basic.py
12.7 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
"""
Discrete Fourier Transforms - basic.py
"""
# Created by Pearu Peterson, August,September 2002
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
'fft2','ifft2']
from scipy.fft import _pocketfft
from .helper import _good_shape
def fft(x, n=None, axis=-1, overwrite_x=False):
"""
Return discrete Fourier transform of real or complex sequence.
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.
Parameters
----------
x : array_like
Array to Fourier transform.
n : int, optional
Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the fft's are computed; the default is over the
last axis (i.e., ``axis=-1``).
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
z : complex ndarray
with the elements::
[y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)] if n is even
[y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)] if n is odd
where::
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1
See Also
--------
ifft : Inverse FFT
rfft : FFT of a real sequence
Notes
-----
The packing of the result is "standard": If ``A = fft(a, n)``, then
``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
terms, in order of decreasingly negative frequency. So ,for an 8-point
transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
To rearrange the fft output so that the zero-frequency component is
centered, like [-4, -3, -2, -1, 0, 1, 2, 3], use `fftshift`.
Both single and double precision routines are implemented. Half precision
inputs will be converted to single precision. Non-floating-point inputs
will be converted to double precision. Long-double precision inputs are
not supported.
This function is most efficient when `n` is a power of two, and least
efficient when `n` is prime.
Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.
If the data type of `x` is real, a "real FFT" algorithm is automatically
used, which roughly halves the computation time. To increase efficiency
a little further, use `rfft`, which does the same calculation, but only
outputs half of the symmetrical spectrum. If the data is both real and
symmetrical, the `dct` can again double the efficiency by generating
half of the spectrum from half of the signal.
Examples
--------
>>> from scipy.fftpack import fft, ifft
>>> x = np.arange(5)
>>> np.allclose(fft(ifft(x)), x, atol=1e-15) # within numerical accuracy.
True
"""
return _pocketfft.fft(x, n, axis, None, overwrite_x)
def ifft(x, n=None, axis=-1, overwrite_x=False):
"""
Return discrete inverse Fourier transform of real or complex sequence.
The returned complex array contains ``y(0), y(1),..., y(n-1)``, where
``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.
Parameters
----------
x : array_like
Transformed data to invert.
n : int, optional
Length of the inverse Fourier transform. If ``n < x.shape[axis]``,
`x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded.
The default results in ``n = x.shape[axis]``.
axis : int, optional
Axis along which the ifft's are computed; the default is over the
last axis (i.e., ``axis=-1``).
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
ifft : ndarray of floats
The inverse discrete Fourier transform.
See Also
--------
fft : Forward FFT
Notes
-----
Both single and double precision routines are implemented. Half precision
inputs will be converted to single precision. Non-floating-point inputs
will be converted to double precision. Long-double precision inputs are
not supported.
This function is most efficient when `n` is a power of two, and least
efficient when `n` is prime.
If the data type of `x` is real, a "real IFFT" algorithm is automatically
used, which roughly halves the computation time.
Examples
--------
>>> from scipy.fftpack import fft, ifft
>>> import numpy as np
>>> x = np.arange(5)
>>> np.allclose(ifft(fft(x)), x, atol=1e-15) # within numerical accuracy.
True
"""
return _pocketfft.ifft(x, n, axis, None, overwrite_x)
def rfft(x, n=None, axis=-1, overwrite_x=False):
"""
Discrete Fourier transform of a real sequence.
Parameters
----------
x : array_like, real-valued
The data to transform.
n : int, optional
Defines the length of the Fourier transform. If `n` is not specified
(the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``,
`x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded.
axis : int, optional
The axis along which the transform is applied. The default is the
last axis.
overwrite_x : bool, optional
If set to true, the contents of `x` can be overwritten. Default is
False.
Returns
-------
z : real ndarray
The returned real array contains::
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))] if n is even
[y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))] if n is odd
where::
y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
j = 0..n-1
See Also
--------
fft, irfft, scipy.fft.rfft
Notes
-----
Within numerical accuracy, ``y == rfft(irfft(y))``.
Both single and double precision routines are implemented. Half precision
inputs will be converted to single precision. Non-floating-point inputs
will be converted to double precision. Long-double precision inputs are
not supported.
To get an output with a complex datatype, consider using the newer
function `scipy.fft.rfft`.
Examples
--------
>>> from scipy.fftpack import fft, rfft
>>> a = [9, -9, 1, 3]
>>> fft(a)
array([ 4. +0.j, 8.+12.j, 16. +0.j, 8.-12.j])
>>> rfft(a)
array([ 4., 8., 12., 16.])
"""
return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x)
def irfft(x, n=None, axis=-1, overwrite_x=False):
"""
Return inverse discrete Fourier transform of real sequence x.
The contents of `x` are interpreted as the output of the `rfft`
function.
Parameters
----------
x : array_like
Transformed data to invert.
n : int, optional
Length of the inverse Fourier transform.
If n < x.shape[axis], x is truncated.
If n > x.shape[axis], x is zero-padded.
The default results in n = x.shape[axis].
axis : int, optional
Axis along which the ifft's are computed; the default is over
the last axis (i.e., axis=-1).
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed; the default is False.
Returns
-------
irfft : ndarray of floats
The inverse discrete Fourier transform.
See Also
--------
rfft, ifft, scipy.fft.irfft
Notes
-----
The returned real array contains::
[y(0),y(1),...,y(n-1)]
where for n is even::
y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
* exp(sqrt(-1)*j*k* 2*pi/n)
+ c.c. + x[0] + (-1)**(j) x[n-1])
and for n is odd::
y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
* exp(sqrt(-1)*j*k* 2*pi/n)
+ c.c. + x[0])
c.c. denotes complex conjugate of preceding expression.
For details on input parameters, see `rfft`.
To process (conjugate-symmetric) frequency-domain data with a complex
datatype, consider using the newer function `scipy.fft.irfft`.
Examples
--------
>>> from scipy.fftpack import rfft, irfft
>>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
>>> irfft(a)
array([ 2.6 , -3.16405192, 1.24398433, -1.14955713, 1.46962473])
>>> irfft(rfft(a))
array([1., 2., 3., 4., 5.])
"""
return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x)
def fftn(x, shape=None, axes=None, overwrite_x=False):
"""
Return multidimensional discrete Fourier transform.
The returned array contains::
y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)
where d = len(x.shape) and n = x.shape.
Parameters
----------
x : array_like
The (N-D) array to transform.
shape : int or array_like of ints or None, optional
The shape of the result. If both `shape` and `axes` (see below) are
None, `shape` is ``x.shape``; if `shape` is None but `axes` is
not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
length ``shape[i]``.
If any element of `shape` is -1, the size of the corresponding
dimension of `x` is used.
axes : int or array_like of ints or None, optional
The axes of `x` (`y` if `shape` is not None) along which the
transform is applied.
The default is over all axes.
overwrite_x : bool, optional
If True, the contents of `x` can be destroyed. Default is False.
Returns
-------
y : complex-valued N-D NumPy array
The (N-D) DFT of the input array.
See Also
--------
ifftn
Notes
-----
If ``x`` is real-valued, then
``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.
Both single and double precision routines are implemented. Half precision
inputs will be converted to single precision. Non-floating-point inputs
will be converted to double precision. Long-double precision inputs are
not supported.
Examples
--------
>>> from scipy.fftpack import fftn, ifftn
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, fftn(ifftn(y)))
True
"""
shape = _good_shape(x, shape, axes)
return _pocketfft.fftn(x, shape, axes, None, overwrite_x)
def ifftn(x, shape=None, axes=None, overwrite_x=False):
"""
Return inverse multidimensional discrete Fourier transform.
The sequence can be of an arbitrary type.
The returned array contains::
y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)
where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.
For description of parameters see `fftn`.
See Also
--------
fftn : for detailed information.
Examples
--------
>>> from scipy.fftpack import fftn, ifftn
>>> import numpy as np
>>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
>>> np.allclose(y, ifftn(fftn(y)))
True
"""
shape = _good_shape(x, shape, axes)
return _pocketfft.ifftn(x, shape, axes, None, overwrite_x)
def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
"""
2-D discrete Fourier transform.
Return the 2-D discrete Fourier transform of the 2-D argument
`x`.
See Also
--------
fftn : for detailed information.
Examples
--------
>>> from scipy.fftpack import fft2, ifft2
>>> y = np.mgrid[:5, :5][0]
>>> y
array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]])
>>> np.allclose(y, ifft2(fft2(y)))
True
"""
return fftn(x,shape,axes,overwrite_x)
def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
"""
2-D discrete inverse Fourier transform of real or complex sequence.
Return inverse 2-D discrete Fourier transform of
arbitrary type sequence x.
See `ifft` for more information.
See also
--------
fft2, ifft
Examples
--------
>>> from scipy.fftpack import fft2, ifft2
>>> y = np.mgrid[:5, :5][0]
>>> y
array([[0, 0, 0, 0, 0],
[1, 1, 1, 1, 1],
[2, 2, 2, 2, 2],
[3, 3, 3, 3, 3],
[4, 4, 4, 4, 4]])
>>> np.allclose(y, fft2(ifft2(y)))
True
"""
return ifftn(x,shape,axes,overwrite_x)