basic.py 12.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
"""
Discrete Fourier Transforms - basic.py
"""
# Created by Pearu Peterson, August,September 2002
__all__ = ['fft','ifft','fftn','ifftn','rfft','irfft',
           'fft2','ifft2']

from scipy.fft import _pocketfft
from .helper import _good_shape


def fft(x, n=None, axis=-1, overwrite_x=False):
    """
    Return discrete Fourier transform of real or complex sequence.

    The returned complex array contains ``y(0), y(1),..., y(n-1)``, where

    ``y(j) = (x * exp(-2*pi*sqrt(-1)*j*np.arange(n)/n)).sum()``.

    Parameters
    ----------
    x : array_like
        Array to Fourier transform.
    n : int, optional
        Length of the Fourier transform. If ``n < x.shape[axis]``, `x` is
        truncated. If ``n > x.shape[axis]``, `x` is zero-padded. The
        default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the fft's are computed; the default is over the
        last axis (i.e., ``axis=-1``).
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    z : complex ndarray
        with the elements::

            [y(0),y(1),..,y(n/2),y(1-n/2),...,y(-1)]        if n is even
            [y(0),y(1),..,y((n-1)/2),y(-(n-1)/2),...,y(-1)]  if n is odd

        where::

            y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k* 2*pi/n), j = 0..n-1

    See Also
    --------
    ifft : Inverse FFT
    rfft : FFT of a real sequence

    Notes
    -----
    The packing of the result is "standard": If ``A = fft(a, n)``, then
    ``A[0]`` contains the zero-frequency term, ``A[1:n/2]`` contains the
    positive-frequency terms, and ``A[n/2:]`` contains the negative-frequency
    terms, in order of decreasingly negative frequency. So ,for an 8-point
    transform, the frequencies of the result are [0, 1, 2, 3, -4, -3, -2, -1].
    To rearrange the fft output so that the zero-frequency component is
    centered, like [-4, -3, -2, -1,  0,  1,  2,  3], use `fftshift`.

    Both single and double precision routines are implemented. Half precision
    inputs will be converted to single precision. Non-floating-point inputs
    will be converted to double precision. Long-double precision inputs are
    not supported.

    This function is most efficient when `n` is a power of two, and least
    efficient when `n` is prime.

    Note that if ``x`` is real-valued, then ``A[j] == A[n-j].conjugate()``.
    If ``x`` is real-valued and ``n`` is even, then ``A[n/2]`` is real.

    If the data type of `x` is real, a "real FFT" algorithm is automatically
    used, which roughly halves the computation time. To increase efficiency
    a little further, use `rfft`, which does the same calculation, but only
    outputs half of the symmetrical spectrum. If the data is both real and
    symmetrical, the `dct` can again double the efficiency by generating
    half of the spectrum from half of the signal.

    Examples
    --------
    >>> from scipy.fftpack import fft, ifft
    >>> x = np.arange(5)
    >>> np.allclose(fft(ifft(x)), x, atol=1e-15)  # within numerical accuracy.
    True

    """
    return _pocketfft.fft(x, n, axis, None, overwrite_x)


def ifft(x, n=None, axis=-1, overwrite_x=False):
    """
    Return discrete inverse Fourier transform of real or complex sequence.

    The returned complex array contains ``y(0), y(1),..., y(n-1)``, where

    ``y(j) = (x * exp(2*pi*sqrt(-1)*j*np.arange(n)/n)).mean()``.

    Parameters
    ----------
    x : array_like
        Transformed data to invert.
    n : int, optional
        Length of the inverse Fourier transform.  If ``n < x.shape[axis]``,
        `x` is truncated. If ``n > x.shape[axis]``, `x` is zero-padded.
        The default results in ``n = x.shape[axis]``.
    axis : int, optional
        Axis along which the ifft's are computed; the default is over the
        last axis (i.e., ``axis=-1``).
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    ifft : ndarray of floats
        The inverse discrete Fourier transform.

    See Also
    --------
    fft : Forward FFT

    Notes
    -----
    Both single and double precision routines are implemented. Half precision
    inputs will be converted to single precision. Non-floating-point inputs
    will be converted to double precision. Long-double precision inputs are
    not supported.

    This function is most efficient when `n` is a power of two, and least
    efficient when `n` is prime.

    If the data type of `x` is real, a "real IFFT" algorithm is automatically
    used, which roughly halves the computation time.

    Examples
    --------
    >>> from scipy.fftpack import fft, ifft
    >>> import numpy as np
    >>> x = np.arange(5)
    >>> np.allclose(ifft(fft(x)), x, atol=1e-15)  # within numerical accuracy.
    True

    """
    return _pocketfft.ifft(x, n, axis, None, overwrite_x)


def rfft(x, n=None, axis=-1, overwrite_x=False):
    """
    Discrete Fourier transform of a real sequence.

    Parameters
    ----------
    x : array_like, real-valued
        The data to transform.
    n : int, optional
        Defines the length of the Fourier transform. If `n` is not specified
        (the default) then ``n = x.shape[axis]``. If ``n < x.shape[axis]``,
        `x` is truncated, if ``n > x.shape[axis]``, `x` is zero-padded.
    axis : int, optional
        The axis along which the transform is applied. The default is the
        last axis.
    overwrite_x : bool, optional
        If set to true, the contents of `x` can be overwritten. Default is
        False.

    Returns
    -------
    z : real ndarray
        The returned real array contains::

          [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2))]              if n is even
          [y(0),Re(y(1)),Im(y(1)),...,Re(y(n/2)),Im(y(n/2))]   if n is odd

        where::

          y(j) = sum[k=0..n-1] x[k] * exp(-sqrt(-1)*j*k*2*pi/n)
          j = 0..n-1

    See Also
    --------
    fft, irfft, scipy.fft.rfft

    Notes
    -----
    Within numerical accuracy, ``y == rfft(irfft(y))``.

    Both single and double precision routines are implemented. Half precision
    inputs will be converted to single precision. Non-floating-point inputs
    will be converted to double precision. Long-double precision inputs are
    not supported.

    To get an output with a complex datatype, consider using the newer
    function `scipy.fft.rfft`.

    Examples
    --------
    >>> from scipy.fftpack import fft, rfft
    >>> a = [9, -9, 1, 3]
    >>> fft(a)
    array([  4. +0.j,   8.+12.j,  16. +0.j,   8.-12.j])
    >>> rfft(a)
    array([  4.,   8.,  12.,  16.])

    """
    return _pocketfft.rfft_fftpack(x, n, axis, None, overwrite_x)


def irfft(x, n=None, axis=-1, overwrite_x=False):
    """
    Return inverse discrete Fourier transform of real sequence x.

    The contents of `x` are interpreted as the output of the `rfft`
    function.

    Parameters
    ----------
    x : array_like
        Transformed data to invert.
    n : int, optional
        Length of the inverse Fourier transform.
        If n < x.shape[axis], x is truncated.
        If n > x.shape[axis], x is zero-padded.
        The default results in n = x.shape[axis].
    axis : int, optional
        Axis along which the ifft's are computed; the default is over
        the last axis (i.e., axis=-1).
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed; the default is False.

    Returns
    -------
    irfft : ndarray of floats
        The inverse discrete Fourier transform.

    See Also
    --------
    rfft, ifft, scipy.fft.irfft

    Notes
    -----
    The returned real array contains::

        [y(0),y(1),...,y(n-1)]

    where for n is even::

        y(j) = 1/n (sum[k=1..n/2-1] (x[2*k-1]+sqrt(-1)*x[2*k])
                                     * exp(sqrt(-1)*j*k* 2*pi/n)
                    + c.c. + x[0] + (-1)**(j) x[n-1])

    and for n is odd::

        y(j) = 1/n (sum[k=1..(n-1)/2] (x[2*k-1]+sqrt(-1)*x[2*k])
                                     * exp(sqrt(-1)*j*k* 2*pi/n)
                    + c.c. + x[0])

    c.c. denotes complex conjugate of preceding expression.

    For details on input parameters, see `rfft`.

    To process (conjugate-symmetric) frequency-domain data with a complex
    datatype, consider using the newer function `scipy.fft.irfft`.

    Examples
    --------
    >>> from scipy.fftpack import rfft, irfft
    >>> a = [1.0, 2.0, 3.0, 4.0, 5.0]
    >>> irfft(a)
    array([ 2.6       , -3.16405192,  1.24398433, -1.14955713,  1.46962473])
    >>> irfft(rfft(a))
    array([1., 2., 3., 4., 5.])

    """
    return _pocketfft.irfft_fftpack(x, n, axis, None, overwrite_x)


def fftn(x, shape=None, axes=None, overwrite_x=False):
    """
    Return multidimensional discrete Fourier transform.

    The returned array contains::

      y[j_1,..,j_d] = sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
         x[k_1,..,k_d] * prod[i=1..d] exp(-sqrt(-1)*2*pi/n_i * j_i * k_i)

    where d = len(x.shape) and n = x.shape.

    Parameters
    ----------
    x : array_like
        The (N-D) array to transform.
    shape : int or array_like of ints or None, optional
        The shape of the result. If both `shape` and `axes` (see below) are
        None, `shape` is ``x.shape``; if `shape` is None but `axes` is
        not None, then `shape` is ``scipy.take(x.shape, axes, axis=0)``.
        If ``shape[i] > x.shape[i]``, the ith dimension is padded with zeros.
        If ``shape[i] < x.shape[i]``, the ith dimension is truncated to
        length ``shape[i]``.
        If any element of `shape` is -1, the size of the corresponding
        dimension of `x` is used.
    axes : int or array_like of ints or None, optional
        The axes of `x` (`y` if `shape` is not None) along which the
        transform is applied.
        The default is over all axes.
    overwrite_x : bool, optional
        If True, the contents of `x` can be destroyed. Default is False.

    Returns
    -------
    y : complex-valued N-D NumPy array
        The (N-D) DFT of the input array.

    See Also
    --------
    ifftn

    Notes
    -----
    If ``x`` is real-valued, then
    ``y[..., j_i, ...] == y[..., n_i-j_i, ...].conjugate()``.

    Both single and double precision routines are implemented. Half precision
    inputs will be converted to single precision. Non-floating-point inputs
    will be converted to double precision. Long-double precision inputs are
    not supported.

    Examples
    --------
    >>> from scipy.fftpack import fftn, ifftn
    >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
    >>> np.allclose(y, fftn(ifftn(y)))
    True

    """
    shape = _good_shape(x, shape, axes)
    return _pocketfft.fftn(x, shape, axes, None, overwrite_x)


def ifftn(x, shape=None, axes=None, overwrite_x=False):
    """
    Return inverse multidimensional discrete Fourier transform.

    The sequence can be of an arbitrary type.

    The returned array contains::

      y[j_1,..,j_d] = 1/p * sum[k_1=0..n_1-1, ..., k_d=0..n_d-1]
         x[k_1,..,k_d] * prod[i=1..d] exp(sqrt(-1)*2*pi/n_i * j_i * k_i)

    where ``d = len(x.shape)``, ``n = x.shape``, and ``p = prod[i=1..d] n_i``.

    For description of parameters see `fftn`.

    See Also
    --------
    fftn : for detailed information.

    Examples
    --------
    >>> from scipy.fftpack import fftn, ifftn
    >>> import numpy as np
    >>> y = (-np.arange(16), 8 - np.arange(16), np.arange(16))
    >>> np.allclose(y, ifftn(fftn(y)))
    True

    """
    shape = _good_shape(x, shape, axes)
    return _pocketfft.ifftn(x, shape, axes, None, overwrite_x)


def fft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
    """
    2-D discrete Fourier transform.

    Return the 2-D discrete Fourier transform of the 2-D argument
    `x`.

    See Also
    --------
    fftn : for detailed information.

    Examples
    --------
    >>> from scipy.fftpack import fft2, ifft2
    >>> y = np.mgrid[:5, :5][0]
    >>> y
    array([[0, 0, 0, 0, 0],
           [1, 1, 1, 1, 1],
           [2, 2, 2, 2, 2],
           [3, 3, 3, 3, 3],
           [4, 4, 4, 4, 4]])
    >>> np.allclose(y, ifft2(fft2(y)))
    True
    """
    return fftn(x,shape,axes,overwrite_x)


def ifft2(x, shape=None, axes=(-2,-1), overwrite_x=False):
    """
    2-D discrete inverse Fourier transform of real or complex sequence.

    Return inverse 2-D discrete Fourier transform of
    arbitrary type sequence x.

    See `ifft` for more information.

    See also
    --------
    fft2, ifft

    Examples
    --------
    >>> from scipy.fftpack import fft2, ifft2
    >>> y = np.mgrid[:5, :5][0]
    >>> y
    array([[0, 0, 0, 0, 0],
           [1, 1, 1, 1, 1],
           [2, 2, 2, 2, 2],
           [3, 3, 3, 3, 3],
           [4, 4, 4, 4, 4]])
    >>> np.allclose(y, fft2(ifft2(y)))
    True

    """
    return ifftn(x,shape,axes,overwrite_x)