush()
f.close()
for i in range(2):
# Open the file in append mode and add data
with netcdf_file('withRecordDimension.nc', 'a') as f:
f.variables['time'].data = np.append(f.variables["time"].data, i)
f.variables['testData'][i, :, :] = np.full((dataSize, dataSize), i)
f.flush()
# Read the file and check that append worked
with netcdf_file('withRecordDimension.nc') as f:
assert_equal(f.variables['time'][-1], i)
assert_equal(f.variables['testData'][-1, :, :].copy(), np.full((dataSize, dataSize), i))
assert_equal(f.variables['time'].data.shape[0], i+1)
assert_equal(f.variables['testData'].data.shape[0], i+1)
# Read the file and check that 'data' was not saved as user defined
# attribute of testData variable during append operation
with netcdf_file('withRecordDimension.nc') as f:
with assert_raises(KeyError) as ar:
f.variables['testData']._attributes['data']
ex = ar.value
assert_equal(ex.args[0], 'data')
def test_maskandscale():
t = np.linspace(20, 30, 15)
t[3] = 100
tm = np.ma.masked_greater(t, 99)
fname = pjoin(TEST_DATA_PATH, 'example_2.nc')
with netcdf_file(fname, maskandscale=True) as f:
Temp = f.variables['Temperature']
assert_equal(Temp.missing_value, 9999)
assert_equal(Temp.add_offset, 20)
assert_equal(Temp.scale_factor, np.float32(0.01))
found = Temp[:].compressed()
del Temp # Remove ref to mmap, so file can be closed.
expected = np.round(tm.compressed(), 2)
assert_allclose(found, expected)
with in_tempdir():
newfname = 'ms.nc'
f = netcdf_file(newfname, 'w', maskandscale=True)
f.createDimension('Temperature', len(tm))
temp = f.createVariable('Temperature', 'i', ('Temperature',))
temp.missing_value = 9999
temp.scale_factor = 0.01
temp.add_offset = 20
temp[:] = tm
f.close()
with netcdf_file(newfname, maskandscale=True) as f:
Temp = f.variables['Temperature']
assert_equal(Temp.missing_value, 9999)
assert_equal(Temp.add_offset, 20)
assert_equal(Temp.scale_factor, np.float32(0.01))
expected = np.round(tm.compressed(), 2)
found = Temp[:].compressed()
del Temp
assert_allclose(found, expected)
# ------------------------------------------------------------------------
# Test reading with masked values (_FillValue / missing_value)
# ------------------------------------------------------------------------
def test_read_withValuesNearFillValue():
# Regression test for ticket #5626
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var1_fillval0'][:]
assert_mask_matches(vardata, [False, True, False])
def test_read_withNoFillValue():
# For a variable with no fill value, reading data with maskandscale=True
# should return unmasked data
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var2_noFillval'][:]
assert_mask_matches(vardata, [False, False, False])
assert_equal(vardata, [1,2,3])
def test_read_withFillValueAndMissingValue():
# For a variable with both _FillValue and missing_value, the _FillValue
# should be used
IRRELEVANT_VALUE = 9999
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var3_fillvalAndMissingValue'][:]
assert_mask_matches(vardata, [True, False, False])
assert_equal(vardata, [IRRELEVANT_VALUE, 2, 3])
def test_read_withMissingValue():
# For a variable with missing_value but not _FillValue, the missing_value
# should be used
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var4_missingValue'][:]
assert_mask_matches(vardata, [False, True, False])
def test_read_withFillValNaN():
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var5_fillvalNaN'][:]
assert_mask_matches(vardata, [False, True, False])
def test_read_withChar():
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var6_char'][:]
assert_mask_matches(vardata, [False, True, False])
def test_read_with2dVar():
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
with netcdf_file(fname, maskandscale=True) as f:
vardata = f.variables['var7_2d'][:]
assert_mask_matches(vardata, [[True, False], [False, False], [False, True]])
def test_read_withMaskAndScaleFalse():
# If a variable has a _FillValue (or missing_value) attribute, but is read
# with maskandscale set to False, the result should be unmasked
fname = pjoin(TEST_DATA_PATH, 'example_3_maskedvals.nc')
# Open file with mmap=False to avoid problems with closing a mmap'ed file
# when arrays referring to its data still exist:
with netcdf_file(fname, maskandscale=False, mmap=False) as f:
vardata = f.variables['var3_fillvalAndMissingValue'][:]
assert_mask_matches(vardata, [False, False, False])
assert_equal(vardata, [1, 2, 3])