You need to sign in or sign up before continuing.
test_basic.py 29.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858
# Created by Pearu Peterson, September 2002

from numpy.testing import (assert_, assert_equal, assert_array_almost_equal,
                           assert_array_almost_equal_nulp, assert_array_less)
import pytest
from pytest import raises as assert_raises
from scipy.fftpack import ifft, fft, fftn, ifftn, rfft, irfft, fft2

from numpy import (arange, add, array, asarray, zeros, dot, exp, pi,
                   swapaxes, double, cdouble)
import numpy as np
import numpy.fft
from numpy.random import rand

# "large" composite numbers supported by FFTPACK
LARGE_COMPOSITE_SIZES = [
    2**13,
    2**5 * 3**5,
    2**3 * 3**3 * 5**2,
]
SMALL_COMPOSITE_SIZES = [
    2,
    2*3*5,
    2*2*3*3,
]
# prime
LARGE_PRIME_SIZES = [
    2011
]
SMALL_PRIME_SIZES = [
    29
]


def _assert_close_in_norm(x, y, rtol, size, rdt):
    # helper function for testing
    err_msg = "size: %s  rdt: %s" % (size, rdt)
    assert_array_less(np.linalg.norm(x - y), rtol*np.linalg.norm(x), err_msg)


def random(size):
    return rand(*size)


def get_mat(n):
    data = arange(n)
    data = add.outer(data, data)
    return data


def direct_dft(x):
    x = asarray(x)
    n = len(x)
    y = zeros(n, dtype=cdouble)
    w = -arange(n)*(2j*pi/n)
    for i in range(n):
        y[i] = dot(exp(i*w), x)
    return y


def direct_idft(x):
    x = asarray(x)
    n = len(x)
    y = zeros(n, dtype=cdouble)
    w = arange(n)*(2j*pi/n)
    for i in range(n):
        y[i] = dot(exp(i*w), x)/n
    return y


def direct_dftn(x):
    x = asarray(x)
    for axis in range(len(x.shape)):
        x = fft(x, axis=axis)
    return x


def direct_idftn(x):
    x = asarray(x)
    for axis in range(len(x.shape)):
        x = ifft(x, axis=axis)
    return x


def direct_rdft(x):
    x = asarray(x)
    n = len(x)
    w = -arange(n)*(2j*pi/n)
    r = zeros(n, dtype=double)
    for i in range(n//2+1):
        y = dot(exp(i*w), x)
        if i:
            r[2*i-1] = y.real
            if 2*i < n:
                r[2*i] = y.imag
        else:
            r[0] = y.real
    return r


def direct_irdft(x):
    x = asarray(x)
    n = len(x)
    x1 = zeros(n, dtype=cdouble)
    for i in range(n//2+1):
        if i:
            if 2*i < n:
                x1[i] = x[2*i-1] + 1j*x[2*i]
                x1[n-i] = x[2*i-1] - 1j*x[2*i]
            else:
                x1[i] = x[2*i-1]
        else:
            x1[0] = x[0]
    return direct_idft(x1).real


class _TestFFTBase(object):
    def setup_method(self):
        self.cdt = None
        self.rdt = None
        np.random.seed(1234)

    def test_definition(self):
        x = np.array([1,2,3,4+1j,1,2,3,4+2j], dtype=self.cdt)
        y = fft(x)
        assert_equal(y.dtype, self.cdt)
        y1 = direct_dft(x)
        assert_array_almost_equal(y,y1)
        x = np.array([1,2,3,4+0j,5], dtype=self.cdt)
        assert_array_almost_equal(fft(x),direct_dft(x))

    def test_n_argument_real(self):
        x1 = np.array([1,2,3,4], dtype=self.rdt)
        x2 = np.array([1,2,3,4], dtype=self.rdt)
        y = fft([x1,x2],n=4)
        assert_equal(y.dtype, self.cdt)
        assert_equal(y.shape,(2,4))
        assert_array_almost_equal(y[0],direct_dft(x1))
        assert_array_almost_equal(y[1],direct_dft(x2))

    def _test_n_argument_complex(self):
        x1 = np.array([1,2,3,4+1j], dtype=self.cdt)
        x2 = np.array([1,2,3,4+1j], dtype=self.cdt)
        y = fft([x1,x2],n=4)
        assert_equal(y.dtype, self.cdt)
        assert_equal(y.shape,(2,4))
        assert_array_almost_equal(y[0],direct_dft(x1))
        assert_array_almost_equal(y[1],direct_dft(x2))

    def test_invalid_sizes(self):
        assert_raises(ValueError, fft, [])
        assert_raises(ValueError, fft, [[1,1],[2,2]], -5)


class TestDoubleFFT(_TestFFTBase):
    def setup_method(self):
        self.cdt = np.cdouble
        self.rdt = np.double


class TestSingleFFT(_TestFFTBase):
    def setup_method(self):
        self.cdt = np.complex64
        self.rdt = np.float32

    @pytest.mark.xfail(run=False, reason="single-precision FFT implementation is partially disabled, until accuracy issues with large prime powers are resolved")
    def test_notice(self):
        pass


class TestFloat16FFT(object):

    def test_1_argument_real(self):
        x1 = np.array([1, 2, 3, 4], dtype=np.float16)
        y = fft(x1, n=4)
        assert_equal(y.dtype, np.complex64)
        assert_equal(y.shape, (4, ))
        assert_array_almost_equal(y, direct_dft(x1.astype(np.float32)))

    def test_n_argument_real(self):
        x1 = np.array([1, 2, 3, 4], dtype=np.float16)
        x2 = np.array([1, 2, 3, 4], dtype=np.float16)
        y = fft([x1, x2], n=4)
        assert_equal(y.dtype, np.complex64)
        assert_equal(y.shape, (2, 4))
        assert_array_almost_equal(y[0], direct_dft(x1.astype(np.float32)))
        assert_array_almost_equal(y[1], direct_dft(x2.astype(np.float32)))


class _TestIFFTBase(object):
    def setup_method(self):
        np.random.seed(1234)

    def test_definition(self):
        x = np.array([1,2,3,4+1j,1,2,3,4+2j], self.cdt)
        y = ifft(x)
        y1 = direct_idft(x)
        assert_equal(y.dtype, self.cdt)
        assert_array_almost_equal(y,y1)

        x = np.array([1,2,3,4+0j,5], self.cdt)
        assert_array_almost_equal(ifft(x),direct_idft(x))

    def test_definition_real(self):
        x = np.array([1,2,3,4,1,2,3,4], self.rdt)
        y = ifft(x)
        assert_equal(y.dtype, self.cdt)
        y1 = direct_idft(x)
        assert_array_almost_equal(y,y1)

        x = np.array([1,2,3,4,5], dtype=self.rdt)
        assert_equal(y.dtype, self.cdt)
        assert_array_almost_equal(ifft(x),direct_idft(x))

    def test_random_complex(self):
        for size in [1,51,111,100,200,64,128,256,1024]:
            x = random([size]).astype(self.cdt)
            x = random([size]).astype(self.cdt) + 1j*x
            y1 = ifft(fft(x))
            y2 = fft(ifft(x))
            assert_equal(y1.dtype, self.cdt)
            assert_equal(y2.dtype, self.cdt)
            assert_array_almost_equal(y1, x)
            assert_array_almost_equal(y2, x)

    def test_random_real(self):
        for size in [1,51,111,100,200,64,128,256,1024]:
            x = random([size]).astype(self.rdt)
            y1 = ifft(fft(x))
            y2 = fft(ifft(x))
            assert_equal(y1.dtype, self.cdt)
            assert_equal(y2.dtype, self.cdt)
            assert_array_almost_equal(y1, x)
            assert_array_almost_equal(y2, x)

    def test_size_accuracy(self):
        # Sanity check for the accuracy for prime and non-prime sized inputs
        if self.rdt == np.float32:
            rtol = 1e-5
        elif self.rdt == np.float64:
            rtol = 1e-10

        for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
            np.random.seed(1234)
            x = np.random.rand(size).astype(self.rdt)
            y = ifft(fft(x))
            _assert_close_in_norm(x, y, rtol, size, self.rdt)
            y = fft(ifft(x))
            _assert_close_in_norm(x, y, rtol, size, self.rdt)

            x = (x + 1j*np.random.rand(size)).astype(self.cdt)
            y = ifft(fft(x))
            _assert_close_in_norm(x, y, rtol, size, self.rdt)
            y = fft(ifft(x))
            _assert_close_in_norm(x, y, rtol, size, self.rdt)

    def test_invalid_sizes(self):
        assert_raises(ValueError, ifft, [])
        assert_raises(ValueError, ifft, [[1,1],[2,2]], -5)


class TestDoubleIFFT(_TestIFFTBase):
    def setup_method(self):
        self.cdt = np.cdouble
        self.rdt = np.double


class TestSingleIFFT(_TestIFFTBase):
    def setup_method(self):
        self.cdt = np.complex64
        self.rdt = np.float32


class _TestRFFTBase(object):
    def setup_method(self):
        np.random.seed(1234)

    def test_definition(self):
        for t in [[1, 2, 3, 4, 1, 2, 3, 4], [1, 2, 3, 4, 1, 2, 3, 4, 5]]:
            x = np.array(t, dtype=self.rdt)
            y = rfft(x)
            y1 = direct_rdft(x)
            assert_array_almost_equal(y,y1)
            assert_equal(y.dtype, self.rdt)

    def test_invalid_sizes(self):
        assert_raises(ValueError, rfft, [])
        assert_raises(ValueError, rfft, [[1,1],[2,2]], -5)

    # See gh-5790
    class MockSeries(object):
        def __init__(self, data):
            self.data = np.asarray(data)

        def __getattr__(self, item):
            try:
                return getattr(self.data, item)
            except AttributeError:
                raise AttributeError(("'MockSeries' object "
                                      "has no attribute '{attr}'".
                                      format(attr=item)))

    def test_non_ndarray_with_dtype(self):
        x = np.array([1., 2., 3., 4., 5.])
        xs = _TestRFFTBase.MockSeries(x)

        expected = [1, 2, 3, 4, 5]
        rfft(xs)

        # Data should not have been overwritten
        assert_equal(x, expected)
        assert_equal(xs.data, expected)

    def test_complex_input(self):
        assert_raises(TypeError, rfft, np.arange(4, dtype=np.complex64))


class TestRFFTDouble(_TestRFFTBase):
    def setup_method(self):
        self.cdt = np.cdouble
        self.rdt = np.double


class TestRFFTSingle(_TestRFFTBase):
    def setup_method(self):
        self.cdt = np.complex64
        self.rdt = np.float32


class _TestIRFFTBase(object):
    def setup_method(self):
        np.random.seed(1234)

    def test_definition(self):
        x1 = [1,2,3,4,1,2,3,4]
        x1_1 = [1,2+3j,4+1j,2+3j,4,2-3j,4-1j,2-3j]
        x2 = [1,2,3,4,1,2,3,4,5]
        x2_1 = [1,2+3j,4+1j,2+3j,4+5j,4-5j,2-3j,4-1j,2-3j]

        def _test(x, xr):
            y = irfft(np.array(x, dtype=self.rdt))
            y1 = direct_irdft(x)
            assert_equal(y.dtype, self.rdt)
            assert_array_almost_equal(y,y1, decimal=self.ndec)
            assert_array_almost_equal(y,ifft(xr), decimal=self.ndec)

        _test(x1, x1_1)
        _test(x2, x2_1)

    def test_random_real(self):
        for size in [1,51,111,100,200,64,128,256,1024]:
            x = random([size]).astype(self.rdt)
            y1 = irfft(rfft(x))
            y2 = rfft(irfft(x))
            assert_equal(y1.dtype, self.rdt)
            assert_equal(y2.dtype, self.rdt)
            assert_array_almost_equal(y1, x, decimal=self.ndec,
                                       err_msg="size=%d" % size)
            assert_array_almost_equal(y2, x, decimal=self.ndec,
                                       err_msg="size=%d" % size)

    def test_size_accuracy(self):
        # Sanity check for the accuracy for prime and non-prime sized inputs
        if self.rdt == np.float32:
            rtol = 1e-5
        elif self.rdt == np.float64:
            rtol = 1e-10

        for size in LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES:
            np.random.seed(1234)
            x = np.random.rand(size).astype(self.rdt)
            y = irfft(rfft(x))
            _assert_close_in_norm(x, y, rtol, size, self.rdt)
            y = rfft(irfft(x))
            _assert_close_in_norm(x, y, rtol, size, self.rdt)

    def test_invalid_sizes(self):
        assert_raises(ValueError, irfft, [])
        assert_raises(ValueError, irfft, [[1,1],[2,2]], -5)

    def test_complex_input(self):
        assert_raises(TypeError, irfft, np.arange(4, dtype=np.complex64))


# self.ndec is bogus; we should have a assert_array_approx_equal for number of
# significant digits

class TestIRFFTDouble(_TestIRFFTBase):
    def setup_method(self):
        self.cdt = np.cdouble
        self.rdt = np.double
        self.ndec = 14


class TestIRFFTSingle(_TestIRFFTBase):
    def setup_method(self):
        self.cdt = np.complex64
        self.rdt = np.float32
        self.ndec = 5


class Testfft2(object):
    def setup_method(self):
        np.random.seed(1234)

    def test_regression_244(self):
        """FFT returns wrong result with axes parameter."""
        # fftn (and hence fft2) used to break when both axes and shape were
        # used
        x = numpy.ones((4, 4, 2))
        y = fft2(x, shape=(8, 8), axes=(-3, -2))
        y_r = numpy.fft.fftn(x, s=(8, 8), axes=(-3, -2))
        assert_array_almost_equal(y, y_r)

    def test_invalid_sizes(self):
        assert_raises(ValueError, fft2, [[]])
        assert_raises(ValueError, fft2, [[1, 1], [2, 2]], (4, -3))


class TestFftnSingle(object):
    def setup_method(self):
        np.random.seed(1234)

    def test_definition(self):
        x = [[1, 2, 3],
             [4, 5, 6],
             [7, 8, 9]]
        y = fftn(np.array(x, np.float32))
        assert_(y.dtype == np.complex64,
                msg="double precision output with single precision")

        y_r = np.array(fftn(x), np.complex64)
        assert_array_almost_equal_nulp(y, y_r)

    @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
    def test_size_accuracy_small(self, size):
        x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
        y1 = fftn(x.real.astype(np.float32))
        y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)

        assert_equal(y1.dtype, np.complex64)
        assert_array_almost_equal_nulp(y1, y2, 2000)

    @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
    def test_size_accuracy_large(self, size):
        x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
        y1 = fftn(x.real.astype(np.float32))
        y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)

        assert_equal(y1.dtype, np.complex64)
        assert_array_almost_equal_nulp(y1, y2, 2000)

    def test_definition_float16(self):
        x = [[1, 2, 3],
             [4, 5, 6],
             [7, 8, 9]]
        y = fftn(np.array(x, np.float16))
        assert_equal(y.dtype, np.complex64)
        y_r = np.array(fftn(x), np.complex64)
        assert_array_almost_equal_nulp(y, y_r)

    @pytest.mark.parametrize('size', SMALL_COMPOSITE_SIZES + SMALL_PRIME_SIZES)
    def test_float16_input_small(self, size):
        x = np.random.rand(size, size) + 1j*np.random.rand(size, size)
        y1 = fftn(x.real.astype(np.float16))
        y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)

        assert_equal(y1.dtype, np.complex64)
        assert_array_almost_equal_nulp(y1, y2, 5e5)

    @pytest.mark.parametrize('size', LARGE_COMPOSITE_SIZES + LARGE_PRIME_SIZES)
    def test_float16_input_large(self, size):
        x = np.random.rand(size, 3) + 1j*np.random.rand(size, 3)
        y1 = fftn(x.real.astype(np.float16))
        y2 = fftn(x.real.astype(np.float64)).astype(np.complex64)

        assert_equal(y1.dtype, np.complex64)
        assert_array_almost_equal_nulp(y1, y2, 2e6)


class TestFftn(object):
    def setup_method(self):
        np.random.seed(1234)

    def test_definition(self):
        x = [[1, 2, 3],
             [4, 5, 6],
             [7, 8, 9]]
        y = fftn(x)
        assert_array_almost_equal(y, direct_dftn(x))

        x = random((20, 26))
        assert_array_almost_equal(fftn(x), direct_dftn(x))

        x = random((5, 4, 3, 20))
        assert_array_almost_equal(fftn(x), direct_dftn(x))

    def test_axes_argument(self):
        # plane == ji_plane, x== kji_space
        plane1 = [[1, 2, 3],
                  [4, 5, 6],
                  [7, 8, 9]]
        plane2 = [[10, 11, 12],
                  [13, 14, 15],
                  [16, 17, 18]]
        plane3 = [[19, 20, 21],
                  [22, 23, 24],
                  [25, 26, 27]]
        ki_plane1 = [[1, 2, 3],
                     [10, 11, 12],
                     [19, 20, 21]]
        ki_plane2 = [[4, 5, 6],
                     [13, 14, 15],
                     [22, 23, 24]]
        ki_plane3 = [[7, 8, 9],
                     [16, 17, 18],
                     [25, 26, 27]]
        jk_plane1 = [[1, 10, 19],
                     [4, 13, 22],
                     [7, 16, 25]]
        jk_plane2 = [[2, 11, 20],
                     [5, 14, 23],
                     [8, 17, 26]]
        jk_plane3 = [[3, 12, 21],
                     [6, 15, 24],
                     [9, 18, 27]]
        kj_plane1 = [[1, 4, 7],
                     [10, 13, 16], [19, 22, 25]]
        kj_plane2 = [[2, 5, 8],
                     [11, 14, 17], [20, 23, 26]]
        kj_plane3 = [[3, 6, 9],
                     [12, 15, 18], [21, 24, 27]]
        ij_plane1 = [[1, 4, 7],
                     [2, 5, 8],
                     [3, 6, 9]]
        ij_plane2 = [[10, 13, 16],
                     [11, 14, 17],
                     [12, 15, 18]]
        ij_plane3 = [[19, 22, 25],
                     [20, 23, 26],
                     [21, 24, 27]]
        ik_plane1 = [[1, 10, 19],
                     [2, 11, 20],
                     [3, 12, 21]]
        ik_plane2 = [[4, 13, 22],
                     [5, 14, 23],
                     [6, 15, 24]]
        ik_plane3 = [[7, 16, 25],
                     [8, 17, 26],
                     [9, 18, 27]]
        ijk_space = [jk_plane1, jk_plane2, jk_plane3]
        ikj_space = [kj_plane1, kj_plane2, kj_plane3]
        jik_space = [ik_plane1, ik_plane2, ik_plane3]
        jki_space = [ki_plane1, ki_plane2, ki_plane3]
        kij_space = [ij_plane1, ij_plane2, ij_plane3]
        x = array([plane1, plane2, plane3])

        assert_array_almost_equal(fftn(x),
                                  fftn(x, axes=(-3, -2, -1)))  # kji_space
        assert_array_almost_equal(fftn(x), fftn(x, axes=(0, 1, 2)))
        assert_array_almost_equal(fftn(x, axes=(0, 2)), fftn(x, axes=(0, -1)))
        y = fftn(x, axes=(2, 1, 0))  # ijk_space
        assert_array_almost_equal(swapaxes(y, -1, -3), fftn(ijk_space))
        y = fftn(x, axes=(2, 0, 1))  # ikj_space
        assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -1, -2),
                                  fftn(ikj_space))
        y = fftn(x, axes=(1, 2, 0))  # jik_space
        assert_array_almost_equal(swapaxes(swapaxes(y, -1, -3), -3, -2),
                                  fftn(jik_space))
        y = fftn(x, axes=(1, 0, 2))  # jki_space
        assert_array_almost_equal(swapaxes(y, -2, -3), fftn(jki_space))
        y = fftn(x, axes=(0, 2, 1))  # kij_space
        assert_array_almost_equal(swapaxes(y, -2, -1), fftn(kij_space))

        y = fftn(x, axes=(-2, -1))  # ji_plane
        assert_array_almost_equal(fftn(plane1), y[0])
        assert_array_almost_equal(fftn(plane2), y[1])
        assert_array_almost_equal(fftn(plane3), y[2])

        y = fftn(x, axes=(1, 2))  # ji_plane
        assert_array_almost_equal(fftn(plane1), y[0])
        assert_array_almost_equal(fftn(plane2), y[1])
        assert_array_almost_equal(fftn(plane3), y[2])

        y = fftn(x, axes=(-3, -2))  # kj_plane
        assert_array_almost_equal(fftn(x[:, :, 0]), y[:, :, 0])
        assert_array_almost_equal(fftn(x[:, :, 1]), y[:, :, 1])
        assert_array_almost_equal(fftn(x[:, :, 2]), y[:, :, 2])

        y = fftn(x, axes=(-3, -1))  # ki_plane
        assert_array_almost_equal(fftn(x[:, 0, :]), y[:, 0, :])
        assert_array_almost_equal(fftn(x[:, 1, :]), y[:, 1, :])
        assert_array_almost_equal(fftn(x[:, 2, :]), y[:, 2, :])

        y = fftn(x, axes=(-1, -2))  # ij_plane
        assert_array_almost_equal(fftn(ij_plane1), swapaxes(y[0], -2, -1))
        assert_array_almost_equal(fftn(ij_plane2), swapaxes(y[1], -2, -1))
        assert_array_almost_equal(fftn(ij_plane3), swapaxes(y[2], -2, -1))

        y = fftn(x, axes=(-1, -3))  # ik_plane
        assert_array_almost_equal(fftn(ik_plane1),
                                  swapaxes(y[:, 0, :], -1, -2))
        assert_array_almost_equal(fftn(ik_plane2),
                                  swapaxes(y[:, 1, :], -1, -2))
        assert_array_almost_equal(fftn(ik_plane3),
                                  swapaxes(y[:, 2, :], -1, -2))

        y = fftn(x, axes=(-2, -3))  # jk_plane
        assert_array_almost_equal(fftn(jk_plane1),
                                  swapaxes(y[:, :, 0], -1, -2))
        assert_array_almost_equal(fftn(jk_plane2),
                                  swapaxes(y[:, :, 1], -1, -2))
        assert_array_almost_equal(fftn(jk_plane3),
                                  swapaxes(y[:, :, 2], -1, -2))

        y = fftn(x, axes=(-1,))  # i_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[i, j, :]), y[i, j, :])
        y = fftn(x, axes=(-2,))  # j_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[i, :, j]), y[i, :, j])
        y = fftn(x, axes=(0,))  # k_line
        for i in range(3):
            for j in range(3):
                assert_array_almost_equal(fft(x[:, i, j]), y[:, i, j])

        y = fftn(x, axes=())  # point
        assert_array_almost_equal(y, x)

    def test_shape_argument(self):
        small_x = [[1, 2, 3],
                   [4, 5, 6]]
        large_x1 = [[1, 2, 3, 0],
                    [4, 5, 6, 0],
                    [0, 0, 0, 0],
                    [0, 0, 0, 0]]

        y = fftn(small_x, shape=(4, 4))
        assert_array_almost_equal(y, fftn(large_x1))

        y = fftn(small_x, shape=(3, 4))
        assert_array_almost_equal(y, fftn(large_x1[:-1]))

    def test_shape_axes_argument(self):
        small_x = [[1, 2, 3],
                   [4, 5, 6],
                   [7, 8, 9]]
        large_x1 = array([[1, 2, 3, 0],
                          [4, 5, 6, 0],
                          [7, 8, 9, 0],
                          [0, 0, 0, 0]])
        y = fftn(small_x, shape=(4, 4), axes=(-2, -1))
        assert_array_almost_equal(y, fftn(large_x1))
        y = fftn(small_x, shape=(4, 4), axes=(-1, -2))

        assert_array_almost_equal(y, swapaxes(
            fftn(swapaxes(large_x1, -1, -2)), -1, -2))

    def test_shape_axes_argument2(self):
        # Change shape of the last axis
        x = numpy.random.random((10, 5, 3, 7))
        y = fftn(x, axes=(-1,), shape=(8,))
        assert_array_almost_equal(y, fft(x, axis=-1, n=8))

        # Change shape of an arbitrary axis which is not the last one
        x = numpy.random.random((10, 5, 3, 7))
        y = fftn(x, axes=(-2,), shape=(8,))
        assert_array_almost_equal(y, fft(x, axis=-2, n=8))

        # Change shape of axes: cf #244, where shape and axes were mixed up
        x = numpy.random.random((4, 4, 2))
        y = fftn(x, axes=(-3, -2), shape=(8, 8))
        assert_array_almost_equal(y,
                                  numpy.fft.fftn(x, axes=(-3, -2), s=(8, 8)))

    def test_shape_argument_more(self):
        x = zeros((4, 4, 2))
        with assert_raises(ValueError,
                           match="when given, axes and shape arguments"
                           " have to be of the same length"):
            fftn(x, shape=(8, 8, 2, 1))

    def test_invalid_sizes(self):
        with assert_raises(ValueError,
                           match="invalid number of data points"
                           r" \(\[1, 0\]\) specified"):
            fftn([[]])

        with assert_raises(ValueError,
                           match="invalid number of data points"
                           r" \(\[4, -3\]\) specified"):
            fftn([[1, 1], [2, 2]], (4, -3))


class TestIfftn(object):
    dtype = None
    cdtype = None

    def setup_method(self):
        np.random.seed(1234)

    @pytest.mark.parametrize('dtype,cdtype,maxnlp',
                             [(np.float64, np.complex128, 2000),
                              (np.float32, np.complex64, 3500)])
    def test_definition(self, dtype, cdtype, maxnlp):
        x = np.array([[1, 2, 3],
                      [4, 5, 6],
                      [7, 8, 9]], dtype=dtype)
        y = ifftn(x)
        assert_equal(y.dtype, cdtype)
        assert_array_almost_equal_nulp(y, direct_idftn(x), maxnlp)

        x = random((20, 26))
        assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)

        x = random((5, 4, 3, 20))
        assert_array_almost_equal_nulp(ifftn(x), direct_idftn(x), maxnlp)

    @pytest.mark.parametrize('maxnlp', [2000, 3500])
    @pytest.mark.parametrize('size', [1, 2, 51, 32, 64, 92])
    def test_random_complex(self, maxnlp, size):
        x = random([size, size]) + 1j*random([size, size])
        assert_array_almost_equal_nulp(ifftn(fftn(x)), x, maxnlp)
        assert_array_almost_equal_nulp(fftn(ifftn(x)), x, maxnlp)

    def test_invalid_sizes(self):
        with assert_raises(ValueError,
                           match="invalid number of data points"
                           r" \(\[1, 0\]\) specified"):
            ifftn([[]])

        with assert_raises(ValueError,
                           match="invalid number of data points"
                           r" \(\[4, -3\]\) specified"):
            ifftn([[1, 1], [2, 2]], (4, -3))


class FakeArray(object):
    def __init__(self, data):
        self._data = data
        self.__array_interface__ = data.__array_interface__


class FakeArray2(object):
    def __init__(self, data):
        self._data = data

    def __array__(self):
        return self._data


class TestOverwrite(object):
    """Check input overwrite behavior of the FFT functions."""

    real_dtypes = (np.float32, np.float64)
    dtypes = real_dtypes + (np.complex64, np.complex128)
    fftsizes = [8, 16, 32]

    def _check(self, x, routine, fftsize, axis, overwrite_x):
        x2 = x.copy()
        for fake in [lambda x: x, FakeArray, FakeArray2]:
            routine(fake(x2), fftsize, axis, overwrite_x=overwrite_x)

            sig = "%s(%s%r, %r, axis=%r, overwrite_x=%r)" % (
                routine.__name__, x.dtype, x.shape, fftsize, axis, overwrite_x)
            if not overwrite_x:
                assert_equal(x2, x, err_msg="spurious overwrite in %s" % sig)

    def _check_1d(self, routine, dtype, shape, axis, overwritable_dtypes,
                  fftsize, overwrite_x):
        np.random.seed(1234)
        if np.issubdtype(dtype, np.complexfloating):
            data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
        else:
            data = np.random.randn(*shape)
        data = data.astype(dtype)

        self._check(data, routine, fftsize, axis,
                    overwrite_x=overwrite_x)

    @pytest.mark.parametrize('dtype', dtypes)
    @pytest.mark.parametrize('fftsize', fftsizes)
    @pytest.mark.parametrize('overwrite_x', [True, False])
    @pytest.mark.parametrize('shape,axes', [((16,), -1),
                                            ((16, 2), 0),
                                            ((2, 16), 1)])
    def test_fft_ifft(self, dtype, fftsize, overwrite_x, shape, axes):
        overwritable = (np.complex128, np.complex64)
        self._check_1d(fft, dtype, shape, axes, overwritable,
                       fftsize, overwrite_x)
        self._check_1d(ifft, dtype, shape, axes, overwritable,
                       fftsize, overwrite_x)

    @pytest.mark.parametrize('dtype', real_dtypes)
    @pytest.mark.parametrize('fftsize', fftsizes)
    @pytest.mark.parametrize('overwrite_x', [True, False])
    @pytest.mark.parametrize('shape,axes', [((16,), -1),
                                            ((16, 2), 0),
                                            ((2, 16), 1)])
    def test_rfft_irfft(self, dtype, fftsize, overwrite_x, shape, axes):
        overwritable = self.real_dtypes
        self._check_1d(irfft, dtype, shape, axes, overwritable,
                       fftsize, overwrite_x)
        self._check_1d(rfft, dtype, shape, axes, overwritable,
                       fftsize, overwrite_x)

    def _check_nd_one(self, routine, dtype, shape, axes, overwritable_dtypes,
                      overwrite_x):
        np.random.seed(1234)
        if np.issubdtype(dtype, np.complexfloating):
            data = np.random.randn(*shape) + 1j*np.random.randn(*shape)
        else:
            data = np.random.randn(*shape)
        data = data.astype(dtype)

        def fftshape_iter(shp):
            if len(shp) <= 0:
                yield ()
            else:
                for j in (shp[0]//2, shp[0], shp[0]*2):
                    for rest in fftshape_iter(shp[1:]):
                        yield (j,) + rest

        if axes is None:
            part_shape = shape
        else:
            part_shape = tuple(np.take(shape, axes))

        for fftshape in fftshape_iter(part_shape):
            self._check(data, routine, fftshape, axes,
                        overwrite_x=overwrite_x)
            if data.ndim > 1:
                self._check(data.T, routine, fftshape, axes,
                            overwrite_x=overwrite_x)

    @pytest.mark.parametrize('dtype', dtypes)
    @pytest.mark.parametrize('overwrite_x', [True, False])
    @pytest.mark.parametrize('shape,axes', [((16,), None),
                                            ((16,), (0,)),
                                            ((16, 2), (0,)),
                                            ((2, 16), (1,)),
                                            ((8, 16), None),
                                            ((8, 16), (0, 1)),
                                            ((8, 16, 2), (0, 1)),
                                            ((8, 16, 2), (1, 2)),
                                            ((8, 16, 2), (0,)),
                                            ((8, 16, 2), (1,)),
                                            ((8, 16, 2), (2,)),
                                            ((8, 16, 2), None),
                                            ((8, 16, 2), (0, 1, 2))])
    def test_fftn_ifftn(self, dtype, overwrite_x, shape, axes):
        overwritable = (np.complex128, np.complex64)
        self._check_nd_one(fftn, dtype, shape, axes, overwritable,
                           overwrite_x)
        self._check_nd_one(ifftn, dtype, shape, axes, overwritable,
                           overwrite_x)