seungmin lee

add code with libraries

Showing 87 changed files with 47359 additions and 0 deletions

Too many changes to show.

To preserve performance only 87 of 87+ files are displayed.

1 +/a/airfield 2
2 +/a/airplane_cabin 1
3 +/a/airport_terminal 1
4 +/a/alcove 1
5 +/a/alley 2
6 +/a/amphitheater 2
7 +/a/amusement_arcade 1
8 +/a/amusement_park 2
9 +/a/apartment_building/outdoor 2
10 +/a/aquarium 1
11 +/a/aqueduct 2
12 +/a/arcade 1
13 +/a/arch 2
14 +/a/archaelogical_excavation 1
15 +/a/archive 1
16 +/a/arena/hockey 1
17 +/a/arena/performance 1
18 +/a/arena/rodeo 1
19 +/a/army_base 2
20 +/a/art_gallery 1
21 +/a/art_school 1
22 +/a/art_studio 1
23 +/a/artists_loft 1
24 +/a/assembly_line 1
25 +/a/athletic_field/outdoor 2
26 +/a/atrium/public 1
27 +/a/attic 1
28 +/a/auditorium 1
29 +/a/auto_factory 1
30 +/a/auto_showroom 1
31 +/b/badlands 2
32 +/b/bakery/shop 1
33 +/b/balcony/exterior 2
34 +/b/balcony/interior 2
35 +/b/ball_pit 1
36 +/b/ballroom 1
37 +/b/bamboo_forest 2
38 +/b/bank_vault 1
39 +/b/banquet_hall 1
40 +/b/bar 1
41 +/b/barn 2
42 +/b/barndoor 2
43 +/b/baseball_field 2
44 +/b/basement 1
45 +/b/basketball_court/indoor 1
46 +/b/bathroom 1
47 +/b/bazaar/indoor 1
48 +/b/bazaar/outdoor 2
49 +/b/beach 2
50 +/b/beach_house 2
51 +/b/beauty_salon 1
52 +/b/bedchamber 1
53 +/b/bedroom 1
54 +/b/beer_garden 2
55 +/b/beer_hall 1
56 +/b/berth 1
57 +/b/biology_laboratory 1
58 +/b/boardwalk 2
59 +/b/boat_deck 2
60 +/b/boathouse 2
61 +/b/bookstore 1
62 +/b/booth/indoor 1
63 +/b/botanical_garden 2
64 +/b/bow_window/indoor 1
65 +/b/bowling_alley 1
66 +/b/boxing_ring 1
67 +/b/bridge 2
68 +/b/building_facade 2
69 +/b/bullring 2
70 +/b/burial_chamber 1
71 +/b/bus_interior 1
72 +/b/bus_station/indoor 2
73 +/b/butchers_shop 1
74 +/b/butte 2
75 +/c/cabin/outdoor 2
76 +/c/cafeteria 1
77 +/c/campsite 2
78 +/c/campus 2
79 +/c/canal/natural 2
80 +/c/canal/urban 2
81 +/c/candy_store 1
82 +/c/canyon 2
83 +/c/car_interior 1
84 +/c/carrousel 2
85 +/c/castle 2
86 +/c/catacomb 1
87 +/c/cemetery 2
88 +/c/chalet 2
89 +/c/chemistry_lab 1
90 +/c/childs_room 1
91 +/c/church/indoor 1
92 +/c/church/outdoor 2
93 +/c/classroom 1
94 +/c/clean_room 1
95 +/c/cliff 2
96 +/c/closet 1
97 +/c/clothing_store 1
98 +/c/coast 2
99 +/c/cockpit 1
100 +/c/coffee_shop 1
101 +/c/computer_room 1
102 +/c/conference_center 1
103 +/c/conference_room 1
104 +/c/construction_site 2
105 +/c/corn_field 2
106 +/c/corral 2
107 +/c/corridor 1
108 +/c/cottage 2
109 +/c/courthouse 2
110 +/c/courtyard 2
111 +/c/creek 2
112 +/c/crevasse 2
113 +/c/crosswalk 2
114 +/d/dam 2
115 +/d/delicatessen 1
116 +/d/department_store 1
117 +/d/desert/sand 2
118 +/d/desert/vegetation 2
119 +/d/desert_road 2
120 +/d/diner/outdoor 2
121 +/d/dining_hall 1
122 +/d/dining_room 1
123 +/d/discotheque 1
124 +/d/doorway/outdoor 2
125 +/d/dorm_room 1
126 +/d/downtown 2
127 +/d/dressing_room 1
128 +/d/driveway 2
129 +/d/drugstore 1
130 +/e/elevator/door 1
131 +/e/elevator_lobby 1
132 +/e/elevator_shaft 1
133 +/e/embassy 2
134 +/e/engine_room 1
135 +/e/entrance_hall 1
136 +/e/escalator/indoor 1
137 +/e/excavation 2
138 +/f/fabric_store 1
139 +/f/farm 2
140 +/f/fastfood_restaurant 1
141 +/f/field/cultivated 2
142 +/f/field/wild 2
143 +/f/field_road 2
144 +/f/fire_escape 2
145 +/f/fire_station 2
146 +/f/fishpond 2
147 +/f/flea_market/indoor 1
148 +/f/florist_shop/indoor 1
149 +/f/food_court 1
150 +/f/football_field 2
151 +/f/forest/broadleaf 2
152 +/f/forest_path 2
153 +/f/forest_road 2
154 +/f/formal_garden 2
155 +/f/fountain 2
156 +/g/galley 1
157 +/g/garage/indoor 1
158 +/g/garage/outdoor 2
159 +/g/gas_station 2
160 +/g/gazebo/exterior 2
161 +/g/general_store/indoor 1
162 +/g/general_store/outdoor 2
163 +/g/gift_shop 1
164 +/g/glacier 2
165 +/g/golf_course 2
166 +/g/greenhouse/indoor 1
167 +/g/greenhouse/outdoor 2
168 +/g/grotto 2
169 +/g/gymnasium/indoor 1
170 +/h/hangar/indoor 1
171 +/h/hangar/outdoor 2
172 +/h/harbor 2
173 +/h/hardware_store 1
174 +/h/hayfield 2
175 +/h/heliport 2
176 +/h/highway 2
177 +/h/home_office 1
178 +/h/home_theater 1
179 +/h/hospital 2
180 +/h/hospital_room 1
181 +/h/hot_spring 2
182 +/h/hotel/outdoor 2
183 +/h/hotel_room 1
184 +/h/house 2
185 +/h/hunting_lodge/outdoor 2
186 +/i/ice_cream_parlor 1
187 +/i/ice_floe 2
188 +/i/ice_shelf 2
189 +/i/ice_skating_rink/indoor 1
190 +/i/ice_skating_rink/outdoor 2
191 +/i/iceberg 2
192 +/i/igloo 2
193 +/i/industrial_area 2
194 +/i/inn/outdoor 2
195 +/i/islet 2
196 +/j/jacuzzi/indoor 1
197 +/j/jail_cell 1
198 +/j/japanese_garden 2
199 +/j/jewelry_shop 1
200 +/j/junkyard 2
201 +/k/kasbah 2
202 +/k/kennel/outdoor 2
203 +/k/kindergarden_classroom 1
204 +/k/kitchen 1
205 +/l/lagoon 2
206 +/l/lake/natural 2
207 +/l/landfill 2
208 +/l/landing_deck 2
209 +/l/laundromat 1
210 +/l/lawn 2
211 +/l/lecture_room 1
212 +/l/legislative_chamber 1
213 +/l/library/indoor 1
214 +/l/library/outdoor 2
215 +/l/lighthouse 2
216 +/l/living_room 1
217 +/l/loading_dock 2
218 +/l/lobby 1
219 +/l/lock_chamber 2
220 +/l/locker_room 1
221 +/m/mansion 2
222 +/m/manufactured_home 2
223 +/m/market/indoor 1
224 +/m/market/outdoor 2
225 +/m/marsh 2
226 +/m/martial_arts_gym 1
227 +/m/mausoleum 2
228 +/m/medina 2
229 +/m/mezzanine 1
230 +/m/moat/water 2
231 +/m/mosque/outdoor 2
232 +/m/motel 2
233 +/m/mountain 2
234 +/m/mountain_path 2
235 +/m/mountain_snowy 2
236 +/m/movie_theater/indoor 1
237 +/m/museum/indoor 1
238 +/m/museum/outdoor 2
239 +/m/music_studio 1
240 +/n/natural_history_museum 1
241 +/n/nursery 1
242 +/n/nursing_home 1
243 +/o/oast_house 2
244 +/o/ocean 2
245 +/o/office 1
246 +/o/office_building 2
247 +/o/office_cubicles 1
248 +/o/oilrig 2
249 +/o/operating_room 1
250 +/o/orchard 2
251 +/o/orchestra_pit 1
252 +/p/pagoda 2
253 +/p/palace 2
254 +/p/pantry 1
255 +/p/park 2
256 +/p/parking_garage/indoor 1
257 +/p/parking_garage/outdoor 2
258 +/p/parking_lot 2
259 +/p/pasture 2
260 +/p/patio 2
261 +/p/pavilion 2
262 +/p/pet_shop 1
263 +/p/pharmacy 1
264 +/p/phone_booth 2
265 +/p/physics_laboratory 1
266 +/p/picnic_area 2
267 +/p/pier 2
268 +/p/pizzeria 1
269 +/p/playground 2
270 +/p/playroom 1
271 +/p/plaza 2
272 +/p/pond 2
273 +/p/porch 2
274 +/p/promenade 2
275 +/p/pub/indoor 1
276 +/r/racecourse 2
277 +/r/raceway 2
278 +/r/raft 2
279 +/r/railroad_track 2
280 +/r/rainforest 2
281 +/r/reception 1
282 +/r/recreation_room 1
283 +/r/repair_shop 1
284 +/r/residential_neighborhood 2
285 +/r/restaurant 1
286 +/r/restaurant_kitchen 1
287 +/r/restaurant_patio 2
288 +/r/rice_paddy 2
289 +/r/river 2
290 +/r/rock_arch 2
291 +/r/roof_garden 2
292 +/r/rope_bridge 2
293 +/r/ruin 2
294 +/r/runway 2
295 +/s/sandbox 2
296 +/s/sauna 1
297 +/s/schoolhouse 2
298 +/s/science_museum 1
299 +/s/server_room 1
300 +/s/shed 2
301 +/s/shoe_shop 1
302 +/s/shopfront 2
303 +/s/shopping_mall/indoor 1
304 +/s/shower 1
305 +/s/ski_resort 2
306 +/s/ski_slope 2
307 +/s/sky 2
308 +/s/skyscraper 2
309 +/s/slum 2
310 +/s/snowfield 2
311 +/s/soccer_field 2
312 +/s/stable 1
313 +/s/stadium/baseball 2
314 +/s/stadium/football 2
315 +/s/stadium/soccer 2
316 +/s/stage/indoor 1
317 +/s/stage/outdoor 2
318 +/s/staircase 1
319 +/s/storage_room 1
320 +/s/street 2
321 +/s/subway_station/platform 1
322 +/s/supermarket 1
323 +/s/sushi_bar 1
324 +/s/swamp 2
325 +/s/swimming_hole 1
326 +/s/swimming_pool/indoor 1
327 +/s/swimming_pool/outdoor 2
328 +/s/synagogue/outdoor 2
329 +/t/television_room 1
330 +/t/television_studio 1
331 +/t/temple/asia 2
332 +/t/throne_room 1
333 +/t/ticket_booth 1
334 +/t/topiary_garden 2
335 +/t/tower 2
336 +/t/toyshop 1
337 +/t/train_interior 1
338 +/t/train_station/platform 1
339 +/t/tree_farm 2
340 +/t/tree_house 2
341 +/t/trench 2
342 +/t/tundra 2
343 +/u/underwater/ocean_deep 2
344 +/u/utility_room 1
345 +/v/valley 2
346 +/v/vegetable_garden 2
347 +/v/veterinarians_office 1
348 +/v/viaduct 2
349 +/v/village 2
350 +/v/vineyard 2
351 +/v/volcano 2
352 +/v/volleyball_court/outdoor 2
353 +/w/waiting_room 1
354 +/w/water_park 2
355 +/w/water_tower 2
356 +/w/waterfall 2
357 +/w/watering_hole 2
358 +/w/wave 2
359 +/w/wet_bar 1
360 +/w/wheat_field 2
361 +/w/wind_farm 2
362 +/w/windmill 2
363 +/y/yard 2
364 +/y/youth_hostel 1
365 +/z/zen_garden 2
1 +#================================================================
2 +# COVID-19 전파 위험도 추정 : 물체 및 장면 감지를 사용한 실시간 화면 분석
3 +# Estimation of COVID-19 Transmission Risk: Real-time Screen
4 +# Analysis using Object and Scene Detection
5 +# Team - 최공이조
6 +# version 1.0
7 +#================================================================
8 +from ctypes import *
9 +import math
10 +import random
11 +import os
12 +import cv2
13 +import numpy as np
14 +import time
15 +import darknet
16 +import placesCNN
17 +from itertools import combinations
18 +
19 +
20 +risk_inout = False
21 +def is_close(p1, p2, h1, h2):
22 + """
23 + 1. Purpose : 두 점 사이의 거리 계산 -> 거리 판단(사회적 거리두기)
24 + Args:
25 + p1, p2 = 거리 계산을 위한 두 점
26 + h1, h2 = 높이
27 + Returns:
28 + check = 일정 거리 이상 차이나는지 check 함
29 + """
30 +
31 + dst = math.sqrt(p1**2 + p2**2) # 1. 두 점 사이의 거리
32 + Aver = (h1+h2)/2 # 2. 높이의 평균
33 + check = False
34 +
35 + if dst < Aver : # 두 점 사이 거리 < 높이 평균
36 + check = True
37 + if max(h1,h2)/min(h1,h2) > 1.5:
38 + check = False
39 + return check # 일정 거리 이상 차이나는지 여부
40 +
41 +
42 +def convertBack(x, y, w, h):
43 + """
44 + 2. Purpose : 중심 좌표를 직사각형 좌표로 변환
45 + Args:
46 + x, y = midpoint of bbox
47 + w, h = width, height of the bbox
48 + Returns:
49 + xmin, ymin, xmax, ymax
50 + """
51 +
52 + xmin = int(round(x - (w / 2)))
53 + xmax = int(round(x + (w / 2)))
54 + ymin = int(round(y - (h / 2)))
55 + ymax = int(round(y + (h / 2)))
56 + return xmin, ymin, xmax, ymax
57 +
58 +
59 +def cvDrawBoxes(detections, img):
60 + """
61 + 3.1 Purpose : Person 및 Mask 클래스를 필터링하고 각 탐지에 대한 경계 상자 중심을 가져옴
62 + Args:
63 + detections = total detections in one frame
64 + img = image from detect_image method of darknet
65 + Returns:
66 + img with bbox
67 + """
68 +
69 + if len(detections) > 0: # 프레임에서 감지 여부 확인 (1번 이상)
70 + centroid_dict = dict() # person 사전
71 + mask_good_centroid_dict = dict() # Mask(Good) 사전
72 + mask_bad_centroid_dict = dict() # Mask(Bad)) 사전
73 + mask_back_none_centroid_dict = dict() # Mask(None) 사전
74 +
75 + objectId_Person = 0 # person 객체 Count
76 + objectId_Good = 0 # Mask(Good) 객체 Count
77 + objectId_Bad = 0 # Mask(Bad) 객체 Count
78 + objectId_None = 0 # Mask(None) 객체 Count
79 +
80 + # detections 필터링
81 + for detection in detections:
82 + name_tag = str(detection[0]) # Coco 파일의 모든 문자열
83 + # 1. person 태그
84 + if name_tag == 'person':
85 + x, y, w, h = detection[2][0],\
86 + detection[2][1],\
87 + detection[2][2],\
88 + detection[2][3] # 탐지 값 저장
89 + xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h)) # 중심좌표 -> 직사각형 좌표
90 + centroid_dict[objectId_Person] = (int(x), int(y), xmin, ymin, xmax, ymax) # person 사전
91 + objectId_Person += 1 # person 객체 수 Count
92 +
93 + # 2. Mask(good) 태그
94 + if name_tag == 'good':
95 + x, y, w, h = detection[2][0],\
96 + detection[2][1],\
97 + detection[2][2],\
98 + detection[2][3] # 탐지 값 저장
99 + xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h)) # 중심좌표 -> 직사각형 좌표
100 + mask_good_centroid_dict[objectId_Good] = (int(x), int(y), xmin, ymin, xmax, ymax) # Mask(good) 사전
101 + objectId_Good += 1 # Mask(good) 객체 수 Count
102 +
103 + # 3. Mask(bad) 태그
104 + elif name_tag == 'bad':
105 + x, y, w, h = detection[2][0],\
106 + detection[2][1],\
107 + detection[2][2],\
108 + detection[2][3] # 탐지 값 저장
109 + xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h)) # 중심좌표 -> 직사각형 좌표
110 + mask_bad_centroid_dict[objectId_Bad] = (int(x), int(y), xmin, ymin, xmax, ymax) # Mask(bad) 사전
111 + objectId_Bad += 1 # Mask(bad) 객체 수 Count
112 +
113 + # 4. Mask(none) 태그
114 + elif name_tag == 'back' or name_tag == 'none':
115 + x, y, w, h = detection[2][0],\
116 + detection[2][1],\
117 + detection[2][2],\
118 + detection[2][3] # 탐지 값 저장
119 + xmin, ymin, xmax, ymax = convertBack(float(x), float(y), float(w), float(h)) # 중심좌표 -> 직사각형 좌표
120 + mask_back_none_centroid_dict[objectId_None] = (int(x), int(y), xmin, ymin, xmax, ymax, name_tag) # Mask(none) 사전
121 + objectId_None += 1 # Mask(none) 객체 수 Count
122 +
123 +
124 + """
125 + 3.2 Purpose : 사람들 간 bbox가 서로 가까이 있는지 확인 (사회적 거리두기)
126 + """
127 + red_zone_list = [] # red zone 조건에 있는 객체 ID를 포함하는 리스트
128 + red_line_list = []
129 + for (id1, p1), (id2, p2) in combinations(centroid_dict.items(), 2): # 근접 감지의 모든 조합
130 + dx, dy = p1[0] - p2[0], p1[1] - p2[1] # 중심 x : 0, y : 1의 차이 확인
131 + h1, h2 = p1[5] - p1[3], p2[5] - p2[3] # bounding box 높이 계산
132 + distanceCheck = is_close(dx, dy, h1, h2) # 거리계산(사회적거리두기) : is_close 함수
133 + if distanceCheck == True: # 사회적 거리두기 여부
134 + if id1 not in red_zone_list:
135 + red_zone_list.append(id1) # red zone 리스트 추가 : id1
136 + red_line_list.append(p1[0:2])
137 + if id2 not in red_zone_list:
138 + red_zone_list.append(id2) # red zone 리스트 추가 : id2
139 + red_line_list.append(p2[0:2])
140 +
141 + # 1. person 사전
142 + for idx, box in centroid_dict.items():
143 + if idx in red_zone_list: # red zone 리스트 포함 시
144 + cv2.rectangle(img, (box[2], box[3]), (box[4], box[5]), (255, 0, 0), 2) # 빨간색 (red zone)
145 + else:
146 + cv2.rectangle(img, (box[2], box[3]), (box[4], box[5]), (0, 255, 0), 2) # 연두색
147 + # Person 단어 출력 - bbox
148 + font_size = 0.4
149 + labelSize = cv2.getTextSize('Person', cv2.FONT_HERSHEY_COMPLEX, font_size, 2)
150 + _x1 = box[2]
151 + _y1 = box[3]
152 + _x2 = box[2] + labelSize[0][0]
153 + _y2 = box[3] - int(labelSize[0][1])
154 + location = (box[2], box[3])
155 + cv2.rectangle(img, (_x1, _y1), (_x2, _y2), (0, 255, 0), cv2.FILLED)
156 + cv2.putText(img, 'Person', location, cv2.FONT_HERSHEY_COMPLEX, font_size, (0, 0, 0), 1)
157 +
158 + # 2. Mask(good) 사전
159 + for idx, box in mask_good_centroid_dict.items():
160 + cv2.rectangle(img, (box[2], box[3]), (box[4], box[5]), (0, 128, 0), 2) # 초록색
161 + # Good 단어 출력 - bbox
162 + font_size = 0.4
163 + labelSize = cv2.getTextSize('Good', cv2.FONT_HERSHEY_COMPLEX, font_size, 2)
164 + _x1 = box[2]
165 + _y1 = box[3]
166 + _x2 = box[2] + labelSize[0][0]
167 + _y2 = box[3] - int(labelSize[0][1])
168 + location = (box[2], box[3])
169 + cv2.rectangle(img, (_x1, _y1), (_x2, _y2), (0, 128, 0), cv2.FILLED)
170 + cv2.putText(img, 'Good', location, cv2.FONT_HERSHEY_COMPLEX, font_size, (0, 0, 0), 1)
171 +
172 + # 3. Mask(bad) 사전
173 + for idx, box in mask_bad_centroid_dict.items():
174 + cv2.rectangle(img, (box[2], box[3]), (box[4], box[5]), (139, 0, 255), 2) # 보라색
175 + # Bad 단어 출력 - bbox
176 + font_size = 0.4
177 + labelSize = cv2.getTextSize('Bad', cv2.FONT_HERSHEY_COMPLEX, font_size, 2)
178 + _x1 = box[2]
179 + _y1 = box[3]
180 + _x2 = box[2] + labelSize[0][0]
181 + _y2 = box[3] - int(labelSize[0][1])
182 + location = (box[2], box[3])
183 + cv2.rectangle(img, (_x1, _y1), (_x2, _y2), (139, 0, 255), cv2.FILLED)
184 + cv2.putText(img, 'Bad', location, cv2.FONT_HERSHEY_COMPLEX, font_size, (0, 0, 0), 1)
185 +
186 + # 4. Mask(none) 사전
187 + for idx, box in mask_back_none_centroid_dict.items():
188 + cv2.rectangle(img, (box[2], box[3]), (box[4], box[5]), (255, 165, 0), 2) # 주황색
189 + # none 단어 출력 - bbox
190 + font_size = 0.4
191 + labelSize = cv2.getTextSize('None', cv2.FONT_HERSHEY_COMPLEX, 0.4, 2)
192 + _x1 = box[2]
193 + _y1 = box[3]
194 + _x2 = box[2] + labelSize[0][0]
195 + _y2 = box[3] - int(labelSize[0][1])
196 + location = (box[2], box[3])
197 + cv2.rectangle(img, (_x1, _y1), (_x2, _y2), (255, 165, 0), cv2.FILLED)
198 + cv2.putText(img, 'None', location, cv2.FONT_HERSHEY_COMPLEX, 0.4, (0, 0, 0), 1)
199 +
200 +
201 +
202 + """
203 + 3.3 Purpose : Risk 계산 / 출력
204 + """
205 + # 1. 마스크 착용 여부에 따른 위험도
206 + mask_person = objectId_Good + objectId_Bad # 마스크 착용한 사람 수
207 + if mask_person == 0:
208 + mask_point = 0
209 + else:
210 + mask_point = ((objectId_Bad/mask_person) + (objectId_Good/mask_person)*0.15)*100 # 마스크 착용 시 감염 위험률 15% 까지 감소 (질병관리본부)
211 +
212 + # 2. 군중 밀집에 따른 위험도
213 + safe_distance_person = objectId_Person - len(red_zone_list) # 안전한 거리에 있는 사람 수
214 + if objectId_Person == 0:
215 + distance_point = 0
216 + else:
217 + distance_point = ((len(red_zone_list)/objectId_Person) + (safe_distance_person/objectId_Person)*0.18)*100 # 안전한 거리에 있을 시 감염 위험률 18% 까지 감소 (질병관리본부)
218 +
219 + # [1, 2]에 따른 위험도 산출
220 + risk_point = mask_point + distance_point
221 +
222 + # 3. 장소 - 공간 개폐 여부
223 + if risk_inout: # 실내에 있으면 위험도 증가
224 + risk_point *= 1.5
225 +
226 +
227 + """ 출력 """
228 + # Risk 값
229 + text = "Risk Score : %0.2f" % risk_point
230 +
231 + # risk에 따른 등급
232 + grade_text = "Risk Grade : "
233 + if risk_point < 60:
234 + grade_text += "Safe"
235 + elif 60 <= risk_point < 100:
236 + grade_text += "Lower Risk(Caution)"
237 + elif 100 <= risk_point < 140:
238 + grade_text += "Medium Risk"
239 + elif 140 <= risk_point < 180:
240 + grade_text += "High Risk"
241 + else:
242 + grade_text += "Very High Risk"
243 +
244 + # Mask 및 distance text
245 + mask_text = "Good : {0} Bad : {1} None : {2}".format(objectId_Good, objectId_Bad, objectId_None)
246 + distance_text = "RedP : {0} GreenP : {1}".format(len(red_zone_list), safe_distance_person)
247 +
248 + # display - 좌측상단
249 + location = (10,25)
250 + cv2.putText(img, text, location, cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 2, cv2.LINE_AA)
251 + location = (10,60)
252 + cv2.putText(img, grade_text, location, cv2.FONT_HERSHEY_SIMPLEX, 1, (255,0,0), 2, cv2.LINE_AA)
253 + location = (10,95)
254 + cv2.putText(img, mask_text, location, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,0), 2, cv2.LINE_AA)
255 + location = (10,130)
256 + cv2.putText(img, distance_text, location, cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255,0,0), 2, cv2.LINE_AA)
257 +
258 + return img
259 +
260 +netMain = None
261 +metaMain = None
262 +altNames = None
263 +def YOLO():
264 + """
265 + Perform Object detection
266 + """
267 + global metaMain, netMain, altNames
268 + configPath = "./cfg/yolov4-custom-5class.cfg"
269 + weightPath = "./yolov4-custom-5class_7000.weights"
270 + metaPath = "./data/obj.data"
271 + if not os.path.exists(configPath):
272 + raise ValueError("Invalid config path `" +
273 + os.path.abspath(configPath)+"`")
274 + if not os.path.exists(weightPath):
275 + raise ValueError("Invalid weight path `" +
276 + os.path.abspath(weightPath)+"`")
277 + if not os.path.exists(metaPath):
278 + raise ValueError("Invalid data file path `" +
279 + os.path.abspath(metaPath)+"`")
280 + if netMain is None:
281 + netMain = darknet.load_net_custom(configPath.encode(
282 + "ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
283 + if metaMain is None:
284 + metaMain = darknet.load_meta(metaPath.encode("ascii"))
285 + metaMain = [metaMain.names[i].decode("ascii") for i in range(metaMain.classes)]
286 + if altNames is None:
287 + try:
288 + with open(metaPath) as metaFH:
289 + metaContents = metaFH.read()
290 + import re
291 + match = re.search("names *= *(.*)$", metaContents,
292 + re.IGNORECASE | re.MULTILINE)
293 + if match:
294 + result = match.group(1)
295 + else:
296 + result = None
297 + try:
298 + if os.path.exists(result):
299 + with open(result) as namesFH:
300 + namesList = namesFH.read().strip().split("\n")
301 + altNames = [x.strip() for x in namesList]
302 + except TypeError:
303 + pass
304 + except Exception:
305 + pass
306 +
307 + cap = cv2.VideoCapture(0) # 캠사용
308 + # cap = cv2.VideoCapture("./test.mp4")
309 + frame_width = int(cap.get(3))
310 + frame_height = int(cap.get(4))
311 + new_height, new_width = frame_height // 2, frame_width // 2
312 +
313 + out = cv2.VideoWriter(
314 + "./cctv_sample_output.avi", cv2.VideoWriter_fourcc(*"MJPG"), 10.0,
315 + (new_width, new_height))
316 +
317 + # Create an image we reuse for each detect
318 + darknet_image = darknet.make_image(new_width, new_height, 3)
319 +
320 + while True:
321 + prev_time = time.time()
322 + ret, frame_read = cap.read()
323 + # Check if frame present :: 'ret' returns True if frame present, otherwise break the loop.
324 + if not ret:
325 + break
326 +
327 + frame_rgb = cv2.cvtColor(frame_read, cv2.COLOR_BGR2RGB)
328 + frame_resized = cv2.resize(frame_rgb,
329 + (new_width, new_height),
330 + interpolation=cv2.INTER_LINEAR)
331 +
332 + darknet.copy_image_from_bytes(darknet_image,frame_resized.tobytes())
333 +
334 + detections = darknet.detect_image(netMain, metaMain, darknet_image, thresh=0.25)
335 + image = cvDrawBoxes(detections, frame_resized)
336 + image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
337 + print(1/(time.time()-prev_time))
338 + cv2.imshow('Demo', image)
339 + cv2.waitKey(3)
340 + out.write(image)
341 +
342 + cap.release()
343 + out.release()
344 + print(":::Video Write Completed")
345 +
346 +if __name__ == "__main__":
347 + risk_inout = placesCNN.run_place_detect()
348 + YOLO()
No preview for this file type
No preview for this file type
No preview for this file type
No preview for this file type
1 +/a/airfield 0
2 +/a/airplane_cabin 1
3 +/a/airport_terminal 2
4 +/a/alcove 3
5 +/a/alley 4
6 +/a/amphitheater 5
7 +/a/amusement_arcade 6
8 +/a/amusement_park 7
9 +/a/apartment_building/outdoor 8
10 +/a/aquarium 9
11 +/a/aqueduct 10
12 +/a/arcade 11
13 +/a/arch 12
14 +/a/archaelogical_excavation 13
15 +/a/archive 14
16 +/a/arena/hockey 15
17 +/a/arena/performance 16
18 +/a/arena/rodeo 17
19 +/a/army_base 18
20 +/a/art_gallery 19
21 +/a/art_school 20
22 +/a/art_studio 21
23 +/a/artists_loft 22
24 +/a/assembly_line 23
25 +/a/athletic_field/outdoor 24
26 +/a/atrium/public 25
27 +/a/attic 26
28 +/a/auditorium 27
29 +/a/auto_factory 28
30 +/a/auto_showroom 29
31 +/b/badlands 30
32 +/b/bakery/shop 31
33 +/b/balcony/exterior 32
34 +/b/balcony/interior 33
35 +/b/ball_pit 34
36 +/b/ballroom 35
37 +/b/bamboo_forest 36
38 +/b/bank_vault 37
39 +/b/banquet_hall 38
40 +/b/bar 39
41 +/b/barn 40
42 +/b/barndoor 41
43 +/b/baseball_field 42
44 +/b/basement 43
45 +/b/basketball_court/indoor 44
46 +/b/bathroom 45
47 +/b/bazaar/indoor 46
48 +/b/bazaar/outdoor 47
49 +/b/beach 48
50 +/b/beach_house 49
51 +/b/beauty_salon 50
52 +/b/bedchamber 51
53 +/b/bedroom 52
54 +/b/beer_garden 53
55 +/b/beer_hall 54
56 +/b/berth 55
57 +/b/biology_laboratory 56
58 +/b/boardwalk 57
59 +/b/boat_deck 58
60 +/b/boathouse 59
61 +/b/bookstore 60
62 +/b/booth/indoor 61
63 +/b/botanical_garden 62
64 +/b/bow_window/indoor 63
65 +/b/bowling_alley 64
66 +/b/boxing_ring 65
67 +/b/bridge 66
68 +/b/building_facade 67
69 +/b/bullring 68
70 +/b/burial_chamber 69
71 +/b/bus_interior 70
72 +/b/bus_station/indoor 71
73 +/b/butchers_shop 72
74 +/b/butte 73
75 +/c/cabin/outdoor 74
76 +/c/cafeteria 75
77 +/c/campsite 76
78 +/c/campus 77
79 +/c/canal/natural 78
80 +/c/canal/urban 79
81 +/c/candy_store 80
82 +/c/canyon 81
83 +/c/car_interior 82
84 +/c/carrousel 83
85 +/c/castle 84
86 +/c/catacomb 85
87 +/c/cemetery 86
88 +/c/chalet 87
89 +/c/chemistry_lab 88
90 +/c/childs_room 89
91 +/c/church/indoor 90
92 +/c/church/outdoor 91
93 +/c/classroom 92
94 +/c/clean_room 93
95 +/c/cliff 94
96 +/c/closet 95
97 +/c/clothing_store 96
98 +/c/coast 97
99 +/c/cockpit 98
100 +/c/coffee_shop 99
101 +/c/computer_room 100
102 +/c/conference_center 101
103 +/c/conference_room 102
104 +/c/construction_site 103
105 +/c/corn_field 104
106 +/c/corral 105
107 +/c/corridor 106
108 +/c/cottage 107
109 +/c/courthouse 108
110 +/c/courtyard 109
111 +/c/creek 110
112 +/c/crevasse 111
113 +/c/crosswalk 112
114 +/d/dam 113
115 +/d/delicatessen 114
116 +/d/department_store 115
117 +/d/desert/sand 116
118 +/d/desert/vegetation 117
119 +/d/desert_road 118
120 +/d/diner/outdoor 119
121 +/d/dining_hall 120
122 +/d/dining_room 121
123 +/d/discotheque 122
124 +/d/doorway/outdoor 123
125 +/d/dorm_room 124
126 +/d/downtown 125
127 +/d/dressing_room 126
128 +/d/driveway 127
129 +/d/drugstore 128
130 +/e/elevator/door 129
131 +/e/elevator_lobby 130
132 +/e/elevator_shaft 131
133 +/e/embassy 132
134 +/e/engine_room 133
135 +/e/entrance_hall 134
136 +/e/escalator/indoor 135
137 +/e/excavation 136
138 +/f/fabric_store 137
139 +/f/farm 138
140 +/f/fastfood_restaurant 139
141 +/f/field/cultivated 140
142 +/f/field/wild 141
143 +/f/field_road 142
144 +/f/fire_escape 143
145 +/f/fire_station 144
146 +/f/fishpond 145
147 +/f/flea_market/indoor 146
148 +/f/florist_shop/indoor 147
149 +/f/food_court 148
150 +/f/football_field 149
151 +/f/forest/broadleaf 150
152 +/f/forest_path 151
153 +/f/forest_road 152
154 +/f/formal_garden 153
155 +/f/fountain 154
156 +/g/galley 155
157 +/g/garage/indoor 156
158 +/g/garage/outdoor 157
159 +/g/gas_station 158
160 +/g/gazebo/exterior 159
161 +/g/general_store/indoor 160
162 +/g/general_store/outdoor 161
163 +/g/gift_shop 162
164 +/g/glacier 163
165 +/g/golf_course 164
166 +/g/greenhouse/indoor 165
167 +/g/greenhouse/outdoor 166
168 +/g/grotto 167
169 +/g/gymnasium/indoor 168
170 +/h/hangar/indoor 169
171 +/h/hangar/outdoor 170
172 +/h/harbor 171
173 +/h/hardware_store 172
174 +/h/hayfield 173
175 +/h/heliport 174
176 +/h/highway 175
177 +/h/home_office 176
178 +/h/home_theater 177
179 +/h/hospital 178
180 +/h/hospital_room 179
181 +/h/hot_spring 180
182 +/h/hotel/outdoor 181
183 +/h/hotel_room 182
184 +/h/house 183
185 +/h/hunting_lodge/outdoor 184
186 +/i/ice_cream_parlor 185
187 +/i/ice_floe 186
188 +/i/ice_shelf 187
189 +/i/ice_skating_rink/indoor 188
190 +/i/ice_skating_rink/outdoor 189
191 +/i/iceberg 190
192 +/i/igloo 191
193 +/i/industrial_area 192
194 +/i/inn/outdoor 193
195 +/i/islet 194
196 +/j/jacuzzi/indoor 195
197 +/j/jail_cell 196
198 +/j/japanese_garden 197
199 +/j/jewelry_shop 198
200 +/j/junkyard 199
201 +/k/kasbah 200
202 +/k/kennel/outdoor 201
203 +/k/kindergarden_classroom 202
204 +/k/kitchen 203
205 +/l/lagoon 204
206 +/l/lake/natural 205
207 +/l/landfill 206
208 +/l/landing_deck 207
209 +/l/laundromat 208
210 +/l/lawn 209
211 +/l/lecture_room 210
212 +/l/legislative_chamber 211
213 +/l/library/indoor 212
214 +/l/library/outdoor 213
215 +/l/lighthouse 214
216 +/l/living_room 215
217 +/l/loading_dock 216
218 +/l/lobby 217
219 +/l/lock_chamber 218
220 +/l/locker_room 219
221 +/m/mansion 220
222 +/m/manufactured_home 221
223 +/m/market/indoor 222
224 +/m/market/outdoor 223
225 +/m/marsh 224
226 +/m/martial_arts_gym 225
227 +/m/mausoleum 226
228 +/m/medina 227
229 +/m/mezzanine 228
230 +/m/moat/water 229
231 +/m/mosque/outdoor 230
232 +/m/motel 231
233 +/m/mountain 232
234 +/m/mountain_path 233
235 +/m/mountain_snowy 234
236 +/m/movie_theater/indoor 235
237 +/m/museum/indoor 236
238 +/m/museum/outdoor 237
239 +/m/music_studio 238
240 +/n/natural_history_museum 239
241 +/n/nursery 240
242 +/n/nursing_home 241
243 +/o/oast_house 242
244 +/o/ocean 243
245 +/o/office 244
246 +/o/office_building 245
247 +/o/office_cubicles 246
248 +/o/oilrig 247
249 +/o/operating_room 248
250 +/o/orchard 249
251 +/o/orchestra_pit 250
252 +/p/pagoda 251
253 +/p/palace 252
254 +/p/pantry 253
255 +/p/park 254
256 +/p/parking_garage/indoor 255
257 +/p/parking_garage/outdoor 256
258 +/p/parking_lot 257
259 +/p/pasture 258
260 +/p/patio 259
261 +/p/pavilion 260
262 +/p/pet_shop 261
263 +/p/pharmacy 262
264 +/p/phone_booth 263
265 +/p/physics_laboratory 264
266 +/p/picnic_area 265
267 +/p/pier 266
268 +/p/pizzeria 267
269 +/p/playground 268
270 +/p/playroom 269
271 +/p/plaza 270
272 +/p/pond 271
273 +/p/porch 272
274 +/p/promenade 273
275 +/p/pub/indoor 274
276 +/r/racecourse 275
277 +/r/raceway 276
278 +/r/raft 277
279 +/r/railroad_track 278
280 +/r/rainforest 279
281 +/r/reception 280
282 +/r/recreation_room 281
283 +/r/repair_shop 282
284 +/r/residential_neighborhood 283
285 +/r/restaurant 284
286 +/r/restaurant_kitchen 285
287 +/r/restaurant_patio 286
288 +/r/rice_paddy 287
289 +/r/river 288
290 +/r/rock_arch 289
291 +/r/roof_garden 290
292 +/r/rope_bridge 291
293 +/r/ruin 292
294 +/r/runway 293
295 +/s/sandbox 294
296 +/s/sauna 295
297 +/s/schoolhouse 296
298 +/s/science_museum 297
299 +/s/server_room 298
300 +/s/shed 299
301 +/s/shoe_shop 300
302 +/s/shopfront 301
303 +/s/shopping_mall/indoor 302
304 +/s/shower 303
305 +/s/ski_resort 304
306 +/s/ski_slope 305
307 +/s/sky 306
308 +/s/skyscraper 307
309 +/s/slum 308
310 +/s/snowfield 309
311 +/s/soccer_field 310
312 +/s/stable 311
313 +/s/stadium/baseball 312
314 +/s/stadium/football 313
315 +/s/stadium/soccer 314
316 +/s/stage/indoor 315
317 +/s/stage/outdoor 316
318 +/s/staircase 317
319 +/s/storage_room 318
320 +/s/street 319
321 +/s/subway_station/platform 320
322 +/s/supermarket 321
323 +/s/sushi_bar 322
324 +/s/swamp 323
325 +/s/swimming_hole 324
326 +/s/swimming_pool/indoor 325
327 +/s/swimming_pool/outdoor 326
328 +/s/synagogue/outdoor 327
329 +/t/television_room 328
330 +/t/television_studio 329
331 +/t/temple/asia 330
332 +/t/throne_room 331
333 +/t/ticket_booth 332
334 +/t/topiary_garden 333
335 +/t/tower 334
336 +/t/toyshop 335
337 +/t/train_interior 336
338 +/t/train_station/platform 337
339 +/t/tree_farm 338
340 +/t/tree_house 339
341 +/t/trench 340
342 +/t/tundra 341
343 +/u/underwater/ocean_deep 342
344 +/u/utility_room 343
345 +/v/valley 344
346 +/v/vegetable_garden 345
347 +/v/veterinarians_office 346
348 +/v/viaduct 347
349 +/v/village 348
350 +/v/vineyard 349
351 +/v/volcano 350
352 +/v/volleyball_court/outdoor 351
353 +/w/waiting_room 352
354 +/w/water_park 353
355 +/w/water_tower 354
356 +/w/waterfall 355
357 +/w/watering_hole 356
358 +/w/wave 357
359 +/w/wet_bar 358
360 +/w/wheat_field 359
361 +/w/wind_farm 360
362 +/w/windmill 361
363 +/y/yard 362
364 +/y/youth_hostel 363
365 +/z/zen_garden 364
...\ No newline at end of file ...\ No newline at end of file
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=512
9 +height=512
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.0001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +max_epochs = 300
25 +
26 +[convolutional]
27 +batch_normalize=1
28 +filters=32
29 +size=3
30 +stride=1
31 +pad=1
32 +activation=leaky
33 +
34 +# Downsample
35 +
36 +[convolutional]
37 +batch_normalize=1
38 +filters=64
39 +size=3
40 +stride=2
41 +pad=1
42 +activation=leaky
43 +
44 +[convolutional]
45 +batch_normalize=1
46 +filters=32
47 +size=1
48 +stride=1
49 +pad=1
50 +activation=leaky
51 +
52 +[convolutional]
53 +batch_normalize=1
54 +filters=64
55 +size=3
56 +stride=1
57 +pad=1
58 +activation=leaky
59 +
60 +[shortcut]
61 +from=-3
62 +activation=linear
63 +
64 +# Downsample
65 +
66 +[convolutional]
67 +batch_normalize=1
68 +filters=128
69 +size=3
70 +stride=2
71 +pad=1
72 +activation=leaky
73 +
74 +[convolutional]
75 +batch_normalize=1
76 +filters=64
77 +size=1
78 +stride=1
79 +pad=1
80 +activation=leaky
81 +
82 +[convolutional]
83 +batch_normalize=1
84 +filters=128
85 +size=3
86 +stride=1
87 +pad=1
88 +activation=leaky
89 +
90 +[shortcut]
91 +from=-3
92 +activation=linear
93 +
94 +[convolutional]
95 +batch_normalize=1
96 +filters=64
97 +size=1
98 +stride=1
99 +pad=1
100 +activation=leaky
101 +
102 +[convolutional]
103 +batch_normalize=1
104 +filters=128
105 +size=3
106 +stride=1
107 +pad=1
108 +activation=leaky
109 +
110 +[shortcut]
111 +from=-3
112 +activation=linear
113 +
114 +# Downsample
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=256
119 +size=3
120 +stride=2
121 +pad=1
122 +activation=leaky
123 +
124 +[convolutional]
125 +batch_normalize=1
126 +filters=128
127 +size=1
128 +stride=1
129 +pad=1
130 +activation=leaky
131 +
132 +[convolutional]
133 +batch_normalize=1
134 +filters=256
135 +size=3
136 +stride=1
137 +pad=1
138 +activation=leaky
139 +
140 +[shortcut]
141 +from=-3
142 +activation=linear
143 +
144 +[convolutional]
145 +batch_normalize=1
146 +filters=128
147 +size=1
148 +stride=1
149 +pad=1
150 +activation=leaky
151 +
152 +[convolutional]
153 +batch_normalize=1
154 +filters=256
155 +size=3
156 +stride=1
157 +pad=1
158 +activation=leaky
159 +
160 +[shortcut]
161 +from=-3
162 +activation=linear
163 +
164 +[convolutional]
165 +batch_normalize=1
166 +filters=128
167 +size=1
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[convolutional]
173 +batch_normalize=1
174 +filters=256
175 +size=3
176 +stride=1
177 +pad=1
178 +activation=leaky
179 +
180 +[shortcut]
181 +from=-3
182 +activation=linear
183 +
184 +[convolutional]
185 +batch_normalize=1
186 +filters=128
187 +size=1
188 +stride=1
189 +pad=1
190 +activation=leaky
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +filters=256
195 +size=3
196 +stride=1
197 +pad=1
198 +activation=leaky
199 +
200 +[shortcut]
201 +from=-3
202 +activation=linear
203 +
204 +
205 +[convolutional]
206 +batch_normalize=1
207 +filters=128
208 +size=1
209 +stride=1
210 +pad=1
211 +activation=leaky
212 +
213 +[convolutional]
214 +batch_normalize=1
215 +filters=256
216 +size=3
217 +stride=1
218 +pad=1
219 +activation=leaky
220 +
221 +[shortcut]
222 +from=-3
223 +activation=linear
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +filters=128
228 +size=1
229 +stride=1
230 +pad=1
231 +activation=leaky
232 +
233 +[convolutional]
234 +batch_normalize=1
235 +filters=256
236 +size=3
237 +stride=1
238 +pad=1
239 +activation=leaky
240 +
241 +[shortcut]
242 +from=-3
243 +activation=linear
244 +
245 +[convolutional]
246 +batch_normalize=1
247 +filters=128
248 +size=1
249 +stride=1
250 +pad=1
251 +activation=leaky
252 +
253 +[convolutional]
254 +batch_normalize=1
255 +filters=256
256 +size=3
257 +stride=1
258 +pad=1
259 +activation=leaky
260 +
261 +[shortcut]
262 +from=-3
263 +activation=linear
264 +
265 +[convolutional]
266 +batch_normalize=1
267 +filters=128
268 +size=1
269 +stride=1
270 +pad=1
271 +activation=leaky
272 +
273 +[convolutional]
274 +batch_normalize=1
275 +filters=256
276 +size=3
277 +stride=1
278 +pad=1
279 +activation=leaky
280 +
281 +[shortcut]
282 +from=-3
283 +activation=linear
284 +
285 +# Downsample
286 +
287 +[convolutional]
288 +batch_normalize=1
289 +filters=512
290 +size=3
291 +stride=2
292 +pad=1
293 +activation=leaky
294 +
295 +[convolutional]
296 +batch_normalize=1
297 +filters=256
298 +size=1
299 +stride=1
300 +pad=1
301 +activation=leaky
302 +
303 +[convolutional]
304 +batch_normalize=1
305 +filters=512
306 +size=3
307 +stride=1
308 +pad=1
309 +activation=leaky
310 +
311 +[shortcut]
312 +from=-3
313 +activation=linear
314 +
315 +
316 +[convolutional]
317 +batch_normalize=1
318 +filters=256
319 +size=1
320 +stride=1
321 +pad=1
322 +activation=leaky
323 +
324 +[convolutional]
325 +batch_normalize=1
326 +filters=512
327 +size=3
328 +stride=1
329 +pad=1
330 +activation=leaky
331 +
332 +[shortcut]
333 +from=-3
334 +activation=linear
335 +
336 +
337 +[convolutional]
338 +batch_normalize=1
339 +filters=256
340 +size=1
341 +stride=1
342 +pad=1
343 +activation=leaky
344 +
345 +[convolutional]
346 +batch_normalize=1
347 +filters=512
348 +size=3
349 +stride=1
350 +pad=1
351 +activation=leaky
352 +
353 +[shortcut]
354 +from=-3
355 +activation=linear
356 +
357 +
358 +[convolutional]
359 +batch_normalize=1
360 +filters=256
361 +size=1
362 +stride=1
363 +pad=1
364 +activation=leaky
365 +
366 +[convolutional]
367 +batch_normalize=1
368 +filters=512
369 +size=3
370 +stride=1
371 +pad=1
372 +activation=leaky
373 +
374 +[shortcut]
375 +from=-3
376 +activation=linear
377 +
378 +[convolutional]
379 +batch_normalize=1
380 +filters=256
381 +size=1
382 +stride=1
383 +pad=1
384 +activation=leaky
385 +
386 +[convolutional]
387 +batch_normalize=1
388 +filters=512
389 +size=3
390 +stride=1
391 +pad=1
392 +activation=leaky
393 +
394 +[shortcut]
395 +from=-3
396 +activation=linear
397 +
398 +
399 +[convolutional]
400 +batch_normalize=1
401 +filters=256
402 +size=1
403 +stride=1
404 +pad=1
405 +activation=leaky
406 +
407 +[convolutional]
408 +batch_normalize=1
409 +filters=512
410 +size=3
411 +stride=1
412 +pad=1
413 +activation=leaky
414 +
415 +[shortcut]
416 +from=-3
417 +activation=linear
418 +
419 +
420 +[convolutional]
421 +batch_normalize=1
422 +filters=256
423 +size=1
424 +stride=1
425 +pad=1
426 +activation=leaky
427 +
428 +[convolutional]
429 +batch_normalize=1
430 +filters=512
431 +size=3
432 +stride=1
433 +pad=1
434 +activation=leaky
435 +
436 +[shortcut]
437 +from=-3
438 +activation=linear
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=256
443 +size=1
444 +stride=1
445 +pad=1
446 +activation=leaky
447 +
448 +[convolutional]
449 +batch_normalize=1
450 +filters=512
451 +size=3
452 +stride=1
453 +pad=1
454 +activation=leaky
455 +
456 +[shortcut]
457 +from=-3
458 +activation=linear
459 +
460 +# Downsample
461 +
462 +[convolutional]
463 +batch_normalize=1
464 +filters=1024
465 +size=3
466 +stride=2
467 +pad=1
468 +activation=leaky
469 +
470 +[convolutional]
471 +batch_normalize=1
472 +filters=512
473 +size=1
474 +stride=1
475 +pad=1
476 +activation=leaky
477 +
478 +[convolutional]
479 +batch_normalize=1
480 +filters=1024
481 +size=3
482 +stride=1
483 +pad=1
484 +activation=leaky
485 +
486 +[shortcut]
487 +from=-3
488 +activation=linear
489 +
490 +[convolutional]
491 +batch_normalize=1
492 +filters=512
493 +size=1
494 +stride=1
495 +pad=1
496 +activation=leaky
497 +
498 +[convolutional]
499 +batch_normalize=1
500 +filters=1024
501 +size=3
502 +stride=1
503 +pad=1
504 +activation=leaky
505 +
506 +[shortcut]
507 +from=-3
508 +activation=linear
509 +
510 +[convolutional]
511 +batch_normalize=1
512 +filters=512
513 +size=1
514 +stride=1
515 +pad=1
516 +activation=leaky
517 +
518 +[convolutional]
519 +batch_normalize=1
520 +filters=1024
521 +size=3
522 +stride=1
523 +pad=1
524 +activation=leaky
525 +
526 +[shortcut]
527 +from=-3
528 +activation=linear
529 +
530 +[convolutional]
531 +batch_normalize=1
532 +filters=512
533 +size=1
534 +stride=1
535 +pad=1
536 +activation=leaky
537 +
538 +[convolutional]
539 +batch_normalize=1
540 +filters=1024
541 +size=3
542 +stride=1
543 +pad=1
544 +activation=leaky
545 +
546 +[shortcut]
547 +from=-3
548 +activation=linear
549 +
550 +######################
551 +
552 +[convolutional]
553 +batch_normalize=1
554 +filters=512
555 +size=1
556 +stride=1
557 +pad=1
558 +activation=leaky
559 +
560 +[convolutional]
561 +batch_normalize=1
562 +size=3
563 +stride=1
564 +pad=1
565 +filters=1024
566 +activation=leaky
567 +
568 +[convolutional]
569 +batch_normalize=1
570 +filters=512
571 +size=1
572 +stride=1
573 +pad=1
574 +activation=leaky
575 +
576 +[convolutional]
577 +batch_normalize=1
578 +size=3
579 +stride=1
580 +pad=1
581 +filters=1024
582 +activation=leaky
583 +
584 +[convolutional]
585 +batch_normalize=1
586 +filters=512
587 +size=1
588 +stride=1
589 +pad=1
590 +activation=leaky
591 +
592 +[convolutional]
593 +batch_normalize=1
594 +size=3
595 +stride=1
596 +pad=1
597 +filters=1024
598 +activation=leaky
599 +
600 +[convolutional]
601 +size=1
602 +stride=1
603 +pad=1
604 +filters=57
605 +activation=linear
606 +
607 +
608 +[Gaussian_yolo]
609 +mask = 6,7,8
610 +anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
611 +classes=10
612 +num=9
613 +jitter=.3
614 +ignore_thresh = .5
615 +truth_thresh = 1
616 +iou_thresh=0.213
617 +uc_normalizer=1.0
618 +cls_normalizer=1.0
619 +iou_normalizer=0.5
620 +iou_loss=giou
621 +scale_x_y=1.0
622 +random=1
623 +
624 +
625 +[route]
626 +layers = -4
627 +
628 +[convolutional]
629 +batch_normalize=1
630 +filters=256
631 +size=1
632 +stride=1
633 +pad=1
634 +activation=leaky
635 +
636 +[upsample]
637 +stride=2
638 +
639 +[route]
640 +layers = -1, 61
641 +
642 +
643 +
644 +[convolutional]
645 +batch_normalize=1
646 +filters=256
647 +size=1
648 +stride=1
649 +pad=1
650 +activation=leaky
651 +
652 +[convolutional]
653 +batch_normalize=1
654 +size=3
655 +stride=1
656 +pad=1
657 +filters=512
658 +activation=leaky
659 +
660 +[convolutional]
661 +batch_normalize=1
662 +filters=256
663 +size=1
664 +stride=1
665 +pad=1
666 +activation=leaky
667 +
668 +[convolutional]
669 +batch_normalize=1
670 +size=3
671 +stride=1
672 +pad=1
673 +filters=512
674 +activation=leaky
675 +
676 +[convolutional]
677 +batch_normalize=1
678 +filters=256
679 +size=1
680 +stride=1
681 +pad=1
682 +activation=leaky
683 +
684 +[convolutional]
685 +batch_normalize=1
686 +size=3
687 +stride=1
688 +pad=1
689 +filters=512
690 +activation=leaky
691 +
692 +[convolutional]
693 +size=1
694 +stride=1
695 +pad=1
696 +filters=57
697 +activation=linear
698 +
699 +
700 +[Gaussian_yolo]
701 +mask = 3,4,5
702 +anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
703 +classes=10
704 +num=9
705 +jitter=.3
706 +ignore_thresh = .5
707 +truth_thresh = 1
708 +iou_thresh=0.213
709 +uc_normalizer=1.0
710 +cls_normalizer=1.0
711 +iou_normalizer=0.5
712 +iou_loss=giou
713 +scale_x_y=1.0
714 +random=1
715 +
716 +
717 +
718 +[route]
719 +layers = -4
720 +
721 +[convolutional]
722 +batch_normalize=1
723 +filters=128
724 +size=1
725 +stride=1
726 +pad=1
727 +activation=leaky
728 +
729 +[upsample]
730 +stride=2
731 +
732 +[route]
733 +layers = -1, 36
734 +
735 +
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=128
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=leaky
744 +
745 +[convolutional]
746 +batch_normalize=1
747 +size=3
748 +stride=1
749 +pad=1
750 +filters=256
751 +activation=leaky
752 +
753 +[convolutional]
754 +batch_normalize=1
755 +filters=128
756 +size=1
757 +stride=1
758 +pad=1
759 +activation=leaky
760 +
761 +[convolutional]
762 +batch_normalize=1
763 +size=3
764 +stride=1
765 +pad=1
766 +filters=256
767 +activation=leaky
768 +
769 +[convolutional]
770 +batch_normalize=1
771 +filters=128
772 +size=1
773 +stride=1
774 +pad=1
775 +activation=leaky
776 +
777 +[convolutional]
778 +batch_normalize=1
779 +size=3
780 +stride=1
781 +pad=1
782 +filters=256
783 +activation=leaky
784 +
785 +[convolutional]
786 +size=1
787 +stride=1
788 +pad=1
789 +filters=57
790 +activation=linear
791 +
792 +
793 +[Gaussian_yolo]
794 +mask = 0,1,2
795 +anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
796 +classes=10
797 +num=9
798 +jitter=.3
799 +ignore_thresh = .5
800 +truth_thresh = 1
801 +iou_thresh=0.213
802 +uc_normalizer=1.0
803 +cls_normalizer=1.0
804 +iou_normalizer=0.5
805 +iou_loss=giou
806 +scale_x_y=1.0
807 +random=1
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=227
5 +width=227
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +max_crop=256
10 +
11 +learning_rate=0.01
12 +policy=poly
13 +power=4
14 +max_batches=800000
15 +
16 +angle=7
17 +hue = .1
18 +saturation=.75
19 +exposure=.75
20 +aspect=.75
21 +
22 +[convolutional]
23 +filters=96
24 +size=11
25 +stride=4
26 +pad=0
27 +activation=relu
28 +
29 +[maxpool]
30 +size=3
31 +stride=2
32 +padding=0
33 +
34 +[convolutional]
35 +filters=256
36 +size=5
37 +stride=1
38 +pad=1
39 +activation=relu
40 +
41 +[maxpool]
42 +size=3
43 +stride=2
44 +padding=0
45 +
46 +[convolutional]
47 +filters=384
48 +size=3
49 +stride=1
50 +pad=1
51 +activation=relu
52 +
53 +[convolutional]
54 +filters=384
55 +size=3
56 +stride=1
57 +pad=1
58 +activation=relu
59 +
60 +[convolutional]
61 +filters=256
62 +size=3
63 +stride=1
64 +pad=1
65 +activation=relu
66 +
67 +[maxpool]
68 +size=3
69 +stride=2
70 +padding=0
71 +
72 +[connected]
73 +output=4096
74 +activation=relu
75 +
76 +[dropout]
77 +probability=.5
78 +
79 +[connected]
80 +output=4096
81 +activation=relu
82 +
83 +[dropout]
84 +probability=.5
85 +
86 +[connected]
87 +output=1000
88 +activation=linear
89 +
90 +[softmax]
91 +groups=1
92 +
93 +[cost]
94 +type=sse
95 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=8
8 +width=512
9 +height=512
10 +channels=3
11 +momentum=0.949
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.00261
19 +burn_in=1000
20 +max_batches = 500500
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +#cutmix=1
26 +mosaic=1
27 +
28 +#:104x104 54:52x52 85:26x26 104:13x13 for 416
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=32
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=leaky
37 +
38 +# Downsample
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=64
43 +size=3
44 +stride=2
45 +pad=1
46 +activation=leaky
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=1
52 +stride=1
53 +pad=1
54 +activation=leaky
55 +
56 +[route]
57 +layers = -2
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=64
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=leaky
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=32
70 +size=1
71 +stride=1
72 +pad=1
73 +activation=leaky
74 +
75 +[convolutional]
76 +batch_normalize=1
77 +filters=64
78 +size=3
79 +stride=1
80 +pad=1
81 +activation=leaky
82 +
83 +[shortcut]
84 +from=-3
85 +activation=linear
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=64
90 +size=1
91 +stride=1
92 +pad=1
93 +activation=leaky
94 +
95 +[route]
96 +layers = -1,-7
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=64
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=leaky
105 +
106 +# Downsample
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=128
111 +size=3
112 +stride=2
113 +pad=1
114 +activation=leaky
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=64
119 +size=1
120 +stride=1
121 +pad=1
122 +activation=leaky
123 +
124 +[route]
125 +layers = -2
126 +
127 +[convolutional]
128 +batch_normalize=1
129 +filters=64
130 +size=1
131 +stride=1
132 +pad=1
133 +activation=leaky
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=64
138 +size=1
139 +stride=1
140 +pad=1
141 +activation=leaky
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=64
146 +size=3
147 +stride=1
148 +pad=1
149 +activation=leaky
150 +
151 +[shortcut]
152 +from=-3
153 +activation=linear
154 +
155 +[convolutional]
156 +batch_normalize=1
157 +filters=64
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=leaky
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=64
166 +size=3
167 +stride=1
168 +pad=1
169 +activation=leaky
170 +
171 +[shortcut]
172 +from=-3
173 +activation=linear
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=64
178 +size=1
179 +stride=1
180 +pad=1
181 +activation=leaky
182 +
183 +[route]
184 +layers = -1,-10
185 +
186 +[convolutional]
187 +batch_normalize=1
188 +filters=128
189 +size=1
190 +stride=1
191 +pad=1
192 +activation=leaky
193 +
194 +# Downsample
195 +
196 +[convolutional]
197 +batch_normalize=1
198 +filters=256
199 +size=3
200 +stride=2
201 +pad=1
202 +activation=leaky
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[route]
213 +layers = -2
214 +
215 +[convolutional]
216 +batch_normalize=1
217 +filters=128
218 +size=1
219 +stride=1
220 +pad=1
221 +activation=leaky
222 +
223 +[convolutional]
224 +batch_normalize=1
225 +filters=128
226 +size=1
227 +stride=1
228 +pad=1
229 +activation=leaky
230 +
231 +[convolutional]
232 +batch_normalize=1
233 +filters=128
234 +size=3
235 +stride=1
236 +pad=1
237 +activation=leaky
238 +
239 +[shortcut]
240 +from=-3
241 +activation=linear
242 +
243 +[convolutional]
244 +batch_normalize=1
245 +filters=128
246 +size=1
247 +stride=1
248 +pad=1
249 +activation=leaky
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=128
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=leaky
258 +
259 +[shortcut]
260 +from=-3
261 +activation=linear
262 +
263 +[convolutional]
264 +batch_normalize=1
265 +filters=128
266 +size=1
267 +stride=1
268 +pad=1
269 +activation=leaky
270 +
271 +[convolutional]
272 +batch_normalize=1
273 +filters=128
274 +size=3
275 +stride=1
276 +pad=1
277 +activation=leaky
278 +
279 +[shortcut]
280 +from=-3
281 +activation=linear
282 +
283 +[convolutional]
284 +batch_normalize=1
285 +filters=128
286 +size=1
287 +stride=1
288 +pad=1
289 +activation=leaky
290 +
291 +[convolutional]
292 +batch_normalize=1
293 +filters=128
294 +size=3
295 +stride=1
296 +pad=1
297 +activation=leaky
298 +
299 +[shortcut]
300 +from=-3
301 +activation=linear
302 +
303 +
304 +[convolutional]
305 +batch_normalize=1
306 +filters=128
307 +size=1
308 +stride=1
309 +pad=1
310 +activation=leaky
311 +
312 +[convolutional]
313 +batch_normalize=1
314 +filters=128
315 +size=3
316 +stride=1
317 +pad=1
318 +activation=leaky
319 +
320 +[shortcut]
321 +from=-3
322 +activation=linear
323 +
324 +[convolutional]
325 +batch_normalize=1
326 +filters=128
327 +size=1
328 +stride=1
329 +pad=1
330 +activation=leaky
331 +
332 +[convolutional]
333 +batch_normalize=1
334 +filters=128
335 +size=3
336 +stride=1
337 +pad=1
338 +activation=leaky
339 +
340 +[shortcut]
341 +from=-3
342 +activation=linear
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=128
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=128
355 +size=3
356 +stride=1
357 +pad=1
358 +activation=leaky
359 +
360 +[shortcut]
361 +from=-3
362 +activation=linear
363 +
364 +[convolutional]
365 +batch_normalize=1
366 +filters=128
367 +size=1
368 +stride=1
369 +pad=1
370 +activation=leaky
371 +
372 +[convolutional]
373 +batch_normalize=1
374 +filters=128
375 +size=3
376 +stride=1
377 +pad=1
378 +activation=leaky
379 +
380 +[shortcut]
381 +from=-3
382 +activation=linear
383 +
384 +[convolutional]
385 +batch_normalize=1
386 +filters=128
387 +size=1
388 +stride=1
389 +pad=1
390 +activation=leaky
391 +
392 +[route]
393 +layers = -1,-28
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=256
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=leaky
402 +
403 +# Downsample
404 +
405 +[convolutional]
406 +batch_normalize=1
407 +filters=512
408 +size=3
409 +stride=2
410 +pad=1
411 +activation=leaky
412 +
413 +[convolutional]
414 +batch_normalize=1
415 +filters=256
416 +size=1
417 +stride=1
418 +pad=1
419 +activation=leaky
420 +
421 +[route]
422 +layers = -2
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=256
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=leaky
431 +
432 +[convolutional]
433 +batch_normalize=1
434 +filters=256
435 +size=1
436 +stride=1
437 +pad=1
438 +activation=leaky
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=256
443 +size=3
444 +stride=1
445 +pad=1
446 +activation=leaky
447 +
448 +[shortcut]
449 +from=-3
450 +activation=linear
451 +
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=256
456 +size=1
457 +stride=1
458 +pad=1
459 +activation=leaky
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=256
464 +size=3
465 +stride=1
466 +pad=1
467 +activation=leaky
468 +
469 +[shortcut]
470 +from=-3
471 +activation=linear
472 +
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=256
477 +size=1
478 +stride=1
479 +pad=1
480 +activation=leaky
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=256
485 +size=3
486 +stride=1
487 +pad=1
488 +activation=leaky
489 +
490 +[shortcut]
491 +from=-3
492 +activation=linear
493 +
494 +
495 +[convolutional]
496 +batch_normalize=1
497 +filters=256
498 +size=1
499 +stride=1
500 +pad=1
501 +activation=leaky
502 +
503 +[convolutional]
504 +batch_normalize=1
505 +filters=256
506 +size=3
507 +stride=1
508 +pad=1
509 +activation=leaky
510 +
511 +[shortcut]
512 +from=-3
513 +activation=linear
514 +
515 +
516 +[convolutional]
517 +batch_normalize=1
518 +filters=256
519 +size=1
520 +stride=1
521 +pad=1
522 +activation=leaky
523 +
524 +[convolutional]
525 +batch_normalize=1
526 +filters=256
527 +size=3
528 +stride=1
529 +pad=1
530 +activation=leaky
531 +
532 +[shortcut]
533 +from=-3
534 +activation=linear
535 +
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=256
540 +size=1
541 +stride=1
542 +pad=1
543 +activation=leaky
544 +
545 +[convolutional]
546 +batch_normalize=1
547 +filters=256
548 +size=3
549 +stride=1
550 +pad=1
551 +activation=leaky
552 +
553 +[shortcut]
554 +from=-3
555 +activation=linear
556 +
557 +
558 +[convolutional]
559 +batch_normalize=1
560 +filters=256
561 +size=1
562 +stride=1
563 +pad=1
564 +activation=leaky
565 +
566 +[convolutional]
567 +batch_normalize=1
568 +filters=256
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=leaky
573 +
574 +[shortcut]
575 +from=-3
576 +activation=linear
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=256
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=leaky
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=256
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=leaky
593 +
594 +[shortcut]
595 +from=-3
596 +activation=linear
597 +
598 +[convolutional]
599 +batch_normalize=1
600 +filters=256
601 +size=1
602 +stride=1
603 +pad=1
604 +activation=leaky
605 +
606 +[route]
607 +layers = -1,-28
608 +
609 +[convolutional]
610 +batch_normalize=1
611 +filters=512
612 +size=1
613 +stride=1
614 +pad=1
615 +activation=leaky
616 +
617 +# Downsample
618 +
619 +[convolutional]
620 +batch_normalize=1
621 +filters=1024
622 +size=3
623 +stride=2
624 +pad=1
625 +activation=leaky
626 +
627 +[convolutional]
628 +batch_normalize=1
629 +filters=512
630 +size=1
631 +stride=1
632 +pad=1
633 +activation=leaky
634 +
635 +[route]
636 +layers = -2
637 +
638 +[convolutional]
639 +batch_normalize=1
640 +filters=512
641 +size=1
642 +stride=1
643 +pad=1
644 +activation=leaky
645 +
646 +[convolutional]
647 +batch_normalize=1
648 +filters=512
649 +size=1
650 +stride=1
651 +pad=1
652 +activation=leaky
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=512
657 +size=3
658 +stride=1
659 +pad=1
660 +activation=leaky
661 +
662 +[shortcut]
663 +from=-3
664 +activation=linear
665 +
666 +[convolutional]
667 +batch_normalize=1
668 +filters=512
669 +size=1
670 +stride=1
671 +pad=1
672 +activation=leaky
673 +
674 +[convolutional]
675 +batch_normalize=1
676 +filters=512
677 +size=3
678 +stride=1
679 +pad=1
680 +activation=leaky
681 +
682 +[shortcut]
683 +from=-3
684 +activation=linear
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=512
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=leaky
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=512
697 +size=3
698 +stride=1
699 +pad=1
700 +activation=leaky
701 +
702 +[shortcut]
703 +from=-3
704 +activation=linear
705 +
706 +[convolutional]
707 +batch_normalize=1
708 +filters=512
709 +size=1
710 +stride=1
711 +pad=1
712 +activation=leaky
713 +
714 +[convolutional]
715 +batch_normalize=1
716 +filters=512
717 +size=3
718 +stride=1
719 +pad=1
720 +activation=leaky
721 +
722 +[shortcut]
723 +from=-3
724 +activation=linear
725 +
726 +[convolutional]
727 +batch_normalize=1
728 +filters=512
729 +size=1
730 +stride=1
731 +pad=1
732 +activation=leaky
733 +
734 +[route]
735 +layers = -1,-16
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=1024
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=leaky
744 +
745 +##########################
746 +
747 +[convolutional]
748 +batch_normalize=1
749 +filters=512
750 +size=1
751 +stride=1
752 +pad=1
753 +activation=leaky
754 +
755 +[convolutional]
756 +batch_normalize=1
757 +size=3
758 +stride=1
759 +pad=1
760 +filters=1024
761 +activation=leaky
762 +
763 +[convolutional]
764 +batch_normalize=1
765 +filters=512
766 +size=1
767 +stride=1
768 +pad=1
769 +activation=leaky
770 +
771 +### SPP ###
772 +[maxpool]
773 +stride=1
774 +size=5
775 +
776 +[route]
777 +layers=-2
778 +
779 +[maxpool]
780 +stride=1
781 +size=9
782 +
783 +[route]
784 +layers=-4
785 +
786 +[maxpool]
787 +stride=1
788 +size=13
789 +
790 +[route]
791 +layers=-1,-3,-5,-6
792 +### End SPP ###
793 +
794 +[convolutional]
795 +batch_normalize=1
796 +filters=512
797 +size=1
798 +stride=1
799 +pad=1
800 +activation=leaky
801 +
802 +[convolutional]
803 +batch_normalize=1
804 +size=3
805 +stride=1
806 +pad=1
807 +filters=1024
808 +activation=leaky
809 +
810 +[convolutional]
811 +batch_normalize=1
812 +filters=512
813 +size=1
814 +stride=1
815 +pad=1
816 +activation=leaky
817 +
818 +[convolutional]
819 +batch_normalize=1
820 +filters=256
821 +size=1
822 +stride=1
823 +pad=1
824 +activation=leaky
825 +
826 +[upsample]
827 +stride=2
828 +
829 +[route]
830 +layers = 85
831 +
832 +[convolutional]
833 +batch_normalize=1
834 +filters=256
835 +size=1
836 +stride=1
837 +pad=1
838 +activation=leaky
839 +
840 +[route]
841 +layers = -1, -3
842 +
843 +[convolutional]
844 +batch_normalize=1
845 +filters=256
846 +size=1
847 +stride=1
848 +pad=1
849 +activation=leaky
850 +
851 +[convolutional]
852 +batch_normalize=1
853 +size=3
854 +stride=1
855 +pad=1
856 +filters=512
857 +activation=leaky
858 +
859 +[convolutional]
860 +batch_normalize=1
861 +filters=256
862 +size=1
863 +stride=1
864 +pad=1
865 +activation=leaky
866 +
867 +[convolutional]
868 +batch_normalize=1
869 +size=3
870 +stride=1
871 +pad=1
872 +filters=512
873 +activation=leaky
874 +
875 +[convolutional]
876 +batch_normalize=1
877 +filters=256
878 +size=1
879 +stride=1
880 +pad=1
881 +activation=leaky
882 +
883 +[convolutional]
884 +batch_normalize=1
885 +filters=128
886 +size=1
887 +stride=1
888 +pad=1
889 +activation=leaky
890 +
891 +[upsample]
892 +stride=2
893 +
894 +[route]
895 +layers = 54
896 +
897 +[convolutional]
898 +batch_normalize=1
899 +filters=128
900 +size=1
901 +stride=1
902 +pad=1
903 +activation=leaky
904 +
905 +[route]
906 +layers = -1, -3
907 +
908 +[convolutional]
909 +batch_normalize=1
910 +filters=128
911 +size=1
912 +stride=1
913 +pad=1
914 +activation=leaky
915 +
916 +[convolutional]
917 +batch_normalize=1
918 +size=3
919 +stride=1
920 +pad=1
921 +filters=256
922 +activation=leaky
923 +
924 +[convolutional]
925 +batch_normalize=1
926 +filters=128
927 +size=1
928 +stride=1
929 +pad=1
930 +activation=leaky
931 +
932 +[convolutional]
933 +batch_normalize=1
934 +size=3
935 +stride=1
936 +pad=1
937 +filters=256
938 +activation=leaky
939 +
940 +[convolutional]
941 +batch_normalize=1
942 +filters=128
943 +size=1
944 +stride=1
945 +pad=1
946 +activation=leaky
947 +
948 +##########################
949 +
950 +[convolutional]
951 +batch_normalize=1
952 +size=3
953 +stride=1
954 +pad=1
955 +filters=256
956 +activation=leaky
957 +
958 +[convolutional]
959 +size=1
960 +stride=1
961 +pad=1
962 +filters=255
963 +activation=linear
964 +
965 +
966 +[yolo]
967 +mask = 0,1,2
968 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
969 +classes=80
970 +num=9
971 +jitter=.3
972 +ignore_thresh = .7
973 +truth_thresh = 1
974 +scale_x_y = 1.2
975 +iou_thresh=0.213
976 +cls_normalizer=1.0
977 +iou_normalizer=0.07
978 +iou_loss=ciou
979 +nms_kind=greedynms
980 +beta_nms=0.6
981 +
982 +[route]
983 +layers = -4
984 +
985 +[convolutional]
986 +batch_normalize=1
987 +size=3
988 +stride=2
989 +pad=1
990 +filters=256
991 +activation=leaky
992 +
993 +[route]
994 +layers = -1, -16
995 +
996 +[convolutional]
997 +batch_normalize=1
998 +filters=256
999 +size=1
1000 +stride=1
1001 +pad=1
1002 +activation=leaky
1003 +
1004 +[convolutional]
1005 +batch_normalize=1
1006 +size=3
1007 +stride=1
1008 +pad=1
1009 +filters=512
1010 +activation=leaky
1011 +
1012 +[convolutional]
1013 +batch_normalize=1
1014 +filters=256
1015 +size=1
1016 +stride=1
1017 +pad=1
1018 +activation=leaky
1019 +
1020 +[convolutional]
1021 +batch_normalize=1
1022 +size=3
1023 +stride=1
1024 +pad=1
1025 +filters=512
1026 +activation=leaky
1027 +
1028 +[convolutional]
1029 +batch_normalize=1
1030 +filters=256
1031 +size=1
1032 +stride=1
1033 +pad=1
1034 +activation=leaky
1035 +
1036 +[convolutional]
1037 +batch_normalize=1
1038 +size=3
1039 +stride=1
1040 +pad=1
1041 +filters=512
1042 +activation=leaky
1043 +
1044 +[convolutional]
1045 +size=1
1046 +stride=1
1047 +pad=1
1048 +filters=255
1049 +activation=linear
1050 +
1051 +
1052 +[yolo]
1053 +mask = 3,4,5
1054 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1055 +classes=80
1056 +num=9
1057 +jitter=.3
1058 +ignore_thresh = .7
1059 +truth_thresh = 1
1060 +scale_x_y = 1.1
1061 +iou_thresh=0.213
1062 +cls_normalizer=1.0
1063 +iou_normalizer=0.07
1064 +iou_loss=ciou
1065 +nms_kind=greedynms
1066 +beta_nms=0.6
1067 +
1068 +[route]
1069 +layers = -4
1070 +
1071 +[convolutional]
1072 +batch_normalize=1
1073 +size=3
1074 +stride=2
1075 +pad=1
1076 +filters=512
1077 +activation=leaky
1078 +
1079 +[route]
1080 +layers = -1, -37
1081 +
1082 +[convolutional]
1083 +batch_normalize=1
1084 +filters=512
1085 +size=1
1086 +stride=1
1087 +pad=1
1088 +activation=leaky
1089 +
1090 +[convolutional]
1091 +batch_normalize=1
1092 +size=3
1093 +stride=1
1094 +pad=1
1095 +filters=1024
1096 +activation=leaky
1097 +
1098 +[convolutional]
1099 +batch_normalize=1
1100 +filters=512
1101 +size=1
1102 +stride=1
1103 +pad=1
1104 +activation=leaky
1105 +
1106 +[convolutional]
1107 +batch_normalize=1
1108 +size=3
1109 +stride=1
1110 +pad=1
1111 +filters=1024
1112 +activation=leaky
1113 +
1114 +[convolutional]
1115 +batch_normalize=1
1116 +filters=512
1117 +size=1
1118 +stride=1
1119 +pad=1
1120 +activation=leaky
1121 +
1122 +[convolutional]
1123 +batch_normalize=1
1124 +size=3
1125 +stride=1
1126 +pad=1
1127 +filters=1024
1128 +activation=leaky
1129 +
1130 +[convolutional]
1131 +size=1
1132 +stride=1
1133 +pad=1
1134 +filters=255
1135 +activation=linear
1136 +
1137 +
1138 +[yolo]
1139 +mask = 6,7,8
1140 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1141 +classes=80
1142 +num=9
1143 +jitter=.3
1144 +ignore_thresh = .7
1145 +truth_thresh = 1
1146 +random=1
1147 +scale_x_y = 1.05
1148 +iou_thresh=0.213
1149 +cls_normalizer=1.0
1150 +iou_normalizer=0.07
1151 +iou_loss=ciou
1152 +nms_kind=greedynms
1153 +beta_nms=0.6
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=32
5 +width=32
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +
10 +learning_rate=0.4
11 +policy=poly
12 +power=4
13 +max_batches = 50000
14 +
15 +[crop]
16 +crop_width=28
17 +crop_height=28
18 +flip=1
19 +angle=0
20 +saturation = 1
21 +exposure = 1
22 +noadjust=1
23 +
24 +[convolutional]
25 +batch_normalize=1
26 +filters=128
27 +size=3
28 +stride=1
29 +pad=1
30 +activation=leaky
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=128
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=leaky
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=128
43 +size=3
44 +stride=1
45 +pad=1
46 +activation=leaky
47 +
48 +[maxpool]
49 +size=2
50 +stride=2
51 +
52 +[dropout]
53 +probability=.5
54 +
55 +[convolutional]
56 +batch_normalize=1
57 +filters=256
58 +size=3
59 +stride=1
60 +pad=1
61 +activation=leaky
62 +
63 +[convolutional]
64 +batch_normalize=1
65 +filters=256
66 +size=3
67 +stride=1
68 +pad=1
69 +activation=leaky
70 +
71 +[convolutional]
72 +batch_normalize=1
73 +filters=256
74 +size=3
75 +stride=1
76 +pad=1
77 +activation=leaky
78 +
79 +[maxpool]
80 +size=2
81 +stride=2
82 +
83 +[dropout]
84 +probability=.5
85 +
86 +[convolutional]
87 +batch_normalize=1
88 +filters=512
89 +size=3
90 +stride=1
91 +pad=1
92 +activation=leaky
93 +
94 +[convolutional]
95 +batch_normalize=1
96 +filters=512
97 +size=3
98 +stride=1
99 +pad=1
100 +activation=leaky
101 +
102 +[convolutional]
103 +batch_normalize=1
104 +filters=512
105 +size=3
106 +stride=1
107 +pad=1
108 +activation=leaky
109 +
110 +[dropout]
111 +probability=.5
112 +
113 +[convolutional]
114 +filters=10
115 +size=1
116 +stride=1
117 +pad=1
118 +activation=leaky
119 +
120 +[avgpool]
121 +
122 +[softmax]
123 +groups=1
124 +
125 +[cost]
126 +
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=32
5 +width=32
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +
10 +learning_rate=0.4
11 +policy=poly
12 +power=4
13 +max_batches = 50000
14 +
15 +
16 +[convolutional]
17 +batch_normalize=1
18 +filters=128
19 +size=3
20 +stride=1
21 +pad=1
22 +activation=leaky
23 +
24 +[convolutional]
25 +batch_normalize=1
26 +filters=128
27 +size=3
28 +stride=1
29 +pad=1
30 +activation=leaky
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=128
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=leaky
39 +
40 +[maxpool]
41 +size=2
42 +stride=2
43 +
44 +[dropout]
45 +probability=.5
46 +
47 +[convolutional]
48 +batch_normalize=1
49 +filters=256
50 +size=3
51 +stride=1
52 +pad=1
53 +activation=leaky
54 +
55 +[convolutional]
56 +batch_normalize=1
57 +filters=256
58 +size=3
59 +stride=1
60 +pad=1
61 +activation=leaky
62 +
63 +[convolutional]
64 +batch_normalize=1
65 +filters=256
66 +size=3
67 +stride=1
68 +pad=1
69 +activation=leaky
70 +
71 +[maxpool]
72 +size=2
73 +stride=2
74 +
75 +[dropout]
76 +probability=.5
77 +
78 +[convolutional]
79 +batch_normalize=1
80 +filters=512
81 +size=3
82 +stride=1
83 +pad=1
84 +activation=leaky
85 +
86 +[convolutional]
87 +batch_normalize=1
88 +filters=512
89 +size=3
90 +stride=1
91 +pad=1
92 +activation=leaky
93 +
94 +[convolutional]
95 +batch_normalize=1
96 +filters=512
97 +size=3
98 +stride=1
99 +pad=1
100 +activation=leaky
101 +
102 +[dropout]
103 +probability=.5
104 +
105 +[convolutional]
106 +filters=10
107 +size=1
108 +stride=1
109 +pad=1
110 +activation=leaky
111 +
112 +[avgpool]
113 +
114 +[softmax]
115 +groups=1
116 +temperature=3
117 +
118 +[cost]
119 +
1 +classes= 80
2 +train = E:/MSCOCO/trainvalno5k.txt
3 +#train = E:/MSCOCO/5k.txt
4 +valid = E:/MSCOCO/5k.txt
5 +names = data/coco.names
6 +backup = backup
7 +eval=coco
8 +
1 +classes= 9418
2 +#train = /home/pjreddie/data/coco/trainvalno5k.txt
3 +train = data/combine9k.train.list
4 +valid = /home/pjreddie/data/imagenet/det.val.files
5 +labels = data/9k.labels
6 +names = data/9k.names
7 +backup = backup/
8 +map = data/inet9k.map
9 +eval = imagenet
10 +results = results
1 +[net]
2 +subdivisions=8
3 +inputs=256
4 +batch = 128
5 +momentum=0.9
6 +decay=0.001
7 +max_batches = 2000
8 +time_steps=576
9 +learning_rate=0.1
10 +policy=steps
11 +steps=1000,1500
12 +scales=.1,.1
13 +
14 +try_fix_nan=1
15 +
16 +[connected]
17 +output=256
18 +activation=leaky
19 +
20 +[crnn]
21 +batch_normalize=1
22 +size=1
23 +pad=0
24 +output = 1024
25 +hidden=1024
26 +activation=leaky
27 +
28 +[crnn]
29 +batch_normalize=1
30 +size=1
31 +pad=0
32 +output = 1024
33 +hidden=1024
34 +activation=leaky
35 +
36 +[crnn]
37 +batch_normalize=1
38 +size=1
39 +pad=0
40 +output = 1024
41 +hidden=1024
42 +activation=leaky
43 +
44 +[connected]
45 +output=256
46 +activation=leaky
47 +
48 +[softmax]
49 +
50 +[cost]
51 +type=sse
52 +
1 +[net]
2 +# Training
3 +batch=128
4 +subdivisions=4
5 +
6 +label_smooth_eps=0.1
7 +
8 +# Testing
9 +# batch=1
10 +# subdivisions=1
11 +
12 +height=256
13 +width=256
14 +channels=3
15 +min_crop=128
16 +max_crop=448
17 +
18 +mosaic=1
19 +cutmix=1
20 +
21 +burn_in=1000
22 +learning_rate=0.1
23 +policy=poly
24 +power=4
25 +max_batches=1200000
26 +momentum=0.9
27 +decay=0.0005
28 +
29 +angle=7
30 +hue=.1
31 +saturation=.75
32 +exposure=.75
33 +aspect=.75
34 +
35 +
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=32
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=mish
44 +
45 +# Downsample
46 +
47 +[convolutional]
48 +batch_normalize=1
49 +filters=64
50 +size=3
51 +stride=2
52 +pad=1
53 +activation=mish
54 +
55 +[convolutional]
56 +batch_normalize=1
57 +filters=64
58 +size=1
59 +stride=1
60 +pad=1
61 +activation=mish
62 +
63 +[route]
64 +layers = -2
65 +
66 +[convolutional]
67 +batch_normalize=1
68 +filters=64
69 +size=1
70 +stride=1
71 +pad=1
72 +activation=mish
73 +
74 +[convolutional]
75 +batch_normalize=1
76 +filters=32
77 +size=1
78 +stride=1
79 +pad=1
80 +activation=mish
81 +
82 +[convolutional]
83 +batch_normalize=1
84 +filters=64
85 +size=3
86 +stride=1
87 +pad=1
88 +activation=mish
89 +
90 +[shortcut]
91 +from=-3
92 +activation=linear
93 +
94 +[convolutional]
95 +batch_normalize=1
96 +filters=64
97 +size=1
98 +stride=1
99 +pad=1
100 +activation=mish
101 +
102 +[route]
103 +layers = -1,-7
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=64
108 +size=1
109 +stride=1
110 +pad=1
111 +activation=mish
112 +
113 +# Downsample
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=128
118 +size=3
119 +stride=2
120 +pad=1
121 +activation=mish
122 +
123 +[convolutional]
124 +batch_normalize=1
125 +filters=64
126 +size=1
127 +stride=1
128 +pad=1
129 +activation=mish
130 +
131 +[route]
132 +layers = -2
133 +
134 +[convolutional]
135 +batch_normalize=1
136 +filters=64
137 +size=1
138 +stride=1
139 +pad=1
140 +activation=mish
141 +
142 +[convolutional]
143 +batch_normalize=1
144 +filters=64
145 +size=1
146 +stride=1
147 +pad=1
148 +activation=mish
149 +
150 +[convolutional]
151 +batch_normalize=1
152 +filters=64
153 +size=3
154 +stride=1
155 +pad=1
156 +activation=mish
157 +
158 +[shortcut]
159 +from=-3
160 +activation=linear
161 +
162 +[convolutional]
163 +batch_normalize=1
164 +filters=64
165 +size=1
166 +stride=1
167 +pad=1
168 +activation=mish
169 +
170 +[convolutional]
171 +batch_normalize=1
172 +filters=64
173 +size=3
174 +stride=1
175 +pad=1
176 +activation=mish
177 +
178 +[shortcut]
179 +from=-3
180 +activation=linear
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=64
185 +size=1
186 +stride=1
187 +pad=1
188 +activation=mish
189 +
190 +[route]
191 +layers = -1,-10
192 +
193 +[convolutional]
194 +batch_normalize=1
195 +filters=128
196 +size=1
197 +stride=1
198 +pad=1
199 +activation=mish
200 +
201 +# Downsample
202 +
203 +[convolutional]
204 +batch_normalize=1
205 +filters=256
206 +size=3
207 +stride=2
208 +pad=1
209 +activation=mish
210 +
211 +[convolutional]
212 +batch_normalize=1
213 +filters=128
214 +size=1
215 +stride=1
216 +pad=1
217 +activation=mish
218 +
219 +[route]
220 +layers = -2
221 +
222 +[convolutional]
223 +batch_normalize=1
224 +filters=128
225 +size=1
226 +stride=1
227 +pad=1
228 +activation=mish
229 +
230 +[convolutional]
231 +batch_normalize=1
232 +filters=128
233 +size=1
234 +stride=1
235 +pad=1
236 +activation=mish
237 +
238 +[convolutional]
239 +batch_normalize=1
240 +filters=128
241 +size=3
242 +stride=1
243 +pad=1
244 +activation=mish
245 +
246 +[shortcut]
247 +from=-3
248 +activation=linear
249 +
250 +[convolutional]
251 +batch_normalize=1
252 +filters=128
253 +size=1
254 +stride=1
255 +pad=1
256 +activation=mish
257 +
258 +[convolutional]
259 +batch_normalize=1
260 +filters=128
261 +size=3
262 +stride=1
263 +pad=1
264 +activation=mish
265 +
266 +[shortcut]
267 +from=-3
268 +activation=linear
269 +
270 +[convolutional]
271 +batch_normalize=1
272 +filters=128
273 +size=1
274 +stride=1
275 +pad=1
276 +activation=mish
277 +
278 +[convolutional]
279 +batch_normalize=1
280 +filters=128
281 +size=3
282 +stride=1
283 +pad=1
284 +activation=mish
285 +
286 +[shortcut]
287 +from=-3
288 +activation=linear
289 +
290 +[convolutional]
291 +batch_normalize=1
292 +filters=128
293 +size=1
294 +stride=1
295 +pad=1
296 +activation=mish
297 +
298 +[convolutional]
299 +batch_normalize=1
300 +filters=128
301 +size=3
302 +stride=1
303 +pad=1
304 +activation=mish
305 +
306 +[shortcut]
307 +from=-3
308 +activation=linear
309 +
310 +
311 +[convolutional]
312 +batch_normalize=1
313 +filters=128
314 +size=1
315 +stride=1
316 +pad=1
317 +activation=mish
318 +
319 +[convolutional]
320 +batch_normalize=1
321 +filters=128
322 +size=3
323 +stride=1
324 +pad=1
325 +activation=mish
326 +
327 +[shortcut]
328 +from=-3
329 +activation=linear
330 +
331 +[convolutional]
332 +batch_normalize=1
333 +filters=128
334 +size=1
335 +stride=1
336 +pad=1
337 +activation=mish
338 +
339 +[convolutional]
340 +batch_normalize=1
341 +filters=128
342 +size=3
343 +stride=1
344 +pad=1
345 +activation=mish
346 +
347 +[shortcut]
348 +from=-3
349 +activation=linear
350 +
351 +[convolutional]
352 +batch_normalize=1
353 +filters=128
354 +size=1
355 +stride=1
356 +pad=1
357 +activation=mish
358 +
359 +[convolutional]
360 +batch_normalize=1
361 +filters=128
362 +size=3
363 +stride=1
364 +pad=1
365 +activation=mish
366 +
367 +[shortcut]
368 +from=-3
369 +activation=linear
370 +
371 +[convolutional]
372 +batch_normalize=1
373 +filters=128
374 +size=1
375 +stride=1
376 +pad=1
377 +activation=mish
378 +
379 +[convolutional]
380 +batch_normalize=1
381 +filters=128
382 +size=3
383 +stride=1
384 +pad=1
385 +activation=mish
386 +
387 +[shortcut]
388 +from=-3
389 +activation=linear
390 +
391 +[convolutional]
392 +batch_normalize=1
393 +filters=128
394 +size=1
395 +stride=1
396 +pad=1
397 +activation=mish
398 +
399 +[route]
400 +layers = -1,-28
401 +
402 +[convolutional]
403 +batch_normalize=1
404 +filters=256
405 +size=1
406 +stride=1
407 +pad=1
408 +activation=mish
409 +
410 +# Downsample
411 +
412 +[convolutional]
413 +batch_normalize=1
414 +filters=512
415 +size=3
416 +stride=2
417 +pad=1
418 +activation=mish
419 +
420 +[convolutional]
421 +batch_normalize=1
422 +filters=256
423 +size=1
424 +stride=1
425 +pad=1
426 +activation=mish
427 +
428 +[route]
429 +layers = -2
430 +
431 +[convolutional]
432 +batch_normalize=1
433 +filters=256
434 +size=1
435 +stride=1
436 +pad=1
437 +activation=mish
438 +
439 +[convolutional]
440 +batch_normalize=1
441 +filters=256
442 +size=1
443 +stride=1
444 +pad=1
445 +activation=mish
446 +
447 +[convolutional]
448 +batch_normalize=1
449 +filters=256
450 +size=3
451 +stride=1
452 +pad=1
453 +activation=mish
454 +
455 +[shortcut]
456 +from=-3
457 +activation=linear
458 +
459 +
460 +[convolutional]
461 +batch_normalize=1
462 +filters=256
463 +size=1
464 +stride=1
465 +pad=1
466 +activation=mish
467 +
468 +[convolutional]
469 +batch_normalize=1
470 +filters=256
471 +size=3
472 +stride=1
473 +pad=1
474 +activation=mish
475 +
476 +[shortcut]
477 +from=-3
478 +activation=linear
479 +
480 +
481 +[convolutional]
482 +batch_normalize=1
483 +filters=256
484 +size=1
485 +stride=1
486 +pad=1
487 +activation=mish
488 +
489 +[convolutional]
490 +batch_normalize=1
491 +filters=256
492 +size=3
493 +stride=1
494 +pad=1
495 +activation=mish
496 +
497 +[shortcut]
498 +from=-3
499 +activation=linear
500 +
501 +
502 +[convolutional]
503 +batch_normalize=1
504 +filters=256
505 +size=1
506 +stride=1
507 +pad=1
508 +activation=mish
509 +
510 +[convolutional]
511 +batch_normalize=1
512 +filters=256
513 +size=3
514 +stride=1
515 +pad=1
516 +activation=mish
517 +
518 +[shortcut]
519 +from=-3
520 +activation=linear
521 +
522 +
523 +[convolutional]
524 +batch_normalize=1
525 +filters=256
526 +size=1
527 +stride=1
528 +pad=1
529 +activation=mish
530 +
531 +[convolutional]
532 +batch_normalize=1
533 +filters=256
534 +size=3
535 +stride=1
536 +pad=1
537 +activation=mish
538 +
539 +[shortcut]
540 +from=-3
541 +activation=linear
542 +
543 +
544 +[convolutional]
545 +batch_normalize=1
546 +filters=256
547 +size=1
548 +stride=1
549 +pad=1
550 +activation=mish
551 +
552 +[convolutional]
553 +batch_normalize=1
554 +filters=256
555 +size=3
556 +stride=1
557 +pad=1
558 +activation=mish
559 +
560 +[shortcut]
561 +from=-3
562 +activation=linear
563 +
564 +
565 +[convolutional]
566 +batch_normalize=1
567 +filters=256
568 +size=1
569 +stride=1
570 +pad=1
571 +activation=mish
572 +
573 +[convolutional]
574 +batch_normalize=1
575 +filters=256
576 +size=3
577 +stride=1
578 +pad=1
579 +activation=mish
580 +
581 +[shortcut]
582 +from=-3
583 +activation=linear
584 +
585 +[convolutional]
586 +batch_normalize=1
587 +filters=256
588 +size=1
589 +stride=1
590 +pad=1
591 +activation=mish
592 +
593 +[convolutional]
594 +batch_normalize=1
595 +filters=256
596 +size=3
597 +stride=1
598 +pad=1
599 +activation=mish
600 +
601 +[shortcut]
602 +from=-3
603 +activation=linear
604 +
605 +[convolutional]
606 +batch_normalize=1
607 +filters=256
608 +size=1
609 +stride=1
610 +pad=1
611 +activation=mish
612 +
613 +[route]
614 +layers = -1,-28
615 +
616 +[convolutional]
617 +batch_normalize=1
618 +filters=512
619 +size=1
620 +stride=1
621 +pad=1
622 +activation=mish
623 +
624 +# Downsample
625 +
626 +[convolutional]
627 +batch_normalize=1
628 +filters=1024
629 +size=3
630 +stride=2
631 +pad=1
632 +activation=mish
633 +
634 +[convolutional]
635 +batch_normalize=1
636 +filters=512
637 +size=1
638 +stride=1
639 +pad=1
640 +activation=mish
641 +
642 +[route]
643 +layers = -2
644 +
645 +[convolutional]
646 +batch_normalize=1
647 +filters=512
648 +size=1
649 +stride=1
650 +pad=1
651 +activation=mish
652 +
653 +[convolutional]
654 +batch_normalize=1
655 +filters=512
656 +size=1
657 +stride=1
658 +pad=1
659 +activation=mish
660 +
661 +[convolutional]
662 +batch_normalize=1
663 +filters=512
664 +size=3
665 +stride=1
666 +pad=1
667 +activation=mish
668 +
669 +[shortcut]
670 +from=-3
671 +activation=linear
672 +
673 +[convolutional]
674 +batch_normalize=1
675 +filters=512
676 +size=1
677 +stride=1
678 +pad=1
679 +activation=mish
680 +
681 +[convolutional]
682 +batch_normalize=1
683 +filters=512
684 +size=3
685 +stride=1
686 +pad=1
687 +activation=mish
688 +
689 +[shortcut]
690 +from=-3
691 +activation=linear
692 +
693 +[convolutional]
694 +batch_normalize=1
695 +filters=512
696 +size=1
697 +stride=1
698 +pad=1
699 +activation=mish
700 +
701 +[convolutional]
702 +batch_normalize=1
703 +filters=512
704 +size=3
705 +stride=1
706 +pad=1
707 +activation=mish
708 +
709 +[shortcut]
710 +from=-3
711 +activation=linear
712 +
713 +[convolutional]
714 +batch_normalize=1
715 +filters=512
716 +size=1
717 +stride=1
718 +pad=1
719 +activation=mish
720 +
721 +[convolutional]
722 +batch_normalize=1
723 +filters=512
724 +size=3
725 +stride=1
726 +pad=1
727 +activation=mish
728 +
729 +[shortcut]
730 +from=-3
731 +activation=linear
732 +
733 +[convolutional]
734 +batch_normalize=1
735 +filters=512
736 +size=1
737 +stride=1
738 +pad=1
739 +activation=mish
740 +
741 +[route]
742 +layers = -1,-16
743 +
744 +[convolutional]
745 +batch_normalize=1
746 +filters=1024
747 +size=1
748 +stride=1
749 +pad=1
750 +activation=mish
751 +
752 +[avgpool]
753 +
754 +[convolutional]
755 +filters=1000
756 +size=1
757 +stride=1
758 +pad=1
759 +activation=linear
760 +
761 +[softmax]
762 +groups=1
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=8
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.949
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.00261
19 +burn_in=1000
20 +max_batches = 500500
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +#cutmix=1
26 +mosaic=1
27 +
28 +#19:104x104 38:52x52 65:26x26 80:13x13 for 416
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=64
33 +size=7
34 +stride=2
35 +pad=1
36 +activation=leaky
37 +
38 +[maxpool]
39 +size=2
40 +stride=2
41 +
42 +[convolutional]
43 +batch_normalize=1
44 +filters=128
45 +size=1
46 +stride=1
47 +pad=1
48 +activation=leaky
49 +
50 +[route]
51 +layers = -2
52 +
53 +[convolutional]
54 +batch_normalize=1
55 +filters=64
56 +size=1
57 +stride=1
58 +pad=1
59 +activation=leaky
60 +
61 +# 1-1
62 +
63 +[convolutional]
64 +batch_normalize=1
65 +filters=128
66 +size=1
67 +stride=1
68 +pad=1
69 +activation=leaky
70 +
71 +[convolutional]
72 +batch_normalize=1
73 +filters=128
74 +size=3
75 +groups=32
76 +stride=1
77 +pad=1
78 +activation=leaky
79 +
80 +[convolutional]
81 +batch_normalize=1
82 +filters=128
83 +size=1
84 +stride=1
85 +pad=1
86 +activation=linear
87 +
88 +[shortcut]
89 +from=-4
90 +activation=leaky
91 +
92 +# 1-2
93 +
94 +[convolutional]
95 +batch_normalize=1
96 +filters=128
97 +size=1
98 +stride=1
99 +pad=1
100 +activation=leaky
101 +
102 +[convolutional]
103 +batch_normalize=1
104 +filters=128
105 +size=3
106 +groups=32
107 +stride=1
108 +pad=1
109 +activation=leaky
110 +
111 +[convolutional]
112 +batch_normalize=1
113 +filters=128
114 +size=1
115 +stride=1
116 +pad=1
117 +activation=linear
118 +
119 +[shortcut]
120 +from=-4
121 +activation=leaky
122 +
123 +# 1-3
124 +
125 +[convolutional]
126 +batch_normalize=1
127 +filters=128
128 +size=1
129 +stride=1
130 +pad=1
131 +activation=leaky
132 +
133 +[convolutional]
134 +batch_normalize=1
135 +filters=128
136 +size=3
137 +groups=32
138 +stride=1
139 +pad=1
140 +activation=leaky
141 +
142 +[convolutional]
143 +batch_normalize=1
144 +filters=128
145 +size=1
146 +stride=1
147 +pad=1
148 +activation=linear
149 +
150 +[shortcut]
151 +from=-4
152 +activation=leaky
153 +
154 +# 1-T
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=128
159 +size=1
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[route]
165 +layers = -1,-16
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=256
170 +size=1
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=256
178 +size=3
179 +groups=32
180 +stride=2
181 +pad=1
182 +activation=leaky
183 +
184 +[convolutional]
185 +batch_normalize=1
186 +filters=256
187 +size=1
188 +stride=1
189 +pad=1
190 +activation=linear
191 +
192 +[route]
193 +layers = -2
194 +
195 +[convolutional]
196 +batch_normalize=1
197 +filters=256
198 +size=1
199 +stride=1
200 +pad=1
201 +activation=linear
202 +
203 +# 2-1
204 +
205 +[convolutional]
206 +batch_normalize=1
207 +filters=256
208 +size=1
209 +stride=1
210 +pad=1
211 +activation=leaky
212 +
213 +[convolutional]
214 +batch_normalize=1
215 +filters=256
216 +size=3
217 +groups=32
218 +stride=1
219 +pad=1
220 +activation=leaky
221 +
222 +[convolutional]
223 +batch_normalize=1
224 +filters=256
225 +size=1
226 +stride=1
227 +pad=1
228 +activation=linear
229 +
230 +[shortcut]
231 +from=-4
232 +activation=leaky
233 +
234 +# 2-2
235 +
236 +[convolutional]
237 +batch_normalize=1
238 +filters=256
239 +size=1
240 +stride=1
241 +pad=1
242 +activation=leaky
243 +
244 +[convolutional]
245 +batch_normalize=1
246 +filters=256
247 +size=3
248 +groups=32
249 +stride=1
250 +pad=1
251 +activation=leaky
252 +
253 +[convolutional]
254 +batch_normalize=1
255 +filters=256
256 +size=1
257 +stride=1
258 +pad=1
259 +activation=linear
260 +
261 +[shortcut]
262 +from=-4
263 +activation=leaky
264 +
265 +# 2-3
266 +
267 +[convolutional]
268 +batch_normalize=1
269 +filters=256
270 +size=1
271 +stride=1
272 +pad=1
273 +activation=leaky
274 +
275 +[convolutional]
276 +batch_normalize=1
277 +filters=256
278 +size=3
279 +groups=32
280 +stride=1
281 +pad=1
282 +activation=leaky
283 +
284 +[convolutional]
285 +batch_normalize=1
286 +filters=256
287 +size=1
288 +stride=1
289 +pad=1
290 +activation=linear
291 +
292 +[shortcut]
293 +from=-4
294 +activation=leaky
295 +
296 +# 2-T
297 +
298 +[convolutional]
299 +batch_normalize=1
300 +filters=256
301 +size=1
302 +stride=1
303 +pad=1
304 +activation=leaky
305 +
306 +[route]
307 +layers = -1,-16
308 +
309 +[convolutional]
310 +batch_normalize=1
311 +filters=512
312 +size=1
313 +stride=1
314 +pad=1
315 +activation=leaky
316 +
317 +[convolutional]
318 +batch_normalize=1
319 +filters=512
320 +size=3
321 +groups=32
322 +stride=2
323 +pad=1
324 +activation=leaky
325 +
326 +[convolutional]
327 +batch_normalize=1
328 +filters=512
329 +size=1
330 +stride=1
331 +pad=1
332 +activation=linear
333 +
334 +[route]
335 +layers = -2
336 +
337 +[convolutional]
338 +batch_normalize=1
339 +filters=512
340 +size=1
341 +stride=1
342 +pad=1
343 +activation=linear
344 +
345 +# 3-1
346 +
347 +[convolutional]
348 +batch_normalize=1
349 +filters=512
350 +size=1
351 +stride=1
352 +pad=1
353 +activation=leaky
354 +
355 +[convolutional]
356 +batch_normalize=1
357 +filters=512
358 +size=3
359 +groups=32
360 +stride=1
361 +pad=1
362 +activation=leaky
363 +
364 +[convolutional]
365 +batch_normalize=1
366 +filters=512
367 +size=1
368 +stride=1
369 +pad=1
370 +activation=linear
371 +
372 +[shortcut]
373 +from=-4
374 +activation=leaky
375 +
376 +# 3-2
377 +
378 +[convolutional]
379 +batch_normalize=1
380 +filters=512
381 +size=1
382 +stride=1
383 +pad=1
384 +activation=leaky
385 +
386 +[convolutional]
387 +batch_normalize=1
388 +filters=512
389 +size=3
390 +groups=32
391 +stride=1
392 +pad=1
393 +activation=leaky
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=512
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=linear
402 +
403 +[shortcut]
404 +from=-4
405 +activation=leaky
406 +
407 +# 3-3
408 +
409 +[convolutional]
410 +batch_normalize=1
411 +filters=512
412 +size=1
413 +stride=1
414 +pad=1
415 +activation=leaky
416 +
417 +[convolutional]
418 +batch_normalize=1
419 +filters=512
420 +size=3
421 +groups=32
422 +stride=1
423 +pad=1
424 +activation=leaky
425 +
426 +[convolutional]
427 +batch_normalize=1
428 +filters=512
429 +size=1
430 +stride=1
431 +pad=1
432 +activation=linear
433 +
434 +[shortcut]
435 +from=-4
436 +activation=leaky
437 +
438 +# 3-4
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=512
443 +size=1
444 +stride=1
445 +pad=1
446 +activation=leaky
447 +
448 +[convolutional]
449 +batch_normalize=1
450 +filters=512
451 +size=3
452 +groups=32
453 +stride=1
454 +pad=1
455 +activation=leaky
456 +
457 +[convolutional]
458 +batch_normalize=1
459 +filters=512
460 +size=1
461 +stride=1
462 +pad=1
463 +activation=linear
464 +
465 +[shortcut]
466 +from=-4
467 +activation=leaky
468 +
469 +# 3-5
470 +
471 +[convolutional]
472 +batch_normalize=1
473 +filters=512
474 +size=1
475 +stride=1
476 +pad=1
477 +activation=leaky
478 +
479 +[convolutional]
480 +batch_normalize=1
481 +filters=512
482 +size=3
483 +groups=32
484 +stride=1
485 +pad=1
486 +activation=leaky
487 +
488 +[convolutional]
489 +batch_normalize=1
490 +filters=512
491 +size=1
492 +stride=1
493 +pad=1
494 +activation=linear
495 +
496 +[shortcut]
497 +from=-4
498 +activation=leaky
499 +
500 +# 3-T
501 +
502 +[convolutional]
503 +batch_normalize=1
504 +filters=512
505 +size=1
506 +stride=1
507 +pad=1
508 +activation=leaky
509 +
510 +[route]
511 +layers = -1,-24
512 +
513 +[convolutional]
514 +batch_normalize=1
515 +filters=1024
516 +size=1
517 +stride=1
518 +pad=1
519 +activation=leaky
520 +
521 +[convolutional]
522 +batch_normalize=1
523 +filters=1024
524 +size=3
525 +groups=32
526 +stride=2
527 +pad=1
528 +activation=leaky
529 +
530 +[convolutional]
531 +batch_normalize=1
532 +filters=1024
533 +size=1
534 +stride=1
535 +pad=1
536 +activation=leaky
537 +
538 +[route]
539 +layers = -2
540 +
541 +[convolutional]
542 +batch_normalize=1
543 +filters=1024
544 +size=1
545 +stride=1
546 +pad=1
547 +activation=leaky
548 +
549 +# 4-1
550 +
551 +[convolutional]
552 +batch_normalize=1
553 +filters=1024
554 +size=1
555 +stride=1
556 +pad=1
557 +activation=leaky
558 +
559 +[convolutional]
560 +batch_normalize=1
561 +filters=1024
562 +size=3
563 +groups=32
564 +stride=1
565 +pad=1
566 +activation=leaky
567 +
568 +[convolutional]
569 +batch_normalize=1
570 +filters=1024
571 +size=1
572 +stride=1
573 +pad=1
574 +activation=linear
575 +
576 +[shortcut]
577 +from=-4
578 +activation=leaky
579 +
580 +# 4-2
581 +
582 +[convolutional]
583 +batch_normalize=1
584 +filters=1024
585 +size=1
586 +stride=1
587 +pad=1
588 +activation=leaky
589 +
590 +[convolutional]
591 +batch_normalize=1
592 +filters=1024
593 +size=3
594 +groups=32
595 +stride=1
596 +pad=1
597 +activation=leaky
598 +
599 +[convolutional]
600 +batch_normalize=1
601 +filters=1024
602 +size=1
603 +stride=1
604 +pad=1
605 +activation=linear
606 +
607 +[shortcut]
608 +from=-4
609 +activation=leaky
610 +
611 +# 4-T
612 +
613 +[convolutional]
614 +batch_normalize=1
615 +filters=1024
616 +size=1
617 +stride=1
618 +pad=1
619 +activation=leaky
620 +
621 +[route]
622 +layers = -1,-12
623 +
624 +[convolutional]
625 +batch_normalize=1
626 +filters=2048
627 +size=1
628 +stride=1
629 +pad=1
630 +activation=leaky
631 +
632 +##########################
633 +
634 +[convolutional]
635 +batch_normalize=1
636 +filters=512
637 +size=1
638 +stride=1
639 +pad=1
640 +activation=leaky
641 +
642 +[convolutional]
643 +batch_normalize=1
644 +size=3
645 +stride=1
646 +pad=1
647 +filters=1024
648 +activation=leaky
649 +
650 +[convolutional]
651 +batch_normalize=1
652 +filters=512
653 +size=1
654 +stride=1
655 +pad=1
656 +activation=leaky
657 +
658 +### SPP ###
659 +[maxpool]
660 +stride=1
661 +size=5
662 +
663 +[route]
664 +layers=-2
665 +
666 +[maxpool]
667 +stride=1
668 +size=9
669 +
670 +[route]
671 +layers=-4
672 +
673 +[maxpool]
674 +stride=1
675 +size=13
676 +
677 +[route]
678 +layers=-1,-3,-5,-6
679 +### End SPP ###
680 +
681 +[convolutional]
682 +batch_normalize=1
683 +filters=512
684 +size=1
685 +stride=1
686 +pad=1
687 +activation=leaky
688 +
689 +[convolutional]
690 +batch_normalize=1
691 +size=3
692 +stride=1
693 +pad=1
694 +filters=1024
695 +activation=leaky
696 +
697 +[convolutional]
698 +batch_normalize=1
699 +filters=512
700 +size=1
701 +stride=1
702 +pad=1
703 +activation=leaky
704 +
705 +[convolutional]
706 +batch_normalize=1
707 +filters=256
708 +size=1
709 +stride=1
710 +pad=1
711 +activation=leaky
712 +
713 +[upsample]
714 +stride=2
715 +
716 +[route]
717 +layers = 65
718 +
719 +[convolutional]
720 +batch_normalize=1
721 +filters=256
722 +size=1
723 +stride=1
724 +pad=1
725 +activation=leaky
726 +
727 +[route]
728 +layers = -1, -3
729 +
730 +[convolutional]
731 +batch_normalize=1
732 +filters=256
733 +size=1
734 +stride=1
735 +pad=1
736 +activation=leaky
737 +
738 +[convolutional]
739 +batch_normalize=1
740 +size=3
741 +stride=1
742 +pad=1
743 +filters=512
744 +activation=leaky
745 +
746 +[convolutional]
747 +batch_normalize=1
748 +filters=256
749 +size=1
750 +stride=1
751 +pad=1
752 +activation=leaky
753 +
754 +[convolutional]
755 +batch_normalize=1
756 +size=3
757 +stride=1
758 +pad=1
759 +filters=512
760 +activation=leaky
761 +
762 +[convolutional]
763 +batch_normalize=1
764 +filters=256
765 +size=1
766 +stride=1
767 +pad=1
768 +activation=leaky
769 +
770 +[convolutional]
771 +batch_normalize=1
772 +filters=128
773 +size=1
774 +stride=1
775 +pad=1
776 +activation=leaky
777 +
778 +[upsample]
779 +stride=2
780 +
781 +[route]
782 +layers = 38
783 +
784 +[convolutional]
785 +batch_normalize=1
786 +filters=128
787 +size=1
788 +stride=1
789 +pad=1
790 +activation=leaky
791 +
792 +[route]
793 +layers = -1, -3
794 +
795 +[convolutional]
796 +batch_normalize=1
797 +filters=128
798 +size=1
799 +stride=1
800 +pad=1
801 +activation=leaky
802 +
803 +[convolutional]
804 +batch_normalize=1
805 +size=3
806 +stride=1
807 +pad=1
808 +filters=256
809 +activation=leaky
810 +
811 +[convolutional]
812 +batch_normalize=1
813 +filters=128
814 +size=1
815 +stride=1
816 +pad=1
817 +activation=leaky
818 +
819 +[convolutional]
820 +batch_normalize=1
821 +size=3
822 +stride=1
823 +pad=1
824 +filters=256
825 +activation=leaky
826 +
827 +[convolutional]
828 +batch_normalize=1
829 +filters=128
830 +size=1
831 +stride=1
832 +pad=1
833 +activation=leaky
834 +
835 +##########################
836 +
837 +[convolutional]
838 +batch_normalize=1
839 +size=3
840 +stride=1
841 +pad=1
842 +filters=256
843 +activation=leaky
844 +
845 +[convolutional]
846 +size=1
847 +stride=1
848 +pad=1
849 +filters=255
850 +activation=linear
851 +
852 +
853 +[yolo]
854 +mask = 0,1,2
855 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
856 +classes=80
857 +num=9
858 +jitter=.3
859 +ignore_thresh = .7
860 +truth_thresh = 1
861 +scale_x_y = 1.2
862 +iou_thresh=0.213
863 +cls_normalizer=1.0
864 +iou_normalizer=0.07
865 +iou_loss=ciou
866 +nms_kind=greedynms
867 +beta_nms=0.6
868 +
869 +[route]
870 +layers = -4
871 +
872 +[convolutional]
873 +batch_normalize=1
874 +size=3
875 +stride=2
876 +pad=1
877 +filters=256
878 +activation=leaky
879 +
880 +[route]
881 +layers = -1, -16
882 +
883 +[convolutional]
884 +batch_normalize=1
885 +filters=256
886 +size=1
887 +stride=1
888 +pad=1
889 +activation=leaky
890 +
891 +[convolutional]
892 +batch_normalize=1
893 +size=3
894 +stride=1
895 +pad=1
896 +filters=512
897 +activation=leaky
898 +
899 +[convolutional]
900 +batch_normalize=1
901 +filters=256
902 +size=1
903 +stride=1
904 +pad=1
905 +activation=leaky
906 +
907 +[convolutional]
908 +batch_normalize=1
909 +size=3
910 +stride=1
911 +pad=1
912 +filters=512
913 +activation=leaky
914 +
915 +[convolutional]
916 +batch_normalize=1
917 +filters=256
918 +size=1
919 +stride=1
920 +pad=1
921 +activation=leaky
922 +
923 +[convolutional]
924 +batch_normalize=1
925 +size=3
926 +stride=1
927 +pad=1
928 +filters=512
929 +activation=leaky
930 +
931 +[convolutional]
932 +size=1
933 +stride=1
934 +pad=1
935 +filters=255
936 +activation=linear
937 +
938 +
939 +[yolo]
940 +mask = 3,4,5
941 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
942 +classes=80
943 +num=9
944 +jitter=.3
945 +ignore_thresh = .7
946 +truth_thresh = 1
947 +scale_x_y = 1.1
948 +iou_thresh=0.213
949 +cls_normalizer=1.0
950 +iou_normalizer=0.07
951 +iou_loss=ciou
952 +nms_kind=greedynms
953 +beta_nms=0.6
954 +
955 +
956 +[route]
957 +layers = -4
958 +
959 +[convolutional]
960 +batch_normalize=1
961 +size=3
962 +stride=2
963 +pad=1
964 +filters=512
965 +activation=leaky
966 +
967 +[route]
968 +layers = -1, -37
969 +
970 +[convolutional]
971 +batch_normalize=1
972 +filters=512
973 +size=1
974 +stride=1
975 +pad=1
976 +activation=leaky
977 +
978 +[convolutional]
979 +batch_normalize=1
980 +size=3
981 +stride=1
982 +pad=1
983 +filters=1024
984 +activation=leaky
985 +
986 +[convolutional]
987 +batch_normalize=1
988 +filters=512
989 +size=1
990 +stride=1
991 +pad=1
992 +activation=leaky
993 +
994 +[convolutional]
995 +batch_normalize=1
996 +size=3
997 +stride=1
998 +pad=1
999 +filters=1024
1000 +activation=leaky
1001 +
1002 +[convolutional]
1003 +batch_normalize=1
1004 +filters=512
1005 +size=1
1006 +stride=1
1007 +pad=1
1008 +activation=leaky
1009 +
1010 +[convolutional]
1011 +batch_normalize=1
1012 +size=3
1013 +stride=1
1014 +pad=1
1015 +filters=1024
1016 +activation=leaky
1017 +
1018 +[convolutional]
1019 +size=1
1020 +stride=1
1021 +pad=1
1022 +filters=255
1023 +activation=linear
1024 +
1025 +
1026 +[yolo]
1027 +mask = 6,7,8
1028 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1029 +classes=80
1030 +num=9
1031 +jitter=.3
1032 +ignore_thresh = .7
1033 +truth_thresh = 1
1034 +random=1
1035 +scale_x_y = 1.05
1036 +iou_thresh=0.213
1037 +cls_normalizer=1.0
1038 +iou_normalizer=0.07
1039 +iou_loss=ciou
1040 +nms_kind=greedynms
1041 +beta_nms=0.6
1042 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=512
9 +height=512
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500500
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +#19:104x104 38:52x52 65:26x26 80:13x13 for 416
26 +
27 +[convolutional]
28 +batch_normalize=1
29 +filters=64
30 +size=7
31 +stride=2
32 +pad=1
33 +activation=leaky
34 +
35 +[maxpool]
36 +size=2
37 +stride=2
38 +
39 +[convolutional]
40 +batch_normalize=1
41 +filters=128
42 +size=1
43 +stride=1
44 +pad=1
45 +activation=leaky
46 +
47 +[route]
48 +layers = -2
49 +
50 +[convolutional]
51 +batch_normalize=1
52 +filters=64
53 +size=1
54 +stride=1
55 +pad=1
56 +activation=leaky
57 +
58 +# 1-1
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=128
63 +size=1
64 +stride=1
65 +pad=1
66 +activation=leaky
67 +
68 +[convolutional]
69 +batch_normalize=1
70 +filters=128
71 +size=3
72 +groups=32
73 +stride=1
74 +pad=1
75 +activation=leaky
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=128
80 +size=1
81 +stride=1
82 +pad=1
83 +activation=linear
84 +
85 +[shortcut]
86 +from=-4
87 +activation=leaky
88 +
89 +# 1-2
90 +
91 +[convolutional]
92 +batch_normalize=1
93 +filters=128
94 +size=1
95 +stride=1
96 +pad=1
97 +activation=leaky
98 +
99 +[convolutional]
100 +batch_normalize=1
101 +filters=128
102 +size=3
103 +groups=32
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=128
111 +size=1
112 +stride=1
113 +pad=1
114 +activation=linear
115 +
116 +[shortcut]
117 +from=-4
118 +activation=leaky
119 +
120 +# 1-3
121 +
122 +[convolutional]
123 +batch_normalize=1
124 +filters=128
125 +size=1
126 +stride=1
127 +pad=1
128 +activation=leaky
129 +
130 +[convolutional]
131 +batch_normalize=1
132 +filters=128
133 +size=3
134 +groups=32
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[convolutional]
140 +batch_normalize=1
141 +filters=128
142 +size=1
143 +stride=1
144 +pad=1
145 +activation=linear
146 +
147 +[shortcut]
148 +from=-4
149 +activation=leaky
150 +
151 +# 1-T
152 +
153 +[convolutional]
154 +batch_normalize=1
155 +filters=128
156 +size=1
157 +stride=1
158 +pad=1
159 +activation=leaky
160 +
161 +[route]
162 +layers = -1,-16
163 +
164 +[convolutional]
165 +batch_normalize=1
166 +filters=256
167 +size=1
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[convolutional]
173 +batch_normalize=1
174 +filters=256
175 +size=3
176 +groups=32
177 +stride=2
178 +pad=1
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=256
184 +size=1
185 +stride=1
186 +pad=1
187 +activation=linear
188 +
189 +[route]
190 +layers = -2
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +filters=256
195 +size=1
196 +stride=1
197 +pad=1
198 +activation=linear
199 +
200 +# 2-1
201 +
202 +[convolutional]
203 +batch_normalize=1
204 +filters=256
205 +size=1
206 +stride=1
207 +pad=1
208 +activation=leaky
209 +
210 +[convolutional]
211 +batch_normalize=1
212 +filters=256
213 +size=3
214 +groups=32
215 +stride=1
216 +pad=1
217 +activation=leaky
218 +
219 +[convolutional]
220 +batch_normalize=1
221 +filters=256
222 +size=1
223 +stride=1
224 +pad=1
225 +activation=linear
226 +
227 +[shortcut]
228 +from=-4
229 +activation=leaky
230 +
231 +# 2-2
232 +
233 +[convolutional]
234 +batch_normalize=1
235 +filters=256
236 +size=1
237 +stride=1
238 +pad=1
239 +activation=leaky
240 +
241 +[convolutional]
242 +batch_normalize=1
243 +filters=256
244 +size=3
245 +groups=32
246 +stride=1
247 +pad=1
248 +activation=leaky
249 +
250 +[convolutional]
251 +batch_normalize=1
252 +filters=256
253 +size=1
254 +stride=1
255 +pad=1
256 +activation=linear
257 +
258 +[shortcut]
259 +from=-4
260 +activation=leaky
261 +
262 +# 2-3
263 +
264 +[convolutional]
265 +batch_normalize=1
266 +filters=256
267 +size=1
268 +stride=1
269 +pad=1
270 +activation=leaky
271 +
272 +[convolutional]
273 +batch_normalize=1
274 +filters=256
275 +size=3
276 +groups=32
277 +stride=1
278 +pad=1
279 +activation=leaky
280 +
281 +[convolutional]
282 +batch_normalize=1
283 +filters=256
284 +size=1
285 +stride=1
286 +pad=1
287 +activation=linear
288 +
289 +[shortcut]
290 +from=-4
291 +activation=leaky
292 +
293 +# 2-T
294 +
295 +[convolutional]
296 +batch_normalize=1
297 +filters=256
298 +size=1
299 +stride=1
300 +pad=1
301 +activation=leaky
302 +
303 +[route]
304 +layers = -1,-16
305 +
306 +[convolutional]
307 +batch_normalize=1
308 +filters=512
309 +size=1
310 +stride=1
311 +pad=1
312 +activation=leaky
313 +
314 +[convolutional]
315 +batch_normalize=1
316 +filters=512
317 +size=3
318 +groups=32
319 +stride=2
320 +pad=1
321 +activation=leaky
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=512
326 +size=1
327 +stride=1
328 +pad=1
329 +activation=linear
330 +
331 +[route]
332 +layers = -2
333 +
334 +[convolutional]
335 +batch_normalize=1
336 +filters=512
337 +size=1
338 +stride=1
339 +pad=1
340 +activation=linear
341 +
342 +# 3-1
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=512
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=512
355 +size=3
356 +groups=32
357 +stride=1
358 +pad=1
359 +activation=leaky
360 +
361 +[convolutional]
362 +batch_normalize=1
363 +filters=512
364 +size=1
365 +stride=1
366 +pad=1
367 +activation=linear
368 +
369 +[shortcut]
370 +from=-4
371 +activation=leaky
372 +
373 +# 3-2
374 +
375 +[convolutional]
376 +batch_normalize=1
377 +filters=512
378 +size=1
379 +stride=1
380 +pad=1
381 +activation=leaky
382 +
383 +[convolutional]
384 +batch_normalize=1
385 +filters=512
386 +size=3
387 +groups=32
388 +stride=1
389 +pad=1
390 +activation=leaky
391 +
392 +[convolutional]
393 +batch_normalize=1
394 +filters=512
395 +size=1
396 +stride=1
397 +pad=1
398 +activation=linear
399 +
400 +[shortcut]
401 +from=-4
402 +activation=leaky
403 +
404 +# 3-3
405 +
406 +[convolutional]
407 +batch_normalize=1
408 +filters=512
409 +size=1
410 +stride=1
411 +pad=1
412 +activation=leaky
413 +
414 +[convolutional]
415 +batch_normalize=1
416 +filters=512
417 +size=3
418 +groups=32
419 +stride=1
420 +pad=1
421 +activation=leaky
422 +
423 +[convolutional]
424 +batch_normalize=1
425 +filters=512
426 +size=1
427 +stride=1
428 +pad=1
429 +activation=linear
430 +
431 +[shortcut]
432 +from=-4
433 +activation=leaky
434 +
435 +# 3-4
436 +
437 +[convolutional]
438 +batch_normalize=1
439 +filters=512
440 +size=1
441 +stride=1
442 +pad=1
443 +activation=leaky
444 +
445 +[convolutional]
446 +batch_normalize=1
447 +filters=512
448 +size=3
449 +groups=32
450 +stride=1
451 +pad=1
452 +activation=leaky
453 +
454 +[convolutional]
455 +batch_normalize=1
456 +filters=512
457 +size=1
458 +stride=1
459 +pad=1
460 +activation=linear
461 +
462 +[shortcut]
463 +from=-4
464 +activation=leaky
465 +
466 +# 3-5
467 +
468 +[convolutional]
469 +batch_normalize=1
470 +filters=512
471 +size=1
472 +stride=1
473 +pad=1
474 +activation=leaky
475 +
476 +[convolutional]
477 +batch_normalize=1
478 +filters=512
479 +size=3
480 +groups=32
481 +stride=1
482 +pad=1
483 +activation=leaky
484 +
485 +[convolutional]
486 +batch_normalize=1
487 +filters=512
488 +size=1
489 +stride=1
490 +pad=1
491 +activation=linear
492 +
493 +[shortcut]
494 +from=-4
495 +activation=leaky
496 +
497 +# 3-T
498 +
499 +[convolutional]
500 +batch_normalize=1
501 +filters=512
502 +size=1
503 +stride=1
504 +pad=1
505 +activation=leaky
506 +
507 +[route]
508 +layers = -1,-24
509 +
510 +[convolutional]
511 +batch_normalize=1
512 +filters=1024
513 +size=1
514 +stride=1
515 +pad=1
516 +activation=leaky
517 +
518 +[convolutional]
519 +batch_normalize=1
520 +filters=1024
521 +size=3
522 +groups=32
523 +stride=2
524 +pad=1
525 +activation=leaky
526 +
527 +[convolutional]
528 +batch_normalize=1
529 +filters=1024
530 +size=1
531 +stride=1
532 +pad=1
533 +activation=leaky
534 +
535 +[route]
536 +layers = -2
537 +
538 +[convolutional]
539 +batch_normalize=1
540 +filters=1024
541 +size=1
542 +stride=1
543 +pad=1
544 +activation=leaky
545 +
546 +# 4-1
547 +
548 +[convolutional]
549 +batch_normalize=1
550 +filters=1024
551 +size=1
552 +stride=1
553 +pad=1
554 +activation=leaky
555 +
556 +[convolutional]
557 +batch_normalize=1
558 +filters=1024
559 +size=3
560 +groups=32
561 +stride=1
562 +pad=1
563 +activation=leaky
564 +
565 +[convolutional]
566 +batch_normalize=1
567 +filters=1024
568 +size=1
569 +stride=1
570 +pad=1
571 +activation=linear
572 +
573 +[shortcut]
574 +from=-4
575 +activation=leaky
576 +
577 +# 4-2
578 +
579 +[convolutional]
580 +batch_normalize=1
581 +filters=1024
582 +size=1
583 +stride=1
584 +pad=1
585 +activation=leaky
586 +
587 +[convolutional]
588 +batch_normalize=1
589 +filters=1024
590 +size=3
591 +groups=32
592 +stride=1
593 +pad=1
594 +activation=leaky
595 +
596 +[convolutional]
597 +batch_normalize=1
598 +filters=1024
599 +size=1
600 +stride=1
601 +pad=1
602 +activation=linear
603 +
604 +[shortcut]
605 +from=-4
606 +activation=leaky
607 +
608 +# 4-T
609 +
610 +[convolutional]
611 +batch_normalize=1
612 +filters=1024
613 +size=1
614 +stride=1
615 +pad=1
616 +activation=leaky
617 +
618 +[route]
619 +layers = -1,-12
620 +
621 +[convolutional]
622 +batch_normalize=1
623 +filters=2048
624 +size=1
625 +stride=1
626 +pad=1
627 +activation=leaky
628 +
629 +##########################
630 +
631 +[convolutional]
632 +batch_normalize=1
633 +filters=512
634 +size=1
635 +stride=1
636 +pad=1
637 +activation=leaky
638 +
639 +[convolutional]
640 +batch_normalize=1
641 +size=3
642 +stride=1
643 +pad=1
644 +filters=1024
645 +activation=leaky
646 +
647 +[convolutional]
648 +batch_normalize=1
649 +filters=512
650 +size=1
651 +stride=1
652 +pad=1
653 +activation=leaky
654 +
655 +### SPP ###
656 +[maxpool]
657 +stride=1
658 +size=5
659 +
660 +[route]
661 +layers=-2
662 +
663 +[maxpool]
664 +stride=1
665 +size=9
666 +
667 +[route]
668 +layers=-4
669 +
670 +[maxpool]
671 +stride=1
672 +size=13
673 +
674 +[route]
675 +layers=-1,-3,-5,-6
676 +### End SPP ###
677 +
678 +[convolutional]
679 +batch_normalize=1
680 +filters=512
681 +size=1
682 +stride=1
683 +pad=1
684 +activation=leaky
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +size=3
689 +stride=1
690 +pad=1
691 +filters=1024
692 +activation=leaky
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=512
697 +size=1
698 +stride=1
699 +pad=1
700 +activation=leaky
701 +
702 +[convolutional]
703 +batch_normalize=1
704 +filters=256
705 +size=1
706 +stride=1
707 +pad=1
708 +activation=leaky
709 +
710 +[upsample]
711 +stride=2
712 +
713 +[route]
714 +layers = 65
715 +
716 +[convolutional]
717 +batch_normalize=1
718 +filters=256
719 +size=1
720 +stride=1
721 +pad=1
722 +activation=leaky
723 +
724 +[route]
725 +layers = -1, -3
726 +
727 +[convolutional]
728 +batch_normalize=1
729 +filters=256
730 +size=1
731 +stride=1
732 +pad=1
733 +activation=leaky
734 +
735 +[convolutional]
736 +batch_normalize=1
737 +size=3
738 +stride=1
739 +pad=1
740 +filters=512
741 +activation=leaky
742 +
743 +[convolutional]
744 +batch_normalize=1
745 +filters=256
746 +size=1
747 +stride=1
748 +pad=1
749 +activation=leaky
750 +
751 +[convolutional]
752 +batch_normalize=1
753 +size=3
754 +stride=1
755 +pad=1
756 +filters=512
757 +activation=leaky
758 +
759 +[convolutional]
760 +batch_normalize=1
761 +filters=256
762 +size=1
763 +stride=1
764 +pad=1
765 +activation=leaky
766 +
767 +[convolutional]
768 +batch_normalize=1
769 +filters=128
770 +size=1
771 +stride=1
772 +pad=1
773 +activation=leaky
774 +
775 +[upsample]
776 +stride=2
777 +
778 +[route]
779 +layers = 38
780 +
781 +[convolutional]
782 +batch_normalize=1
783 +filters=128
784 +size=1
785 +stride=1
786 +pad=1
787 +activation=leaky
788 +
789 +[route]
790 +layers = -1, -3
791 +
792 +[convolutional]
793 +batch_normalize=1
794 +filters=128
795 +size=1
796 +stride=1
797 +pad=1
798 +activation=leaky
799 +
800 +[convolutional]
801 +batch_normalize=1
802 +size=3
803 +stride=1
804 +pad=1
805 +filters=256
806 +activation=leaky
807 +
808 +[convolutional]
809 +batch_normalize=1
810 +filters=128
811 +size=1
812 +stride=1
813 +pad=1
814 +activation=leaky
815 +
816 +[convolutional]
817 +batch_normalize=1
818 +size=3
819 +stride=1
820 +pad=1
821 +filters=256
822 +activation=leaky
823 +
824 +[convolutional]
825 +batch_normalize=1
826 +filters=128
827 +size=1
828 +stride=1
829 +pad=1
830 +activation=leaky
831 +
832 +##########################
833 +
834 +[convolutional]
835 +batch_normalize=1
836 +size=3
837 +stride=1
838 +pad=1
839 +filters=256
840 +activation=leaky
841 +
842 +[convolutional]
843 +size=1
844 +stride=1
845 +pad=1
846 +filters=255
847 +activation=linear
848 +
849 +
850 +[yolo]
851 +mask = 0,1,2
852 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
853 +classes=80
854 +num=9
855 +jitter=.3
856 +ignore_thresh = .7
857 +truth_thresh = 1
858 +random=1
859 +
860 +[route]
861 +layers = -4
862 +
863 +[convolutional]
864 +batch_normalize=1
865 +size=3
866 +stride=2
867 +pad=1
868 +filters=256
869 +activation=leaky
870 +
871 +[route]
872 +layers = -1, -16
873 +
874 +[convolutional]
875 +batch_normalize=1
876 +filters=256
877 +size=1
878 +stride=1
879 +pad=1
880 +activation=leaky
881 +
882 +[convolutional]
883 +batch_normalize=1
884 +size=3
885 +stride=1
886 +pad=1
887 +filters=512
888 +activation=leaky
889 +
890 +[convolutional]
891 +batch_normalize=1
892 +filters=256
893 +size=1
894 +stride=1
895 +pad=1
896 +activation=leaky
897 +
898 +[convolutional]
899 +batch_normalize=1
900 +size=3
901 +stride=1
902 +pad=1
903 +filters=512
904 +activation=leaky
905 +
906 +[convolutional]
907 +batch_normalize=1
908 +filters=256
909 +size=1
910 +stride=1
911 +pad=1
912 +activation=leaky
913 +
914 +[convolutional]
915 +batch_normalize=1
916 +size=3
917 +stride=1
918 +pad=1
919 +filters=512
920 +activation=leaky
921 +
922 +[convolutional]
923 +size=1
924 +stride=1
925 +pad=1
926 +filters=255
927 +activation=linear
928 +
929 +
930 +[yolo]
931 +mask = 3,4,5
932 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
933 +classes=80
934 +num=9
935 +jitter=.3
936 +ignore_thresh = .7
937 +truth_thresh = 1
938 +random=1
939 +
940 +[route]
941 +layers = -4
942 +
943 +[convolutional]
944 +batch_normalize=1
945 +size=3
946 +stride=2
947 +pad=1
948 +filters=512
949 +activation=leaky
950 +
951 +[route]
952 +layers = -1, -37
953 +
954 +[convolutional]
955 +batch_normalize=1
956 +filters=512
957 +size=1
958 +stride=1
959 +pad=1
960 +activation=leaky
961 +
962 +[convolutional]
963 +batch_normalize=1
964 +size=3
965 +stride=1
966 +pad=1
967 +filters=1024
968 +activation=leaky
969 +
970 +[convolutional]
971 +batch_normalize=1
972 +filters=512
973 +size=1
974 +stride=1
975 +pad=1
976 +activation=leaky
977 +
978 +[convolutional]
979 +batch_normalize=1
980 +size=3
981 +stride=1
982 +pad=1
983 +filters=1024
984 +activation=leaky
985 +
986 +[convolutional]
987 +batch_normalize=1
988 +filters=512
989 +size=1
990 +stride=1
991 +pad=1
992 +activation=leaky
993 +
994 +[convolutional]
995 +batch_normalize=1
996 +size=3
997 +stride=1
998 +pad=1
999 +filters=1024
1000 +activation=leaky
1001 +
1002 +[convolutional]
1003 +size=1
1004 +stride=1
1005 +pad=1
1006 +filters=255
1007 +activation=linear
1008 +
1009 +
1010 +[yolo]
1011 +mask = 6,7,8
1012 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
1013 +classes=80
1014 +num=9
1015 +jitter=.3
1016 +ignore_thresh = .7
1017 +truth_thresh = 1
1018 +random=1
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=224
5 +width=224
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +max_crop=320
10 +
11 +learning_rate=0.1
12 +policy=poly
13 +power=4
14 +max_batches=1600000
15 +
16 +[convolutional]
17 +batch_normalize=1
18 +filters=16
19 +size=3
20 +stride=1
21 +pad=1
22 +activation=leaky
23 +
24 +[maxpool]
25 +size=2
26 +stride=2
27 +
28 +[convolutional]
29 +batch_normalize=1
30 +filters=32
31 +size=3
32 +stride=1
33 +pad=1
34 +activation=leaky
35 +
36 +[maxpool]
37 +size=2
38 +stride=2
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=64
43 +size=3
44 +stride=1
45 +pad=1
46 +activation=leaky
47 +
48 +[maxpool]
49 +size=2
50 +stride=2
51 +
52 +[convolutional]
53 +batch_normalize=1
54 +filters=128
55 +size=3
56 +stride=1
57 +pad=1
58 +activation=leaky
59 +
60 +[maxpool]
61 +size=2
62 +stride=2
63 +
64 +[convolutional]
65 +batch_normalize=1
66 +filters=256
67 +size=3
68 +stride=1
69 +pad=1
70 +activation=leaky
71 +
72 +[maxpool]
73 +size=2
74 +stride=2
75 +
76 +[convolutional]
77 +batch_normalize=1
78 +filters=512
79 +size=3
80 +stride=1
81 +pad=1
82 +activation=leaky
83 +
84 +[maxpool]
85 +size=2
86 +stride=2
87 +padding=1
88 +
89 +[convolutional]
90 +batch_normalize=1
91 +filters=1024
92 +size=3
93 +stride=1
94 +pad=1
95 +activation=leaky
96 +
97 +[convolutional]
98 +filters=1000
99 +size=1
100 +stride=1
101 +pad=1
102 +activation=leaky
103 +
104 +[avgpool]
105 +
106 +[softmax]
107 +groups=1
108 +
109 +[cost]
110 +type=sse
111 +
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=224
5 +width=224
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +max_crop=448
10 +
11 +learning_rate=0.1
12 +policy=poly
13 +power=4
14 +max_batches=1600000
15 +
16 +[convolutional]
17 +batch_normalize=1
18 +filters=32
19 +size=3
20 +stride=1
21 +pad=1
22 +activation=leaky
23 +
24 +[maxpool]
25 +size=2
26 +stride=2
27 +
28 +[convolutional]
29 +batch_normalize=1
30 +filters=64
31 +size=3
32 +stride=1
33 +pad=1
34 +activation=leaky
35 +
36 +[maxpool]
37 +size=2
38 +stride=2
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=128
43 +size=3
44 +stride=1
45 +pad=1
46 +activation=leaky
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=1
52 +stride=1
53 +pad=1
54 +activation=leaky
55 +
56 +[convolutional]
57 +batch_normalize=1
58 +filters=128
59 +size=3
60 +stride=1
61 +pad=1
62 +activation=leaky
63 +
64 +[maxpool]
65 +size=2
66 +stride=2
67 +
68 +[convolutional]
69 +batch_normalize=1
70 +filters=256
71 +size=3
72 +stride=1
73 +pad=1
74 +activation=leaky
75 +
76 +[convolutional]
77 +batch_normalize=1
78 +filters=128
79 +size=1
80 +stride=1
81 +pad=1
82 +activation=leaky
83 +
84 +[convolutional]
85 +batch_normalize=1
86 +filters=256
87 +size=3
88 +stride=1
89 +pad=1
90 +activation=leaky
91 +
92 +[maxpool]
93 +size=2
94 +stride=2
95 +
96 +[convolutional]
97 +batch_normalize=1
98 +filters=512
99 +size=3
100 +stride=1
101 +pad=1
102 +activation=leaky
103 +
104 +[convolutional]
105 +batch_normalize=1
106 +filters=256
107 +size=1
108 +stride=1
109 +pad=1
110 +activation=leaky
111 +
112 +[convolutional]
113 +batch_normalize=1
114 +filters=512
115 +size=3
116 +stride=1
117 +pad=1
118 +activation=leaky
119 +
120 +[convolutional]
121 +batch_normalize=1
122 +filters=256
123 +size=1
124 +stride=1
125 +pad=1
126 +activation=leaky
127 +
128 +[convolutional]
129 +batch_normalize=1
130 +filters=512
131 +size=3
132 +stride=1
133 +pad=1
134 +activation=leaky
135 +
136 +[maxpool]
137 +size=2
138 +stride=2
139 +
140 +[convolutional]
141 +batch_normalize=1
142 +filters=1024
143 +size=3
144 +stride=1
145 +pad=1
146 +activation=leaky
147 +
148 +[convolutional]
149 +batch_normalize=1
150 +filters=512
151 +size=1
152 +stride=1
153 +pad=1
154 +activation=leaky
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=1024
159 +size=3
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[convolutional]
165 +batch_normalize=1
166 +filters=512
167 +size=1
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[convolutional]
173 +batch_normalize=1
174 +filters=1024
175 +size=3
176 +stride=1
177 +pad=1
178 +activation=leaky
179 +
180 +[convolutional]
181 +filters=1000
182 +size=1
183 +stride=1
184 +pad=1
185 +activation=linear
186 +
187 +[avgpool]
188 +
189 +[softmax]
190 +groups=1
191 +
192 +[cost]
193 +type=sse
194 +
1 +[net]
2 +#batch=128
3 +#subdivisions=4
4 +batch=1
5 +subdivisions=1
6 +height=448
7 +width=448
8 +max_crop=512
9 +channels=3
10 +momentum=0.9
11 +decay=0.0005
12 +
13 +learning_rate=0.001
14 +policy=poly
15 +power=4
16 +max_batches=100000
17 +
18 +angle=7
19 +hue = .1
20 +saturation=.75
21 +exposure=.75
22 +aspect=.75
23 +
24 +[convolutional]
25 +batch_normalize=1
26 +filters=32
27 +size=3
28 +stride=1
29 +pad=1
30 +activation=leaky
31 +
32 +[maxpool]
33 +size=2
34 +stride=2
35 +
36 +[convolutional]
37 +batch_normalize=1
38 +filters=64
39 +size=3
40 +stride=1
41 +pad=1
42 +activation=leaky
43 +
44 +[maxpool]
45 +size=2
46 +stride=2
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=128
51 +size=3
52 +stride=1
53 +pad=1
54 +activation=leaky
55 +
56 +[convolutional]
57 +batch_normalize=1
58 +filters=64
59 +size=1
60 +stride=1
61 +pad=1
62 +activation=leaky
63 +
64 +[convolutional]
65 +batch_normalize=1
66 +filters=128
67 +size=3
68 +stride=1
69 +pad=1
70 +activation=leaky
71 +
72 +[maxpool]
73 +size=2
74 +stride=2
75 +
76 +[convolutional]
77 +batch_normalize=1
78 +filters=256
79 +size=3
80 +stride=1
81 +pad=1
82 +activation=leaky
83 +
84 +[convolutional]
85 +batch_normalize=1
86 +filters=128
87 +size=1
88 +stride=1
89 +pad=1
90 +activation=leaky
91 +
92 +[convolutional]
93 +batch_normalize=1
94 +filters=256
95 +size=3
96 +stride=1
97 +pad=1
98 +activation=leaky
99 +
100 +[maxpool]
101 +size=2
102 +stride=2
103 +
104 +[convolutional]
105 +batch_normalize=1
106 +filters=512
107 +size=3
108 +stride=1
109 +pad=1
110 +activation=leaky
111 +
112 +[convolutional]
113 +batch_normalize=1
114 +filters=256
115 +size=1
116 +stride=1
117 +pad=1
118 +activation=leaky
119 +
120 +[convolutional]
121 +batch_normalize=1
122 +filters=512
123 +size=3
124 +stride=1
125 +pad=1
126 +activation=leaky
127 +
128 +[convolutional]
129 +batch_normalize=1
130 +filters=256
131 +size=1
132 +stride=1
133 +pad=1
134 +activation=leaky
135 +
136 +[convolutional]
137 +batch_normalize=1
138 +filters=512
139 +size=3
140 +stride=1
141 +pad=1
142 +activation=leaky
143 +
144 +[maxpool]
145 +size=2
146 +stride=2
147 +
148 +[convolutional]
149 +batch_normalize=1
150 +filters=1024
151 +size=3
152 +stride=1
153 +pad=1
154 +activation=leaky
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=512
159 +size=1
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[convolutional]
165 +batch_normalize=1
166 +filters=1024
167 +size=3
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[convolutional]
173 +batch_normalize=1
174 +filters=512
175 +size=1
176 +stride=1
177 +pad=1
178 +activation=leaky
179 +
180 +[convolutional]
181 +batch_normalize=1
182 +filters=1024
183 +size=3
184 +stride=1
185 +pad=1
186 +activation=leaky
187 +
188 +[convolutional]
189 +filters=1000
190 +size=1
191 +stride=1
192 +pad=1
193 +activation=linear
194 +
195 +[avgpool]
196 +
197 +[softmax]
198 +groups=1
199 +
200 +[cost]
201 +type=sse
202 +
1 +[net]
2 +# Training
3 +batch=128
4 +subdivisions=8
5 +
6 +# Testing
7 +#batch=1
8 +#subdivisions=1
9 +
10 +height=256
11 +width=256
12 +channels=3
13 +min_crop=128
14 +max_crop=448
15 +
16 +burn_in=1000
17 +learning_rate=0.1
18 +policy=poly
19 +power=4
20 +max_batches=800000
21 +momentum=0.9
22 +decay=0.0005
23 +
24 +angle=7
25 +hue=.1
26 +saturation=.75
27 +exposure=.75
28 +aspect=.75
29 +
30 +
31 +[convolutional]
32 +batch_normalize=1
33 +filters=32
34 +size=3
35 +stride=1
36 +pad=1
37 +activation=leaky
38 +
39 +# Downsample
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=64
44 +size=3
45 +stride=2
46 +pad=1
47 +activation=leaky
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=32
52 +size=1
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=64
60 +size=3
61 +stride=1
62 +pad=1
63 +activation=leaky
64 +
65 +[shortcut]
66 +from=-3
67 +activation=linear
68 +
69 +# Downsample
70 +
71 +[convolutional]
72 +batch_normalize=1
73 +filters=128
74 +size=3
75 +stride=2
76 +pad=1
77 +activation=leaky
78 +
79 +[convolutional]
80 +batch_normalize=1
81 +filters=64
82 +size=1
83 +stride=1
84 +pad=1
85 +activation=leaky
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=128
90 +size=3
91 +stride=1
92 +pad=1
93 +activation=leaky
94 +
95 +[shortcut]
96 +from=-3
97 +activation=linear
98 +
99 +[convolutional]
100 +batch_normalize=1
101 +filters=64
102 +size=1
103 +stride=1
104 +pad=1
105 +activation=leaky
106 +
107 +[convolutional]
108 +batch_normalize=1
109 +filters=128
110 +size=3
111 +stride=1
112 +pad=1
113 +activation=leaky
114 +
115 +[shortcut]
116 +from=-3
117 +activation=linear
118 +
119 +# Downsample
120 +
121 +[convolutional]
122 +batch_normalize=1
123 +filters=256
124 +size=3
125 +stride=2
126 +pad=1
127 +activation=leaky
128 +
129 +[convolutional]
130 +batch_normalize=1
131 +filters=128
132 +size=1
133 +stride=1
134 +pad=1
135 +activation=leaky
136 +
137 +[convolutional]
138 +batch_normalize=1
139 +filters=256
140 +size=3
141 +stride=1
142 +pad=1
143 +activation=leaky
144 +
145 +[shortcut]
146 +from=-3
147 +activation=linear
148 +
149 +[convolutional]
150 +batch_normalize=1
151 +filters=128
152 +size=1
153 +stride=1
154 +pad=1
155 +activation=leaky
156 +
157 +[convolutional]
158 +batch_normalize=1
159 +filters=256
160 +size=3
161 +stride=1
162 +pad=1
163 +activation=leaky
164 +
165 +[shortcut]
166 +from=-3
167 +activation=linear
168 +
169 +[convolutional]
170 +batch_normalize=1
171 +filters=128
172 +size=1
173 +stride=1
174 +pad=1
175 +activation=leaky
176 +
177 +[convolutional]
178 +batch_normalize=1
179 +filters=256
180 +size=3
181 +stride=1
182 +pad=1
183 +activation=leaky
184 +
185 +[shortcut]
186 +from=-3
187 +activation=linear
188 +
189 +[convolutional]
190 +batch_normalize=1
191 +filters=128
192 +size=1
193 +stride=1
194 +pad=1
195 +activation=leaky
196 +
197 +[convolutional]
198 +batch_normalize=1
199 +filters=256
200 +size=3
201 +stride=1
202 +pad=1
203 +activation=leaky
204 +
205 +[shortcut]
206 +from=-3
207 +activation=linear
208 +
209 +
210 +[convolutional]
211 +batch_normalize=1
212 +filters=128
213 +size=1
214 +stride=1
215 +pad=1
216 +activation=leaky
217 +
218 +[convolutional]
219 +batch_normalize=1
220 +filters=256
221 +size=3
222 +stride=1
223 +pad=1
224 +activation=leaky
225 +
226 +[shortcut]
227 +from=-3
228 +activation=linear
229 +
230 +[convolutional]
231 +batch_normalize=1
232 +filters=128
233 +size=1
234 +stride=1
235 +pad=1
236 +activation=leaky
237 +
238 +[convolutional]
239 +batch_normalize=1
240 +filters=256
241 +size=3
242 +stride=1
243 +pad=1
244 +activation=leaky
245 +
246 +[shortcut]
247 +from=-3
248 +activation=linear
249 +
250 +[convolutional]
251 +batch_normalize=1
252 +filters=128
253 +size=1
254 +stride=1
255 +pad=1
256 +activation=leaky
257 +
258 +[convolutional]
259 +batch_normalize=1
260 +filters=256
261 +size=3
262 +stride=1
263 +pad=1
264 +activation=leaky
265 +
266 +[shortcut]
267 +from=-3
268 +activation=linear
269 +
270 +[convolutional]
271 +batch_normalize=1
272 +filters=128
273 +size=1
274 +stride=1
275 +pad=1
276 +activation=leaky
277 +
278 +[convolutional]
279 +batch_normalize=1
280 +filters=256
281 +size=3
282 +stride=1
283 +pad=1
284 +activation=leaky
285 +
286 +[shortcut]
287 +from=-3
288 +activation=linear
289 +
290 +# Downsample
291 +
292 +[convolutional]
293 +batch_normalize=1
294 +filters=512
295 +size=3
296 +stride=2
297 +pad=1
298 +activation=leaky
299 +
300 +[convolutional]
301 +batch_normalize=1
302 +filters=256
303 +size=1
304 +stride=1
305 +pad=1
306 +activation=leaky
307 +
308 +[convolutional]
309 +batch_normalize=1
310 +filters=512
311 +size=3
312 +stride=1
313 +pad=1
314 +activation=leaky
315 +
316 +[shortcut]
317 +from=-3
318 +activation=linear
319 +
320 +
321 +[convolutional]
322 +batch_normalize=1
323 +filters=256
324 +size=1
325 +stride=1
326 +pad=1
327 +activation=leaky
328 +
329 +[convolutional]
330 +batch_normalize=1
331 +filters=512
332 +size=3
333 +stride=1
334 +pad=1
335 +activation=leaky
336 +
337 +[shortcut]
338 +from=-3
339 +activation=linear
340 +
341 +
342 +[convolutional]
343 +batch_normalize=1
344 +filters=256
345 +size=1
346 +stride=1
347 +pad=1
348 +activation=leaky
349 +
350 +[convolutional]
351 +batch_normalize=1
352 +filters=512
353 +size=3
354 +stride=1
355 +pad=1
356 +activation=leaky
357 +
358 +[shortcut]
359 +from=-3
360 +activation=linear
361 +
362 +
363 +[convolutional]
364 +batch_normalize=1
365 +filters=256
366 +size=1
367 +stride=1
368 +pad=1
369 +activation=leaky
370 +
371 +[convolutional]
372 +batch_normalize=1
373 +filters=512
374 +size=3
375 +stride=1
376 +pad=1
377 +activation=leaky
378 +
379 +[shortcut]
380 +from=-3
381 +activation=linear
382 +
383 +[convolutional]
384 +batch_normalize=1
385 +filters=256
386 +size=1
387 +stride=1
388 +pad=1
389 +activation=leaky
390 +
391 +[convolutional]
392 +batch_normalize=1
393 +filters=512
394 +size=3
395 +stride=1
396 +pad=1
397 +activation=leaky
398 +
399 +[shortcut]
400 +from=-3
401 +activation=linear
402 +
403 +
404 +[convolutional]
405 +batch_normalize=1
406 +filters=256
407 +size=1
408 +stride=1
409 +pad=1
410 +activation=leaky
411 +
412 +[convolutional]
413 +batch_normalize=1
414 +filters=512
415 +size=3
416 +stride=1
417 +pad=1
418 +activation=leaky
419 +
420 +[shortcut]
421 +from=-3
422 +activation=linear
423 +
424 +
425 +[convolutional]
426 +batch_normalize=1
427 +filters=256
428 +size=1
429 +stride=1
430 +pad=1
431 +activation=leaky
432 +
433 +[convolutional]
434 +batch_normalize=1
435 +filters=512
436 +size=3
437 +stride=1
438 +pad=1
439 +activation=leaky
440 +
441 +[shortcut]
442 +from=-3
443 +activation=linear
444 +
445 +[convolutional]
446 +batch_normalize=1
447 +filters=256
448 +size=1
449 +stride=1
450 +pad=1
451 +activation=leaky
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=512
456 +size=3
457 +stride=1
458 +pad=1
459 +activation=leaky
460 +
461 +[shortcut]
462 +from=-3
463 +activation=linear
464 +
465 +# Downsample
466 +
467 +[convolutional]
468 +batch_normalize=1
469 +filters=1024
470 +size=3
471 +stride=2
472 +pad=1
473 +activation=leaky
474 +
475 +[convolutional]
476 +batch_normalize=1
477 +filters=512
478 +size=1
479 +stride=1
480 +pad=1
481 +activation=leaky
482 +
483 +[convolutional]
484 +batch_normalize=1
485 +filters=1024
486 +size=3
487 +stride=1
488 +pad=1
489 +activation=leaky
490 +
491 +[shortcut]
492 +from=-3
493 +activation=linear
494 +
495 +[convolutional]
496 +batch_normalize=1
497 +filters=512
498 +size=1
499 +stride=1
500 +pad=1
501 +activation=leaky
502 +
503 +[convolutional]
504 +batch_normalize=1
505 +filters=1024
506 +size=3
507 +stride=1
508 +pad=1
509 +activation=leaky
510 +
511 +[shortcut]
512 +from=-3
513 +activation=linear
514 +
515 +[convolutional]
516 +batch_normalize=1
517 +filters=512
518 +size=1
519 +stride=1
520 +pad=1
521 +activation=leaky
522 +
523 +[convolutional]
524 +batch_normalize=1
525 +filters=1024
526 +size=3
527 +stride=1
528 +pad=1
529 +activation=leaky
530 +
531 +[shortcut]
532 +from=-3
533 +activation=linear
534 +
535 +[convolutional]
536 +batch_normalize=1
537 +filters=512
538 +size=1
539 +stride=1
540 +pad=1
541 +activation=leaky
542 +
543 +[convolutional]
544 +batch_normalize=1
545 +filters=1024
546 +size=3
547 +stride=1
548 +pad=1
549 +activation=leaky
550 +
551 +[shortcut]
552 +from=-3
553 +activation=linear
554 +
555 +[avgpool]
556 +
557 +[convolutional]
558 +filters=1000
559 +size=1
560 +stride=1
561 +pad=1
562 +activation=linear
563 +
564 +[softmax]
565 +groups=1
566 +
1 +[net]
2 +# Training - start training with darknet53.weights
3 +batch=120
4 +subdivisions=20
5 +
6 +# Testing
7 +#batch=1
8 +#subdivisions=1
9 +
10 +height=448
11 +width=448
12 +channels=3
13 +min_crop=448
14 +max_crop=512
15 +
16 +burn_in=1000
17 +learning_rate=0.1
18 +policy=poly
19 +power=4
20 +max_batches=100000
21 +momentum=0.9
22 +decay=0.0005
23 +
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +# Downsample
34 +
35 +[convolutional]
36 +xnor=1
37 +batch_normalize=1
38 +filters=64
39 +size=3
40 +stride=2
41 +pad=1
42 +activation=leaky
43 +
44 +[convolutional]
45 +xnor=1
46 +batch_normalize=1
47 +filters=32
48 +size=1
49 +stride=1
50 +pad=1
51 +activation=leaky
52 +
53 +[convolutional]
54 +xnor=1
55 +batch_normalize=1
56 +filters=64
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=leaky
61 +
62 +[shortcut]
63 +from=-3
64 +activation=linear
65 +
66 +# Downsample
67 +
68 +[convolutional]
69 +xnor=1
70 +batch_normalize=1
71 +filters=128
72 +size=3
73 +stride=2
74 +pad=1
75 +activation=leaky
76 +
77 +[convolutional]
78 +xnor=1
79 +batch_normalize=1
80 +filters=64
81 +size=1
82 +stride=1
83 +pad=1
84 +activation=leaky
85 +
86 +[convolutional]
87 +xnor=1
88 +batch_normalize=1
89 +filters=128
90 +size=3
91 +stride=1
92 +pad=1
93 +activation=leaky
94 +
95 +[shortcut]
96 +from=-3
97 +activation=linear
98 +
99 +[convolutional]
100 +xnor=1
101 +batch_normalize=1
102 +filters=64
103 +size=1
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +xnor=1
110 +batch_normalize=1
111 +filters=128
112 +size=3
113 +stride=1
114 +pad=1
115 +activation=leaky
116 +
117 +[shortcut]
118 +from=-3
119 +activation=linear
120 +
121 +# Downsample
122 +
123 +[convolutional]
124 +xnor=1
125 +batch_normalize=1
126 +filters=256
127 +size=3
128 +stride=2
129 +pad=1
130 +activation=leaky
131 +
132 +[convolutional]
133 +xnor=1
134 +batch_normalize=1
135 +filters=128
136 +size=1
137 +stride=1
138 +pad=1
139 +activation=leaky
140 +
141 +[convolutional]
142 +xnor=1
143 +batch_normalize=1
144 +filters=256
145 +size=3
146 +stride=1
147 +pad=1
148 +activation=leaky
149 +
150 +[shortcut]
151 +from=-3
152 +activation=linear
153 +
154 +[convolutional]
155 +xnor=1
156 +batch_normalize=1
157 +filters=128
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=leaky
162 +
163 +[convolutional]
164 +xnor=1
165 +batch_normalize=1
166 +filters=256
167 +size=3
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[shortcut]
173 +from=-3
174 +activation=linear
175 +
176 +[convolutional]
177 +xnor=1
178 +batch_normalize=1
179 +filters=128
180 +size=1
181 +stride=1
182 +pad=1
183 +activation=leaky
184 +
185 +[convolutional]
186 +xnor=1
187 +batch_normalize=1
188 +filters=256
189 +size=3
190 +stride=1
191 +pad=1
192 +activation=leaky
193 +
194 +[shortcut]
195 +from=-3
196 +activation=linear
197 +
198 +[convolutional]
199 +xnor=1
200 +batch_normalize=1
201 +filters=128
202 +size=1
203 +stride=1
204 +pad=1
205 +activation=leaky
206 +
207 +[convolutional]
208 +xnor=1
209 +batch_normalize=1
210 +filters=256
211 +size=3
212 +stride=1
213 +pad=1
214 +activation=leaky
215 +
216 +[shortcut]
217 +from=-3
218 +activation=linear
219 +
220 +
221 +[convolutional]
222 +xnor=1
223 +batch_normalize=1
224 +filters=128
225 +size=1
226 +stride=1
227 +pad=1
228 +activation=leaky
229 +
230 +[convolutional]
231 +xnor=1
232 +batch_normalize=1
233 +filters=256
234 +size=3
235 +stride=1
236 +pad=1
237 +activation=leaky
238 +
239 +[shortcut]
240 +from=-3
241 +activation=linear
242 +
243 +[convolutional]
244 +xnor=1
245 +batch_normalize=1
246 +filters=128
247 +size=1
248 +stride=1
249 +pad=1
250 +activation=leaky
251 +
252 +[convolutional]
253 +xnor=1
254 +batch_normalize=1
255 +filters=256
256 +size=3
257 +stride=1
258 +pad=1
259 +activation=leaky
260 +
261 +[shortcut]
262 +from=-3
263 +activation=linear
264 +
265 +[convolutional]
266 +xnor=1
267 +batch_normalize=1
268 +filters=128
269 +size=1
270 +stride=1
271 +pad=1
272 +activation=leaky
273 +
274 +[convolutional]
275 +xnor=1
276 +batch_normalize=1
277 +filters=256
278 +size=3
279 +stride=1
280 +pad=1
281 +activation=leaky
282 +
283 +[shortcut]
284 +from=-3
285 +activation=linear
286 +
287 +[convolutional]
288 +xnor=1
289 +batch_normalize=1
290 +filters=128
291 +size=1
292 +stride=1
293 +pad=1
294 +activation=leaky
295 +
296 +[convolutional]
297 +xnor=1
298 +batch_normalize=1
299 +filters=256
300 +size=3
301 +stride=1
302 +pad=1
303 +activation=leaky
304 +
305 +[shortcut]
306 +from=-3
307 +activation=linear
308 +
309 +# Downsample
310 +
311 +[convolutional]
312 +xnor=1
313 +batch_normalize=1
314 +filters=512
315 +size=3
316 +stride=2
317 +pad=1
318 +activation=leaky
319 +
320 +[convolutional]
321 +xnor=1
322 +batch_normalize=1
323 +filters=256
324 +size=1
325 +stride=1
326 +pad=1
327 +activation=leaky
328 +
329 +[convolutional]
330 +xnor=1
331 +batch_normalize=1
332 +filters=512
333 +size=3
334 +stride=1
335 +pad=1
336 +activation=leaky
337 +
338 +[shortcut]
339 +from=-3
340 +activation=linear
341 +
342 +
343 +[convolutional]
344 +xnor=1
345 +batch_normalize=1
346 +filters=256
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[convolutional]
353 +xnor=1
354 +batch_normalize=1
355 +filters=512
356 +size=3
357 +stride=1
358 +pad=1
359 +activation=leaky
360 +
361 +[shortcut]
362 +from=-3
363 +activation=linear
364 +
365 +
366 +[convolutional]
367 +xnor=1
368 +batch_normalize=1
369 +filters=256
370 +size=1
371 +stride=1
372 +pad=1
373 +activation=leaky
374 +
375 +[convolutional]
376 +xnor=1
377 +batch_normalize=1
378 +filters=512
379 +size=3
380 +stride=1
381 +pad=1
382 +activation=leaky
383 +
384 +[shortcut]
385 +from=-3
386 +activation=linear
387 +
388 +
389 +[convolutional]
390 +xnor=1
391 +batch_normalize=1
392 +filters=256
393 +size=1
394 +stride=1
395 +pad=1
396 +activation=leaky
397 +
398 +[convolutional]
399 +xnor=1
400 +batch_normalize=1
401 +filters=512
402 +size=3
403 +stride=1
404 +pad=1
405 +activation=leaky
406 +
407 +[shortcut]
408 +from=-3
409 +activation=linear
410 +
411 +[convolutional]
412 +xnor=1
413 +batch_normalize=1
414 +filters=256
415 +size=1
416 +stride=1
417 +pad=1
418 +activation=leaky
419 +
420 +[convolutional]
421 +xnor=1
422 +batch_normalize=1
423 +filters=512
424 +size=3
425 +stride=1
426 +pad=1
427 +activation=leaky
428 +
429 +[shortcut]
430 +from=-3
431 +activation=linear
432 +
433 +
434 +[convolutional]
435 +xnor=1
436 +batch_normalize=1
437 +filters=256
438 +size=1
439 +stride=1
440 +pad=1
441 +activation=leaky
442 +
443 +[convolutional]
444 +xnor=1
445 +batch_normalize=1
446 +filters=512
447 +size=3
448 +stride=1
449 +pad=1
450 +activation=leaky
451 +
452 +[shortcut]
453 +from=-3
454 +activation=linear
455 +
456 +
457 +[convolutional]
458 +xnor=1
459 +batch_normalize=1
460 +filters=256
461 +size=1
462 +stride=1
463 +pad=1
464 +activation=leaky
465 +
466 +[convolutional]
467 +xnor=1
468 +batch_normalize=1
469 +filters=512
470 +size=3
471 +stride=1
472 +pad=1
473 +activation=leaky
474 +
475 +[shortcut]
476 +from=-3
477 +activation=linear
478 +
479 +[convolutional]
480 +xnor=1
481 +batch_normalize=1
482 +filters=256
483 +size=1
484 +stride=1
485 +pad=1
486 +activation=leaky
487 +
488 +[convolutional]
489 +xnor=1
490 +batch_normalize=1
491 +filters=512
492 +size=3
493 +stride=1
494 +pad=1
495 +activation=leaky
496 +
497 +[shortcut]
498 +from=-3
499 +activation=linear
500 +
501 +# Downsample
502 +
503 +[convolutional]
504 +xnor=1
505 +batch_normalize=1
506 +filters=1024
507 +size=3
508 +stride=2
509 +pad=1
510 +activation=leaky
511 +
512 +[convolutional]
513 +xnor=1
514 +batch_normalize=1
515 +filters=512
516 +size=1
517 +stride=1
518 +pad=1
519 +activation=leaky
520 +
521 +[convolutional]
522 +xnor=1
523 +batch_normalize=1
524 +filters=1024
525 +size=3
526 +stride=1
527 +pad=1
528 +activation=leaky
529 +
530 +[shortcut]
531 +from=-3
532 +activation=linear
533 +
534 +[convolutional]
535 +xnor=1
536 +batch_normalize=1
537 +filters=512
538 +size=1
539 +stride=1
540 +pad=1
541 +activation=leaky
542 +
543 +[convolutional]
544 +xnor=1
545 +batch_normalize=1
546 +filters=1024
547 +size=3
548 +stride=1
549 +pad=1
550 +activation=leaky
551 +
552 +[shortcut]
553 +from=-3
554 +activation=linear
555 +
556 +[convolutional]
557 +xnor=1
558 +batch_normalize=1
559 +filters=512
560 +size=1
561 +stride=1
562 +pad=1
563 +activation=leaky
564 +
565 +[convolutional]
566 +xnor=1
567 +batch_normalize=1
568 +filters=1024
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=leaky
573 +
574 +[shortcut]
575 +from=-3
576 +activation=linear
577 +
578 +[convolutional]
579 +xnor=1
580 +batch_normalize=1
581 +filters=512
582 +size=1
583 +stride=1
584 +pad=1
585 +activation=leaky
586 +
587 +[convolutional]
588 +xnor=1
589 +batch_normalize=1
590 +filters=1024
591 +size=3
592 +stride=1
593 +pad=1
594 +activation=leaky
595 +
596 +[shortcut]
597 +from=-3
598 +activation=linear
599 +
600 +[convolutional]
601 +batch_normalize=1
602 +filters=512
603 +size=1
604 +stride=1
605 +pad=1
606 +activation=leaky
607 +
608 +[avgpool]
609 +
610 +[convolutional]
611 +filters=1000
612 +size=1
613 +stride=1
614 +pad=1
615 +activation=linear
616 +
617 +[softmax]
618 +groups=1
619 +
1 +[net]
2 +# Training
3 +# batch=128
4 +# subdivisions=4
5 +
6 +# Testing
7 +batch=1
8 +subdivisions=1
9 +
10 +height=256
11 +width=256
12 +max_crop=448
13 +channels=3
14 +momentum=0.9
15 +decay=0.0005
16 +
17 +burn_in=1000
18 +learning_rate=0.1
19 +policy=poly
20 +power=4
21 +max_batches=1600000
22 +
23 +angle=7
24 +hue=.1
25 +saturation=.75
26 +exposure=.75
27 +aspect=.75
28 +
29 +[convolutional]
30 +batch_normalize=1
31 +filters=64
32 +size=7
33 +stride=2
34 +pad=1
35 +activation=leaky
36 +
37 +[maxpool]
38 +size=2
39 +stride=2
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=128
44 +size=1
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=32
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[route]
58 +layers=-1,-3
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=128
63 +size=1
64 +stride=1
65 +pad=1
66 +activation=leaky
67 +
68 +[convolutional]
69 +batch_normalize=1
70 +filters=32
71 +size=3
72 +stride=1
73 +pad=1
74 +activation=leaky
75 +
76 +[route]
77 +layers=-1,-3
78 +
79 +[convolutional]
80 +batch_normalize=1
81 +filters=128
82 +size=1
83 +stride=1
84 +pad=1
85 +activation=leaky
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=32
90 +size=3
91 +stride=1
92 +pad=1
93 +activation=leaky
94 +
95 +[route]
96 +layers=-1,-3
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=128
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=leaky
105 +
106 +[convolutional]
107 +batch_normalize=1
108 +filters=32
109 +size=3
110 +stride=1
111 +pad=1
112 +activation=leaky
113 +
114 +[route]
115 +layers=-1,-3
116 +
117 +[convolutional]
118 +batch_normalize=1
119 +filters=128
120 +size=1
121 +stride=1
122 +pad=1
123 +activation=leaky
124 +
125 +[convolutional]
126 +batch_normalize=1
127 +filters=32
128 +size=3
129 +stride=1
130 +pad=1
131 +activation=leaky
132 +
133 +[route]
134 +layers=-1,-3
135 +
136 +[convolutional]
137 +batch_normalize=1
138 +filters=128
139 +size=1
140 +stride=1
141 +pad=1
142 +activation=leaky
143 +
144 +[convolutional]
145 +batch_normalize=1
146 +filters=32
147 +size=3
148 +stride=1
149 +pad=1
150 +activation=leaky
151 +
152 +[route]
153 +layers=-1,-3
154 +
155 +[convolutional]
156 +batch_normalize=1
157 +filters=128
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=leaky
162 +
163 +[maxpool]
164 +size=2
165 +stride=2
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=128
170 +size=1
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=32
178 +size=3
179 +stride=1
180 +pad=1
181 +activation=leaky
182 +
183 +[route]
184 +layers=-1,-3
185 +
186 +[convolutional]
187 +batch_normalize=1
188 +filters=128
189 +size=1
190 +stride=1
191 +pad=1
192 +activation=leaky
193 +
194 +[convolutional]
195 +batch_normalize=1
196 +filters=32
197 +size=3
198 +stride=1
199 +pad=1
200 +activation=leaky
201 +
202 +[route]
203 +layers=-1,-3
204 +
205 +[convolutional]
206 +batch_normalize=1
207 +filters=128
208 +size=1
209 +stride=1
210 +pad=1
211 +activation=leaky
212 +
213 +[convolutional]
214 +batch_normalize=1
215 +filters=32
216 +size=3
217 +stride=1
218 +pad=1
219 +activation=leaky
220 +
221 +[route]
222 +layers=-1,-3
223 +
224 +[convolutional]
225 +batch_normalize=1
226 +filters=128
227 +size=1
228 +stride=1
229 +pad=1
230 +activation=leaky
231 +
232 +[convolutional]
233 +batch_normalize=1
234 +filters=32
235 +size=3
236 +stride=1
237 +pad=1
238 +activation=leaky
239 +
240 +[route]
241 +layers=-1,-3
242 +
243 +[convolutional]
244 +batch_normalize=1
245 +filters=128
246 +size=1
247 +stride=1
248 +pad=1
249 +activation=leaky
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=32
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=leaky
258 +
259 +[route]
260 +layers=-1,-3
261 +
262 +[convolutional]
263 +batch_normalize=1
264 +filters=128
265 +size=1
266 +stride=1
267 +pad=1
268 +activation=leaky
269 +
270 +[convolutional]
271 +batch_normalize=1
272 +filters=32
273 +size=3
274 +stride=1
275 +pad=1
276 +activation=leaky
277 +
278 +[route]
279 +layers=-1,-3
280 +
281 +[convolutional]
282 +batch_normalize=1
283 +filters=128
284 +size=1
285 +stride=1
286 +pad=1
287 +activation=leaky
288 +
289 +[convolutional]
290 +batch_normalize=1
291 +filters=32
292 +size=3
293 +stride=1
294 +pad=1
295 +activation=leaky
296 +
297 +[route]
298 +layers=-1,-3
299 +
300 +[convolutional]
301 +batch_normalize=1
302 +filters=128
303 +size=1
304 +stride=1
305 +pad=1
306 +activation=leaky
307 +
308 +[convolutional]
309 +batch_normalize=1
310 +filters=32
311 +size=3
312 +stride=1
313 +pad=1
314 +activation=leaky
315 +
316 +[route]
317 +layers=-1,-3
318 +
319 +[convolutional]
320 +batch_normalize=1
321 +filters=128
322 +size=1
323 +stride=1
324 +pad=1
325 +activation=leaky
326 +
327 +[convolutional]
328 +batch_normalize=1
329 +filters=32
330 +size=3
331 +stride=1
332 +pad=1
333 +activation=leaky
334 +
335 +[route]
336 +layers=-1,-3
337 +
338 +[convolutional]
339 +batch_normalize=1
340 +filters=128
341 +size=1
342 +stride=1
343 +pad=1
344 +activation=leaky
345 +
346 +[convolutional]
347 +batch_normalize=1
348 +filters=32
349 +size=3
350 +stride=1
351 +pad=1
352 +activation=leaky
353 +
354 +[route]
355 +layers=-1,-3
356 +
357 +[convolutional]
358 +batch_normalize=1
359 +filters=128
360 +size=1
361 +stride=1
362 +pad=1
363 +activation=leaky
364 +
365 +[convolutional]
366 +batch_normalize=1
367 +filters=32
368 +size=3
369 +stride=1
370 +pad=1
371 +activation=leaky
372 +
373 +[route]
374 +layers=-1,-3
375 +
376 +[convolutional]
377 +batch_normalize=1
378 +filters=128
379 +size=1
380 +stride=1
381 +pad=1
382 +activation=leaky
383 +
384 +[convolutional]
385 +batch_normalize=1
386 +filters=32
387 +size=3
388 +stride=1
389 +pad=1
390 +activation=leaky
391 +
392 +[route]
393 +layers=-1,-3
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=256
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=leaky
402 +
403 +[maxpool]
404 +size=2
405 +stride=2
406 +
407 +[convolutional]
408 +batch_normalize=1
409 +filters=128
410 +size=1
411 +stride=1
412 +pad=1
413 +activation=leaky
414 +
415 +[convolutional]
416 +batch_normalize=1
417 +filters=32
418 +size=3
419 +stride=1
420 +pad=1
421 +activation=leaky
422 +
423 +[route]
424 +layers=-1,-3
425 +
426 +[convolutional]
427 +batch_normalize=1
428 +filters=128
429 +size=1
430 +stride=1
431 +pad=1
432 +activation=leaky
433 +
434 +[convolutional]
435 +batch_normalize=1
436 +filters=32
437 +size=3
438 +stride=1
439 +pad=1
440 +activation=leaky
441 +
442 +[route]
443 +layers=-1,-3
444 +
445 +[convolutional]
446 +batch_normalize=1
447 +filters=128
448 +size=1
449 +stride=1
450 +pad=1
451 +activation=leaky
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=32
456 +size=3
457 +stride=1
458 +pad=1
459 +activation=leaky
460 +
461 +[route]
462 +layers=-1,-3
463 +
464 +[convolutional]
465 +batch_normalize=1
466 +filters=128
467 +size=1
468 +stride=1
469 +pad=1
470 +activation=leaky
471 +
472 +[convolutional]
473 +batch_normalize=1
474 +filters=32
475 +size=3
476 +stride=1
477 +pad=1
478 +activation=leaky
479 +
480 +[route]
481 +layers=-1,-3
482 +
483 +[convolutional]
484 +batch_normalize=1
485 +filters=128
486 +size=1
487 +stride=1
488 +pad=1
489 +activation=leaky
490 +
491 +[convolutional]
492 +batch_normalize=1
493 +filters=32
494 +size=3
495 +stride=1
496 +pad=1
497 +activation=leaky
498 +
499 +[route]
500 +layers=-1,-3
501 +
502 +[convolutional]
503 +batch_normalize=1
504 +filters=128
505 +size=1
506 +stride=1
507 +pad=1
508 +activation=leaky
509 +
510 +[convolutional]
511 +batch_normalize=1
512 +filters=32
513 +size=3
514 +stride=1
515 +pad=1
516 +activation=leaky
517 +
518 +[route]
519 +layers=-1,-3
520 +
521 +[convolutional]
522 +batch_normalize=1
523 +filters=128
524 +size=1
525 +stride=1
526 +pad=1
527 +activation=leaky
528 +
529 +[convolutional]
530 +batch_normalize=1
531 +filters=32
532 +size=3
533 +stride=1
534 +pad=1
535 +activation=leaky
536 +
537 +[route]
538 +layers=-1,-3
539 +
540 +[convolutional]
541 +batch_normalize=1
542 +filters=128
543 +size=1
544 +stride=1
545 +pad=1
546 +activation=leaky
547 +
548 +[convolutional]
549 +batch_normalize=1
550 +filters=32
551 +size=3
552 +stride=1
553 +pad=1
554 +activation=leaky
555 +
556 +[route]
557 +layers=-1,-3
558 +
559 +[convolutional]
560 +batch_normalize=1
561 +filters=128
562 +size=1
563 +stride=1
564 +pad=1
565 +activation=leaky
566 +
567 +[convolutional]
568 +batch_normalize=1
569 +filters=32
570 +size=3
571 +stride=1
572 +pad=1
573 +activation=leaky
574 +
575 +[route]
576 +layers=-1,-3
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=128
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=leaky
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=32
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=leaky
593 +
594 +[route]
595 +layers=-1,-3
596 +
597 +[convolutional]
598 +batch_normalize=1
599 +filters=128
600 +size=1
601 +stride=1
602 +pad=1
603 +activation=leaky
604 +
605 +[convolutional]
606 +batch_normalize=1
607 +filters=32
608 +size=3
609 +stride=1
610 +pad=1
611 +activation=leaky
612 +
613 +[route]
614 +layers=-1,-3
615 +
616 +[convolutional]
617 +batch_normalize=1
618 +filters=128
619 +size=1
620 +stride=1
621 +pad=1
622 +activation=leaky
623 +
624 +[convolutional]
625 +batch_normalize=1
626 +filters=32
627 +size=3
628 +stride=1
629 +pad=1
630 +activation=leaky
631 +
632 +[route]
633 +layers=-1,-3
634 +
635 +[convolutional]
636 +batch_normalize=1
637 +filters=128
638 +size=1
639 +stride=1
640 +pad=1
641 +activation=leaky
642 +
643 +[convolutional]
644 +batch_normalize=1
645 +filters=32
646 +size=3
647 +stride=1
648 +pad=1
649 +activation=leaky
650 +
651 +[route]
652 +layers=-1,-3
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=128
657 +size=1
658 +stride=1
659 +pad=1
660 +activation=leaky
661 +
662 +[convolutional]
663 +batch_normalize=1
664 +filters=32
665 +size=3
666 +stride=1
667 +pad=1
668 +activation=leaky
669 +
670 +[route]
671 +layers=-1,-3
672 +
673 +[convolutional]
674 +batch_normalize=1
675 +filters=128
676 +size=1
677 +stride=1
678 +pad=1
679 +activation=leaky
680 +
681 +[convolutional]
682 +batch_normalize=1
683 +filters=32
684 +size=3
685 +stride=1
686 +pad=1
687 +activation=leaky
688 +
689 +[route]
690 +layers=-1,-3
691 +
692 +[convolutional]
693 +batch_normalize=1
694 +filters=128
695 +size=1
696 +stride=1
697 +pad=1
698 +activation=leaky
699 +
700 +[convolutional]
701 +batch_normalize=1
702 +filters=32
703 +size=3
704 +stride=1
705 +pad=1
706 +activation=leaky
707 +
708 +[route]
709 +layers=-1,-3
710 +
711 +[convolutional]
712 +batch_normalize=1
713 +filters=128
714 +size=1
715 +stride=1
716 +pad=1
717 +activation=leaky
718 +
719 +[convolutional]
720 +batch_normalize=1
721 +filters=32
722 +size=3
723 +stride=1
724 +pad=1
725 +activation=leaky
726 +
727 +[route]
728 +layers=-1,-3
729 +
730 +[convolutional]
731 +batch_normalize=1
732 +filters=128
733 +size=1
734 +stride=1
735 +pad=1
736 +activation=leaky
737 +
738 +[convolutional]
739 +batch_normalize=1
740 +filters=32
741 +size=3
742 +stride=1
743 +pad=1
744 +activation=leaky
745 +
746 +[route]
747 +layers=-1,-3
748 +
749 +[convolutional]
750 +batch_normalize=1
751 +filters=128
752 +size=1
753 +stride=1
754 +pad=1
755 +activation=leaky
756 +
757 +[convolutional]
758 +batch_normalize=1
759 +filters=32
760 +size=3
761 +stride=1
762 +pad=1
763 +activation=leaky
764 +
765 +[route]
766 +layers=-1,-3
767 +
768 +[convolutional]
769 +batch_normalize=1
770 +filters=128
771 +size=1
772 +stride=1
773 +pad=1
774 +activation=leaky
775 +
776 +[convolutional]
777 +batch_normalize=1
778 +filters=32
779 +size=3
780 +stride=1
781 +pad=1
782 +activation=leaky
783 +
784 +[route]
785 +layers=-1,-3
786 +
787 +[convolutional]
788 +batch_normalize=1
789 +filters=128
790 +size=1
791 +stride=1
792 +pad=1
793 +activation=leaky
794 +
795 +[convolutional]
796 +batch_normalize=1
797 +filters=32
798 +size=3
799 +stride=1
800 +pad=1
801 +activation=leaky
802 +
803 +[route]
804 +layers=-1,-3
805 +
806 +[convolutional]
807 +batch_normalize=1
808 +filters=128
809 +size=1
810 +stride=1
811 +pad=1
812 +activation=leaky
813 +
814 +[convolutional]
815 +batch_normalize=1
816 +filters=32
817 +size=3
818 +stride=1
819 +pad=1
820 +activation=leaky
821 +
822 +[route]
823 +layers=-1,-3
824 +
825 +[convolutional]
826 +batch_normalize=1
827 +filters=128
828 +size=1
829 +stride=1
830 +pad=1
831 +activation=leaky
832 +
833 +[convolutional]
834 +batch_normalize=1
835 +filters=32
836 +size=3
837 +stride=1
838 +pad=1
839 +activation=leaky
840 +
841 +[route]
842 +layers=-1,-3
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=128
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=leaky
851 +
852 +[convolutional]
853 +batch_normalize=1
854 +filters=32
855 +size=3
856 +stride=1
857 +pad=1
858 +activation=leaky
859 +
860 +[route]
861 +layers=-1,-3
862 +
863 +[convolutional]
864 +batch_normalize=1
865 +filters=128
866 +size=1
867 +stride=1
868 +pad=1
869 +activation=leaky
870 +
871 +[convolutional]
872 +batch_normalize=1
873 +filters=32
874 +size=3
875 +stride=1
876 +pad=1
877 +activation=leaky
878 +
879 +[route]
880 +layers=-1,-3
881 +
882 +[convolutional]
883 +batch_normalize=1
884 +filters=128
885 +size=1
886 +stride=1
887 +pad=1
888 +activation=leaky
889 +
890 +[convolutional]
891 +batch_normalize=1
892 +filters=32
893 +size=3
894 +stride=1
895 +pad=1
896 +activation=leaky
897 +
898 +[route]
899 +layers=-1,-3
900 +
901 +[convolutional]
902 +batch_normalize=1
903 +filters=128
904 +size=1
905 +stride=1
906 +pad=1
907 +activation=leaky
908 +
909 +[convolutional]
910 +batch_normalize=1
911 +filters=32
912 +size=3
913 +stride=1
914 +pad=1
915 +activation=leaky
916 +
917 +[route]
918 +layers=-1,-3
919 +
920 +[convolutional]
921 +batch_normalize=1
922 +filters=128
923 +size=1
924 +stride=1
925 +pad=1
926 +activation=leaky
927 +
928 +[convolutional]
929 +batch_normalize=1
930 +filters=32
931 +size=3
932 +stride=1
933 +pad=1
934 +activation=leaky
935 +
936 +[route]
937 +layers=-1,-3
938 +
939 +[convolutional]
940 +batch_normalize=1
941 +filters=128
942 +size=1
943 +stride=1
944 +pad=1
945 +activation=leaky
946 +
947 +[convolutional]
948 +batch_normalize=1
949 +filters=32
950 +size=3
951 +stride=1
952 +pad=1
953 +activation=leaky
954 +
955 +[route]
956 +layers=-1,-3
957 +
958 +[convolutional]
959 +batch_normalize=1
960 +filters=128
961 +size=1
962 +stride=1
963 +pad=1
964 +activation=leaky
965 +
966 +[convolutional]
967 +batch_normalize=1
968 +filters=32
969 +size=3
970 +stride=1
971 +pad=1
972 +activation=leaky
973 +
974 +[route]
975 +layers=-1,-3
976 +
977 +[convolutional]
978 +batch_normalize=1
979 +filters=128
980 +size=1
981 +stride=1
982 +pad=1
983 +activation=leaky
984 +
985 +[convolutional]
986 +batch_normalize=1
987 +filters=32
988 +size=3
989 +stride=1
990 +pad=1
991 +activation=leaky
992 +
993 +[route]
994 +layers=-1,-3
995 +
996 +[convolutional]
997 +batch_normalize=1
998 +filters=128
999 +size=1
1000 +stride=1
1001 +pad=1
1002 +activation=leaky
1003 +
1004 +[convolutional]
1005 +batch_normalize=1
1006 +filters=32
1007 +size=3
1008 +stride=1
1009 +pad=1
1010 +activation=leaky
1011 +
1012 +[route]
1013 +layers=-1,-3
1014 +
1015 +[convolutional]
1016 +batch_normalize=1
1017 +filters=128
1018 +size=1
1019 +stride=1
1020 +pad=1
1021 +activation=leaky
1022 +
1023 +[convolutional]
1024 +batch_normalize=1
1025 +filters=32
1026 +size=3
1027 +stride=1
1028 +pad=1
1029 +activation=leaky
1030 +
1031 +[route]
1032 +layers=-1,-3
1033 +
1034 +[convolutional]
1035 +batch_normalize=1
1036 +filters=128
1037 +size=1
1038 +stride=1
1039 +pad=1
1040 +activation=leaky
1041 +
1042 +[convolutional]
1043 +batch_normalize=1
1044 +filters=32
1045 +size=3
1046 +stride=1
1047 +pad=1
1048 +activation=leaky
1049 +
1050 +[route]
1051 +layers=-1,-3
1052 +
1053 +[convolutional]
1054 +batch_normalize=1
1055 +filters=128
1056 +size=1
1057 +stride=1
1058 +pad=1
1059 +activation=leaky
1060 +
1061 +[convolutional]
1062 +batch_normalize=1
1063 +filters=32
1064 +size=3
1065 +stride=1
1066 +pad=1
1067 +activation=leaky
1068 +
1069 +[route]
1070 +layers=-1,-3
1071 +
1072 +[convolutional]
1073 +batch_normalize=1
1074 +filters=128
1075 +size=1
1076 +stride=1
1077 +pad=1
1078 +activation=leaky
1079 +
1080 +[convolutional]
1081 +batch_normalize=1
1082 +filters=32
1083 +size=3
1084 +stride=1
1085 +pad=1
1086 +activation=leaky
1087 +
1088 +[route]
1089 +layers=-1,-3
1090 +
1091 +[convolutional]
1092 +batch_normalize=1
1093 +filters=128
1094 +size=1
1095 +stride=1
1096 +pad=1
1097 +activation=leaky
1098 +
1099 +[convolutional]
1100 +batch_normalize=1
1101 +filters=32
1102 +size=3
1103 +stride=1
1104 +pad=1
1105 +activation=leaky
1106 +
1107 +[route]
1108 +layers=-1,-3
1109 +
1110 +[convolutional]
1111 +batch_normalize=1
1112 +filters=128
1113 +size=1
1114 +stride=1
1115 +pad=1
1116 +activation=leaky
1117 +
1118 +[convolutional]
1119 +batch_normalize=1
1120 +filters=32
1121 +size=3
1122 +stride=1
1123 +pad=1
1124 +activation=leaky
1125 +
1126 +[route]
1127 +layers=-1,-3
1128 +
1129 +[convolutional]
1130 +batch_normalize=1
1131 +filters=128
1132 +size=1
1133 +stride=1
1134 +pad=1
1135 +activation=leaky
1136 +
1137 +[convolutional]
1138 +batch_normalize=1
1139 +filters=32
1140 +size=3
1141 +stride=1
1142 +pad=1
1143 +activation=leaky
1144 +
1145 +[route]
1146 +layers=-1,-3
1147 +
1148 +[convolutional]
1149 +batch_normalize=1
1150 +filters=128
1151 +size=1
1152 +stride=1
1153 +pad=1
1154 +activation=leaky
1155 +
1156 +[convolutional]
1157 +batch_normalize=1
1158 +filters=32
1159 +size=3
1160 +stride=1
1161 +pad=1
1162 +activation=leaky
1163 +
1164 +[route]
1165 +layers=-1,-3
1166 +
1167 +[convolutional]
1168 +batch_normalize=1
1169 +filters=128
1170 +size=1
1171 +stride=1
1172 +pad=1
1173 +activation=leaky
1174 +
1175 +[convolutional]
1176 +batch_normalize=1
1177 +filters=32
1178 +size=3
1179 +stride=1
1180 +pad=1
1181 +activation=leaky
1182 +
1183 +[route]
1184 +layers=-1,-3
1185 +
1186 +[convolutional]
1187 +batch_normalize=1
1188 +filters=128
1189 +size=1
1190 +stride=1
1191 +pad=1
1192 +activation=leaky
1193 +
1194 +[convolutional]
1195 +batch_normalize=1
1196 +filters=32
1197 +size=3
1198 +stride=1
1199 +pad=1
1200 +activation=leaky
1201 +
1202 +[route]
1203 +layers=-1,-3
1204 +
1205 +[convolutional]
1206 +batch_normalize=1
1207 +filters=128
1208 +size=1
1209 +stride=1
1210 +pad=1
1211 +activation=leaky
1212 +
1213 +[convolutional]
1214 +batch_normalize=1
1215 +filters=32
1216 +size=3
1217 +stride=1
1218 +pad=1
1219 +activation=leaky
1220 +
1221 +[route]
1222 +layers=-1,-3
1223 +
1224 +[convolutional]
1225 +batch_normalize=1
1226 +filters=128
1227 +size=1
1228 +stride=1
1229 +pad=1
1230 +activation=leaky
1231 +
1232 +[convolutional]
1233 +batch_normalize=1
1234 +filters=32
1235 +size=3
1236 +stride=1
1237 +pad=1
1238 +activation=leaky
1239 +
1240 +[route]
1241 +layers=-1,-3
1242 +
1243 +[convolutional]
1244 +batch_normalize=1
1245 +filters=128
1246 +size=1
1247 +stride=1
1248 +pad=1
1249 +activation=leaky
1250 +
1251 +[convolutional]
1252 +batch_normalize=1
1253 +filters=32
1254 +size=3
1255 +stride=1
1256 +pad=1
1257 +activation=leaky
1258 +
1259 +[route]
1260 +layers=-1,-3
1261 +
1262 +[convolutional]
1263 +batch_normalize=1
1264 +filters=128
1265 +size=1
1266 +stride=1
1267 +pad=1
1268 +activation=leaky
1269 +
1270 +[convolutional]
1271 +batch_normalize=1
1272 +filters=32
1273 +size=3
1274 +stride=1
1275 +pad=1
1276 +activation=leaky
1277 +
1278 +[route]
1279 +layers=-1,-3
1280 +
1281 +[convolutional]
1282 +batch_normalize=1
1283 +filters=128
1284 +size=1
1285 +stride=1
1286 +pad=1
1287 +activation=leaky
1288 +
1289 +[convolutional]
1290 +batch_normalize=1
1291 +filters=32
1292 +size=3
1293 +stride=1
1294 +pad=1
1295 +activation=leaky
1296 +
1297 +[route]
1298 +layers=-1,-3
1299 +
1300 +[convolutional]
1301 +batch_normalize=1
1302 +filters=128
1303 +size=1
1304 +stride=1
1305 +pad=1
1306 +activation=leaky
1307 +
1308 +[convolutional]
1309 +batch_normalize=1
1310 +filters=32
1311 +size=3
1312 +stride=1
1313 +pad=1
1314 +activation=leaky
1315 +
1316 +[route]
1317 +layers=-1,-3
1318 +
1319 +[convolutional]
1320 +batch_normalize=1
1321 +filters=512
1322 +size=1
1323 +stride=1
1324 +pad=1
1325 +activation=leaky
1326 +
1327 +[maxpool]
1328 +size=2
1329 +stride=2
1330 +
1331 +[convolutional]
1332 +batch_normalize=1
1333 +filters=128
1334 +size=1
1335 +stride=1
1336 +pad=1
1337 +activation=leaky
1338 +
1339 +[convolutional]
1340 +batch_normalize=1
1341 +filters=32
1342 +size=3
1343 +stride=1
1344 +pad=1
1345 +activation=leaky
1346 +
1347 +[route]
1348 +layers=-1,-3
1349 +
1350 +[convolutional]
1351 +batch_normalize=1
1352 +filters=128
1353 +size=1
1354 +stride=1
1355 +pad=1
1356 +activation=leaky
1357 +
1358 +[convolutional]
1359 +batch_normalize=1
1360 +filters=32
1361 +size=3
1362 +stride=1
1363 +pad=1
1364 +activation=leaky
1365 +
1366 +[route]
1367 +layers=-1,-3
1368 +
1369 +[convolutional]
1370 +batch_normalize=1
1371 +filters=128
1372 +size=1
1373 +stride=1
1374 +pad=1
1375 +activation=leaky
1376 +
1377 +[convolutional]
1378 +batch_normalize=1
1379 +filters=32
1380 +size=3
1381 +stride=1
1382 +pad=1
1383 +activation=leaky
1384 +
1385 +[route]
1386 +layers=-1,-3
1387 +
1388 +[convolutional]
1389 +batch_normalize=1
1390 +filters=128
1391 +size=1
1392 +stride=1
1393 +pad=1
1394 +activation=leaky
1395 +
1396 +[convolutional]
1397 +batch_normalize=1
1398 +filters=32
1399 +size=3
1400 +stride=1
1401 +pad=1
1402 +activation=leaky
1403 +
1404 +[route]
1405 +layers=-1,-3
1406 +
1407 +[convolutional]
1408 +batch_normalize=1
1409 +filters=128
1410 +size=1
1411 +stride=1
1412 +pad=1
1413 +activation=leaky
1414 +
1415 +[convolutional]
1416 +batch_normalize=1
1417 +filters=32
1418 +size=3
1419 +stride=1
1420 +pad=1
1421 +activation=leaky
1422 +
1423 +[route]
1424 +layers=-1,-3
1425 +
1426 +[convolutional]
1427 +batch_normalize=1
1428 +filters=128
1429 +size=1
1430 +stride=1
1431 +pad=1
1432 +activation=leaky
1433 +
1434 +[convolutional]
1435 +batch_normalize=1
1436 +filters=32
1437 +size=3
1438 +stride=1
1439 +pad=1
1440 +activation=leaky
1441 +
1442 +[route]
1443 +layers=-1,-3
1444 +
1445 +[convolutional]
1446 +batch_normalize=1
1447 +filters=128
1448 +size=1
1449 +stride=1
1450 +pad=1
1451 +activation=leaky
1452 +
1453 +[convolutional]
1454 +batch_normalize=1
1455 +filters=32
1456 +size=3
1457 +stride=1
1458 +pad=1
1459 +activation=leaky
1460 +
1461 +[route]
1462 +layers=-1,-3
1463 +
1464 +[convolutional]
1465 +batch_normalize=1
1466 +filters=128
1467 +size=1
1468 +stride=1
1469 +pad=1
1470 +activation=leaky
1471 +
1472 +[convolutional]
1473 +batch_normalize=1
1474 +filters=32
1475 +size=3
1476 +stride=1
1477 +pad=1
1478 +activation=leaky
1479 +
1480 +[route]
1481 +layers=-1,-3
1482 +
1483 +[convolutional]
1484 +batch_normalize=1
1485 +filters=128
1486 +size=1
1487 +stride=1
1488 +pad=1
1489 +activation=leaky
1490 +
1491 +[convolutional]
1492 +batch_normalize=1
1493 +filters=32
1494 +size=3
1495 +stride=1
1496 +pad=1
1497 +activation=leaky
1498 +
1499 +[route]
1500 +layers=-1,-3
1501 +
1502 +[convolutional]
1503 +batch_normalize=1
1504 +filters=128
1505 +size=1
1506 +stride=1
1507 +pad=1
1508 +activation=leaky
1509 +
1510 +[convolutional]
1511 +batch_normalize=1
1512 +filters=32
1513 +size=3
1514 +stride=1
1515 +pad=1
1516 +activation=leaky
1517 +
1518 +[route]
1519 +layers=-1,-3
1520 +
1521 +[convolutional]
1522 +batch_normalize=1
1523 +filters=128
1524 +size=1
1525 +stride=1
1526 +pad=1
1527 +activation=leaky
1528 +
1529 +[convolutional]
1530 +batch_normalize=1
1531 +filters=32
1532 +size=3
1533 +stride=1
1534 +pad=1
1535 +activation=leaky
1536 +
1537 +[route]
1538 +layers=-1,-3
1539 +
1540 +[convolutional]
1541 +batch_normalize=1
1542 +filters=128
1543 +size=1
1544 +stride=1
1545 +pad=1
1546 +activation=leaky
1547 +
1548 +[convolutional]
1549 +batch_normalize=1
1550 +filters=32
1551 +size=3
1552 +stride=1
1553 +pad=1
1554 +activation=leaky
1555 +
1556 +[route]
1557 +layers=-1,-3
1558 +
1559 +[convolutional]
1560 +batch_normalize=1
1561 +filters=128
1562 +size=1
1563 +stride=1
1564 +pad=1
1565 +activation=leaky
1566 +
1567 +[convolutional]
1568 +batch_normalize=1
1569 +filters=32
1570 +size=3
1571 +stride=1
1572 +pad=1
1573 +activation=leaky
1574 +
1575 +[route]
1576 +layers=-1,-3
1577 +
1578 +[convolutional]
1579 +batch_normalize=1
1580 +filters=128
1581 +size=1
1582 +stride=1
1583 +pad=1
1584 +activation=leaky
1585 +
1586 +[convolutional]
1587 +batch_normalize=1
1588 +filters=32
1589 +size=3
1590 +stride=1
1591 +pad=1
1592 +activation=leaky
1593 +
1594 +[route]
1595 +layers=-1,-3
1596 +
1597 +[convolutional]
1598 +batch_normalize=1
1599 +filters=128
1600 +size=1
1601 +stride=1
1602 +pad=1
1603 +activation=leaky
1604 +
1605 +[convolutional]
1606 +batch_normalize=1
1607 +filters=32
1608 +size=3
1609 +stride=1
1610 +pad=1
1611 +activation=leaky
1612 +
1613 +[route]
1614 +layers=-1,-3
1615 +
1616 +[convolutional]
1617 +batch_normalize=1
1618 +filters=128
1619 +size=1
1620 +stride=1
1621 +pad=1
1622 +activation=leaky
1623 +
1624 +[convolutional]
1625 +batch_normalize=1
1626 +filters=32
1627 +size=3
1628 +stride=1
1629 +pad=1
1630 +activation=leaky
1631 +
1632 +[route]
1633 +layers=-1,-3
1634 +
1635 +[convolutional]
1636 +batch_normalize=1
1637 +filters=128
1638 +size=1
1639 +stride=1
1640 +pad=1
1641 +activation=leaky
1642 +
1643 +[convolutional]
1644 +batch_normalize=1
1645 +filters=32
1646 +size=3
1647 +stride=1
1648 +pad=1
1649 +activation=leaky
1650 +
1651 +[route]
1652 +layers=-1,-3
1653 +
1654 +[convolutional]
1655 +batch_normalize=1
1656 +filters=128
1657 +size=1
1658 +stride=1
1659 +pad=1
1660 +activation=leaky
1661 +
1662 +[convolutional]
1663 +batch_normalize=1
1664 +filters=32
1665 +size=3
1666 +stride=1
1667 +pad=1
1668 +activation=leaky
1669 +
1670 +[route]
1671 +layers=-1,-3
1672 +
1673 +[convolutional]
1674 +batch_normalize=1
1675 +filters=128
1676 +size=1
1677 +stride=1
1678 +pad=1
1679 +activation=leaky
1680 +
1681 +[convolutional]
1682 +batch_normalize=1
1683 +filters=32
1684 +size=3
1685 +stride=1
1686 +pad=1
1687 +activation=leaky
1688 +
1689 +[route]
1690 +layers=-1,-3
1691 +
1692 +[convolutional]
1693 +batch_normalize=1
1694 +filters=128
1695 +size=1
1696 +stride=1
1697 +pad=1
1698 +activation=leaky
1699 +
1700 +[convolutional]
1701 +batch_normalize=1
1702 +filters=32
1703 +size=3
1704 +stride=1
1705 +pad=1
1706 +activation=leaky
1707 +
1708 +[route]
1709 +layers=-1,-3
1710 +
1711 +[convolutional]
1712 +batch_normalize=1
1713 +filters=128
1714 +size=1
1715 +stride=1
1716 +pad=1
1717 +activation=leaky
1718 +
1719 +[convolutional]
1720 +batch_normalize=1
1721 +filters=32
1722 +size=3
1723 +stride=1
1724 +pad=1
1725 +activation=leaky
1726 +
1727 +[route]
1728 +layers=-1,-3
1729 +
1730 +[convolutional]
1731 +batch_normalize=1
1732 +filters=128
1733 +size=1
1734 +stride=1
1735 +pad=1
1736 +activation=leaky
1737 +
1738 +[convolutional]
1739 +batch_normalize=1
1740 +filters=32
1741 +size=3
1742 +stride=1
1743 +pad=1
1744 +activation=leaky
1745 +
1746 +[route]
1747 +layers=-1,-3
1748 +
1749 +[convolutional]
1750 +batch_normalize=1
1751 +filters=128
1752 +size=1
1753 +stride=1
1754 +pad=1
1755 +activation=leaky
1756 +
1757 +[convolutional]
1758 +batch_normalize=1
1759 +filters=32
1760 +size=3
1761 +stride=1
1762 +pad=1
1763 +activation=leaky
1764 +
1765 +[route]
1766 +layers=-1,-3
1767 +
1768 +[convolutional]
1769 +batch_normalize=1
1770 +filters=128
1771 +size=1
1772 +stride=1
1773 +pad=1
1774 +activation=leaky
1775 +
1776 +[convolutional]
1777 +batch_normalize=1
1778 +filters=32
1779 +size=3
1780 +stride=1
1781 +pad=1
1782 +activation=leaky
1783 +
1784 +[route]
1785 +layers=-1,-3
1786 +
1787 +[convolutional]
1788 +batch_normalize=1
1789 +filters=128
1790 +size=1
1791 +stride=1
1792 +pad=1
1793 +activation=leaky
1794 +
1795 +[convolutional]
1796 +batch_normalize=1
1797 +filters=32
1798 +size=3
1799 +stride=1
1800 +pad=1
1801 +activation=leaky
1802 +
1803 +[route]
1804 +layers=-1,-3
1805 +
1806 +[convolutional]
1807 +batch_normalize=1
1808 +filters=128
1809 +size=1
1810 +stride=1
1811 +pad=1
1812 +activation=leaky
1813 +
1814 +[convolutional]
1815 +batch_normalize=1
1816 +filters=32
1817 +size=3
1818 +stride=1
1819 +pad=1
1820 +activation=leaky
1821 +
1822 +[route]
1823 +layers=-1,-3
1824 +
1825 +[convolutional]
1826 +batch_normalize=1
1827 +filters=128
1828 +size=1
1829 +stride=1
1830 +pad=1
1831 +activation=leaky
1832 +
1833 +[convolutional]
1834 +batch_normalize=1
1835 +filters=32
1836 +size=3
1837 +stride=1
1838 +pad=1
1839 +activation=leaky
1840 +
1841 +[route]
1842 +layers=-1,-3
1843 +
1844 +[convolutional]
1845 +batch_normalize=1
1846 +filters=128
1847 +size=1
1848 +stride=1
1849 +pad=1
1850 +activation=leaky
1851 +
1852 +[convolutional]
1853 +batch_normalize=1
1854 +filters=32
1855 +size=3
1856 +stride=1
1857 +pad=1
1858 +activation=leaky
1859 +
1860 +[route]
1861 +layers=-1,-3
1862 +
1863 +[convolutional]
1864 +batch_normalize=1
1865 +filters=128
1866 +size=1
1867 +stride=1
1868 +pad=1
1869 +activation=leaky
1870 +
1871 +[convolutional]
1872 +batch_normalize=1
1873 +filters=32
1874 +size=3
1875 +stride=1
1876 +pad=1
1877 +activation=leaky
1878 +
1879 +[route]
1880 +layers=-1,-3
1881 +
1882 +[convolutional]
1883 +batch_normalize=1
1884 +filters=128
1885 +size=1
1886 +stride=1
1887 +pad=1
1888 +activation=leaky
1889 +
1890 +[convolutional]
1891 +batch_normalize=1
1892 +filters=32
1893 +size=3
1894 +stride=1
1895 +pad=1
1896 +activation=leaky
1897 +
1898 +[route]
1899 +layers=-1,-3
1900 +
1901 +[convolutional]
1902 +batch_normalize=1
1903 +filters=128
1904 +size=1
1905 +stride=1
1906 +pad=1
1907 +activation=leaky
1908 +
1909 +[convolutional]
1910 +batch_normalize=1
1911 +filters=32
1912 +size=3
1913 +stride=1
1914 +pad=1
1915 +activation=leaky
1916 +
1917 +[route]
1918 +layers=-1,-3
1919 +
1920 +[convolutional]
1921 +batch_normalize=1
1922 +filters=128
1923 +size=1
1924 +stride=1
1925 +pad=1
1926 +activation=leaky
1927 +
1928 +[convolutional]
1929 +batch_normalize=1
1930 +filters=32
1931 +size=3
1932 +stride=1
1933 +pad=1
1934 +activation=leaky
1935 +
1936 +[route]
1937 +layers=-1,-3
1938 +
1939 +
1940 +[convolutional]
1941 +filters=1000
1942 +size=1
1943 +stride=1
1944 +pad=1
1945 +activation=linear
1946 +
1947 +[avgpool]
1948 +
1949 +[softmax]
1950 +groups=1
1951 +
1952 +[cost]
1953 +type=sse
1954 +
1 +# https://github.com/tensorflow/tpu/blob/master/models/official/efficientnet/lite/efficientnet_lite_builder.py
2 +# (width_coefficient, depth_coefficient, resolution, dropout_rate)
3 +# 'efficientnet-lite3': (1.2, 1.4, 280, 0.3),
4 +#
5 +#_DEFAULT_BLOCKS_ARGS = [
6 +# 'r1_k3_s11_e1_i32_o16_se0.25', 'r2_k3_s22_e6_i16_o24_se0.25',
7 +# 'r2_k5_s22_e6_i24_o40_se0.25', 'r3_k3_s22_e6_i40_o80_se0.25',
8 +# 'r3_k5_s11_e6_i80_o112_se0.25', 'r4_k5_s22_e6_i112_o192_se0.25',
9 +# 'r1_k3_s11_e6_i192_o320_se0.25',
10 +#]
11 +
12 +[net]
13 +# Training
14 +batch=120
15 +subdivisions=6
16 +height=288
17 +width=288
18 +channels=3
19 +momentum=0.9
20 +decay=0.0005
21 +max_crop=320
22 +
23 +cutmix=1
24 +mosaic=1
25 +label_smooth_eps=0.1
26 +
27 +burn_in=1000
28 +learning_rate=0.256
29 +policy=step
30 +step=10000
31 +scale=0.96
32 +max_batches=1600000
33 +momentum=0.9
34 +decay=0.00005
35 +
36 +angle=7
37 +hue=.1
38 +saturation=.75
39 +exposure=.75
40 +aspect=.75
41 +
42 +
43 +### CONV1 - 1 (1)
44 +# conv1
45 +[convolutional]
46 +filters=40 #32
47 +size=3
48 +pad=1
49 +stride=2
50 +batch_normalize=1
51 +activation=relu6
52 +
53 +
54 +### CONV2 - MBConv1 - 1 (2)
55 +# conv2_1_expand
56 +[convolutional]
57 +filters=40 #32
58 +size=1
59 +stride=1
60 +pad=0
61 +batch_normalize=1
62 +activation=relu6
63 +
64 +# conv2_1_dwise
65 +[convolutional]
66 +groups=40 #32
67 +filters=40 #32
68 +size=3
69 +stride=1
70 +pad=1
71 +batch_normalize=1
72 +activation=relu6
73 +
74 +# conv2_1_linear
75 +[convolutional]
76 +filters=16 #16
77 +size=1
78 +stride=1
79 +pad=0
80 +batch_normalize=1
81 +activation=linear
82 +
83 +
84 +### CONV2 - MBConv1 - 2 (2)
85 +# conv2_1_expand
86 +[convolutional]
87 +filters=40 #32
88 +size=1
89 +stride=1
90 +pad=0
91 +batch_normalize=1
92 +activation=relu6
93 +
94 +# conv2_1_dwise
95 +[convolutional]
96 +groups=40 #32
97 +filters=40 #32
98 +size=3
99 +stride=1
100 +pad=1
101 +batch_normalize=1
102 +activation=relu6
103 +
104 +# conv2_1_linear
105 +[convolutional]
106 +filters=16 #16
107 +size=1
108 +stride=1
109 +pad=0
110 +batch_normalize=1
111 +activation=linear
112 +
113 +
114 +### CONV3 - MBConv6 - 1 (3)
115 +# dropout only before residual connection
116 +[dropout]
117 +probability=.3
118 +
119 +# block_3_1
120 +[shortcut]
121 +from=-5
122 +activation=linear
123 +
124 +# conv2_2_expand
125 +[convolutional]
126 +filters=112 #96
127 +size=1
128 +stride=1
129 +pad=0
130 +batch_normalize=1
131 +activation=relu6
132 +
133 +# conv2_2_dwise
134 +[convolutional]
135 +groups=112 #96
136 +filters=112 #96
137 +size=3
138 +pad=1
139 +stride=2
140 +batch_normalize=1
141 +activation=relu6
142 +
143 +# conv2_2_linear
144 +[convolutional]
145 +filters=32 #24
146 +size=1
147 +stride=1
148 +pad=0
149 +batch_normalize=1
150 +activation=linear
151 +
152 +
153 +### CONV3 - MBConv6 - 2 (3)
154 +# conv3_1_expand
155 +[convolutional]
156 +filters=176 #144
157 +size=1
158 +stride=1
159 +pad=0
160 +batch_normalize=1
161 +activation=relu6
162 +
163 +# conv3_1_dwise
164 +[convolutional]
165 +groups=176 #144
166 +filters=176 #144
167 +size=3
168 +stride=1
169 +pad=1
170 +batch_normalize=1
171 +activation=relu6
172 +
173 +# conv3_1_linear
174 +[convolutional]
175 +filters=32 #24
176 +size=1
177 +stride=1
178 +pad=0
179 +batch_normalize=1
180 +activation=linear
181 +
182 +
183 +### CONV3 - MBConv6 - 3 (3)
184 +# dropout only before residual connection
185 +[dropout]
186 +probability=.3
187 +
188 +# block_3_1
189 +[shortcut]
190 +from=-5
191 +activation=linear
192 +
193 +# conv3_1_expand
194 +[convolutional]
195 +filters=176 #144
196 +size=1
197 +stride=1
198 +pad=0
199 +batch_normalize=1
200 +activation=relu6
201 +
202 +# conv3_1_dwise
203 +[convolutional]
204 +groups=176 #144
205 +filters=176 #144
206 +size=3
207 +stride=1
208 +pad=1
209 +batch_normalize=1
210 +activation=relu6
211 +
212 +# conv3_1_linear
213 +[convolutional]
214 +filters=32 #24
215 +size=1
216 +stride=1
217 +pad=0
218 +batch_normalize=1
219 +activation=linear
220 +
221 +
222 +
223 +### CONV4 - MBConv6 - 1 (3)
224 +# dropout only before residual connection
225 +[dropout]
226 +probability=.3
227 +
228 +# block_3_1
229 +[shortcut]
230 +from=-5
231 +activation=linear
232 +
233 +# conv_3_2_expand
234 +[convolutional]
235 +filters=176 #144
236 +size=1
237 +stride=1
238 +pad=0
239 +batch_normalize=1
240 +activation=relu6
241 +
242 +# conv_3_2_dwise
243 +[convolutional]
244 +groups=176 #144
245 +filters=176 #144
246 +size=5
247 +pad=1
248 +stride=2
249 +batch_normalize=1
250 +activation=relu6
251 +
252 +# conv_3_2_linear
253 +[convolutional]
254 +filters=48 #40
255 +size=1
256 +stride=1
257 +pad=0
258 +batch_normalize=1
259 +activation=linear
260 +
261 +
262 +### CONV4 - MBConv6 - 2 (3)
263 +# conv_4_1_expand
264 +[convolutional]
265 +filters=232 #192
266 +size=1
267 +stride=1
268 +pad=0
269 +batch_normalize=1
270 +activation=relu6
271 +
272 +# conv_4_1_dwise
273 +[convolutional]
274 +groups=232 #192
275 +filters=232 #192
276 +size=5
277 +stride=1
278 +pad=1
279 +batch_normalize=1
280 +activation=relu6
281 +
282 +# conv_4_1_linear
283 +[convolutional]
284 +filters=48 #40
285 +size=1
286 +stride=1
287 +pad=0
288 +batch_normalize=1
289 +activation=linear
290 +
291 +
292 +### CONV4 - MBConv6 - 3 (3)
293 +# dropout only before residual connection
294 +[dropout]
295 +probability=.3
296 +
297 +# block_4_2
298 +[shortcut]
299 +from=-5
300 +activation=linear
301 +
302 +# conv_4_1_expand
303 +[convolutional]
304 +filters=232 #192
305 +size=1
306 +stride=1
307 +pad=0
308 +batch_normalize=1
309 +activation=relu6
310 +
311 +# conv_4_1_dwise
312 +[convolutional]
313 +groups=232 #192
314 +filters=232 #192
315 +size=5
316 +stride=1
317 +pad=1
318 +batch_normalize=1
319 +activation=relu6
320 +
321 +# conv_4_1_linear
322 +[convolutional]
323 +filters=48 #40
324 +size=1
325 +stride=1
326 +pad=0
327 +batch_normalize=1
328 +activation=linear
329 +
330 +
331 +
332 +
333 +### CONV5 - MBConv6 - 1 (5)
334 +# dropout only before residual connection
335 +[dropout]
336 +probability=.3
337 +
338 +# block_4_2
339 +[shortcut]
340 +from=-5
341 +activation=linear
342 +
343 +# conv_4_3_expand
344 +[convolutional]
345 +filters=232 #192
346 +size=1
347 +stride=1
348 +pad=0
349 +batch_normalize=1
350 +activation=relu6
351 +
352 +# conv_4_3_dwise
353 +[convolutional]
354 +groups=232 #192
355 +filters=232 #192
356 +size=3
357 +stride=1
358 +pad=1
359 +batch_normalize=1
360 +activation=relu6
361 +
362 +# conv_4_3_linear
363 +[convolutional]
364 +filters=96 #80
365 +size=1
366 +stride=1
367 +pad=0
368 +batch_normalize=1
369 +activation=linear
370 +
371 +
372 +### CONV5 - MBConv6 - 2 (5)
373 +# conv_4_4_expand
374 +[convolutional]
375 +filters=464 #384
376 +size=1
377 +stride=1
378 +pad=0
379 +batch_normalize=1
380 +activation=relu6
381 +
382 +# conv_4_4_dwise
383 +[convolutional]
384 +groups=464 #384
385 +filters=464 #384
386 +size=3
387 +stride=1
388 +pad=1
389 +batch_normalize=1
390 +activation=relu6
391 +
392 +# conv_4_4_linear
393 +[convolutional]
394 +filters=96 #80
395 +size=1
396 +stride=1
397 +pad=0
398 +batch_normalize=1
399 +activation=linear
400 +
401 +
402 +### CONV5 - MBConv6 - 3 (5)
403 +# dropout only before residual connection
404 +[dropout]
405 +probability=.3
406 +
407 +# block_4_4
408 +[shortcut]
409 +from=-5
410 +activation=linear
411 +
412 +# conv_4_5_expand
413 +[convolutional]
414 +filters=464 #384
415 +size=1
416 +stride=1
417 +pad=0
418 +batch_normalize=1
419 +activation=relu6
420 +
421 +# conv_4_5_dwise
422 +[convolutional]
423 +groups=464 #384
424 +filters=464 #384
425 +size=3
426 +stride=1
427 +pad=1
428 +batch_normalize=1
429 +activation=relu6
430 +
431 +# conv_4_5_linear
432 +[convolutional]
433 +filters=96 #80
434 +size=1
435 +stride=1
436 +pad=0
437 +batch_normalize=1
438 +activation=linear
439 +
440 +
441 +### CONV5 - MBConv6 - 4 (5)
442 +# dropout only before residual connection
443 +[dropout]
444 +probability=.3
445 +
446 +# block_4_4
447 +[shortcut]
448 +from=-5
449 +activation=linear
450 +
451 +# conv_4_5_expand
452 +[convolutional]
453 +filters=464 #384
454 +size=1
455 +stride=1
456 +pad=0
457 +batch_normalize=1
458 +activation=relu6
459 +
460 +# conv_4_5_dwise
461 +[convolutional]
462 +groups=464 #384
463 +filters=464 #384
464 +size=3
465 +stride=1
466 +pad=1
467 +batch_normalize=1
468 +activation=relu6
469 +
470 +# conv_4_5_linear
471 +[convolutional]
472 +filters=96 #80
473 +size=1
474 +stride=1
475 +pad=0
476 +batch_normalize=1
477 +activation=linear
478 +
479 +
480 +
481 +### CONV5 - MBConv6 - 5 (5)
482 +# dropout only before residual connection
483 +[dropout]
484 +probability=.3
485 +
486 +# block_4_4
487 +[shortcut]
488 +from=-5
489 +activation=linear
490 +
491 +# conv_4_5_expand
492 +[convolutional]
493 +filters=464 #384
494 +size=1
495 +stride=1
496 +pad=0
497 +batch_normalize=1
498 +activation=relu6
499 +
500 +# conv_4_5_dwise
501 +[convolutional]
502 +groups=464 #384
503 +filters=464 #384
504 +size=3
505 +stride=1
506 +pad=1
507 +batch_normalize=1
508 +activation=relu6
509 +
510 +# conv_4_5_linear
511 +[convolutional]
512 +filters=96 #80
513 +size=1
514 +stride=1
515 +pad=0
516 +batch_normalize=1
517 +activation=linear
518 +
519 +
520 +
521 +### CONV6 - MBConv6 - 1 (5)
522 +# dropout only before residual connection
523 +[dropout]
524 +probability=.3
525 +
526 +# block_4_6
527 +[shortcut]
528 +from=-5
529 +activation=linear
530 +
531 +# conv_4_7_expand
532 +[convolutional]
533 +filters=464 #384
534 +size=1
535 +stride=1
536 +pad=0
537 +batch_normalize=1
538 +activation=relu6
539 +
540 +# conv_4_7_dwise
541 +[convolutional]
542 +groups=464 #384
543 +filters=464 #384
544 +size=5
545 +pad=1
546 +stride=2
547 +batch_normalize=1
548 +activation=relu6
549 +
550 +# conv_4_7_linear
551 +[convolutional]
552 +filters=136 #112
553 +size=1
554 +stride=1
555 +pad=0
556 +batch_normalize=1
557 +activation=linear
558 +
559 +
560 +### CONV6 - MBConv6 - 2 (5)
561 +# conv_5_1_expand
562 +[convolutional]
563 +filters=688 #576
564 +size=1
565 +stride=1
566 +pad=0
567 +batch_normalize=1
568 +activation=relu6
569 +
570 +# conv_5_1_dwise
571 +[convolutional]
572 +groups=688 #576
573 +filters=688 #576
574 +size=5
575 +stride=1
576 +pad=1
577 +batch_normalize=1
578 +activation=relu6
579 +
580 +# conv_5_1_linear
581 +[convolutional]
582 +filters=136 #112
583 +size=1
584 +stride=1
585 +pad=0
586 +batch_normalize=1
587 +activation=linear
588 +
589 +
590 +### CONV6 - MBConv6 - 3 (5)
591 +# dropout only before residual connection
592 +[dropout]
593 +probability=.3
594 +
595 +# block_5_1
596 +[shortcut]
597 +from=-5
598 +activation=linear
599 +
600 +# conv_5_2_expand
601 +[convolutional]
602 +filters=688 #576
603 +size=1
604 +stride=1
605 +pad=0
606 +batch_normalize=1
607 +activation=relu6
608 +
609 +# conv_5_2_dwise
610 +[convolutional]
611 +groups=688 #576
612 +filters=688 #576
613 +size=5
614 +stride=1
615 +pad=1
616 +batch_normalize=1
617 +activation=relu6
618 +
619 +# conv_5_2_linear
620 +[convolutional]
621 +filters=136 #112
622 +size=1
623 +stride=1
624 +pad=0
625 +batch_normalize=1
626 +activation=linear
627 +
628 +
629 +
630 +### CONV6 - MBConv6 - 4 (5)
631 +# dropout only before residual connection
632 +[dropout]
633 +probability=.3
634 +
635 +# block_5_1
636 +[shortcut]
637 +from=-5
638 +activation=linear
639 +
640 +# conv_5_2_expand
641 +[convolutional]
642 +filters=688 #576
643 +size=1
644 +stride=1
645 +pad=0
646 +batch_normalize=1
647 +activation=relu6
648 +
649 +# conv_5_2_dwise
650 +[convolutional]
651 +groups=688 #576
652 +filters=688 #576
653 +size=5
654 +stride=1
655 +pad=1
656 +batch_normalize=1
657 +activation=relu6
658 +
659 +# conv_5_2_linear
660 +[convolutional]
661 +filters=136 #112
662 +size=1
663 +stride=1
664 +pad=0
665 +batch_normalize=1
666 +activation=linear
667 +
668 +
669 +### CONV6 - MBConv6 - 5 (5)
670 +# dropout only before residual connection
671 +[dropout]
672 +probability=.3
673 +
674 +# block_5_1
675 +[shortcut]
676 +from=-5
677 +activation=linear
678 +
679 +# conv_5_2_expand
680 +[convolutional]
681 +filters=688 #576
682 +size=1
683 +stride=1
684 +pad=0
685 +batch_normalize=1
686 +activation=relu6
687 +
688 +# conv_5_2_dwise
689 +[convolutional]
690 +groups=688 #576
691 +filters=688 #576
692 +size=5
693 +stride=1
694 +pad=1
695 +batch_normalize=1
696 +activation=relu6
697 +
698 +# conv_5_2_linear
699 +[convolutional]
700 +filters=136 #112
701 +size=1
702 +stride=1
703 +pad=0
704 +batch_normalize=1
705 +activation=linear
706 +
707 +
708 +
709 +### CONV7 - MBConv6 - 1 (6)
710 +# dropout only before residual connection
711 +[dropout]
712 +probability=.3
713 +
714 +# block_5_2
715 +[shortcut]
716 +from=-5
717 +activation=linear
718 +
719 +# conv_5_3_expand
720 +[convolutional]
721 +filters=688 #576
722 +size=1
723 +stride=1
724 +pad=0
725 +batch_normalize=1
726 +activation=relu6
727 +
728 +# conv_5_3_dwise
729 +[convolutional]
730 +groups=688 #576
731 +filters=688 #576
732 +size=5
733 +pad=1
734 +stride=2
735 +batch_normalize=1
736 +activation=relu6
737 +
738 +
739 +# conv_5_3_linear
740 +[convolutional]
741 +filters=232 #192
742 +size=1
743 +stride=1
744 +pad=0
745 +batch_normalize=1
746 +activation=linear
747 +
748 +
749 +### CONV7 - MBConv6 - 2 (6)
750 +# conv_6_1_expand
751 +[convolutional]
752 +filters=1152 #960
753 +size=1
754 +stride=1
755 +pad=0
756 +batch_normalize=1
757 +activation=relu6
758 +
759 +# conv_6_1_dwise
760 +[convolutional]
761 +groups=1152 #960
762 +filters=1152 #960
763 +size=5
764 +stride=1
765 +pad=1
766 +batch_normalize=1
767 +activation=relu6
768 +
769 +# conv_6_1_linear
770 +[convolutional]
771 +filters=232 #192
772 +size=1
773 +stride=1
774 +pad=0
775 +batch_normalize=1
776 +activation=linear
777 +
778 +
779 +### CONV7 - MBConv6 - 3 (6)
780 +# dropout only before residual connection
781 +[dropout]
782 +probability=.3
783 +
784 +# block_6_1
785 +[shortcut]
786 +from=-5
787 +activation=linear
788 +
789 +# conv_6_2_expand
790 +[convolutional]
791 +filters=1152 #960
792 +size=1
793 +stride=1
794 +pad=0
795 +batch_normalize=1
796 +activation=relu6
797 +
798 +# conv_6_2_dwise
799 +[convolutional]
800 +groups=1152 #960
801 +filters=1152 #960
802 +size=5
803 +stride=1
804 +pad=1
805 +batch_normalize=1
806 +activation=relu6
807 +
808 +# conv_6_2_linear
809 +[convolutional]
810 +filters=232 #192
811 +size=1
812 +stride=1
813 +pad=0
814 +batch_normalize=1
815 +activation=linear
816 +
817 +
818 +### CONV7 - MBConv6 - 4 (6)
819 +# dropout only before residual connection
820 +[dropout]
821 +probability=.3
822 +
823 +# block_6_1
824 +[shortcut]
825 +from=-5
826 +activation=linear
827 +
828 +# conv_6_2_expand
829 +[convolutional]
830 +filters=1152 #960
831 +size=1
832 +stride=1
833 +pad=0
834 +batch_normalize=1
835 +activation=relu6
836 +
837 +# conv_6_2_dwise
838 +[convolutional]
839 +groups=1152 #960
840 +filters=1152 #960
841 +size=5
842 +stride=1
843 +pad=1
844 +batch_normalize=1
845 +activation=relu6
846 +
847 +# conv_6_2_linear
848 +[convolutional]
849 +filters=232 #192
850 +size=1
851 +stride=1
852 +pad=0
853 +batch_normalize=1
854 +activation=linear
855 +
856 +
857 +### CONV7 - MBConv6 - 5 (6)
858 +# dropout only before residual connection
859 +[dropout]
860 +probability=.3
861 +
862 +# block_6_1
863 +[shortcut]
864 +from=-5
865 +activation=linear
866 +
867 +# conv_6_2_expand
868 +[convolutional]
869 +filters=1152 #960
870 +size=1
871 +stride=1
872 +pad=0
873 +batch_normalize=1
874 +activation=relu6
875 +
876 +# conv_6_2_dwise
877 +[convolutional]
878 +groups=1152 #960
879 +filters=1152 #960
880 +size=5
881 +stride=1
882 +pad=1
883 +batch_normalize=1
884 +activation=relu6
885 +
886 +# conv_6_2_linear
887 +[convolutional]
888 +filters=232 #192
889 +size=1
890 +stride=1
891 +pad=0
892 +batch_normalize=1
893 +activation=linear
894 +
895 +
896 +### CONV7 - MBConv6 - 6 (6)
897 +# dropout only before residual connection
898 +[dropout]
899 +probability=.3
900 +
901 +# block_6_1
902 +[shortcut]
903 +from=-5
904 +activation=linear
905 +
906 +# conv_6_2_expand
907 +[convolutional]
908 +filters=1152 #960
909 +size=1
910 +stride=1
911 +pad=0
912 +batch_normalize=1
913 +activation=relu6
914 +
915 +# conv_6_2_dwise
916 +[convolutional]
917 +groups=1152 #960
918 +filters=1152 #960
919 +size=5
920 +stride=1
921 +pad=1
922 +batch_normalize=1
923 +activation=relu6
924 +
925 +
926 +
927 +# conv_6_2_linear
928 +[convolutional]
929 +filters=232 #192
930 +size=1
931 +stride=1
932 +pad=0
933 +batch_normalize=1
934 +activation=linear
935 +
936 +
937 +
938 +### CONV8 - MBConv6 - 1 (1)
939 +# dropout only before residual connection
940 +[dropout]
941 +probability=.3
942 +
943 +# block_6_2
944 +[shortcut]
945 +from=-5
946 +activation=linear
947 +
948 +# conv_6_3_expand
949 +[convolutional]
950 +filters=1152 #960
951 +size=1
952 +stride=1
953 +pad=0
954 +batch_normalize=1
955 +activation=relu6
956 +
957 +# conv_6_3_dwise
958 +[convolutional]
959 +groups=1152 #960
960 +filters=1152 #960
961 +size=3
962 +stride=1
963 +pad=1
964 +batch_normalize=1
965 +activation=relu6
966 +
967 +
968 +
969 +# conv_6_3_linear
970 +[convolutional]
971 +filters=384 #320
972 +size=1
973 +stride=1
974 +pad=0
975 +batch_normalize=1
976 +activation=linear
977 +
978 +
979 +
980 +
981 +### CONV9 - Conv2d 1x1
982 +# conv_6_4
983 +[convolutional]
984 +filters=1536 #1280
985 +size=1
986 +stride=1
987 +pad=0
988 +batch_normalize=1
989 +activation=relu6
990 +
991 +
992 +[avgpool]
993 +
994 +[dropout]
995 +probability=.3
996 +
997 +[convolutional]
998 +filters=1000
999 +size=1
1000 +stride=1
1001 +pad=0
1002 +activation=linear
1003 +
1004 +[softmax]
1005 +groups=1
1006 +
1007 +#[cost]
1008 +#type=sse
1009 +
1 +[net]
2 +# Training
3 +batch=120
4 +subdivisions=4
5 +# Testing
6 +#batch=1
7 +#subdivisions=1
8 +height=224
9 +width=224
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +max_crop=256
14 +#mixup=4
15 +blur=1
16 +cutmix=1
17 +mosaic=1
18 +
19 +burn_in=1000
20 +#burn_in=100
21 +learning_rate=0.256
22 +policy=poly
23 +power=4
24 +max_batches=800000
25 +momentum=0.9
26 +decay=0.00005
27 +
28 +angle=7
29 +hue=.1
30 +saturation=.75
31 +exposure=.75
32 +aspect=.75
33 +
34 +
35 +### CONV1 - 1 (1)
36 +# conv1
37 +[convolutional]
38 +filters=32
39 +size=3
40 +pad=1
41 +stride=2
42 +batch_normalize=1
43 +activation=swish
44 +
45 +
46 +### CONV2 - MBConv1 - 1 (1)
47 +# conv2_1_expand
48 +[convolutional]
49 +filters=32
50 +size=1
51 +stride=1
52 +pad=0
53 +batch_normalize=1
54 +activation=swish
55 +
56 +# conv2_1_dwise
57 +[convolutional]
58 +groups=32
59 +filters=32
60 +size=3
61 +stride=1
62 +pad=1
63 +batch_normalize=1
64 +activation=swish
65 +
66 +
67 +#squeeze-n-excitation
68 +[avgpool]
69 +
70 +# squeeze ratio r=4 (recommended r=16)
71 +[convolutional]
72 +filters=8
73 +size=1
74 +stride=1
75 +activation=swish
76 +
77 +# excitation
78 +[convolutional]
79 +filters=32
80 +size=1
81 +stride=1
82 +activation=logistic
83 +
84 +# multiply channels
85 +[scale_channels]
86 +from=-4
87 +
88 +
89 +# conv2_1_linear
90 +[convolutional]
91 +filters=16
92 +size=1
93 +stride=1
94 +pad=0
95 +batch_normalize=1
96 +activation=linear
97 +
98 +
99 +
100 +### CONV3 - MBConv6 - 1 (2)
101 +# conv2_2_expand
102 +[convolutional]
103 +filters=96
104 +size=1
105 +stride=1
106 +pad=0
107 +batch_normalize=1
108 +activation=swish
109 +
110 +# conv2_2_dwise
111 +[convolutional]
112 +groups=96
113 +filters=96
114 +size=3
115 +pad=1
116 +stride=2
117 +batch_normalize=1
118 +activation=swish
119 +
120 +
121 +#squeeze-n-excitation
122 +[avgpool]
123 +
124 +# squeeze ratio r=8 (recommended r=16)
125 +[convolutional]
126 +filters=16
127 +size=1
128 +stride=1
129 +activation=swish
130 +
131 +# excitation
132 +[convolutional]
133 +filters=96
134 +size=1
135 +stride=1
136 +activation=logistic
137 +
138 +# multiply channels
139 +[scale_channels]
140 +from=-4
141 +
142 +
143 +# conv2_2_linear
144 +[convolutional]
145 +filters=24
146 +size=1
147 +stride=1
148 +pad=0
149 +batch_normalize=1
150 +activation=linear
151 +
152 +
153 +### CONV3 - MBConv6 - 2 (2)
154 +# conv3_1_expand
155 +[convolutional]
156 +filters=144
157 +size=1
158 +stride=1
159 +pad=0
160 +batch_normalize=1
161 +activation=swish
162 +
163 +# conv3_1_dwise
164 +[convolutional]
165 +groups=144
166 +filters=144
167 +size=3
168 +stride=1
169 +pad=1
170 +batch_normalize=1
171 +activation=swish
172 +
173 +
174 +#squeeze-n-excitation
175 +[avgpool]
176 +
177 +# squeeze ratio r=16 (recommended r=16)
178 +[convolutional]
179 +filters=8
180 +size=1
181 +stride=1
182 +activation=swish
183 +
184 +# excitation
185 +[convolutional]
186 +filters=144
187 +size=1
188 +stride=1
189 +activation=logistic
190 +
191 +# multiply channels
192 +[scale_channels]
193 +from=-4
194 +
195 +
196 +# conv3_1_linear
197 +[convolutional]
198 +filters=24
199 +size=1
200 +stride=1
201 +pad=0
202 +batch_normalize=1
203 +activation=linear
204 +
205 +
206 +
207 +### CONV4 - MBConv6 - 1 (2)
208 +# dropout only before residual connection
209 +[dropout]
210 +probability=.2
211 +
212 +# block_3_1
213 +[shortcut]
214 +from=-9
215 +activation=linear
216 +
217 +# conv_3_2_expand
218 +[convolutional]
219 +filters=144
220 +size=1
221 +stride=1
222 +pad=0
223 +batch_normalize=1
224 +activation=swish
225 +
226 +# conv_3_2_dwise
227 +[convolutional]
228 +groups=144
229 +filters=144
230 +size=5
231 +pad=1
232 +stride=2
233 +batch_normalize=1
234 +activation=swish
235 +
236 +
237 +#squeeze-n-excitation
238 +[avgpool]
239 +
240 +# squeeze ratio r=16 (recommended r=16)
241 +[convolutional]
242 +filters=8
243 +size=1
244 +stride=1
245 +activation=swish
246 +
247 +# excitation
248 +[convolutional]
249 +filters=144
250 +size=1
251 +stride=1
252 +activation=logistic
253 +
254 +# multiply channels
255 +[scale_channels]
256 +from=-4
257 +
258 +
259 +# conv_3_2_linear
260 +[convolutional]
261 +filters=40
262 +size=1
263 +stride=1
264 +pad=0
265 +batch_normalize=1
266 +activation=linear
267 +
268 +
269 +### CONV4 - MBConv6 - 2 (2)
270 +# conv_4_1_expand
271 +[convolutional]
272 +filters=192
273 +size=1
274 +stride=1
275 +pad=0
276 +batch_normalize=1
277 +activation=swish
278 +
279 +# conv_4_1_dwise
280 +[convolutional]
281 +groups=192
282 +filters=192
283 +size=5
284 +stride=1
285 +pad=1
286 +batch_normalize=1
287 +activation=swish
288 +
289 +
290 +#squeeze-n-excitation
291 +[avgpool]
292 +
293 +# squeeze ratio r=16 (recommended r=16)
294 +[convolutional]
295 +filters=16
296 +size=1
297 +stride=1
298 +activation=swish
299 +
300 +# excitation
301 +[convolutional]
302 +filters=192
303 +size=1
304 +stride=1
305 +activation=logistic
306 +
307 +# multiply channels
308 +[scale_channels]
309 +from=-4
310 +
311 +
312 +# conv_4_1_linear
313 +[convolutional]
314 +filters=40
315 +size=1
316 +stride=1
317 +pad=0
318 +batch_normalize=1
319 +activation=linear
320 +
321 +
322 +
323 +
324 +### CONV5 - MBConv6 - 1 (3)
325 +# dropout only before residual connection
326 +[dropout]
327 +probability=.2
328 +
329 +# block_4_2
330 +[shortcut]
331 +from=-9
332 +activation=linear
333 +
334 +# conv_4_3_expand
335 +[convolutional]
336 +filters=192
337 +size=1
338 +stride=1
339 +pad=0
340 +batch_normalize=1
341 +activation=swish
342 +
343 +# conv_4_3_dwise
344 +[convolutional]
345 +groups=192
346 +filters=192
347 +size=3
348 +stride=1
349 +pad=1
350 +batch_normalize=1
351 +activation=swish
352 +
353 +
354 +#squeeze-n-excitation
355 +[avgpool]
356 +
357 +# squeeze ratio r=16 (recommended r=16)
358 +[convolutional]
359 +filters=16
360 +size=1
361 +stride=1
362 +activation=swish
363 +
364 +# excitation
365 +[convolutional]
366 +filters=192
367 +size=1
368 +stride=1
369 +activation=logistic
370 +
371 +# multiply channels
372 +[scale_channels]
373 +from=-4
374 +
375 +
376 +# conv_4_3_linear
377 +[convolutional]
378 +filters=80
379 +size=1
380 +stride=1
381 +pad=0
382 +batch_normalize=1
383 +activation=linear
384 +
385 +
386 +### CONV5 - MBConv6 - 2 (3)
387 +# conv_4_4_expand
388 +[convolutional]
389 +filters=384
390 +size=1
391 +stride=1
392 +pad=0
393 +batch_normalize=1
394 +activation=swish
395 +
396 +# conv_4_4_dwise
397 +[convolutional]
398 +groups=384
399 +filters=384
400 +size=3
401 +stride=1
402 +pad=1
403 +batch_normalize=1
404 +activation=swish
405 +
406 +
407 +#squeeze-n-excitation
408 +[avgpool]
409 +
410 +# squeeze ratio r=16 (recommended r=16)
411 +[convolutional]
412 +filters=24
413 +size=1
414 +stride=1
415 +activation=swish
416 +
417 +# excitation
418 +[convolutional]
419 +filters=384
420 +size=1
421 +stride=1
422 +activation=logistic
423 +
424 +# multiply channels
425 +[scale_channels]
426 +from=-4
427 +
428 +
429 +# conv_4_4_linear
430 +[convolutional]
431 +filters=80
432 +size=1
433 +stride=1
434 +pad=0
435 +batch_normalize=1
436 +activation=linear
437 +
438 +
439 +### CONV5 - MBConv6 - 3 (3)
440 +# dropout only before residual connection
441 +[dropout]
442 +probability=.2
443 +
444 +# block_4_4
445 +[shortcut]
446 +from=-9
447 +activation=linear
448 +
449 +# conv_4_5_expand
450 +[convolutional]
451 +filters=384
452 +size=1
453 +stride=1
454 +pad=0
455 +batch_normalize=1
456 +activation=swish
457 +
458 +# conv_4_5_dwise
459 +[convolutional]
460 +groups=384
461 +filters=384
462 +size=3
463 +stride=1
464 +pad=1
465 +batch_normalize=1
466 +activation=swish
467 +
468 +
469 +#squeeze-n-excitation
470 +[avgpool]
471 +
472 +# squeeze ratio r=16 (recommended r=16)
473 +[convolutional]
474 +filters=24
475 +size=1
476 +stride=1
477 +activation=swish
478 +
479 +# excitation
480 +[convolutional]
481 +filters=384
482 +size=1
483 +stride=1
484 +activation=logistic
485 +
486 +# multiply channels
487 +[scale_channels]
488 +from=-4
489 +
490 +
491 +# conv_4_5_linear
492 +[convolutional]
493 +filters=80
494 +size=1
495 +stride=1
496 +pad=0
497 +batch_normalize=1
498 +activation=linear
499 +
500 +
501 +
502 +### CONV6 - MBConv6 - 1 (3)
503 +# dropout only before residual connection
504 +[dropout]
505 +probability=.2
506 +
507 +# block_4_6
508 +[shortcut]
509 +from=-9
510 +activation=linear
511 +
512 +# conv_4_7_expand
513 +[convolutional]
514 +filters=384
515 +size=1
516 +stride=1
517 +pad=0
518 +batch_normalize=1
519 +activation=swish
520 +
521 +# conv_4_7_dwise
522 +[convolutional]
523 +groups=384
524 +filters=384
525 +size=5
526 +pad=1
527 +stride=2
528 +batch_normalize=1
529 +activation=swish
530 +
531 +
532 +#squeeze-n-excitation
533 +[avgpool]
534 +
535 +# squeeze ratio r=16 (recommended r=16)
536 +[convolutional]
537 +filters=24
538 +size=1
539 +stride=1
540 +activation=swish
541 +
542 +# excitation
543 +[convolutional]
544 +filters=384
545 +size=1
546 +stride=1
547 +activation=logistic
548 +
549 +# multiply channels
550 +[scale_channels]
551 +from=-4
552 +
553 +
554 +# conv_4_7_linear
555 +[convolutional]
556 +filters=112
557 +size=1
558 +stride=1
559 +pad=0
560 +batch_normalize=1
561 +activation=linear
562 +
563 +
564 +### CONV6 - MBConv6 - 2 (3)
565 +# conv_5_1_expand
566 +[convolutional]
567 +filters=576
568 +size=1
569 +stride=1
570 +pad=0
571 +batch_normalize=1
572 +activation=swish
573 +
574 +# conv_5_1_dwise
575 +[convolutional]
576 +groups=576
577 +filters=576
578 +size=5
579 +stride=1
580 +pad=1
581 +batch_normalize=1
582 +activation=swish
583 +
584 +
585 +#squeeze-n-excitation
586 +[avgpool]
587 +
588 +# squeeze ratio r=16 (recommended r=16)
589 +[convolutional]
590 +filters=32
591 +size=1
592 +stride=1
593 +activation=swish
594 +
595 +# excitation
596 +[convolutional]
597 +filters=576
598 +size=1
599 +stride=1
600 +activation=logistic
601 +
602 +# multiply channels
603 +[scale_channels]
604 +from=-4
605 +
606 +
607 +# conv_5_1_linear
608 +[convolutional]
609 +filters=112
610 +size=1
611 +stride=1
612 +pad=0
613 +batch_normalize=1
614 +activation=linear
615 +
616 +
617 +### CONV6 - MBConv6 - 3 (3)
618 +# dropout only before residual connection
619 +[dropout]
620 +probability=.2
621 +
622 +# block_5_1
623 +[shortcut]
624 +from=-9
625 +activation=linear
626 +
627 +# conv_5_2_expand
628 +[convolutional]
629 +filters=576
630 +size=1
631 +stride=1
632 +pad=0
633 +batch_normalize=1
634 +activation=swish
635 +
636 +# conv_5_2_dwise
637 +[convolutional]
638 +groups=576
639 +filters=576
640 +size=5
641 +stride=1
642 +pad=1
643 +batch_normalize=1
644 +activation=swish
645 +
646 +
647 +#squeeze-n-excitation
648 +[avgpool]
649 +
650 +# squeeze ratio r=16 (recommended r=16)
651 +[convolutional]
652 +filters=32
653 +size=1
654 +stride=1
655 +activation=swish
656 +
657 +# excitation
658 +[convolutional]
659 +filters=576
660 +size=1
661 +stride=1
662 +activation=logistic
663 +
664 +# multiply channels
665 +[scale_channels]
666 +from=-4
667 +
668 +
669 +# conv_5_2_linear
670 +[convolutional]
671 +filters=112
672 +size=1
673 +stride=1
674 +pad=0
675 +batch_normalize=1
676 +activation=linear
677 +
678 +
679 +### CONV7 - MBConv6 - 1 (4)
680 +# dropout only before residual connection
681 +[dropout]
682 +probability=.2
683 +
684 +# block_5_2
685 +[shortcut]
686 +from=-9
687 +activation=linear
688 +
689 +# conv_5_3_expand
690 +[convolutional]
691 +filters=576
692 +size=1
693 +stride=1
694 +pad=0
695 +batch_normalize=1
696 +activation=swish
697 +
698 +# conv_5_3_dwise
699 +[convolutional]
700 +groups=576
701 +filters=576
702 +size=5
703 +pad=1
704 +stride=2
705 +batch_normalize=1
706 +activation=swish
707 +
708 +
709 +#squeeze-n-excitation
710 +[avgpool]
711 +
712 +# squeeze ratio r=16 (recommended r=16)
713 +[convolutional]
714 +filters=32
715 +size=1
716 +stride=1
717 +activation=swish
718 +
719 +# excitation
720 +[convolutional]
721 +filters=576
722 +size=1
723 +stride=1
724 +activation=logistic
725 +
726 +# multiply channels
727 +[scale_channels]
728 +from=-4
729 +
730 +
731 +# conv_5_3_linear
732 +[convolutional]
733 +filters=192
734 +size=1
735 +stride=1
736 +pad=0
737 +batch_normalize=1
738 +activation=linear
739 +
740 +
741 +### CONV7 - MBConv6 - 2 (4)
742 +# conv_6_1_expand
743 +[convolutional]
744 +filters=960
745 +size=1
746 +stride=1
747 +pad=0
748 +batch_normalize=1
749 +activation=swish
750 +
751 +# conv_6_1_dwise
752 +[convolutional]
753 +groups=960
754 +filters=960
755 +size=5
756 +stride=1
757 +pad=1
758 +batch_normalize=1
759 +activation=swish
760 +
761 +
762 +#squeeze-n-excitation
763 +[avgpool]
764 +
765 +# squeeze ratio r=16 (recommended r=16)
766 +[convolutional]
767 +filters=64
768 +size=1
769 +stride=1
770 +activation=swish
771 +
772 +# excitation
773 +[convolutional]
774 +filters=960
775 +size=1
776 +stride=1
777 +activation=logistic
778 +
779 +# multiply channels
780 +[scale_channels]
781 +from=-4
782 +
783 +
784 +# conv_6_1_linear
785 +[convolutional]
786 +filters=192
787 +size=1
788 +stride=1
789 +pad=0
790 +batch_normalize=1
791 +activation=linear
792 +
793 +
794 +### CONV7 - MBConv6 - 3 (4)
795 +# dropout only before residual connection
796 +[dropout]
797 +probability=.2
798 +
799 +# block_6_1
800 +[shortcut]
801 +from=-9
802 +activation=linear
803 +
804 +# conv_6_2_expand
805 +[convolutional]
806 +filters=960
807 +size=1
808 +stride=1
809 +pad=0
810 +batch_normalize=1
811 +activation=swish
812 +
813 +# conv_6_2_dwise
814 +[convolutional]
815 +groups=960
816 +filters=960
817 +size=5
818 +stride=1
819 +pad=1
820 +batch_normalize=1
821 +activation=swish
822 +
823 +
824 +#squeeze-n-excitation
825 +[avgpool]
826 +
827 +# squeeze ratio r=16 (recommended r=16)
828 +[convolutional]
829 +filters=64
830 +size=1
831 +stride=1
832 +activation=swish
833 +
834 +# excitation
835 +[convolutional]
836 +filters=960
837 +size=1
838 +stride=1
839 +activation=logistic
840 +
841 +# multiply channels
842 +[scale_channels]
843 +from=-4
844 +
845 +
846 +# conv_6_2_linear
847 +[convolutional]
848 +filters=192
849 +size=1
850 +stride=1
851 +pad=0
852 +batch_normalize=1
853 +activation=linear
854 +
855 +
856 +### CONV7 - MBConv6 - 4 (4)
857 +# dropout only before residual connection
858 +[dropout]
859 +probability=.2
860 +
861 +# block_6_1
862 +[shortcut]
863 +from=-9
864 +activation=linear
865 +
866 +# conv_6_2_expand
867 +[convolutional]
868 +filters=960
869 +size=1
870 +stride=1
871 +pad=0
872 +batch_normalize=1
873 +activation=swish
874 +
875 +# conv_6_2_dwise
876 +[convolutional]
877 +groups=960
878 +filters=960
879 +size=5
880 +stride=1
881 +pad=1
882 +batch_normalize=1
883 +activation=swish
884 +
885 +
886 +#squeeze-n-excitation
887 +[avgpool]
888 +
889 +# squeeze ratio r=16 (recommended r=16)
890 +[convolutional]
891 +filters=64
892 +size=1
893 +stride=1
894 +activation=swish
895 +
896 +# excitation
897 +[convolutional]
898 +filters=960
899 +size=1
900 +stride=1
901 +activation=logistic
902 +
903 +# multiply channels
904 +[scale_channels]
905 +from=-4
906 +
907 +
908 +# conv_6_2_linear
909 +[convolutional]
910 +filters=192
911 +size=1
912 +stride=1
913 +pad=0
914 +batch_normalize=1
915 +activation=linear
916 +
917 +
918 +
919 +### CONV8 - MBConv6 - 1 (1)
920 +# dropout only before residual connection
921 +[dropout]
922 +probability=.2
923 +
924 +# block_6_2
925 +[shortcut]
926 +from=-9
927 +activation=linear
928 +
929 +# conv_6_3_expand
930 +[convolutional]
931 +filters=960
932 +size=1
933 +stride=1
934 +pad=0
935 +batch_normalize=1
936 +activation=swish
937 +
938 +# conv_6_3_dwise
939 +[convolutional]
940 +groups=960
941 +filters=960
942 +size=3
943 +stride=1
944 +pad=1
945 +batch_normalize=1
946 +activation=swish
947 +
948 +
949 +#squeeze-n-excitation
950 +[avgpool]
951 +
952 +# squeeze ratio r=16 (recommended r=16)
953 +[convolutional]
954 +filters=64
955 +size=1
956 +stride=1
957 +activation=swish
958 +
959 +# excitation
960 +[convolutional]
961 +filters=960
962 +size=1
963 +stride=1
964 +activation=logistic
965 +
966 +# multiply channels
967 +[scale_channels]
968 +from=-4
969 +
970 +
971 +# conv_6_3_linear
972 +[convolutional]
973 +filters=320
974 +size=1
975 +stride=1
976 +pad=0
977 +batch_normalize=1
978 +activation=linear
979 +
980 +
981 +### CONV9 - Conv2d 1x1
982 +# conv_6_4
983 +[convolutional]
984 +filters=1280
985 +size=1
986 +stride=1
987 +pad=0
988 +batch_normalize=1
989 +activation=swish
990 +
991 +
992 +[avgpool]
993 +
994 +[dropout]
995 +probability=.2
996 +
997 +[convolutional]
998 +filters=1000
999 +size=1
1000 +stride=1
1001 +pad=0
1002 +activation=linear
1003 +
1004 +[softmax]
1005 +groups=1
1006 +
1007 +#[cost]
1008 +#type=sse
1009 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=8
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +### CONV1 - 1 (1)
26 +# conv1
27 +[convolutional]
28 +filters=32
29 +size=3
30 +pad=1
31 +stride=2
32 +batch_normalize=1
33 +activation=swish
34 +
35 +
36 +### CONV2 - MBConv1 - 1 (1)
37 +# conv2_1_expand
38 +[convolutional]
39 +filters=32
40 +size=1
41 +stride=1
42 +pad=0
43 +batch_normalize=1
44 +activation=swish
45 +
46 +# conv2_1_dwise
47 +[convolutional]
48 +groups=32
49 +filters=32
50 +size=3
51 +stride=1
52 +pad=1
53 +batch_normalize=1
54 +activation=swish
55 +
56 +
57 +#squeeze-n-excitation
58 +[avgpool]
59 +
60 +# squeeze ratio r=4 (recommended r=16)
61 +[convolutional]
62 +filters=8
63 +size=1
64 +stride=1
65 +activation=swish
66 +
67 +# excitation
68 +[convolutional]
69 +filters=32
70 +size=1
71 +stride=1
72 +activation=logistic
73 +
74 +# multiply channels
75 +[scale_channels]
76 +from=-4
77 +
78 +
79 +# conv2_1_linear
80 +[convolutional]
81 +filters=16
82 +size=1
83 +stride=1
84 +pad=0
85 +batch_normalize=1
86 +activation=linear
87 +
88 +
89 +
90 +### CONV3 - MBConv6 - 1 (2)
91 +# conv2_2_expand
92 +[convolutional]
93 +filters=96
94 +size=1
95 +stride=1
96 +pad=0
97 +batch_normalize=1
98 +activation=swish
99 +
100 +# conv2_2_dwise
101 +[convolutional]
102 +groups=96
103 +filters=96
104 +size=3
105 +pad=1
106 +stride=2
107 +batch_normalize=1
108 +activation=swish
109 +
110 +
111 +#squeeze-n-excitation
112 +[avgpool]
113 +
114 +# squeeze ratio r=8 (recommended r=16)
115 +[convolutional]
116 +filters=16
117 +size=1
118 +stride=1
119 +activation=swish
120 +
121 +# excitation
122 +[convolutional]
123 +filters=96
124 +size=1
125 +stride=1
126 +activation=logistic
127 +
128 +# multiply channels
129 +[scale_channels]
130 +from=-4
131 +
132 +
133 +# conv2_2_linear
134 +[convolutional]
135 +filters=24
136 +size=1
137 +stride=1
138 +pad=0
139 +batch_normalize=1
140 +activation=linear
141 +
142 +
143 +### CONV3 - MBConv6 - 2 (2)
144 +# conv3_1_expand
145 +[convolutional]
146 +filters=144
147 +size=1
148 +stride=1
149 +pad=0
150 +batch_normalize=1
151 +activation=swish
152 +
153 +# conv3_1_dwise
154 +[convolutional]
155 +groups=144
156 +filters=144
157 +size=3
158 +stride=1
159 +pad=1
160 +batch_normalize=1
161 +activation=swish
162 +
163 +
164 +#squeeze-n-excitation
165 +[avgpool]
166 +
167 +# squeeze ratio r=16 (recommended r=16)
168 +[convolutional]
169 +filters=8
170 +size=1
171 +stride=1
172 +activation=swish
173 +
174 +# excitation
175 +[convolutional]
176 +filters=144
177 +size=1
178 +stride=1
179 +activation=logistic
180 +
181 +# multiply channels
182 +[scale_channels]
183 +from=-4
184 +
185 +
186 +# conv3_1_linear
187 +[convolutional]
188 +filters=24
189 +size=1
190 +stride=1
191 +pad=0
192 +batch_normalize=1
193 +activation=linear
194 +
195 +
196 +
197 +### CONV4 - MBConv6 - 1 (2)
198 +# dropout only before residual connection
199 +[dropout]
200 +probability=.0
201 +
202 +# block_3_1
203 +[shortcut]
204 +from=-9
205 +activation=linear
206 +
207 +# conv_3_2_expand
208 +[convolutional]
209 +filters=144
210 +size=1
211 +stride=1
212 +pad=0
213 +batch_normalize=1
214 +activation=swish
215 +
216 +# conv_3_2_dwise
217 +[convolutional]
218 +groups=144
219 +filters=144
220 +size=5
221 +pad=1
222 +stride=2
223 +batch_normalize=1
224 +activation=swish
225 +
226 +
227 +#squeeze-n-excitation
228 +[avgpool]
229 +
230 +# squeeze ratio r=16 (recommended r=16)
231 +[convolutional]
232 +filters=8
233 +size=1
234 +stride=1
235 +activation=swish
236 +
237 +# excitation
238 +[convolutional]
239 +filters=144
240 +size=1
241 +stride=1
242 +activation=logistic
243 +
244 +# multiply channels
245 +[scale_channels]
246 +from=-4
247 +
248 +
249 +# conv_3_2_linear
250 +[convolutional]
251 +filters=40
252 +size=1
253 +stride=1
254 +pad=0
255 +batch_normalize=1
256 +activation=linear
257 +
258 +
259 +### CONV4 - MBConv6 - 2 (2)
260 +# conv_4_1_expand
261 +[convolutional]
262 +filters=192
263 +size=1
264 +stride=1
265 +pad=0
266 +batch_normalize=1
267 +activation=swish
268 +
269 +# conv_4_1_dwise
270 +[convolutional]
271 +groups=192
272 +filters=192
273 +size=5
274 +stride=1
275 +pad=1
276 +batch_normalize=1
277 +activation=swish
278 +
279 +
280 +#squeeze-n-excitation
281 +[avgpool]
282 +
283 +# squeeze ratio r=16 (recommended r=16)
284 +[convolutional]
285 +filters=16
286 +size=1
287 +stride=1
288 +activation=swish
289 +
290 +# excitation
291 +[convolutional]
292 +filters=192
293 +size=1
294 +stride=1
295 +activation=logistic
296 +
297 +# multiply channels
298 +[scale_channels]
299 +from=-4
300 +
301 +
302 +# conv_4_1_linear
303 +[convolutional]
304 +filters=40
305 +size=1
306 +stride=1
307 +pad=0
308 +batch_normalize=1
309 +activation=linear
310 +
311 +
312 +
313 +
314 +### CONV5 - MBConv6 - 1 (3)
315 +# dropout only before residual connection
316 +[dropout]
317 +probability=.0
318 +
319 +# block_4_2
320 +[shortcut]
321 +from=-9
322 +activation=linear
323 +
324 +# conv_4_3_expand
325 +[convolutional]
326 +filters=192
327 +size=1
328 +stride=1
329 +pad=0
330 +batch_normalize=1
331 +activation=swish
332 +
333 +# conv_4_3_dwise
334 +[convolutional]
335 +groups=192
336 +filters=192
337 +size=3
338 +stride=1
339 +pad=1
340 +batch_normalize=1
341 +activation=swish
342 +
343 +
344 +#squeeze-n-excitation
345 +[avgpool]
346 +
347 +# squeeze ratio r=16 (recommended r=16)
348 +[convolutional]
349 +filters=16
350 +size=1
351 +stride=1
352 +activation=swish
353 +
354 +# excitation
355 +[convolutional]
356 +filters=192
357 +size=1
358 +stride=1
359 +activation=logistic
360 +
361 +# multiply channels
362 +[scale_channels]
363 +from=-4
364 +
365 +
366 +# conv_4_3_linear
367 +[convolutional]
368 +filters=80
369 +size=1
370 +stride=1
371 +pad=0
372 +batch_normalize=1
373 +activation=linear
374 +
375 +
376 +### CONV5 - MBConv6 - 2 (3)
377 +# conv_4_4_expand
378 +[convolutional]
379 +filters=384
380 +size=1
381 +stride=1
382 +pad=0
383 +batch_normalize=1
384 +activation=swish
385 +
386 +# conv_4_4_dwise
387 +[convolutional]
388 +groups=384
389 +filters=384
390 +size=3
391 +stride=1
392 +pad=1
393 +batch_normalize=1
394 +activation=swish
395 +
396 +
397 +#squeeze-n-excitation
398 +[avgpool]
399 +
400 +# squeeze ratio r=16 (recommended r=16)
401 +[convolutional]
402 +filters=24
403 +size=1
404 +stride=1
405 +activation=swish
406 +
407 +# excitation
408 +[convolutional]
409 +filters=384
410 +size=1
411 +stride=1
412 +activation=logistic
413 +
414 +# multiply channels
415 +[scale_channels]
416 +from=-4
417 +
418 +
419 +# conv_4_4_linear
420 +[convolutional]
421 +filters=80
422 +size=1
423 +stride=1
424 +pad=0
425 +batch_normalize=1
426 +activation=linear
427 +
428 +
429 +### CONV5 - MBConv6 - 3 (3)
430 +# dropout only before residual connection
431 +[dropout]
432 +probability=.0
433 +
434 +# block_4_4
435 +[shortcut]
436 +from=-9
437 +activation=linear
438 +
439 +# conv_4_5_expand
440 +[convolutional]
441 +filters=384
442 +size=1
443 +stride=1
444 +pad=0
445 +batch_normalize=1
446 +activation=swish
447 +
448 +# conv_4_5_dwise
449 +[convolutional]
450 +groups=384
451 +filters=384
452 +size=3
453 +stride=1
454 +pad=1
455 +batch_normalize=1
456 +activation=swish
457 +
458 +
459 +#squeeze-n-excitation
460 +[avgpool]
461 +
462 +# squeeze ratio r=16 (recommended r=16)
463 +[convolutional]
464 +filters=24
465 +size=1
466 +stride=1
467 +activation=swish
468 +
469 +# excitation
470 +[convolutional]
471 +filters=384
472 +size=1
473 +stride=1
474 +activation=logistic
475 +
476 +# multiply channels
477 +[scale_channels]
478 +from=-4
479 +
480 +
481 +# conv_4_5_linear
482 +[convolutional]
483 +filters=80
484 +size=1
485 +stride=1
486 +pad=0
487 +batch_normalize=1
488 +activation=linear
489 +
490 +
491 +
492 +### CONV6 - MBConv6 - 1 (3)
493 +# dropout only before residual connection
494 +[dropout]
495 +probability=.0
496 +
497 +# block_4_6
498 +[shortcut]
499 +from=-9
500 +activation=linear
501 +
502 +# conv_4_7_expand
503 +[convolutional]
504 +filters=384
505 +size=1
506 +stride=1
507 +pad=0
508 +batch_normalize=1
509 +activation=swish
510 +
511 +# conv_4_7_dwise
512 +[convolutional]
513 +groups=384
514 +filters=384
515 +size=5
516 +pad=1
517 +stride=2
518 +batch_normalize=1
519 +activation=swish
520 +
521 +
522 +#squeeze-n-excitation
523 +[avgpool]
524 +
525 +# squeeze ratio r=16 (recommended r=16)
526 +[convolutional]
527 +filters=24
528 +size=1
529 +stride=1
530 +activation=swish
531 +
532 +# excitation
533 +[convolutional]
534 +filters=384
535 +size=1
536 +stride=1
537 +activation=logistic
538 +
539 +# multiply channels
540 +[scale_channels]
541 +from=-4
542 +
543 +
544 +# conv_4_7_linear
545 +[convolutional]
546 +filters=112
547 +size=1
548 +stride=1
549 +pad=0
550 +batch_normalize=1
551 +activation=linear
552 +
553 +
554 +### CONV6 - MBConv6 - 2 (3)
555 +# conv_5_1_expand
556 +[convolutional]
557 +filters=576
558 +size=1
559 +stride=1
560 +pad=0
561 +batch_normalize=1
562 +activation=swish
563 +
564 +# conv_5_1_dwise
565 +[convolutional]
566 +groups=576
567 +filters=576
568 +size=5
569 +stride=1
570 +pad=1
571 +batch_normalize=1
572 +activation=swish
573 +
574 +
575 +#squeeze-n-excitation
576 +[avgpool]
577 +
578 +# squeeze ratio r=16 (recommended r=16)
579 +[convolutional]
580 +filters=32
581 +size=1
582 +stride=1
583 +activation=swish
584 +
585 +# excitation
586 +[convolutional]
587 +filters=576
588 +size=1
589 +stride=1
590 +activation=logistic
591 +
592 +# multiply channels
593 +[scale_channels]
594 +from=-4
595 +
596 +
597 +# conv_5_1_linear
598 +[convolutional]
599 +filters=112
600 +size=1
601 +stride=1
602 +pad=0
603 +batch_normalize=1
604 +activation=linear
605 +
606 +
607 +### CONV6 - MBConv6 - 3 (3)
608 +# dropout only before residual connection
609 +[dropout]
610 +probability=.0
611 +
612 +# block_5_1
613 +[shortcut]
614 +from=-9
615 +activation=linear
616 +
617 +# conv_5_2_expand
618 +[convolutional]
619 +filters=576
620 +size=1
621 +stride=1
622 +pad=0
623 +batch_normalize=1
624 +activation=swish
625 +
626 +# conv_5_2_dwise
627 +[convolutional]
628 +groups=576
629 +filters=576
630 +size=5
631 +stride=1
632 +pad=1
633 +batch_normalize=1
634 +activation=swish
635 +
636 +
637 +#squeeze-n-excitation
638 +[avgpool]
639 +
640 +# squeeze ratio r=16 (recommended r=16)
641 +[convolutional]
642 +filters=32
643 +size=1
644 +stride=1
645 +activation=swish
646 +
647 +# excitation
648 +[convolutional]
649 +filters=576
650 +size=1
651 +stride=1
652 +activation=logistic
653 +
654 +# multiply channels
655 +[scale_channels]
656 +from=-4
657 +
658 +
659 +# conv_5_2_linear
660 +[convolutional]
661 +filters=112
662 +size=1
663 +stride=1
664 +pad=0
665 +batch_normalize=1
666 +activation=linear
667 +
668 +
669 +### CONV7 - MBConv6 - 1 (4)
670 +# dropout only before residual connection
671 +[dropout]
672 +probability=.0
673 +
674 +# block_5_2
675 +[shortcut]
676 +from=-9
677 +activation=linear
678 +
679 +# conv_5_3_expand
680 +[convolutional]
681 +filters=576
682 +size=1
683 +stride=1
684 +pad=0
685 +batch_normalize=1
686 +activation=swish
687 +
688 +# conv_5_3_dwise
689 +[convolutional]
690 +groups=576
691 +filters=576
692 +size=5
693 +pad=1
694 +stride=2
695 +batch_normalize=1
696 +activation=swish
697 +
698 +
699 +#squeeze-n-excitation
700 +[avgpool]
701 +
702 +# squeeze ratio r=16 (recommended r=16)
703 +[convolutional]
704 +filters=32
705 +size=1
706 +stride=1
707 +activation=swish
708 +
709 +# excitation
710 +[convolutional]
711 +filters=576
712 +size=1
713 +stride=1
714 +activation=logistic
715 +
716 +# multiply channels
717 +[scale_channels]
718 +from=-4
719 +
720 +
721 +# conv_5_3_linear
722 +[convolutional]
723 +filters=192
724 +size=1
725 +stride=1
726 +pad=0
727 +batch_normalize=1
728 +activation=linear
729 +
730 +
731 +### CONV7 - MBConv6 - 2 (4)
732 +# conv_6_1_expand
733 +[convolutional]
734 +filters=960
735 +size=1
736 +stride=1
737 +pad=0
738 +batch_normalize=1
739 +activation=swish
740 +
741 +# conv_6_1_dwise
742 +[convolutional]
743 +groups=960
744 +filters=960
745 +size=5
746 +stride=1
747 +pad=1
748 +batch_normalize=1
749 +activation=swish
750 +
751 +
752 +#squeeze-n-excitation
753 +[avgpool]
754 +
755 +# squeeze ratio r=16 (recommended r=16)
756 +[convolutional]
757 +filters=64
758 +size=1
759 +stride=1
760 +activation=swish
761 +
762 +# excitation
763 +[convolutional]
764 +filters=960
765 +size=1
766 +stride=1
767 +activation=logistic
768 +
769 +# multiply channels
770 +[scale_channels]
771 +from=-4
772 +
773 +
774 +# conv_6_1_linear
775 +[convolutional]
776 +filters=192
777 +size=1
778 +stride=1
779 +pad=0
780 +batch_normalize=1
781 +activation=linear
782 +
783 +
784 +### CONV7 - MBConv6 - 3 (4)
785 +# dropout only before residual connection
786 +[dropout]
787 +probability=.0
788 +
789 +# block_6_1
790 +[shortcut]
791 +from=-9
792 +activation=linear
793 +
794 +# conv_6_2_expand
795 +[convolutional]
796 +filters=960
797 +size=1
798 +stride=1
799 +pad=0
800 +batch_normalize=1
801 +activation=swish
802 +
803 +# conv_6_2_dwise
804 +[convolutional]
805 +groups=960
806 +filters=960
807 +size=5
808 +stride=1
809 +pad=1
810 +batch_normalize=1
811 +activation=swish
812 +
813 +
814 +#squeeze-n-excitation
815 +[avgpool]
816 +
817 +# squeeze ratio r=16 (recommended r=16)
818 +[convolutional]
819 +filters=64
820 +size=1
821 +stride=1
822 +activation=swish
823 +
824 +# excitation
825 +[convolutional]
826 +filters=960
827 +size=1
828 +stride=1
829 +activation=logistic
830 +
831 +# multiply channels
832 +[scale_channels]
833 +from=-4
834 +
835 +
836 +# conv_6_2_linear
837 +[convolutional]
838 +filters=192
839 +size=1
840 +stride=1
841 +pad=0
842 +batch_normalize=1
843 +activation=linear
844 +
845 +
846 +### CONV7 - MBConv6 - 4 (4)
847 +# dropout only before residual connection
848 +[dropout]
849 +probability=.0
850 +
851 +# block_6_1
852 +[shortcut]
853 +from=-9
854 +activation=linear
855 +
856 +# conv_6_2_expand
857 +[convolutional]
858 +filters=960
859 +size=1
860 +stride=1
861 +pad=0
862 +batch_normalize=1
863 +activation=swish
864 +
865 +# conv_6_2_dwise
866 +[convolutional]
867 +groups=960
868 +filters=960
869 +size=5
870 +stride=1
871 +pad=1
872 +batch_normalize=1
873 +activation=swish
874 +
875 +
876 +#squeeze-n-excitation
877 +[avgpool]
878 +
879 +# squeeze ratio r=16 (recommended r=16)
880 +[convolutional]
881 +filters=64
882 +size=1
883 +stride=1
884 +activation=swish
885 +
886 +# excitation
887 +[convolutional]
888 +filters=960
889 +size=1
890 +stride=1
891 +activation=logistic
892 +
893 +# multiply channels
894 +[scale_channels]
895 +from=-4
896 +
897 +
898 +# conv_6_2_linear
899 +[convolutional]
900 +filters=192
901 +size=1
902 +stride=1
903 +pad=0
904 +batch_normalize=1
905 +activation=linear
906 +
907 +
908 +
909 +### CONV8 - MBConv6 - 1 (1)
910 +# dropout only before residual connection
911 +[dropout]
912 +probability=.0
913 +
914 +# block_6_2
915 +[shortcut]
916 +from=-9
917 +activation=linear
918 +
919 +# conv_6_3_expand
920 +[convolutional]
921 +filters=960
922 +size=1
923 +stride=1
924 +pad=0
925 +batch_normalize=1
926 +activation=swish
927 +
928 +# conv_6_3_dwise
929 +[convolutional]
930 +groups=960
931 +filters=960
932 +size=3
933 +stride=1
934 +pad=1
935 +batch_normalize=1
936 +activation=swish
937 +
938 +
939 +#squeeze-n-excitation
940 +[avgpool]
941 +
942 +# squeeze ratio r=16 (recommended r=16)
943 +[convolutional]
944 +filters=64
945 +size=1
946 +stride=1
947 +activation=swish
948 +
949 +# excitation
950 +[convolutional]
951 +filters=960
952 +size=1
953 +stride=1
954 +activation=logistic
955 +
956 +# multiply channels
957 +[scale_channels]
958 +from=-4
959 +
960 +
961 +# conv_6_3_linear
962 +[convolutional]
963 +filters=320
964 +size=1
965 +stride=1
966 +pad=0
967 +batch_normalize=1
968 +activation=linear
969 +
970 +
971 +### CONV9 - Conv2d 1x1
972 +# conv_6_4
973 +[convolutional]
974 +filters=1280
975 +size=1
976 +stride=1
977 +pad=0
978 +batch_normalize=1
979 +activation=swish
980 +
981 +##########################
982 +
983 +[convolutional]
984 +batch_normalize=1
985 +filters=256
986 +size=1
987 +stride=1
988 +pad=1
989 +activation=leaky
990 +
991 +[convolutional]
992 +batch_normalize=1
993 +filters=256
994 +size=3
995 +stride=1
996 +pad=1
997 +activation=leaky
998 +
999 +[shortcut]
1000 +activation=leaky
1001 +from=-2
1002 +
1003 +[convolutional]
1004 +size=1
1005 +stride=1
1006 +pad=1
1007 +filters=255
1008 +activation=linear
1009 +
1010 +
1011 +
1012 +[yolo]
1013 +mask = 3,4,5
1014 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
1015 +classes=80
1016 +num=6
1017 +jitter=.3
1018 +ignore_thresh = .7
1019 +truth_thresh = 1
1020 +random=0
1021 +
1022 +[route]
1023 +layers = -4
1024 +
1025 +[convolutional]
1026 +batch_normalize=1
1027 +filters=128
1028 +size=1
1029 +stride=1
1030 +pad=1
1031 +activation=leaky
1032 +
1033 +[upsample]
1034 +stride=2
1035 +
1036 +[shortcut]
1037 +activation=leaky
1038 +from=90
1039 +
1040 +[convolutional]
1041 +batch_normalize=1
1042 +filters=128
1043 +size=3
1044 +stride=1
1045 +pad=1
1046 +activation=leaky
1047 +
1048 +[shortcut]
1049 +activation=leaky
1050 +from=-3
1051 +
1052 +[shortcut]
1053 +activation=leaky
1054 +from=90
1055 +
1056 +[convolutional]
1057 +size=1
1058 +stride=1
1059 +pad=1
1060 +filters=255
1061 +activation=linear
1062 +
1063 +[yolo]
1064 +mask = 1,2,3
1065 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
1066 +classes=80
1067 +num=6
1068 +jitter=.3
1069 +ignore_thresh = .7
1070 +truth_thresh = 1
1071 +random=0
1072 +
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=224
5 +width=224
6 +max_crop=320
7 +channels=3
8 +momentum=0.9
9 +decay=0.0005
10 +
11 +learning_rate=0.1
12 +policy=poly
13 +power=4
14 +max_batches=1600000
15 +
16 +[convolutional]
17 +batch_normalize=1
18 +filters=64
19 +size=7
20 +stride=2
21 +pad=1
22 +activation=leaky
23 +
24 +[maxpool]
25 +size=2
26 +stride=2
27 +
28 +[convolutional]
29 +batch_normalize=1
30 +filters=192
31 +size=3
32 +stride=1
33 +pad=1
34 +activation=leaky
35 +
36 +[maxpool]
37 +size=2
38 +stride=2
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=128
43 +size=1
44 +stride=1
45 +pad=1
46 +activation=leaky
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=256
51 +size=3
52 +stride=1
53 +pad=1
54 +activation=leaky
55 +
56 +[convolutional]
57 +batch_normalize=1
58 +filters=256
59 +size=1
60 +stride=1
61 +pad=1
62 +activation=leaky
63 +
64 +[convolutional]
65 +batch_normalize=1
66 +filters=512
67 +size=3
68 +stride=1
69 +pad=1
70 +activation=leaky
71 +
72 +[maxpool]
73 +size=2
74 +stride=2
75 +
76 +[convolutional]
77 +batch_normalize=1
78 +filters=256
79 +size=1
80 +stride=1
81 +pad=1
82 +activation=leaky
83 +
84 +[convolutional]
85 +batch_normalize=1
86 +filters=512
87 +size=3
88 +stride=1
89 +pad=1
90 +activation=leaky
91 +
92 +[convolutional]
93 +batch_normalize=1
94 +filters=256
95 +size=1
96 +stride=1
97 +pad=1
98 +activation=leaky
99 +
100 +[convolutional]
101 +batch_normalize=1
102 +filters=512
103 +size=3
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=256
111 +size=1
112 +stride=1
113 +pad=1
114 +activation=leaky
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=512
119 +size=3
120 +stride=1
121 +pad=1
122 +activation=leaky
123 +
124 +[convolutional]
125 +batch_normalize=1
126 +filters=256
127 +size=1
128 +stride=1
129 +pad=1
130 +activation=leaky
131 +
132 +[convolutional]
133 +batch_normalize=1
134 +filters=512
135 +size=3
136 +stride=1
137 +pad=1
138 +activation=leaky
139 +
140 +[convolutional]
141 +batch_normalize=1
142 +filters=512
143 +size=1
144 +stride=1
145 +pad=1
146 +activation=leaky
147 +
148 +[convolutional]
149 +batch_normalize=1
150 +filters=1024
151 +size=3
152 +stride=1
153 +pad=1
154 +activation=leaky
155 +
156 +[maxpool]
157 +size=2
158 +stride=2
159 +
160 +[convolutional]
161 +batch_normalize=1
162 +filters=512
163 +size=1
164 +stride=1
165 +pad=1
166 +activation=leaky
167 +
168 +[convolutional]
169 +batch_normalize=1
170 +filters=1024
171 +size=3
172 +stride=1
173 +pad=1
174 +activation=leaky
175 +
176 +[convolutional]
177 +batch_normalize=1
178 +filters=512
179 +size=1
180 +stride=1
181 +pad=1
182 +activation=leaky
183 +
184 +[convolutional]
185 +batch_normalize=1
186 +filters=1024
187 +size=3
188 +stride=1
189 +pad=1
190 +activation=leaky
191 +
192 +[convolutional]
193 +filters=1000
194 +size=1
195 +stride=1
196 +pad=1
197 +activation=leaky
198 +
199 +[avgpool]
200 +
201 +[softmax]
202 +groups=1
203 +
204 +[cost]
205 +type=sse
206 +
1 +[net]
2 +batch=1
3 +subdivisions=1
4 +height=256
5 +width=256
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +
10 +learning_rate=0.5
11 +policy=poly
12 +power=6
13 +max_batches=500000
14 +
15 +[convolutional]
16 +filters=64
17 +size=7
18 +stride=2
19 +pad=1
20 +activation=leaky
21 +
22 +[maxpool]
23 +size=2
24 +stride=2
25 +
26 +[convolutional]
27 +filters=192
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +filters=128
39 +size=1
40 +stride=1
41 +pad=1
42 +activation=leaky
43 +
44 +[convolutional]
45 +filters=256
46 +size=3
47 +stride=1
48 +pad=1
49 +activation=leaky
50 +
51 +[convolutional]
52 +filters=256
53 +size=1
54 +stride=1
55 +pad=1
56 +activation=leaky
57 +
58 +[convolutional]
59 +filters=512
60 +size=3
61 +stride=1
62 +pad=1
63 +activation=leaky
64 +
65 +[maxpool]
66 +size=2
67 +stride=2
68 +
69 +[convolutional]
70 +filters=256
71 +size=1
72 +stride=1
73 +pad=1
74 +activation=leaky
75 +
76 +[convolutional]
77 +filters=512
78 +size=3
79 +stride=1
80 +pad=1
81 +activation=leaky
82 +
83 +[convolutional]
84 +filters=256
85 +size=1
86 +stride=1
87 +pad=1
88 +activation=leaky
89 +
90 +[convolutional]
91 +filters=512
92 +size=3
93 +stride=1
94 +pad=1
95 +activation=leaky
96 +
97 +[convolutional]
98 +filters=256
99 +size=1
100 +stride=1
101 +pad=1
102 +activation=leaky
103 +
104 +[convolutional]
105 +filters=512
106 +size=3
107 +stride=1
108 +pad=1
109 +activation=leaky
110 +
111 +[convolutional]
112 +filters=256
113 +size=1
114 +stride=1
115 +pad=1
116 +activation=leaky
117 +
118 +[convolutional]
119 +filters=512
120 +size=3
121 +stride=1
122 +pad=1
123 +activation=leaky
124 +
125 +[convolutional]
126 +filters=512
127 +size=1
128 +stride=1
129 +pad=1
130 +activation=leaky
131 +
132 +[convolutional]
133 +filters=1024
134 +size=3
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[maxpool]
140 +size=2
141 +stride=2
142 +
143 +[convolutional]
144 +filters=512
145 +size=1
146 +stride=1
147 +pad=1
148 +activation=leaky
149 +
150 +[convolutional]
151 +filters=1024
152 +size=3
153 +stride=1
154 +pad=1
155 +activation=leaky
156 +
157 +[convolutional]
158 +filters=512
159 +size=1
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[convolutional]
165 +filters=1024
166 +size=3
167 +stride=1
168 +pad=1
169 +activation=leaky
170 +
171 +[avgpool]
172 +
173 +[connected]
174 +output=1000
175 +activation=leaky
176 +
177 +[softmax]
178 +groups=1
179 +
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=224
5 +width=224
6 +max_crop=320
7 +channels=3
8 +momentum=0.9
9 +decay=0.0005
10 +
11 +learning_rate=0.01
12 +max_batches = 0
13 +policy=steps
14 +steps=444000,590000,970000
15 +scales=.5,.2,.1
16 +
17 +#policy=sigmoid
18 +#gamma=.00008
19 +#step=100000
20 +#max_batches=200000
21 +
22 +[convolutional]
23 +batch_normalize=1
24 +filters=64
25 +size=7
26 +stride=2
27 +pad=1
28 +activation=leaky
29 +
30 +[maxpool]
31 +size=2
32 +stride=2
33 +
34 +[convolutional]
35 +batch_normalize=1
36 +filters=192
37 +size=3
38 +stride=1
39 +pad=1
40 +activation=leaky
41 +
42 +[maxpool]
43 +size=2
44 +stride=2
45 +
46 +[convolutional]
47 +batch_normalize=1
48 +filters=128
49 +size=1
50 +stride=1
51 +pad=1
52 +activation=leaky
53 +
54 +[convolutional]
55 +batch_normalize=1
56 +filters=256
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=leaky
61 +
62 +[convolutional]
63 +batch_normalize=1
64 +filters=256
65 +size=1
66 +stride=1
67 +pad=1
68 +activation=leaky
69 +
70 +[convolutional]
71 +batch_normalize=1
72 +filters=512
73 +size=3
74 +stride=1
75 +pad=1
76 +activation=leaky
77 +
78 +[maxpool]
79 +size=2
80 +stride=2
81 +
82 +[convolutional]
83 +batch_normalize=1
84 +filters=256
85 +size=1
86 +stride=1
87 +pad=1
88 +activation=leaky
89 +
90 +[convolutional]
91 +batch_normalize=1
92 +filters=512
93 +size=3
94 +stride=1
95 +pad=1
96 +activation=leaky
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=256
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=leaky
105 +
106 +[convolutional]
107 +batch_normalize=1
108 +filters=512
109 +size=3
110 +stride=1
111 +pad=1
112 +activation=leaky
113 +
114 +[convolutional]
115 +batch_normalize=1
116 +filters=256
117 +size=1
118 +stride=1
119 +pad=1
120 +activation=leaky
121 +
122 +[convolutional]
123 +batch_normalize=1
124 +filters=512
125 +size=3
126 +stride=1
127 +pad=1
128 +activation=leaky
129 +
130 +[convolutional]
131 +batch_normalize=1
132 +filters=256
133 +size=1
134 +stride=1
135 +pad=1
136 +activation=leaky
137 +
138 +[convolutional]
139 +batch_normalize=1
140 +filters=512
141 +size=3
142 +stride=1
143 +pad=1
144 +activation=leaky
145 +
146 +[convolutional]
147 +batch_normalize=1
148 +filters=512
149 +size=1
150 +stride=1
151 +pad=1
152 +activation=leaky
153 +
154 +[convolutional]
155 +batch_normalize=1
156 +filters=1024
157 +size=3
158 +stride=1
159 +pad=1
160 +activation=leaky
161 +
162 +[maxpool]
163 +size=2
164 +stride=2
165 +
166 +[convolutional]
167 +batch_normalize=1
168 +filters=1024
169 +size=1
170 +stride=1
171 +pad=1
172 +activation=leaky
173 +
174 +[convolutional]
175 +batch_normalize=1
176 +filters=2048
177 +size=3
178 +stride=1
179 +pad=1
180 +activation=leaky
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=1024
185 +size=1
186 +stride=1
187 +pad=1
188 +activation=leaky
189 +
190 +[convolutional]
191 +batch_normalize=1
192 +filters=2048
193 +size=3
194 +stride=1
195 +pad=1
196 +activation=leaky
197 +
198 +[avgpool]
199 +
200 +[connected]
201 +output=21842
202 +activation=leaky
203 +
204 +[softmax]
205 +groups=1
206 +
207 +[cost]
208 +type=sse
209 +
1 +[net]
2 +batch=1
3 +subdivisions=1
4 +height=19
5 +width=19
6 +channels=1
7 +momentum=0.9
8 +decay=0.0005
9 +
10 +learning_rate=0.1
11 +policy=poly
12 +power=4
13 +max_batches=400000
14 +
15 +[convolutional]
16 +filters=192
17 +size=3
18 +stride=1
19 +pad=1
20 +activation=relu
21 +batch_normalize=1
22 +
23 +[convolutional]
24 +filters=192
25 +size=3
26 +stride=1
27 +pad=1
28 +activation=relu
29 +batch_normalize=1
30 +
31 +[convolutional]
32 +filters=192
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=relu
37 +batch_normalize=1
38 +
39 +[convolutional]
40 +filters=192
41 +size=3
42 +stride=1
43 +pad=1
44 +activation=relu
45 +batch_normalize=1
46 +
47 +[convolutional]
48 +filters=192
49 +size=3
50 +stride=1
51 +pad=1
52 +activation=relu
53 +batch_normalize=1
54 +
55 +[convolutional]
56 +filters=192
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=relu
61 +batch_normalize=1
62 +
63 +[convolutional]
64 +filters=192
65 +size=3
66 +stride=1
67 +pad=1
68 +activation=relu
69 +batch_normalize=1
70 +
71 +[convolutional]
72 +filters=192
73 +size=3
74 +stride=1
75 +pad=1
76 +activation=relu
77 +batch_normalize=1
78 +
79 +[convolutional]
80 +filters=192
81 +size=3
82 +stride=1
83 +pad=1
84 +activation=relu
85 +batch_normalize=1
86 +
87 +[convolutional]
88 +filters=192
89 +size=3
90 +stride=1
91 +pad=1
92 +activation=relu
93 +batch_normalize=1
94 +
95 +[convolutional]
96 +filters=192
97 +size=3
98 +stride=1
99 +pad=1
100 +activation=relu
101 +batch_normalize=1
102 +
103 +[convolutional]
104 +filters=192
105 +size=3
106 +stride=1
107 +pad=1
108 +activation=relu
109 +batch_normalize=1
110 +
111 +[convolutional]
112 +filters=192
113 +size=3
114 +stride=1
115 +pad=1
116 +activation=relu
117 +batch_normalize=1
118 +
119 +
120 +[convolutional]
121 +filters=1
122 +size=1
123 +stride=1
124 +pad=1
125 +activation=linear
126 +
127 +[softmax]
128 +
129 +[cost]
130 +type=sse
131 +
1 +[net]
2 +subdivisions=1
3 +inputs=256
4 +batch = 1
5 +momentum=0.9
6 +decay=0.001
7 +time_steps=1
8 +learning_rate=0.5
9 +
10 +policy=poly
11 +power=4
12 +max_batches=2000
13 +
14 +[gru]
15 +batch_normalize=1
16 +output = 1024
17 +
18 +[gru]
19 +batch_normalize=1
20 +output = 1024
21 +
22 +[gru]
23 +batch_normalize=1
24 +output = 1024
25 +
26 +[connected]
27 +output=256
28 +activation=linear
29 +
30 +[softmax]
31 +
32 +[cost]
33 +type=sse
34 +
1 +classes=1000
2 +train = data/imagenet1k.train.list
3 +#train = data/inet.val.list
4 +valid = data/inet.val.list
5 +backup = backup
6 +labels = data/imagenet.labels.list
7 +names = data/imagenet.shortnames.list
8 +top=5
9 +
1 +classes=21842
2 +train = /data/imagenet/imagenet22k.train.list
3 +valid = /data/imagenet/imagenet22k.valid.list
4 +backup = /home/pjreddie/backup/
5 +labels = data/imagenet.labels.list
6 +names = data/imagenet.shortnames.list
7 +top = 5
8 +
1 +classes=9418
2 +train = data/9k.train.list
3 +valid = /data/imagenet/imagenet1k.valid.list
4 +leaves = data/imagenet1k.labels
5 +backup = /home/pjreddie/backup/
6 +labels = data/9k.labels
7 +names = data/9k.names
8 +top=5
9 +
1 +[net]
2 +batch=1
3 +subdivisions=1
4 +height=10
5 +width=10
6 +channels=3
7 +learning_rate=0.01
8 +momentum=0.9
9 +decay=0.0005
10 +
11 +[convolutional]
12 +filters=32
13 +size=3
14 +stride=1
15 +pad=1
16 +activation=leaky
17 +
18 +[convolutional]
19 +filters=32
20 +size=3
21 +stride=1
22 +pad=1
23 +activation=leaky
24 +
25 +[maxpool]
26 +stride=2
27 +size=2
28 +
29 +[convolutional]
30 +filters=64
31 +size=3
32 +stride=1
33 +pad=1
34 +activation=leaky
35 +
36 +[convolutional]
37 +filters=64
38 +size=3
39 +stride=1
40 +pad=1
41 +activation=leaky
42 +
43 +[maxpool]
44 +stride=2
45 +size=2
46 +
47 +[convolutional]
48 +filters=128
49 +size=3
50 +stride=1
51 +pad=1
52 +activation=leaky
53 +
54 +[convolutional]
55 +filters=128
56 +size=3
57 +stride=1
58 +pad=1
59 +activation=leaky
60 +
61 +[maxpool]
62 +stride=2
63 +size=2
64 +
65 +[convolutional]
66 +filters=256
67 +size=3
68 +stride=1
69 +pad=1
70 +activation=leaky
71 +
72 +[convolutional]
73 +filters=256
74 +size=3
75 +stride=1
76 +pad=1
77 +activation=leaky
78 +
79 +[maxpool]
80 +stride=2
81 +size=2
82 +
83 +[convolutional]
84 +filters=512
85 +size=3
86 +stride=1
87 +pad=1
88 +activation=leaky
89 +
90 +[convolutional]
91 +filters=512
92 +size=3
93 +stride=1
94 +pad=1
95 +activation=leaky
96 +
97 +[maxpool]
98 +stride=2
99 +size=2
100 +
101 +[convolutional]
102 +filters=1024
103 +size=3
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +filters=1024
110 +size=3
111 +stride=1
112 +pad=1
113 +activation=leaky
114 +
115 +[maxpool]
116 +size=2
117 +stride=2
118 +
1 +[net]
2 +subdivisions=8
3 +inputs=256
4 +batch = 128
5 +momentum=0.9
6 +decay=0.001
7 +max_batches = 2000
8 +time_steps=576
9 +learning_rate=0.5
10 +policy=steps
11 +burn_in=10
12 +steps=1000,1500
13 +scales=.1,.1
14 +
15 +[lstm]
16 +batch_normalize=1
17 +output = 1024
18 +
19 +[lstm]
20 +batch_normalize=1
21 +output = 1024
22 +
23 +[lstm]
24 +batch_normalize=1
25 +output = 1024
26 +
27 +[connected]
28 +output=256
29 +activation=leaky
30 +
31 +[softmax]
32 +
33 +[cost]
34 +type=sse
35 +
1 +classes= 601
2 +train = /home/pjreddie/data/openimsv4/openimages.train.list
3 +#valid = coco_testdev
4 +valid = data/coco_val_5k.list
5 +names = data/openimages.names
6 +backup = /home/pjreddie/backup/
7 +eval=coco
8 +
1 +[net]
2 +# Training
3 +batch=128
4 +subdivisions=2
5 +
6 +# Testing
7 +#batch=1
8 +#subdivisions=1
9 +
10 +height=256
11 +width=256
12 +channels=3
13 +min_crop=128
14 +max_crop=448
15 +
16 +burn_in=1000
17 +learning_rate=0.1
18 +policy=poly
19 +power=4
20 +max_batches=800000
21 +momentum=0.9
22 +decay=0.0005
23 +
24 +angle=7
25 +hue=.1
26 +saturation=.75
27 +exposure=.75
28 +aspect=.75
29 +
30 +
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=64
35 +size=7
36 +stride=2
37 +pad=1
38 +activation=leaky
39 +
40 +[maxpool]
41 +size=2
42 +stride=2
43 +
44 +[convolutional]
45 +batch_normalize=1
46 +filters=64
47 +size=1
48 +stride=1
49 +pad=1
50 +activation=leaky
51 +
52 +[convolutional]
53 +batch_normalize=1
54 +filters=64
55 +size=3
56 +stride=1
57 +pad=1
58 +activation=leaky
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=256
63 +size=1
64 +stride=1
65 +pad=1
66 +activation=linear
67 +
68 +[shortcut]
69 +from=-4
70 +activation=leaky
71 +
72 +[convolutional]
73 +batch_normalize=1
74 +filters=64
75 +size=1
76 +stride=1
77 +pad=1
78 +activation=leaky
79 +
80 +[convolutional]
81 +batch_normalize=1
82 +filters=64
83 +size=3
84 +stride=1
85 +pad=1
86 +activation=leaky
87 +
88 +[convolutional]
89 +batch_normalize=1
90 +filters=256
91 +size=1
92 +stride=1
93 +pad=1
94 +activation=linear
95 +
96 +[shortcut]
97 +from=-4
98 +activation=leaky
99 +
100 +[convolutional]
101 +batch_normalize=1
102 +filters=64
103 +size=1
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=64
111 +size=3
112 +stride=1
113 +pad=1
114 +activation=leaky
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=256
119 +size=1
120 +stride=1
121 +pad=1
122 +activation=linear
123 +
124 +[shortcut]
125 +from=-4
126 +activation=leaky
127 +
128 +[convolutional]
129 +batch_normalize=1
130 +filters=128
131 +size=1
132 +stride=1
133 +pad=1
134 +activation=leaky
135 +
136 +[convolutional]
137 +batch_normalize=1
138 +filters=128
139 +size=3
140 +stride=2
141 +pad=1
142 +activation=leaky
143 +
144 +[convolutional]
145 +batch_normalize=1
146 +filters=512
147 +size=1
148 +stride=1
149 +pad=1
150 +activation=linear
151 +
152 +[shortcut]
153 +from=-4
154 +activation=leaky
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=128
159 +size=1
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[convolutional]
165 +batch_normalize=1
166 +filters=128
167 +size=3
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[convolutional]
173 +batch_normalize=1
174 +filters=512
175 +size=1
176 +stride=1
177 +pad=1
178 +activation=linear
179 +
180 +[shortcut]
181 +from=-4
182 +activation=leaky
183 +
184 +[convolutional]
185 +batch_normalize=1
186 +filters=128
187 +size=1
188 +stride=1
189 +pad=1
190 +activation=leaky
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +filters=128
195 +size=3
196 +stride=1
197 +pad=1
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +filters=512
203 +size=1
204 +stride=1
205 +pad=1
206 +activation=linear
207 +
208 +[shortcut]
209 +from=-4
210 +activation=leaky
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +filters=128
215 +size=1
216 +stride=1
217 +pad=1
218 +activation=leaky
219 +
220 +[convolutional]
221 +batch_normalize=1
222 +filters=128
223 +size=3
224 +stride=1
225 +pad=1
226 +activation=leaky
227 +
228 +[convolutional]
229 +batch_normalize=1
230 +filters=512
231 +size=1
232 +stride=1
233 +pad=1
234 +activation=linear
235 +
236 +[shortcut]
237 +from=-4
238 +activation=leaky
239 +
240 +
241 +# Conv 4
242 +[convolutional]
243 +batch_normalize=1
244 +filters=256
245 +size=1
246 +stride=1
247 +pad=1
248 +activation=leaky
249 +
250 +[convolutional]
251 +batch_normalize=1
252 +filters=256
253 +size=3
254 +stride=2
255 +pad=1
256 +activation=leaky
257 +
258 +[convolutional]
259 +batch_normalize=1
260 +filters=1024
261 +size=1
262 +stride=1
263 +pad=1
264 +activation=linear
265 +
266 +[shortcut]
267 +from=-4
268 +activation=leaky
269 +
270 +[convolutional]
271 +batch_normalize=1
272 +filters=256
273 +size=1
274 +stride=1
275 +pad=1
276 +activation=leaky
277 +
278 +[convolutional]
279 +batch_normalize=1
280 +filters=256
281 +size=3
282 +stride=1
283 +pad=1
284 +activation=leaky
285 +
286 +[convolutional]
287 +batch_normalize=1
288 +filters=1024
289 +size=1
290 +stride=1
291 +pad=1
292 +activation=linear
293 +
294 +[shortcut]
295 +from=-4
296 +activation=leaky
297 +
298 +[convolutional]
299 +batch_normalize=1
300 +filters=256
301 +size=1
302 +stride=1
303 +pad=1
304 +activation=leaky
305 +
306 +[convolutional]
307 +batch_normalize=1
308 +filters=256
309 +size=3
310 +stride=1
311 +pad=1
312 +activation=leaky
313 +
314 +[convolutional]
315 +batch_normalize=1
316 +filters=1024
317 +size=1
318 +stride=1
319 +pad=1
320 +activation=linear
321 +
322 +[shortcut]
323 +from=-4
324 +activation=leaky
325 +
326 +[convolutional]
327 +batch_normalize=1
328 +filters=256
329 +size=1
330 +stride=1
331 +pad=1
332 +activation=leaky
333 +
334 +[convolutional]
335 +batch_normalize=1
336 +filters=256
337 +size=3
338 +stride=1
339 +pad=1
340 +activation=leaky
341 +
342 +[convolutional]
343 +batch_normalize=1
344 +filters=1024
345 +size=1
346 +stride=1
347 +pad=1
348 +activation=linear
349 +
350 +[shortcut]
351 +from=-4
352 +activation=leaky
353 +
354 +[convolutional]
355 +batch_normalize=1
356 +filters=256
357 +size=1
358 +stride=1
359 +pad=1
360 +activation=leaky
361 +
362 +[convolutional]
363 +batch_normalize=1
364 +filters=256
365 +size=3
366 +stride=1
367 +pad=1
368 +activation=leaky
369 +
370 +[convolutional]
371 +batch_normalize=1
372 +filters=1024
373 +size=1
374 +stride=1
375 +pad=1
376 +activation=linear
377 +
378 +[shortcut]
379 +from=-4
380 +activation=leaky
381 +
382 +[convolutional]
383 +batch_normalize=1
384 +filters=256
385 +size=1
386 +stride=1
387 +pad=1
388 +activation=leaky
389 +
390 +[convolutional]
391 +batch_normalize=1
392 +filters=256
393 +size=3
394 +stride=1
395 +pad=1
396 +activation=leaky
397 +
398 +[convolutional]
399 +batch_normalize=1
400 +filters=1024
401 +size=1
402 +stride=1
403 +pad=1
404 +activation=linear
405 +
406 +[shortcut]
407 +from=-4
408 +activation=leaky
409 +
410 +[convolutional]
411 +batch_normalize=1
412 +filters=256
413 +size=1
414 +stride=1
415 +pad=1
416 +activation=leaky
417 +
418 +[convolutional]
419 +batch_normalize=1
420 +filters=256
421 +size=3
422 +stride=1
423 +pad=1
424 +activation=leaky
425 +
426 +[convolutional]
427 +batch_normalize=1
428 +filters=1024
429 +size=1
430 +stride=1
431 +pad=1
432 +activation=linear
433 +
434 +[shortcut]
435 +from=-4
436 +activation=leaky
437 +
438 +[convolutional]
439 +batch_normalize=1
440 +filters=256
441 +size=1
442 +stride=1
443 +pad=1
444 +activation=leaky
445 +
446 +[convolutional]
447 +batch_normalize=1
448 +filters=256
449 +size=3
450 +stride=1
451 +pad=1
452 +activation=leaky
453 +
454 +[convolutional]
455 +batch_normalize=1
456 +filters=1024
457 +size=1
458 +stride=1
459 +pad=1
460 +activation=linear
461 +
462 +[shortcut]
463 +from=-4
464 +activation=leaky
465 +
466 +[convolutional]
467 +batch_normalize=1
468 +filters=256
469 +size=1
470 +stride=1
471 +pad=1
472 +activation=leaky
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=256
477 +size=3
478 +stride=1
479 +pad=1
480 +activation=leaky
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=1024
485 +size=1
486 +stride=1
487 +pad=1
488 +activation=linear
489 +
490 +[shortcut]
491 +from=-4
492 +activation=leaky
493 +
494 +[convolutional]
495 +batch_normalize=1
496 +filters=256
497 +size=1
498 +stride=1
499 +pad=1
500 +activation=leaky
501 +
502 +[convolutional]
503 +batch_normalize=1
504 +filters=256
505 +size=3
506 +stride=1
507 +pad=1
508 +activation=leaky
509 +
510 +[convolutional]
511 +batch_normalize=1
512 +filters=1024
513 +size=1
514 +stride=1
515 +pad=1
516 +activation=linear
517 +
518 +[shortcut]
519 +from=-4
520 +activation=leaky
521 +
522 +[convolutional]
523 +batch_normalize=1
524 +filters=256
525 +size=1
526 +stride=1
527 +pad=1
528 +activation=leaky
529 +
530 +[convolutional]
531 +batch_normalize=1
532 +filters=256
533 +size=3
534 +stride=1
535 +pad=1
536 +activation=leaky
537 +
538 +[convolutional]
539 +batch_normalize=1
540 +filters=1024
541 +size=1
542 +stride=1
543 +pad=1
544 +activation=linear
545 +
546 +[shortcut]
547 +from=-4
548 +activation=leaky
549 +
550 +[convolutional]
551 +batch_normalize=1
552 +filters=256
553 +size=1
554 +stride=1
555 +pad=1
556 +activation=leaky
557 +
558 +[convolutional]
559 +batch_normalize=1
560 +filters=256
561 +size=3
562 +stride=1
563 +pad=1
564 +activation=leaky
565 +
566 +[convolutional]
567 +batch_normalize=1
568 +filters=1024
569 +size=1
570 +stride=1
571 +pad=1
572 +activation=linear
573 +
574 +[shortcut]
575 +from=-4
576 +activation=leaky
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=256
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=leaky
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=256
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=leaky
593 +
594 +[convolutional]
595 +batch_normalize=1
596 +filters=1024
597 +size=1
598 +stride=1
599 +pad=1
600 +activation=linear
601 +
602 +[shortcut]
603 +from=-4
604 +activation=leaky
605 +
606 +[convolutional]
607 +batch_normalize=1
608 +filters=256
609 +size=1
610 +stride=1
611 +pad=1
612 +activation=leaky
613 +
614 +[convolutional]
615 +batch_normalize=1
616 +filters=256
617 +size=3
618 +stride=1
619 +pad=1
620 +activation=leaky
621 +
622 +[convolutional]
623 +batch_normalize=1
624 +filters=1024
625 +size=1
626 +stride=1
627 +pad=1
628 +activation=linear
629 +
630 +[shortcut]
631 +from=-4
632 +activation=leaky
633 +
634 +[convolutional]
635 +batch_normalize=1
636 +filters=256
637 +size=1
638 +stride=1
639 +pad=1
640 +activation=leaky
641 +
642 +[convolutional]
643 +batch_normalize=1
644 +filters=256
645 +size=3
646 +stride=1
647 +pad=1
648 +activation=leaky
649 +
650 +[convolutional]
651 +batch_normalize=1
652 +filters=1024
653 +size=1
654 +stride=1
655 +pad=1
656 +activation=linear
657 +
658 +[shortcut]
659 +from=-4
660 +activation=leaky
661 +
662 +[convolutional]
663 +batch_normalize=1
664 +filters=256
665 +size=1
666 +stride=1
667 +pad=1
668 +activation=leaky
669 +
670 +[convolutional]
671 +batch_normalize=1
672 +filters=256
673 +size=3
674 +stride=1
675 +pad=1
676 +activation=leaky
677 +
678 +[convolutional]
679 +batch_normalize=1
680 +filters=1024
681 +size=1
682 +stride=1
683 +pad=1
684 +activation=linear
685 +
686 +[shortcut]
687 +from=-4
688 +activation=leaky
689 +
690 +[convolutional]
691 +batch_normalize=1
692 +filters=256
693 +size=1
694 +stride=1
695 +pad=1
696 +activation=leaky
697 +
698 +[convolutional]
699 +batch_normalize=1
700 +filters=256
701 +size=3
702 +stride=1
703 +pad=1
704 +activation=leaky
705 +
706 +[convolutional]
707 +batch_normalize=1
708 +filters=1024
709 +size=1
710 +stride=1
711 +pad=1
712 +activation=linear
713 +
714 +[shortcut]
715 +from=-4
716 +activation=leaky
717 +
718 +[convolutional]
719 +batch_normalize=1
720 +filters=256
721 +size=1
722 +stride=1
723 +pad=1
724 +activation=leaky
725 +
726 +[convolutional]
727 +batch_normalize=1
728 +filters=256
729 +size=3
730 +stride=1
731 +pad=1
732 +activation=leaky
733 +
734 +[convolutional]
735 +batch_normalize=1
736 +filters=1024
737 +size=1
738 +stride=1
739 +pad=1
740 +activation=linear
741 +
742 +[shortcut]
743 +from=-4
744 +activation=leaky
745 +
746 +[convolutional]
747 +batch_normalize=1
748 +filters=256
749 +size=1
750 +stride=1
751 +pad=1
752 +activation=leaky
753 +
754 +[convolutional]
755 +batch_normalize=1
756 +filters=256
757 +size=3
758 +stride=1
759 +pad=1
760 +activation=leaky
761 +
762 +[convolutional]
763 +batch_normalize=1
764 +filters=1024
765 +size=1
766 +stride=1
767 +pad=1
768 +activation=linear
769 +
770 +[shortcut]
771 +from=-4
772 +activation=leaky
773 +
774 +[convolutional]
775 +batch_normalize=1
776 +filters=256
777 +size=1
778 +stride=1
779 +pad=1
780 +activation=leaky
781 +
782 +[convolutional]
783 +batch_normalize=1
784 +filters=256
785 +size=3
786 +stride=1
787 +pad=1
788 +activation=leaky
789 +
790 +[convolutional]
791 +batch_normalize=1
792 +filters=1024
793 +size=1
794 +stride=1
795 +pad=1
796 +activation=linear
797 +
798 +[shortcut]
799 +from=-4
800 +activation=leaky
801 +
802 +[convolutional]
803 +batch_normalize=1
804 +filters=256
805 +size=1
806 +stride=1
807 +pad=1
808 +activation=leaky
809 +
810 +[convolutional]
811 +batch_normalize=1
812 +filters=256
813 +size=3
814 +stride=1
815 +pad=1
816 +activation=leaky
817 +
818 +[convolutional]
819 +batch_normalize=1
820 +filters=1024
821 +size=1
822 +stride=1
823 +pad=1
824 +activation=linear
825 +
826 +[shortcut]
827 +from=-4
828 +activation=leaky
829 +
830 +[convolutional]
831 +batch_normalize=1
832 +filters=256
833 +size=1
834 +stride=1
835 +pad=1
836 +activation=leaky
837 +
838 +[convolutional]
839 +batch_normalize=1
840 +filters=256
841 +size=3
842 +stride=1
843 +pad=1
844 +activation=leaky
845 +
846 +[convolutional]
847 +batch_normalize=1
848 +filters=1024
849 +size=1
850 +stride=1
851 +pad=1
852 +activation=linear
853 +
854 +[shortcut]
855 +from=-4
856 +activation=leaky
857 +
858 +[convolutional]
859 +batch_normalize=1
860 +filters=256
861 +size=1
862 +stride=1
863 +pad=1
864 +activation=leaky
865 +
866 +[convolutional]
867 +batch_normalize=1
868 +filters=256
869 +size=3
870 +stride=1
871 +pad=1
872 +activation=leaky
873 +
874 +[convolutional]
875 +batch_normalize=1
876 +filters=1024
877 +size=1
878 +stride=1
879 +pad=1
880 +activation=linear
881 +
882 +[shortcut]
883 +from=-4
884 +activation=leaky
885 +
886 +#Conv 5
887 +[convolutional]
888 +batch_normalize=1
889 +filters=512
890 +size=1
891 +stride=1
892 +pad=1
893 +activation=leaky
894 +
895 +[convolutional]
896 +batch_normalize=1
897 +filters=512
898 +size=3
899 +stride=2
900 +pad=1
901 +activation=leaky
902 +
903 +[convolutional]
904 +batch_normalize=1
905 +filters=2048
906 +size=1
907 +stride=1
908 +pad=1
909 +activation=linear
910 +
911 +[shortcut]
912 +from=-4
913 +activation=leaky
914 +
915 +[convolutional]
916 +batch_normalize=1
917 +filters=512
918 +size=1
919 +stride=1
920 +pad=1
921 +activation=leaky
922 +
923 +[convolutional]
924 +batch_normalize=1
925 +filters=512
926 +size=3
927 +stride=1
928 +pad=1
929 +activation=leaky
930 +
931 +[convolutional]
932 +batch_normalize=1
933 +filters=2048
934 +size=1
935 +stride=1
936 +pad=1
937 +activation=linear
938 +
939 +[shortcut]
940 +from=-4
941 +activation=leaky
942 +
943 +[convolutional]
944 +batch_normalize=1
945 +filters=512
946 +size=1
947 +stride=1
948 +pad=1
949 +activation=leaky
950 +
951 +[convolutional]
952 +batch_normalize=1
953 +filters=512
954 +size=3
955 +stride=1
956 +pad=1
957 +activation=leaky
958 +
959 +[convolutional]
960 +batch_normalize=1
961 +filters=2048
962 +size=1
963 +stride=1
964 +pad=1
965 +activation=linear
966 +
967 +[shortcut]
968 +from=-4
969 +activation=leaky
970 +
971 +
972 +
973 +
974 +
975 +
976 +[convolutional]
977 +filters=1000
978 +size=1
979 +stride=1
980 +pad=1
981 +activation=linear
982 +
983 +[avgpool]
984 +
985 +[softmax]
986 +groups=1
987 +
988 +[cost]
989 +type=sse
990 +
1 +[net]
2 +# Training
3 +# batch=128
4 +# subdivisions=8
5 +
6 +# Testing
7 +batch=1
8 +subdivisions=1
9 +
10 +height=256
11 +width=256
12 +max_crop=448
13 +channels=3
14 +momentum=0.9
15 +decay=0.0005
16 +
17 +burn_in=1000
18 +learning_rate=0.1
19 +policy=poly
20 +power=4
21 +max_batches=1600000
22 +
23 +angle=7
24 +hue=.1
25 +saturation=.75
26 +exposure=.75
27 +aspect=.75
28 +
29 +[convolutional]
30 +batch_normalize=1
31 +filters=64
32 +size=7
33 +stride=2
34 +pad=1
35 +activation=leaky
36 +
37 +[maxpool]
38 +size=2
39 +stride=2
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=64
44 +size=1
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=256
60 +size=1
61 +stride=1
62 +pad=1
63 +activation=linear
64 +
65 +[shortcut]
66 +from=-4
67 +activation=leaky
68 +
69 +[convolutional]
70 +batch_normalize=1
71 +filters=64
72 +size=1
73 +stride=1
74 +pad=1
75 +activation=leaky
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=64
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=256
88 +size=1
89 +stride=1
90 +pad=1
91 +activation=linear
92 +
93 +[shortcut]
94 +from=-4
95 +activation=leaky
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=64
100 +size=1
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=64
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +[convolutional]
114 +batch_normalize=1
115 +filters=256
116 +size=1
117 +stride=1
118 +pad=1
119 +activation=linear
120 +
121 +[shortcut]
122 +from=-4
123 +activation=leaky
124 +
125 +[convolutional]
126 +batch_normalize=1
127 +filters=128
128 +size=1
129 +stride=1
130 +pad=1
131 +activation=leaky
132 +
133 +[convolutional]
134 +batch_normalize=1
135 +filters=128
136 +size=3
137 +stride=2
138 +pad=1
139 +activation=leaky
140 +
141 +[convolutional]
142 +batch_normalize=1
143 +filters=512
144 +size=1
145 +stride=1
146 +pad=1
147 +activation=linear
148 +
149 +[shortcut]
150 +from=-4
151 +activation=leaky
152 +
153 +[convolutional]
154 +batch_normalize=1
155 +filters=128
156 +size=1
157 +stride=1
158 +pad=1
159 +activation=leaky
160 +
161 +[convolutional]
162 +batch_normalize=1
163 +filters=128
164 +size=3
165 +stride=1
166 +pad=1
167 +activation=leaky
168 +
169 +[convolutional]
170 +batch_normalize=1
171 +filters=512
172 +size=1
173 +stride=1
174 +pad=1
175 +activation=linear
176 +
177 +[shortcut]
178 +from=-4
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=128
184 +size=1
185 +stride=1
186 +pad=1
187 +activation=leaky
188 +
189 +[convolutional]
190 +batch_normalize=1
191 +filters=128
192 +size=3
193 +stride=1
194 +pad=1
195 +activation=leaky
196 +
197 +[convolutional]
198 +batch_normalize=1
199 +filters=512
200 +size=1
201 +stride=1
202 +pad=1
203 +activation=linear
204 +
205 +[shortcut]
206 +from=-4
207 +activation=leaky
208 +
209 +[convolutional]
210 +batch_normalize=1
211 +filters=128
212 +size=1
213 +stride=1
214 +pad=1
215 +activation=leaky
216 +
217 +[convolutional]
218 +batch_normalize=1
219 +filters=128
220 +size=3
221 +stride=1
222 +pad=1
223 +activation=leaky
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +filters=512
228 +size=1
229 +stride=1
230 +pad=1
231 +activation=linear
232 +
233 +[shortcut]
234 +from=-4
235 +activation=leaky
236 +
237 +[convolutional]
238 +batch_normalize=1
239 +filters=128
240 +size=1
241 +stride=1
242 +pad=1
243 +activation=leaky
244 +
245 +[convolutional]
246 +batch_normalize=1
247 +filters=128
248 +size=3
249 +stride=1
250 +pad=1
251 +activation=leaky
252 +
253 +[convolutional]
254 +batch_normalize=1
255 +filters=512
256 +size=1
257 +stride=1
258 +pad=1
259 +activation=linear
260 +
261 +[shortcut]
262 +from=-4
263 +activation=leaky
264 +
265 +[convolutional]
266 +batch_normalize=1
267 +filters=128
268 +size=1
269 +stride=1
270 +pad=1
271 +activation=leaky
272 +
273 +[convolutional]
274 +batch_normalize=1
275 +filters=128
276 +size=3
277 +stride=1
278 +pad=1
279 +activation=leaky
280 +
281 +[convolutional]
282 +batch_normalize=1
283 +filters=512
284 +size=1
285 +stride=1
286 +pad=1
287 +activation=linear
288 +
289 +[shortcut]
290 +from=-4
291 +activation=leaky
292 +
293 +[convolutional]
294 +batch_normalize=1
295 +filters=128
296 +size=1
297 +stride=1
298 +pad=1
299 +activation=leaky
300 +
301 +[convolutional]
302 +batch_normalize=1
303 +filters=128
304 +size=3
305 +stride=1
306 +pad=1
307 +activation=leaky
308 +
309 +[convolutional]
310 +batch_normalize=1
311 +filters=512
312 +size=1
313 +stride=1
314 +pad=1
315 +activation=linear
316 +
317 +[shortcut]
318 +from=-4
319 +activation=leaky
320 +
321 +[convolutional]
322 +batch_normalize=1
323 +filters=128
324 +size=1
325 +stride=1
326 +pad=1
327 +activation=leaky
328 +
329 +[convolutional]
330 +batch_normalize=1
331 +filters=128
332 +size=3
333 +stride=1
334 +pad=1
335 +activation=leaky
336 +
337 +[convolutional]
338 +batch_normalize=1
339 +filters=512
340 +size=1
341 +stride=1
342 +pad=1
343 +activation=linear
344 +
345 +[shortcut]
346 +from=-4
347 +activation=leaky
348 +
349 +
350 +# Conv 4
351 +[convolutional]
352 +batch_normalize=1
353 +filters=256
354 +size=1
355 +stride=1
356 +pad=1
357 +activation=leaky
358 +
359 +[convolutional]
360 +batch_normalize=1
361 +filters=256
362 +size=3
363 +stride=2
364 +pad=1
365 +activation=leaky
366 +
367 +[convolutional]
368 +batch_normalize=1
369 +filters=1024
370 +size=1
371 +stride=1
372 +pad=1
373 +activation=linear
374 +
375 +[shortcut]
376 +from=-4
377 +activation=leaky
378 +
379 +[convolutional]
380 +batch_normalize=1
381 +filters=256
382 +size=1
383 +stride=1
384 +pad=1
385 +activation=leaky
386 +
387 +[convolutional]
388 +batch_normalize=1
389 +filters=256
390 +size=3
391 +stride=1
392 +pad=1
393 +activation=leaky
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=1024
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=linear
402 +
403 +[shortcut]
404 +from=-4
405 +activation=leaky
406 +
407 +[convolutional]
408 +batch_normalize=1
409 +filters=256
410 +size=1
411 +stride=1
412 +pad=1
413 +activation=leaky
414 +
415 +[convolutional]
416 +batch_normalize=1
417 +filters=256
418 +size=3
419 +stride=1
420 +pad=1
421 +activation=leaky
422 +
423 +[convolutional]
424 +batch_normalize=1
425 +filters=1024
426 +size=1
427 +stride=1
428 +pad=1
429 +activation=linear
430 +
431 +[shortcut]
432 +from=-4
433 +activation=leaky
434 +
435 +[convolutional]
436 +batch_normalize=1
437 +filters=256
438 +size=1
439 +stride=1
440 +pad=1
441 +activation=leaky
442 +
443 +[convolutional]
444 +batch_normalize=1
445 +filters=256
446 +size=3
447 +stride=1
448 +pad=1
449 +activation=leaky
450 +
451 +[convolutional]
452 +batch_normalize=1
453 +filters=1024
454 +size=1
455 +stride=1
456 +pad=1
457 +activation=linear
458 +
459 +[shortcut]
460 +from=-4
461 +activation=leaky
462 +
463 +[convolutional]
464 +batch_normalize=1
465 +filters=256
466 +size=1
467 +stride=1
468 +pad=1
469 +activation=leaky
470 +
471 +[convolutional]
472 +batch_normalize=1
473 +filters=256
474 +size=3
475 +stride=1
476 +pad=1
477 +activation=leaky
478 +
479 +[convolutional]
480 +batch_normalize=1
481 +filters=1024
482 +size=1
483 +stride=1
484 +pad=1
485 +activation=linear
486 +
487 +[shortcut]
488 +from=-4
489 +activation=leaky
490 +
491 +[convolutional]
492 +batch_normalize=1
493 +filters=256
494 +size=1
495 +stride=1
496 +pad=1
497 +activation=leaky
498 +
499 +[convolutional]
500 +batch_normalize=1
501 +filters=256
502 +size=3
503 +stride=1
504 +pad=1
505 +activation=leaky
506 +
507 +[convolutional]
508 +batch_normalize=1
509 +filters=1024
510 +size=1
511 +stride=1
512 +pad=1
513 +activation=linear
514 +
515 +[shortcut]
516 +from=-4
517 +activation=leaky
518 +
519 +[convolutional]
520 +batch_normalize=1
521 +filters=256
522 +size=1
523 +stride=1
524 +pad=1
525 +activation=leaky
526 +
527 +[convolutional]
528 +batch_normalize=1
529 +filters=256
530 +size=3
531 +stride=1
532 +pad=1
533 +activation=leaky
534 +
535 +[convolutional]
536 +batch_normalize=1
537 +filters=1024
538 +size=1
539 +stride=1
540 +pad=1
541 +activation=linear
542 +
543 +[shortcut]
544 +from=-4
545 +activation=leaky
546 +
547 +[convolutional]
548 +batch_normalize=1
549 +filters=256
550 +size=1
551 +stride=1
552 +pad=1
553 +activation=leaky
554 +
555 +[convolutional]
556 +batch_normalize=1
557 +filters=256
558 +size=3
559 +stride=1
560 +pad=1
561 +activation=leaky
562 +
563 +[convolutional]
564 +batch_normalize=1
565 +filters=1024
566 +size=1
567 +stride=1
568 +pad=1
569 +activation=linear
570 +
571 +[shortcut]
572 +from=-4
573 +activation=leaky
574 +
575 +[convolutional]
576 +batch_normalize=1
577 +filters=256
578 +size=1
579 +stride=1
580 +pad=1
581 +activation=leaky
582 +
583 +[convolutional]
584 +batch_normalize=1
585 +filters=256
586 +size=3
587 +stride=1
588 +pad=1
589 +activation=leaky
590 +
591 +[convolutional]
592 +batch_normalize=1
593 +filters=1024
594 +size=1
595 +stride=1
596 +pad=1
597 +activation=linear
598 +
599 +[shortcut]
600 +from=-4
601 +activation=leaky
602 +
603 +[convolutional]
604 +batch_normalize=1
605 +filters=256
606 +size=1
607 +stride=1
608 +pad=1
609 +activation=leaky
610 +
611 +[convolutional]
612 +batch_normalize=1
613 +filters=256
614 +size=3
615 +stride=1
616 +pad=1
617 +activation=leaky
618 +
619 +[convolutional]
620 +batch_normalize=1
621 +filters=1024
622 +size=1
623 +stride=1
624 +pad=1
625 +activation=linear
626 +
627 +[shortcut]
628 +from=-4
629 +activation=leaky
630 +
631 +[convolutional]
632 +batch_normalize=1
633 +filters=256
634 +size=1
635 +stride=1
636 +pad=1
637 +activation=leaky
638 +
639 +[convolutional]
640 +batch_normalize=1
641 +filters=256
642 +size=3
643 +stride=1
644 +pad=1
645 +activation=leaky
646 +
647 +[convolutional]
648 +batch_normalize=1
649 +filters=1024
650 +size=1
651 +stride=1
652 +pad=1
653 +activation=linear
654 +
655 +[shortcut]
656 +from=-4
657 +activation=leaky
658 +
659 +[convolutional]
660 +batch_normalize=1
661 +filters=256
662 +size=1
663 +stride=1
664 +pad=1
665 +activation=leaky
666 +
667 +[convolutional]
668 +batch_normalize=1
669 +filters=256
670 +size=3
671 +stride=1
672 +pad=1
673 +activation=leaky
674 +
675 +[convolutional]
676 +batch_normalize=1
677 +filters=1024
678 +size=1
679 +stride=1
680 +pad=1
681 +activation=linear
682 +
683 +[shortcut]
684 +from=-4
685 +activation=leaky
686 +
687 +[convolutional]
688 +batch_normalize=1
689 +filters=256
690 +size=1
691 +stride=1
692 +pad=1
693 +activation=leaky
694 +
695 +[convolutional]
696 +batch_normalize=1
697 +filters=256
698 +size=3
699 +stride=1
700 +pad=1
701 +activation=leaky
702 +
703 +[convolutional]
704 +batch_normalize=1
705 +filters=1024
706 +size=1
707 +stride=1
708 +pad=1
709 +activation=linear
710 +
711 +[shortcut]
712 +from=-4
713 +activation=leaky
714 +
715 +[convolutional]
716 +batch_normalize=1
717 +filters=256
718 +size=1
719 +stride=1
720 +pad=1
721 +activation=leaky
722 +
723 +[convolutional]
724 +batch_normalize=1
725 +filters=256
726 +size=3
727 +stride=1
728 +pad=1
729 +activation=leaky
730 +
731 +[convolutional]
732 +batch_normalize=1
733 +filters=1024
734 +size=1
735 +stride=1
736 +pad=1
737 +activation=linear
738 +
739 +[shortcut]
740 +from=-4
741 +activation=leaky
742 +
743 +[convolutional]
744 +batch_normalize=1
745 +filters=256
746 +size=1
747 +stride=1
748 +pad=1
749 +activation=leaky
750 +
751 +[convolutional]
752 +batch_normalize=1
753 +filters=256
754 +size=3
755 +stride=1
756 +pad=1
757 +activation=leaky
758 +
759 +[convolutional]
760 +batch_normalize=1
761 +filters=1024
762 +size=1
763 +stride=1
764 +pad=1
765 +activation=linear
766 +
767 +[shortcut]
768 +from=-4
769 +activation=leaky
770 +
771 +[convolutional]
772 +batch_normalize=1
773 +filters=256
774 +size=1
775 +stride=1
776 +pad=1
777 +activation=leaky
778 +
779 +[convolutional]
780 +batch_normalize=1
781 +filters=256
782 +size=3
783 +stride=1
784 +pad=1
785 +activation=leaky
786 +
787 +[convolutional]
788 +batch_normalize=1
789 +filters=1024
790 +size=1
791 +stride=1
792 +pad=1
793 +activation=linear
794 +
795 +[shortcut]
796 +from=-4
797 +activation=leaky
798 +
799 +[convolutional]
800 +batch_normalize=1
801 +filters=256
802 +size=1
803 +stride=1
804 +pad=1
805 +activation=leaky
806 +
807 +[convolutional]
808 +batch_normalize=1
809 +filters=256
810 +size=3
811 +stride=1
812 +pad=1
813 +activation=leaky
814 +
815 +[convolutional]
816 +batch_normalize=1
817 +filters=1024
818 +size=1
819 +stride=1
820 +pad=1
821 +activation=linear
822 +
823 +[shortcut]
824 +from=-4
825 +activation=leaky
826 +
827 +[convolutional]
828 +batch_normalize=1
829 +filters=256
830 +size=1
831 +stride=1
832 +pad=1
833 +activation=leaky
834 +
835 +[convolutional]
836 +batch_normalize=1
837 +filters=256
838 +size=3
839 +stride=1
840 +pad=1
841 +activation=leaky
842 +
843 +[convolutional]
844 +batch_normalize=1
845 +filters=1024
846 +size=1
847 +stride=1
848 +pad=1
849 +activation=linear
850 +
851 +[shortcut]
852 +from=-4
853 +activation=leaky
854 +
855 +[convolutional]
856 +batch_normalize=1
857 +filters=256
858 +size=1
859 +stride=1
860 +pad=1
861 +activation=leaky
862 +
863 +[convolutional]
864 +batch_normalize=1
865 +filters=256
866 +size=3
867 +stride=1
868 +pad=1
869 +activation=leaky
870 +
871 +[convolutional]
872 +batch_normalize=1
873 +filters=1024
874 +size=1
875 +stride=1
876 +pad=1
877 +activation=linear
878 +
879 +[shortcut]
880 +from=-4
881 +activation=leaky
882 +
883 +[convolutional]
884 +batch_normalize=1
885 +filters=256
886 +size=1
887 +stride=1
888 +pad=1
889 +activation=leaky
890 +
891 +[convolutional]
892 +batch_normalize=1
893 +filters=256
894 +size=3
895 +stride=1
896 +pad=1
897 +activation=leaky
898 +
899 +[convolutional]
900 +batch_normalize=1
901 +filters=1024
902 +size=1
903 +stride=1
904 +pad=1
905 +activation=linear
906 +
907 +[shortcut]
908 +from=-4
909 +activation=leaky
910 +
911 +[convolutional]
912 +batch_normalize=1
913 +filters=256
914 +size=1
915 +stride=1
916 +pad=1
917 +activation=leaky
918 +
919 +[convolutional]
920 +batch_normalize=1
921 +filters=256
922 +size=3
923 +stride=1
924 +pad=1
925 +activation=leaky
926 +
927 +[convolutional]
928 +batch_normalize=1
929 +filters=1024
930 +size=1
931 +stride=1
932 +pad=1
933 +activation=linear
934 +
935 +[shortcut]
936 +from=-4
937 +activation=leaky
938 +
939 +[convolutional]
940 +batch_normalize=1
941 +filters=256
942 +size=1
943 +stride=1
944 +pad=1
945 +activation=leaky
946 +
947 +[convolutional]
948 +batch_normalize=1
949 +filters=256
950 +size=3
951 +stride=1
952 +pad=1
953 +activation=leaky
954 +
955 +[convolutional]
956 +batch_normalize=1
957 +filters=1024
958 +size=1
959 +stride=1
960 +pad=1
961 +activation=linear
962 +
963 +[shortcut]
964 +from=-4
965 +activation=leaky
966 +
967 +[convolutional]
968 +batch_normalize=1
969 +filters=256
970 +size=1
971 +stride=1
972 +pad=1
973 +activation=leaky
974 +
975 +[convolutional]
976 +batch_normalize=1
977 +filters=256
978 +size=3
979 +stride=1
980 +pad=1
981 +activation=leaky
982 +
983 +[convolutional]
984 +batch_normalize=1
985 +filters=1024
986 +size=1
987 +stride=1
988 +pad=1
989 +activation=linear
990 +
991 +[shortcut]
992 +from=-4
993 +activation=leaky
994 +
995 +[convolutional]
996 +batch_normalize=1
997 +filters=256
998 +size=1
999 +stride=1
1000 +pad=1
1001 +activation=leaky
1002 +
1003 +[convolutional]
1004 +batch_normalize=1
1005 +filters=256
1006 +size=3
1007 +stride=1
1008 +pad=1
1009 +activation=leaky
1010 +
1011 +[convolutional]
1012 +batch_normalize=1
1013 +filters=1024
1014 +size=1
1015 +stride=1
1016 +pad=1
1017 +activation=linear
1018 +
1019 +[shortcut]
1020 +from=-4
1021 +activation=leaky
1022 +
1023 +[convolutional]
1024 +batch_normalize=1
1025 +filters=256
1026 +size=1
1027 +stride=1
1028 +pad=1
1029 +activation=leaky
1030 +
1031 +[convolutional]
1032 +batch_normalize=1
1033 +filters=256
1034 +size=3
1035 +stride=1
1036 +pad=1
1037 +activation=leaky
1038 +
1039 +[convolutional]
1040 +batch_normalize=1
1041 +filters=1024
1042 +size=1
1043 +stride=1
1044 +pad=1
1045 +activation=linear
1046 +
1047 +[shortcut]
1048 +from=-4
1049 +activation=leaky
1050 +
1051 +[convolutional]
1052 +batch_normalize=1
1053 +filters=256
1054 +size=1
1055 +stride=1
1056 +pad=1
1057 +activation=leaky
1058 +
1059 +[convolutional]
1060 +batch_normalize=1
1061 +filters=256
1062 +size=3
1063 +stride=1
1064 +pad=1
1065 +activation=leaky
1066 +
1067 +[convolutional]
1068 +batch_normalize=1
1069 +filters=1024
1070 +size=1
1071 +stride=1
1072 +pad=1
1073 +activation=linear
1074 +
1075 +[shortcut]
1076 +from=-4
1077 +activation=leaky
1078 +
1079 +[convolutional]
1080 +batch_normalize=1
1081 +filters=256
1082 +size=1
1083 +stride=1
1084 +pad=1
1085 +activation=leaky
1086 +
1087 +[convolutional]
1088 +batch_normalize=1
1089 +filters=256
1090 +size=3
1091 +stride=1
1092 +pad=1
1093 +activation=leaky
1094 +
1095 +[convolutional]
1096 +batch_normalize=1
1097 +filters=1024
1098 +size=1
1099 +stride=1
1100 +pad=1
1101 +activation=linear
1102 +
1103 +[shortcut]
1104 +from=-4
1105 +activation=leaky
1106 +
1107 +[convolutional]
1108 +batch_normalize=1
1109 +filters=256
1110 +size=1
1111 +stride=1
1112 +pad=1
1113 +activation=leaky
1114 +
1115 +[convolutional]
1116 +batch_normalize=1
1117 +filters=256
1118 +size=3
1119 +stride=1
1120 +pad=1
1121 +activation=leaky
1122 +
1123 +[convolutional]
1124 +batch_normalize=1
1125 +filters=1024
1126 +size=1
1127 +stride=1
1128 +pad=1
1129 +activation=linear
1130 +
1131 +[shortcut]
1132 +from=-4
1133 +activation=leaky
1134 +
1135 +[convolutional]
1136 +batch_normalize=1
1137 +filters=256
1138 +size=1
1139 +stride=1
1140 +pad=1
1141 +activation=leaky
1142 +
1143 +[convolutional]
1144 +batch_normalize=1
1145 +filters=256
1146 +size=3
1147 +stride=1
1148 +pad=1
1149 +activation=leaky
1150 +
1151 +[convolutional]
1152 +batch_normalize=1
1153 +filters=1024
1154 +size=1
1155 +stride=1
1156 +pad=1
1157 +activation=linear
1158 +
1159 +[shortcut]
1160 +from=-4
1161 +activation=leaky
1162 +
1163 +[convolutional]
1164 +batch_normalize=1
1165 +filters=256
1166 +size=1
1167 +stride=1
1168 +pad=1
1169 +activation=leaky
1170 +
1171 +[convolutional]
1172 +batch_normalize=1
1173 +filters=256
1174 +size=3
1175 +stride=1
1176 +pad=1
1177 +activation=leaky
1178 +
1179 +[convolutional]
1180 +batch_normalize=1
1181 +filters=1024
1182 +size=1
1183 +stride=1
1184 +pad=1
1185 +activation=linear
1186 +
1187 +[shortcut]
1188 +from=-4
1189 +activation=leaky
1190 +
1191 +[convolutional]
1192 +batch_normalize=1
1193 +filters=256
1194 +size=1
1195 +stride=1
1196 +pad=1
1197 +activation=leaky
1198 +
1199 +[convolutional]
1200 +batch_normalize=1
1201 +filters=256
1202 +size=3
1203 +stride=1
1204 +pad=1
1205 +activation=leaky
1206 +
1207 +[convolutional]
1208 +batch_normalize=1
1209 +filters=1024
1210 +size=1
1211 +stride=1
1212 +pad=1
1213 +activation=linear
1214 +
1215 +[shortcut]
1216 +from=-4
1217 +activation=leaky
1218 +
1219 +[convolutional]
1220 +batch_normalize=1
1221 +filters=256
1222 +size=1
1223 +stride=1
1224 +pad=1
1225 +activation=leaky
1226 +
1227 +[convolutional]
1228 +batch_normalize=1
1229 +filters=256
1230 +size=3
1231 +stride=1
1232 +pad=1
1233 +activation=leaky
1234 +
1235 +[convolutional]
1236 +batch_normalize=1
1237 +filters=1024
1238 +size=1
1239 +stride=1
1240 +pad=1
1241 +activation=linear
1242 +
1243 +[shortcut]
1244 +from=-4
1245 +activation=leaky
1246 +
1247 +[convolutional]
1248 +batch_normalize=1
1249 +filters=256
1250 +size=1
1251 +stride=1
1252 +pad=1
1253 +activation=leaky
1254 +
1255 +[convolutional]
1256 +batch_normalize=1
1257 +filters=256
1258 +size=3
1259 +stride=1
1260 +pad=1
1261 +activation=leaky
1262 +
1263 +[convolutional]
1264 +batch_normalize=1
1265 +filters=1024
1266 +size=1
1267 +stride=1
1268 +pad=1
1269 +activation=linear
1270 +
1271 +[shortcut]
1272 +from=-4
1273 +activation=leaky
1274 +
1275 +[convolutional]
1276 +batch_normalize=1
1277 +filters=256
1278 +size=1
1279 +stride=1
1280 +pad=1
1281 +activation=leaky
1282 +
1283 +[convolutional]
1284 +batch_normalize=1
1285 +filters=256
1286 +size=3
1287 +stride=1
1288 +pad=1
1289 +activation=leaky
1290 +
1291 +[convolutional]
1292 +batch_normalize=1
1293 +filters=1024
1294 +size=1
1295 +stride=1
1296 +pad=1
1297 +activation=linear
1298 +
1299 +[shortcut]
1300 +from=-4
1301 +activation=leaky
1302 +
1303 +[convolutional]
1304 +batch_normalize=1
1305 +filters=256
1306 +size=1
1307 +stride=1
1308 +pad=1
1309 +activation=leaky
1310 +
1311 +[convolutional]
1312 +batch_normalize=1
1313 +filters=256
1314 +size=3
1315 +stride=1
1316 +pad=1
1317 +activation=leaky
1318 +
1319 +[convolutional]
1320 +batch_normalize=1
1321 +filters=1024
1322 +size=1
1323 +stride=1
1324 +pad=1
1325 +activation=linear
1326 +
1327 +[shortcut]
1328 +from=-4
1329 +activation=leaky
1330 +
1331 +[convolutional]
1332 +batch_normalize=1
1333 +filters=256
1334 +size=1
1335 +stride=1
1336 +pad=1
1337 +activation=leaky
1338 +
1339 +[convolutional]
1340 +batch_normalize=1
1341 +filters=256
1342 +size=3
1343 +stride=1
1344 +pad=1
1345 +activation=leaky
1346 +
1347 +[convolutional]
1348 +batch_normalize=1
1349 +filters=1024
1350 +size=1
1351 +stride=1
1352 +pad=1
1353 +activation=linear
1354 +
1355 +[shortcut]
1356 +from=-4
1357 +activation=leaky
1358 +
1359 +#Conv 5
1360 +[convolutional]
1361 +batch_normalize=1
1362 +filters=512
1363 +size=1
1364 +stride=1
1365 +pad=1
1366 +activation=leaky
1367 +
1368 +[convolutional]
1369 +batch_normalize=1
1370 +filters=512
1371 +size=3
1372 +stride=2
1373 +pad=1
1374 +activation=leaky
1375 +
1376 +[convolutional]
1377 +batch_normalize=1
1378 +filters=2048
1379 +size=1
1380 +stride=1
1381 +pad=1
1382 +activation=linear
1383 +
1384 +[shortcut]
1385 +from=-4
1386 +activation=leaky
1387 +
1388 +[convolutional]
1389 +batch_normalize=1
1390 +filters=512
1391 +size=1
1392 +stride=1
1393 +pad=1
1394 +activation=leaky
1395 +
1396 +[convolutional]
1397 +batch_normalize=1
1398 +filters=512
1399 +size=3
1400 +stride=1
1401 +pad=1
1402 +activation=leaky
1403 +
1404 +[convolutional]
1405 +batch_normalize=1
1406 +filters=2048
1407 +size=1
1408 +stride=1
1409 +pad=1
1410 +activation=linear
1411 +
1412 +[shortcut]
1413 +from=-4
1414 +activation=leaky
1415 +
1416 +[convolutional]
1417 +batch_normalize=1
1418 +filters=512
1419 +size=1
1420 +stride=1
1421 +pad=1
1422 +activation=leaky
1423 +
1424 +[convolutional]
1425 +batch_normalize=1
1426 +filters=512
1427 +size=3
1428 +stride=1
1429 +pad=1
1430 +activation=leaky
1431 +
1432 +[convolutional]
1433 +batch_normalize=1
1434 +filters=2048
1435 +size=1
1436 +stride=1
1437 +pad=1
1438 +activation=linear
1439 +
1440 +[shortcut]
1441 +from=-4
1442 +activation=leaky
1443 +
1444 +
1445 +
1446 +
1447 +
1448 +
1449 +[convolutional]
1450 +filters=1000
1451 +size=1
1452 +stride=1
1453 +pad=1
1454 +activation=linear
1455 +
1456 +[avgpool]
1457 +
1458 +[softmax]
1459 +groups=1
1460 +
1461 +[cost]
1462 +type=sse
1463 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=64
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +
19 +learning_rate=0.001
20 +burn_in=1000
21 +max_batches = 10000
22 +
23 +policy=sgdr
24 +sgdr_cycle=1000
25 +sgdr_mult=2
26 +steps=4000,6000,8000,9000
27 +#scales=1, 1, 0.1, 0.1
28 +
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=64
33 +size=7
34 +stride=2
35 +pad=1
36 +activation=leaky
37 +
38 +[maxpool]
39 +size=2
40 +stride=2
41 +
42 +[convolutional]
43 +batch_normalize=1
44 +filters=64
45 +size=1
46 +stride=1
47 +pad=1
48 +activation=leaky
49 +
50 +[convolutional]
51 +batch_normalize=1
52 +filters=64
53 +size=3
54 +stride=1
55 +pad=1
56 +activation=leaky
57 +
58 +[convolutional]
59 +batch_normalize=1
60 +filters=256
61 +size=1
62 +stride=1
63 +pad=1
64 +activation=linear
65 +
66 +[shortcut]
67 +from=-4
68 +activation=leaky
69 +
70 +[convolutional]
71 +batch_normalize=1
72 +filters=64
73 +size=1
74 +stride=1
75 +pad=1
76 +activation=leaky
77 +
78 +[convolutional]
79 +batch_normalize=1
80 +filters=64
81 +size=3
82 +stride=1
83 +pad=1
84 +activation=leaky
85 +
86 +[convolutional]
87 +batch_normalize=1
88 +filters=256
89 +size=1
90 +stride=1
91 +pad=1
92 +activation=linear
93 +
94 +[shortcut]
95 +from=-4
96 +activation=leaky
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=64
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=leaky
105 +
106 +[convolutional]
107 +batch_normalize=1
108 +filters=64
109 +size=3
110 +stride=1
111 +pad=1
112 +activation=leaky
113 +
114 +[convolutional]
115 +batch_normalize=1
116 +filters=256
117 +size=1
118 +stride=1
119 +pad=1
120 +activation=linear
121 +
122 +[shortcut]
123 +from=-4
124 +activation=leaky
125 +
126 +[convolutional]
127 +batch_normalize=1
128 +filters=128
129 +size=1
130 +stride=1
131 +pad=1
132 +activation=leaky
133 +
134 +[convolutional]
135 +batch_normalize=1
136 +filters=128
137 +size=3
138 +stride=2
139 +pad=1
140 +activation=leaky
141 +
142 +[convolutional]
143 +batch_normalize=1
144 +filters=512
145 +size=1
146 +stride=1
147 +pad=1
148 +activation=linear
149 +
150 +[shortcut]
151 +from=-2
152 +activation=leaky
153 +
154 +[convolutional]
155 +batch_normalize=1
156 +filters=128
157 +size=1
158 +stride=1
159 +pad=1
160 +activation=leaky
161 +
162 +[convolutional]
163 +batch_normalize=1
164 +filters=128
165 +size=3
166 +stride=1
167 +pad=1
168 +activation=leaky
169 +
170 +[convolutional]
171 +batch_normalize=1
172 +filters=512
173 +size=1
174 +stride=1
175 +pad=1
176 +activation=linear
177 +
178 +[shortcut]
179 +from=-4
180 +activation=leaky
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=128
185 +size=1
186 +stride=1
187 +pad=1
188 +activation=leaky
189 +
190 +[convolutional]
191 +batch_normalize=1
192 +filters=128
193 +size=3
194 +stride=1
195 +pad=1
196 +activation=leaky
197 +
198 +[convolutional]
199 +batch_normalize=1
200 +filters=512
201 +size=1
202 +stride=1
203 +pad=1
204 +activation=linear
205 +
206 +[shortcut]
207 +from=-4
208 +activation=leaky
209 +
210 +[convolutional]
211 +batch_normalize=1
212 +filters=128
213 +size=1
214 +stride=1
215 +pad=1
216 +activation=leaky
217 +
218 +[convolutional]
219 +batch_normalize=1
220 +filters=128
221 +size=3
222 +stride=1
223 +pad=1
224 +activation=leaky
225 +
226 +[convolutional]
227 +batch_normalize=1
228 +filters=512
229 +size=1
230 +stride=1
231 +pad=1
232 +activation=linear
233 +
234 +[shortcut]
235 +from=-4
236 +activation=leaky
237 +
238 +[convolutional]
239 +batch_normalize=1
240 +filters=128
241 +size=1
242 +stride=1
243 +pad=1
244 +activation=leaky
245 +
246 +[convolutional]
247 +batch_normalize=1
248 +filters=128
249 +size=3
250 +stride=1
251 +pad=1
252 +activation=leaky
253 +
254 +[convolutional]
255 +batch_normalize=1
256 +filters=512
257 +size=1
258 +stride=1
259 +pad=1
260 +activation=linear
261 +
262 +[shortcut]
263 +from=-4
264 +activation=leaky
265 +
266 +[convolutional]
267 +batch_normalize=1
268 +filters=128
269 +size=1
270 +stride=1
271 +pad=1
272 +activation=leaky
273 +
274 +[convolutional]
275 +batch_normalize=1
276 +filters=128
277 +size=3
278 +stride=1
279 +pad=1
280 +activation=leaky
281 +
282 +[convolutional]
283 +batch_normalize=1
284 +filters=512
285 +size=1
286 +stride=1
287 +pad=1
288 +activation=linear
289 +
290 +[shortcut]
291 +from=-4
292 +activation=leaky
293 +
294 +[convolutional]
295 +batch_normalize=1
296 +filters=128
297 +size=1
298 +stride=1
299 +pad=1
300 +activation=leaky
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=128
305 +size=3
306 +stride=1
307 +pad=1
308 +activation=leaky
309 +
310 +[convolutional]
311 +batch_normalize=1
312 +filters=512
313 +size=1
314 +stride=1
315 +pad=1
316 +activation=linear
317 +
318 +[shortcut]
319 +from=-4
320 +activation=leaky
321 +
322 +[convolutional]
323 +batch_normalize=1
324 +filters=128
325 +size=1
326 +stride=1
327 +pad=1
328 +activation=leaky
329 +
330 +[convolutional]
331 +batch_normalize=1
332 +filters=128
333 +size=3
334 +stride=1
335 +pad=1
336 +activation=leaky
337 +
338 +[convolutional]
339 +batch_normalize=1
340 +filters=512
341 +size=1
342 +stride=1
343 +pad=1
344 +activation=linear
345 +
346 +[shortcut]
347 +from=-4
348 +activation=leaky
349 +
350 +
351 +# Conv 4
352 +[convolutional]
353 +batch_normalize=1
354 +filters=256
355 +size=1
356 +stride=1
357 +pad=1
358 +activation=leaky
359 +
360 +[convolutional]
361 +batch_normalize=1
362 +filters=256
363 +size=3
364 +stride=2
365 +pad=1
366 +activation=leaky
367 +
368 +[convolutional]
369 +batch_normalize=1
370 +filters=1024
371 +size=1
372 +stride=1
373 +pad=1
374 +activation=linear
375 +
376 +[shortcut]
377 +from=-2
378 +activation=leaky
379 +
380 +[convolutional]
381 +batch_normalize=1
382 +filters=256
383 +size=1
384 +stride=1
385 +pad=1
386 +activation=leaky
387 +
388 +[convolutional]
389 +batch_normalize=1
390 +filters=256
391 +size=3
392 +stride=1
393 +pad=1
394 +activation=leaky
395 +
396 +[convolutional]
397 +batch_normalize=1
398 +filters=1024
399 +size=1
400 +stride=1
401 +pad=1
402 +activation=linear
403 +
404 +[shortcut]
405 +from=-4
406 +activation=leaky
407 +
408 +[convolutional]
409 +batch_normalize=1
410 +filters=256
411 +size=1
412 +stride=1
413 +pad=1
414 +activation=leaky
415 +
416 +[convolutional]
417 +batch_normalize=1
418 +filters=256
419 +size=3
420 +stride=1
421 +pad=1
422 +activation=leaky
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=1024
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=linear
431 +
432 +[shortcut]
433 +from=-4
434 +activation=leaky
435 +
436 +[convolutional]
437 +batch_normalize=1
438 +filters=256
439 +size=1
440 +stride=1
441 +pad=1
442 +activation=leaky
443 +
444 +[convolutional]
445 +batch_normalize=1
446 +filters=256
447 +size=3
448 +stride=1
449 +pad=1
450 +activation=leaky
451 +
452 +[convolutional]
453 +batch_normalize=1
454 +filters=1024
455 +size=1
456 +stride=1
457 +pad=1
458 +activation=linear
459 +
460 +[shortcut]
461 +from=-4
462 +activation=leaky
463 +
464 +[convolutional]
465 +batch_normalize=1
466 +filters=256
467 +size=1
468 +stride=1
469 +pad=1
470 +activation=leaky
471 +
472 +[convolutional]
473 +batch_normalize=1
474 +filters=256
475 +size=3
476 +stride=1
477 +pad=1
478 +activation=leaky
479 +
480 +[convolutional]
481 +batch_normalize=1
482 +filters=1024
483 +size=1
484 +stride=1
485 +pad=1
486 +activation=linear
487 +
488 +[shortcut]
489 +from=-4
490 +activation=leaky
491 +
492 +[convolutional]
493 +batch_normalize=1
494 +filters=256
495 +size=1
496 +stride=1
497 +pad=1
498 +activation=leaky
499 +
500 +[convolutional]
501 +batch_normalize=1
502 +filters=256
503 +size=3
504 +stride=1
505 +pad=1
506 +activation=leaky
507 +
508 +[convolutional]
509 +batch_normalize=1
510 +filters=1024
511 +size=1
512 +stride=1
513 +pad=1
514 +activation=linear
515 +
516 +[shortcut]
517 +from=-4
518 +activation=leaky
519 +
520 +[convolutional]
521 +batch_normalize=1
522 +filters=256
523 +size=1
524 +stride=1
525 +pad=1
526 +activation=leaky
527 +
528 +[convolutional]
529 +batch_normalize=1
530 +filters=256
531 +size=3
532 +stride=1
533 +pad=1
534 +activation=leaky
535 +
536 +[convolutional]
537 +batch_normalize=1
538 +filters=1024
539 +size=1
540 +stride=1
541 +pad=1
542 +activation=linear
543 +
544 +[shortcut]
545 +from=-4
546 +activation=leaky
547 +
548 +[convolutional]
549 +batch_normalize=1
550 +filters=256
551 +size=1
552 +stride=1
553 +pad=1
554 +activation=leaky
555 +
556 +[convolutional]
557 +batch_normalize=1
558 +filters=256
559 +size=3
560 +stride=1
561 +pad=1
562 +activation=leaky
563 +
564 +[convolutional]
565 +batch_normalize=1
566 +filters=1024
567 +size=1
568 +stride=1
569 +pad=1
570 +activation=linear
571 +
572 +[shortcut]
573 +from=-4
574 +activation=leaky
575 +
576 +[convolutional]
577 +batch_normalize=1
578 +filters=256
579 +size=1
580 +stride=1
581 +pad=1
582 +activation=leaky
583 +
584 +[convolutional]
585 +batch_normalize=1
586 +filters=256
587 +size=3
588 +stride=1
589 +pad=1
590 +activation=leaky
591 +
592 +[convolutional]
593 +batch_normalize=1
594 +filters=1024
595 +size=1
596 +stride=1
597 +pad=1
598 +activation=linear
599 +
600 +[shortcut]
601 +from=-4
602 +activation=leaky
603 +
604 +[convolutional]
605 +batch_normalize=1
606 +filters=256
607 +size=1
608 +stride=1
609 +pad=1
610 +activation=leaky
611 +
612 +[convolutional]
613 +batch_normalize=1
614 +filters=256
615 +size=3
616 +stride=1
617 +pad=1
618 +activation=leaky
619 +
620 +[convolutional]
621 +batch_normalize=1
622 +filters=1024
623 +size=1
624 +stride=1
625 +pad=1
626 +activation=linear
627 +
628 +[shortcut]
629 +from=-4
630 +activation=leaky
631 +
632 +[convolutional]
633 +batch_normalize=1
634 +filters=256
635 +size=1
636 +stride=1
637 +pad=1
638 +activation=leaky
639 +
640 +[convolutional]
641 +batch_normalize=1
642 +filters=256
643 +size=3
644 +stride=1
645 +pad=1
646 +activation=leaky
647 +
648 +[convolutional]
649 +batch_normalize=1
650 +filters=1024
651 +size=1
652 +stride=1
653 +pad=1
654 +activation=linear
655 +
656 +[shortcut]
657 +from=-4
658 +activation=leaky
659 +
660 +[convolutional]
661 +batch_normalize=1
662 +filters=256
663 +size=1
664 +stride=1
665 +pad=1
666 +activation=leaky
667 +
668 +[convolutional]
669 +batch_normalize=1
670 +filters=256
671 +size=3
672 +stride=1
673 +pad=1
674 +activation=leaky
675 +
676 +[convolutional]
677 +batch_normalize=1
678 +filters=1024
679 +size=1
680 +stride=1
681 +pad=1
682 +activation=linear
683 +
684 +[shortcut]
685 +from=-4
686 +activation=leaky
687 +
688 +[convolutional]
689 +batch_normalize=1
690 +filters=256
691 +size=1
692 +stride=1
693 +pad=1
694 +activation=leaky
695 +
696 +[convolutional]
697 +batch_normalize=1
698 +filters=256
699 +size=3
700 +stride=1
701 +pad=1
702 +activation=leaky
703 +
704 +[convolutional]
705 +batch_normalize=1
706 +filters=1024
707 +size=1
708 +stride=1
709 +pad=1
710 +activation=linear
711 +
712 +[shortcut]
713 +from=-4
714 +activation=leaky
715 +
716 +[convolutional]
717 +batch_normalize=1
718 +filters=256
719 +size=1
720 +stride=1
721 +pad=1
722 +activation=leaky
723 +
724 +[convolutional]
725 +batch_normalize=1
726 +filters=256
727 +size=3
728 +stride=1
729 +pad=1
730 +activation=leaky
731 +
732 +[convolutional]
733 +batch_normalize=1
734 +filters=1024
735 +size=1
736 +stride=1
737 +pad=1
738 +activation=linear
739 +
740 +[shortcut]
741 +from=-4
742 +activation=leaky
743 +
744 +[convolutional]
745 +batch_normalize=1
746 +filters=256
747 +size=1
748 +stride=1
749 +pad=1
750 +activation=leaky
751 +
752 +[convolutional]
753 +batch_normalize=1
754 +filters=256
755 +size=3
756 +stride=1
757 +pad=1
758 +activation=leaky
759 +
760 +[convolutional]
761 +batch_normalize=1
762 +filters=1024
763 +size=1
764 +stride=1
765 +pad=1
766 +activation=linear
767 +
768 +[shortcut]
769 +from=-4
770 +activation=leaky
771 +
772 +[convolutional]
773 +batch_normalize=1
774 +filters=256
775 +size=1
776 +stride=1
777 +pad=1
778 +activation=leaky
779 +
780 +[convolutional]
781 +batch_normalize=1
782 +filters=256
783 +size=3
784 +stride=1
785 +pad=1
786 +activation=leaky
787 +
788 +[convolutional]
789 +batch_normalize=1
790 +filters=1024
791 +size=1
792 +stride=1
793 +pad=1
794 +activation=linear
795 +
796 +[shortcut]
797 +from=-4
798 +activation=leaky
799 +
800 +[convolutional]
801 +batch_normalize=1
802 +filters=256
803 +size=1
804 +stride=1
805 +pad=1
806 +activation=leaky
807 +
808 +[convolutional]
809 +batch_normalize=1
810 +filters=256
811 +size=3
812 +stride=1
813 +pad=1
814 +activation=leaky
815 +
816 +[convolutional]
817 +batch_normalize=1
818 +filters=1024
819 +size=1
820 +stride=1
821 +pad=1
822 +activation=linear
823 +
824 +[shortcut]
825 +from=-4
826 +activation=leaky
827 +
828 +[convolutional]
829 +batch_normalize=1
830 +filters=256
831 +size=1
832 +stride=1
833 +pad=1
834 +activation=leaky
835 +
836 +[convolutional]
837 +batch_normalize=1
838 +filters=256
839 +size=3
840 +stride=1
841 +pad=1
842 +activation=leaky
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=1024
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=linear
851 +
852 +[shortcut]
853 +from=-4
854 +activation=leaky
855 +
856 +[convolutional]
857 +batch_normalize=1
858 +filters=256
859 +size=1
860 +stride=1
861 +pad=1
862 +activation=leaky
863 +
864 +[convolutional]
865 +batch_normalize=1
866 +filters=256
867 +size=3
868 +stride=1
869 +pad=1
870 +activation=leaky
871 +
872 +[convolutional]
873 +batch_normalize=1
874 +filters=1024
875 +size=1
876 +stride=1
877 +pad=1
878 +activation=linear
879 +
880 +[shortcut]
881 +from=-4
882 +activation=leaky
883 +
884 +[convolutional]
885 +batch_normalize=1
886 +filters=256
887 +size=1
888 +stride=1
889 +pad=1
890 +activation=leaky
891 +
892 +[convolutional]
893 +batch_normalize=1
894 +filters=256
895 +size=3
896 +stride=1
897 +pad=1
898 +activation=leaky
899 +
900 +[convolutional]
901 +batch_normalize=1
902 +filters=1024
903 +size=1
904 +stride=1
905 +pad=1
906 +activation=linear
907 +
908 +[shortcut]
909 +from=-4
910 +activation=leaky
911 +
912 +[convolutional]
913 +batch_normalize=1
914 +filters=256
915 +size=1
916 +stride=1
917 +pad=1
918 +activation=leaky
919 +
920 +[convolutional]
921 +batch_normalize=1
922 +filters=256
923 +size=3
924 +stride=1
925 +pad=1
926 +activation=leaky
927 +
928 +[convolutional]
929 +batch_normalize=1
930 +filters=1024
931 +size=1
932 +stride=1
933 +pad=1
934 +activation=linear
935 +
936 +[shortcut]
937 +from=-4
938 +activation=leaky
939 +
940 +[convolutional]
941 +batch_normalize=1
942 +filters=256
943 +size=1
944 +stride=1
945 +pad=1
946 +activation=leaky
947 +
948 +[convolutional]
949 +batch_normalize=1
950 +filters=256
951 +size=3
952 +stride=1
953 +pad=1
954 +activation=leaky
955 +
956 +[convolutional]
957 +batch_normalize=1
958 +filters=1024
959 +size=1
960 +stride=1
961 +pad=1
962 +activation=linear
963 +
964 +[shortcut]
965 +from=-4
966 +activation=leaky
967 +
968 +[convolutional]
969 +batch_normalize=1
970 +filters=256
971 +size=1
972 +stride=1
973 +pad=1
974 +activation=leaky
975 +
976 +[convolutional]
977 +batch_normalize=1
978 +filters=256
979 +size=3
980 +stride=1
981 +pad=1
982 +activation=leaky
983 +
984 +[convolutional]
985 +batch_normalize=1
986 +filters=1024
987 +size=1
988 +stride=1
989 +pad=1
990 +activation=linear
991 +
992 +[shortcut]
993 +from=-4
994 +activation=leaky
995 +
996 +[convolutional]
997 +batch_normalize=1
998 +filters=256
999 +size=1
1000 +stride=1
1001 +pad=1
1002 +activation=leaky
1003 +
1004 +[convolutional]
1005 +batch_normalize=1
1006 +filters=256
1007 +size=3
1008 +stride=1
1009 +pad=1
1010 +activation=leaky
1011 +
1012 +[convolutional]
1013 +batch_normalize=1
1014 +filters=1024
1015 +size=1
1016 +stride=1
1017 +pad=1
1018 +activation=linear
1019 +
1020 +[shortcut]
1021 +from=-4
1022 +activation=leaky
1023 +
1024 +[convolutional]
1025 +batch_normalize=1
1026 +filters=256
1027 +size=1
1028 +stride=1
1029 +pad=1
1030 +activation=leaky
1031 +
1032 +[convolutional]
1033 +batch_normalize=1
1034 +filters=256
1035 +size=3
1036 +stride=1
1037 +pad=1
1038 +activation=leaky
1039 +
1040 +[convolutional]
1041 +batch_normalize=1
1042 +filters=1024
1043 +size=1
1044 +stride=1
1045 +pad=1
1046 +activation=linear
1047 +
1048 +[shortcut]
1049 +from=-4
1050 +activation=leaky
1051 +
1052 +[convolutional]
1053 +batch_normalize=1
1054 +filters=256
1055 +size=1
1056 +stride=1
1057 +pad=1
1058 +activation=leaky
1059 +
1060 +[convolutional]
1061 +batch_normalize=1
1062 +filters=256
1063 +size=3
1064 +stride=1
1065 +pad=1
1066 +activation=leaky
1067 +
1068 +[convolutional]
1069 +batch_normalize=1
1070 +filters=1024
1071 +size=1
1072 +stride=1
1073 +pad=1
1074 +activation=linear
1075 +
1076 +[shortcut]
1077 +from=-4
1078 +activation=leaky
1079 +
1080 +[convolutional]
1081 +batch_normalize=1
1082 +filters=256
1083 +size=1
1084 +stride=1
1085 +pad=1
1086 +activation=leaky
1087 +
1088 +[convolutional]
1089 +batch_normalize=1
1090 +filters=256
1091 +size=3
1092 +stride=1
1093 +pad=1
1094 +activation=leaky
1095 +
1096 +[convolutional]
1097 +batch_normalize=1
1098 +filters=1024
1099 +size=1
1100 +stride=1
1101 +pad=1
1102 +activation=linear
1103 +
1104 +[shortcut]
1105 +from=-4
1106 +activation=leaky
1107 +
1108 +[convolutional]
1109 +batch_normalize=1
1110 +filters=256
1111 +size=1
1112 +stride=1
1113 +pad=1
1114 +activation=leaky
1115 +
1116 +[convolutional]
1117 +batch_normalize=1
1118 +filters=256
1119 +size=3
1120 +stride=1
1121 +pad=1
1122 +activation=leaky
1123 +
1124 +[convolutional]
1125 +batch_normalize=1
1126 +filters=1024
1127 +size=1
1128 +stride=1
1129 +pad=1
1130 +activation=linear
1131 +
1132 +[shortcut]
1133 +from=-4
1134 +activation=leaky
1135 +
1136 +[convolutional]
1137 +batch_normalize=1
1138 +filters=256
1139 +size=1
1140 +stride=1
1141 +pad=1
1142 +activation=leaky
1143 +
1144 +[convolutional]
1145 +batch_normalize=1
1146 +filters=256
1147 +size=3
1148 +stride=1
1149 +pad=1
1150 +activation=leaky
1151 +
1152 +[convolutional]
1153 +batch_normalize=1
1154 +filters=1024
1155 +size=1
1156 +stride=1
1157 +pad=1
1158 +activation=linear
1159 +
1160 +[shortcut]
1161 +from=-4
1162 +activation=leaky
1163 +
1164 +[convolutional]
1165 +batch_normalize=1
1166 +filters=256
1167 +size=1
1168 +stride=1
1169 +pad=1
1170 +activation=leaky
1171 +
1172 +[convolutional]
1173 +batch_normalize=1
1174 +filters=256
1175 +size=3
1176 +stride=1
1177 +pad=1
1178 +activation=leaky
1179 +
1180 +[convolutional]
1181 +batch_normalize=1
1182 +filters=1024
1183 +size=1
1184 +stride=1
1185 +pad=1
1186 +activation=linear
1187 +
1188 +[shortcut]
1189 +from=-4
1190 +activation=leaky
1191 +
1192 +
1193 +
1194 +
1195 +### TridentNet - large objects - Start
1196 +
1197 +[convolutional]
1198 +batch_normalize=1
1199 +filters=256
1200 +size=1
1201 +stride=1
1202 +pad=1
1203 +activation=leaky
1204 +
1205 +[convolutional]
1206 +dilation=3
1207 +batch_normalize=1
1208 +filters=256
1209 +size=3
1210 +stride=1
1211 +pad=1
1212 +activation=leaky
1213 +
1214 +[convolutional]
1215 +batch_normalize=1
1216 +filters=1024
1217 +size=1
1218 +stride=1
1219 +pad=1
1220 +activation=linear
1221 +
1222 +[shortcut]
1223 +from=-4
1224 +activation=leaky
1225 +
1226 +[convolutional]
1227 +batch_normalize=1
1228 +filters=256
1229 +size=1
1230 +stride=1
1231 +pad=1
1232 +activation=leaky
1233 +
1234 +[convolutional]
1235 +dilation=3
1236 +batch_normalize=1
1237 +filters=256
1238 +size=3
1239 +stride=1
1240 +pad=1
1241 +activation=leaky
1242 +
1243 +[convolutional]
1244 +batch_normalize=1
1245 +filters=1024
1246 +size=1
1247 +stride=1
1248 +pad=1
1249 +activation=linear
1250 +
1251 +[shortcut]
1252 +from=-4
1253 +activation=leaky
1254 +
1255 +[convolutional]
1256 +batch_normalize=1
1257 +filters=256
1258 +size=1
1259 +stride=1
1260 +pad=1
1261 +activation=leaky
1262 +
1263 +[convolutional]
1264 +dilation=3
1265 +batch_normalize=1
1266 +filters=256
1267 +size=3
1268 +stride=1
1269 +pad=1
1270 +activation=leaky
1271 +
1272 +[convolutional]
1273 +batch_normalize=1
1274 +filters=1024
1275 +size=1
1276 +stride=1
1277 +pad=1
1278 +activation=linear
1279 +
1280 +[shortcut]
1281 +from=-4
1282 +activation=leaky
1283 +
1284 +[convolutional]
1285 +batch_normalize=1
1286 +filters=256
1287 +size=1
1288 +stride=1
1289 +pad=1
1290 +activation=leaky
1291 +
1292 +[convolutional]
1293 +dilation=3
1294 +batch_normalize=1
1295 +filters=256
1296 +size=3
1297 +stride=1
1298 +pad=1
1299 +activation=leaky
1300 +
1301 +[convolutional]
1302 +batch_normalize=1
1303 +filters=1024
1304 +size=1
1305 +stride=1
1306 +pad=1
1307 +activation=linear
1308 +
1309 +[shortcut]
1310 +from=-4
1311 +activation=leaky
1312 +
1313 +[convolutional]
1314 +batch_normalize=1
1315 +filters=256
1316 +size=1
1317 +stride=1
1318 +pad=1
1319 +activation=leaky
1320 +
1321 +[convolutional]
1322 +dilation=3
1323 +batch_normalize=1
1324 +filters=256
1325 +size=3
1326 +stride=1
1327 +pad=1
1328 +activation=leaky
1329 +
1330 +[convolutional]
1331 +batch_normalize=1
1332 +filters=1024
1333 +size=1
1334 +stride=1
1335 +pad=1
1336 +activation=linear
1337 +
1338 +[shortcut]
1339 +from=-4
1340 +activation=leaky
1341 +
1342 +[convolutional]
1343 +batch_normalize=1
1344 +filters=256
1345 +size=1
1346 +stride=1
1347 +pad=1
1348 +activation=leaky
1349 +
1350 +[convolutional]
1351 +dilation=3
1352 +batch_normalize=1
1353 +filters=256
1354 +size=3
1355 +stride=1
1356 +pad=1
1357 +activation=leaky
1358 +
1359 +[convolutional]
1360 +dilation=3
1361 +batch_normalize=1
1362 +filters=1024
1363 +size=1
1364 +stride=1
1365 +pad=1
1366 +activation=linear
1367 +
1368 +[shortcut]
1369 +from=-4
1370 +activation=leaky
1371 +
1372 +
1373 +## Conv 5
1374 +[convolutional]
1375 +batch_normalize=1
1376 +filters=512
1377 +size=1
1378 +stride=1
1379 +pad=1
1380 +activation=leaky
1381 +
1382 +[convolutional]
1383 +dilation=3
1384 +batch_normalize=1
1385 +filters=512
1386 +size=3
1387 +stride=2
1388 +pad=1
1389 +activation=leaky
1390 +
1391 +[convolutional]
1392 +batch_normalize=1
1393 +filters=2048
1394 +size=1
1395 +stride=1
1396 +pad=1
1397 +activation=linear
1398 +
1399 +[shortcut]
1400 +from=-2
1401 +activation=leaky
1402 +
1403 +[convolutional]
1404 +batch_normalize=1
1405 +filters=512
1406 +size=1
1407 +stride=1
1408 +pad=1
1409 +activation=leaky
1410 +
1411 +[convolutional]
1412 +dilation=3
1413 +batch_normalize=1
1414 +filters=512
1415 +size=3
1416 +stride=1
1417 +pad=1
1418 +activation=leaky
1419 +
1420 +[convolutional]
1421 +batch_normalize=1
1422 +filters=2048
1423 +size=1
1424 +stride=1
1425 +pad=1
1426 +activation=linear
1427 +
1428 +[shortcut]
1429 +from=-4
1430 +activation=leaky
1431 +
1432 +[convolutional]
1433 +batch_normalize=1
1434 +filters=512
1435 +size=1
1436 +stride=1
1437 +pad=1
1438 +activation=leaky
1439 +
1440 +[convolutional]
1441 +dilation=3
1442 +batch_normalize=1
1443 +filters=512
1444 +size=3
1445 +stride=1
1446 +pad=1
1447 +activation=leaky
1448 +
1449 +[convolutional]
1450 +batch_normalize=1
1451 +filters=2048
1452 +size=1
1453 +stride=1
1454 +pad=1
1455 +activation=linear
1456 +
1457 +[shortcut]
1458 +from=-4
1459 +activation=leaky
1460 +
1461 +[convolutional]
1462 +batch_normalize=1
1463 +size=1
1464 +stride=1
1465 +pad=1
1466 +filters=2048
1467 +activation=leaky
1468 +
1469 +[convolutional]
1470 +size=1
1471 +stride=1
1472 +pad=1
1473 +filters=24
1474 +activation=linear
1475 +
1476 +[yolo]
1477 +mask = 8,9,10,11
1478 +anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 59,119, 80,80, 116,90, 156,198, 373,326
1479 +classes=1
1480 +num=12
1481 +jitter=.3
1482 +ignore_thresh = .7
1483 +truth_thresh = 1
1484 +random=0
1485 +
1486 +### TridentNet - large objects - End
1487 +
1488 +
1489 +
1490 +
1491 +
1492 +
1493 +
1494 +### TridentNet - medium objects - Start
1495 +
1496 +[route]
1497 +layers = 165
1498 +
1499 +[convolutional]
1500 +share_index=166
1501 +batch_normalize=1
1502 +filters=256
1503 +size=1
1504 +stride=1
1505 +pad=1
1506 +activation=leaky
1507 +
1508 +[convolutional]
1509 +share_index=167
1510 +dilation=2
1511 +batch_normalize=1
1512 +filters=256
1513 +size=3
1514 +stride=1
1515 +pad=1
1516 +activation=leaky
1517 +
1518 +[convolutional]
1519 +share_index=168
1520 +batch_normalize=1
1521 +filters=1024
1522 +size=1
1523 +stride=1
1524 +pad=1
1525 +activation=linear
1526 +
1527 +[shortcut]
1528 +from=-4
1529 +activation=leaky
1530 +
1531 +[convolutional]
1532 +share_index=170
1533 +batch_normalize=1
1534 +filters=256
1535 +size=1
1536 +stride=1
1537 +pad=1
1538 +activation=leaky
1539 +
1540 +[convolutional]
1541 +share_index=171
1542 +dilation=2
1543 +batch_normalize=1
1544 +filters=256
1545 +size=3
1546 +stride=1
1547 +pad=1
1548 +activation=leaky
1549 +
1550 +[convolutional]
1551 +share_index=172
1552 +batch_normalize=1
1553 +filters=1024
1554 +size=1
1555 +stride=1
1556 +pad=1
1557 +activation=linear
1558 +
1559 +[shortcut]
1560 +from=-4
1561 +activation=leaky
1562 +
1563 +[convolutional]
1564 +share_index=174
1565 +batch_normalize=1
1566 +filters=256
1567 +size=1
1568 +stride=1
1569 +pad=1
1570 +activation=leaky
1571 +
1572 +[convolutional]
1573 +share_index=175
1574 +dilation=2
1575 +batch_normalize=1
1576 +filters=256
1577 +size=3
1578 +stride=1
1579 +pad=1
1580 +activation=leaky
1581 +
1582 +[convolutional]
1583 +share_index=176
1584 +batch_normalize=1
1585 +filters=1024
1586 +size=1
1587 +stride=1
1588 +pad=1
1589 +activation=linear
1590 +
1591 +[shortcut]
1592 +from=-4
1593 +activation=leaky
1594 +
1595 +[convolutional]
1596 +share_index=178
1597 +batch_normalize=1
1598 +filters=256
1599 +size=1
1600 +stride=1
1601 +pad=1
1602 +activation=leaky
1603 +
1604 +[convolutional]
1605 +share_index=179
1606 +dilation=2
1607 +batch_normalize=1
1608 +filters=256
1609 +size=3
1610 +stride=1
1611 +pad=1
1612 +activation=leaky
1613 +
1614 +[convolutional]
1615 +share_index=180
1616 +batch_normalize=1
1617 +filters=1024
1618 +size=1
1619 +stride=1
1620 +pad=1
1621 +activation=linear
1622 +
1623 +[shortcut]
1624 +from=-4
1625 +activation=leaky
1626 +
1627 +[convolutional]
1628 +share_index=182
1629 +batch_normalize=1
1630 +filters=256
1631 +size=1
1632 +stride=1
1633 +pad=1
1634 +activation=leaky
1635 +
1636 +[convolutional]
1637 +share_index=183
1638 +dilation=2
1639 +batch_normalize=1
1640 +filters=256
1641 +size=3
1642 +stride=1
1643 +pad=1
1644 +activation=leaky
1645 +
1646 +[convolutional]
1647 +share_index=184
1648 +batch_normalize=1
1649 +filters=1024
1650 +size=1
1651 +stride=1
1652 +pad=1
1653 +activation=linear
1654 +
1655 +[shortcut]
1656 +from=-4
1657 +activation=leaky
1658 +
1659 +[convolutional]
1660 +share_index=186
1661 +batch_normalize=1
1662 +filters=256
1663 +size=1
1664 +stride=1
1665 +pad=1
1666 +activation=leaky
1667 +
1668 +[convolutional]
1669 +share_index=187
1670 +dilation=2
1671 +batch_normalize=1
1672 +filters=256
1673 +size=3
1674 +stride=1
1675 +pad=1
1676 +activation=leaky
1677 +
1678 +[convolutional]
1679 +share_index=188
1680 +dilation=2
1681 +batch_normalize=1
1682 +filters=1024
1683 +size=1
1684 +stride=1
1685 +pad=1
1686 +activation=linear
1687 +
1688 +[shortcut]
1689 +from=-4
1690 +activation=leaky
1691 +
1692 +
1693 +## Conv 5
1694 +[convolutional]
1695 +share_index=190
1696 +batch_normalize=1
1697 +filters=512
1698 +size=1
1699 +stride=1
1700 +pad=1
1701 +activation=leaky
1702 +
1703 +[convolutional]
1704 +share_index=191
1705 +dilation=2
1706 +batch_normalize=1
1707 +filters=512
1708 +size=3
1709 +stride=2
1710 +pad=1
1711 +activation=leaky
1712 +
1713 +[convolutional]
1714 +share_index=192
1715 +batch_normalize=1
1716 +filters=2048
1717 +size=1
1718 +stride=1
1719 +pad=1
1720 +activation=linear
1721 +
1722 +[shortcut]
1723 +from=-2
1724 +activation=leaky
1725 +
1726 +[convolutional]
1727 +share_index=194
1728 +batch_normalize=1
1729 +filters=512
1730 +size=1
1731 +stride=1
1732 +pad=1
1733 +activation=leaky
1734 +
1735 +[convolutional]
1736 +share_index=195
1737 +dilation=2
1738 +batch_normalize=1
1739 +filters=512
1740 +size=3
1741 +stride=1
1742 +pad=1
1743 +activation=leaky
1744 +
1745 +[convolutional]
1746 +share_index=196
1747 +batch_normalize=1
1748 +filters=2048
1749 +size=1
1750 +stride=1
1751 +pad=1
1752 +activation=linear
1753 +
1754 +[shortcut]
1755 +from=-4
1756 +activation=leaky
1757 +
1758 +[convolutional]
1759 +share_index=198
1760 +batch_normalize=1
1761 +filters=512
1762 +size=1
1763 +stride=1
1764 +pad=1
1765 +activation=leaky
1766 +
1767 +[convolutional]
1768 +share_index=199
1769 +dilation=2
1770 +batch_normalize=1
1771 +filters=512
1772 +size=3
1773 +stride=1
1774 +pad=1
1775 +activation=leaky
1776 +
1777 +[convolutional]
1778 +share_index=200
1779 +batch_normalize=1
1780 +filters=2048
1781 +size=1
1782 +stride=1
1783 +pad=1
1784 +activation=linear
1785 +
1786 +[shortcut]
1787 +from=-4
1788 +activation=leaky
1789 +
1790 +[convolutional]
1791 +batch_normalize=1
1792 +size=1
1793 +stride=1
1794 +pad=1
1795 +filters=1024
1796 +activation=leaky
1797 +
1798 +[upsample]
1799 +stride=2
1800 +
1801 +[route]
1802 +layers = -1, 49
1803 +
1804 +[convolutional]
1805 +batch_normalize=1
1806 +size=1
1807 +stride=1
1808 +pad=1
1809 +filters=1024
1810 +activation=leaky
1811 +
1812 +[convolutional]
1813 +size=1
1814 +stride=1
1815 +pad=1
1816 +filters=24
1817 +activation=linear
1818 +
1819 +[yolo]
1820 +mask = 4,5,6,7
1821 +anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326
1822 +classes=1
1823 +num=12
1824 +jitter=.3
1825 +ignore_thresh = .7
1826 +truth_thresh = 1
1827 +random=0
1828 +
1829 +### TridentNet - medium objects - End
1830 +
1831 +
1832 +
1833 +
1834 +
1835 +
1836 +
1837 +
1838 +
1839 +
1840 +
1841 +### TridentNet - small objects - Start
1842 +
1843 +[route]
1844 +layers = 165
1845 +
1846 +[convolutional]
1847 +share_index=166
1848 +batch_normalize=1
1849 +filters=256
1850 +size=1
1851 +stride=1
1852 +pad=1
1853 +activation=leaky
1854 +
1855 +[convolutional]
1856 +share_index=167
1857 +dilation=1
1858 +batch_normalize=1
1859 +filters=256
1860 +size=3
1861 +stride=1
1862 +pad=1
1863 +activation=leaky
1864 +
1865 +[convolutional]
1866 +share_index=168
1867 +batch_normalize=1
1868 +filters=1024
1869 +size=1
1870 +stride=1
1871 +pad=1
1872 +activation=linear
1873 +
1874 +[shortcut]
1875 +from=-4
1876 +activation=leaky
1877 +
1878 +[convolutional]
1879 +share_index=170
1880 +batch_normalize=1
1881 +filters=256
1882 +size=1
1883 +stride=1
1884 +pad=1
1885 +activation=leaky
1886 +
1887 +[convolutional]
1888 +share_index=171
1889 +dilation=1
1890 +batch_normalize=1
1891 +filters=256
1892 +size=3
1893 +stride=1
1894 +pad=1
1895 +activation=leaky
1896 +
1897 +[convolutional]
1898 +share_index=172
1899 +batch_normalize=1
1900 +filters=1024
1901 +size=1
1902 +stride=1
1903 +pad=1
1904 +activation=linear
1905 +
1906 +[shortcut]
1907 +from=-4
1908 +activation=leaky
1909 +
1910 +[convolutional]
1911 +share_index=174
1912 +batch_normalize=1
1913 +filters=256
1914 +size=1
1915 +stride=1
1916 +pad=1
1917 +activation=leaky
1918 +
1919 +[convolutional]
1920 +share_index=175
1921 +dilation=1
1922 +batch_normalize=1
1923 +filters=256
1924 +size=3
1925 +stride=1
1926 +pad=1
1927 +activation=leaky
1928 +
1929 +[convolutional]
1930 +share_index=176
1931 +batch_normalize=1
1932 +filters=1024
1933 +size=1
1934 +stride=1
1935 +pad=1
1936 +activation=linear
1937 +
1938 +[shortcut]
1939 +from=-4
1940 +activation=leaky
1941 +
1942 +[convolutional]
1943 +share_index=178
1944 +batch_normalize=1
1945 +filters=256
1946 +size=1
1947 +stride=1
1948 +pad=1
1949 +activation=leaky
1950 +
1951 +[convolutional]
1952 +share_index=179
1953 +dilation=1
1954 +batch_normalize=1
1955 +filters=256
1956 +size=3
1957 +stride=1
1958 +pad=1
1959 +activation=leaky
1960 +
1961 +[convolutional]
1962 +share_index=180
1963 +batch_normalize=1
1964 +filters=1024
1965 +size=1
1966 +stride=1
1967 +pad=1
1968 +activation=linear
1969 +
1970 +[shortcut]
1971 +from=-4
1972 +activation=leaky
1973 +
1974 +[convolutional]
1975 +share_index=182
1976 +batch_normalize=1
1977 +filters=256
1978 +size=1
1979 +stride=1
1980 +pad=1
1981 +activation=leaky
1982 +
1983 +[convolutional]
1984 +share_index=183
1985 +dilation=1
1986 +batch_normalize=1
1987 +filters=256
1988 +size=3
1989 +stride=1
1990 +pad=1
1991 +activation=leaky
1992 +
1993 +[convolutional]
1994 +share_index=184
1995 +batch_normalize=1
1996 +filters=1024
1997 +size=1
1998 +stride=1
1999 +pad=1
2000 +activation=linear
2001 +
2002 +[shortcut]
2003 +from=-4
2004 +activation=leaky
2005 +
2006 +[convolutional]
2007 +share_index=186
2008 +batch_normalize=1
2009 +filters=256
2010 +size=1
2011 +stride=1
2012 +pad=1
2013 +activation=leaky
2014 +
2015 +[convolutional]
2016 +share_index=187
2017 +dilation=1
2018 +batch_normalize=1
2019 +filters=256
2020 +size=3
2021 +stride=1
2022 +pad=1
2023 +activation=leaky
2024 +
2025 +[convolutional]
2026 +share_index=188
2027 +dilation=1
2028 +batch_normalize=1
2029 +filters=1024
2030 +size=1
2031 +stride=1
2032 +pad=1
2033 +activation=linear
2034 +
2035 +[shortcut]
2036 +from=-4
2037 +activation=leaky
2038 +
2039 +
2040 +## Conv 5
2041 +[convolutional]
2042 +share_index=190
2043 +batch_normalize=1
2044 +filters=512
2045 +size=1
2046 +stride=1
2047 +pad=1
2048 +activation=leaky
2049 +
2050 +[convolutional]
2051 +share_index=191
2052 +dilation=1
2053 +batch_normalize=1
2054 +filters=512
2055 +size=3
2056 +stride=2
2057 +pad=1
2058 +activation=leaky
2059 +
2060 +[convolutional]
2061 +share_index=192
2062 +batch_normalize=1
2063 +filters=2048
2064 +size=1
2065 +stride=1
2066 +pad=1
2067 +activation=linear
2068 +
2069 +[shortcut]
2070 +from=-2
2071 +activation=leaky
2072 +
2073 +[convolutional]
2074 +share_index=194
2075 +batch_normalize=1
2076 +filters=512
2077 +size=1
2078 +stride=1
2079 +pad=1
2080 +activation=leaky
2081 +
2082 +[convolutional]
2083 +share_index=195
2084 +dilation=1
2085 +batch_normalize=1
2086 +filters=512
2087 +size=3
2088 +stride=1
2089 +pad=1
2090 +activation=leaky
2091 +
2092 +[convolutional]
2093 +share_index=196
2094 +batch_normalize=1
2095 +filters=2048
2096 +size=1
2097 +stride=1
2098 +pad=1
2099 +activation=linear
2100 +
2101 +[shortcut]
2102 +from=-4
2103 +activation=leaky
2104 +
2105 +[convolutional]
2106 +share_index=198
2107 +batch_normalize=1
2108 +filters=512
2109 +size=1
2110 +stride=1
2111 +pad=1
2112 +activation=leaky
2113 +
2114 +[convolutional]
2115 +share_index=199
2116 +dilation=1
2117 +batch_normalize=1
2118 +filters=512
2119 +size=3
2120 +stride=1
2121 +pad=1
2122 +activation=leaky
2123 +
2124 +[convolutional]
2125 +share_index=200
2126 +batch_normalize=1
2127 +filters=2048
2128 +size=1
2129 +stride=1
2130 +pad=1
2131 +activation=linear
2132 +
2133 +[shortcut]
2134 +from=-4
2135 +activation=leaky
2136 +
2137 +[convolutional]
2138 +batch_normalize=1
2139 +size=1
2140 +stride=1
2141 +pad=1
2142 +filters=512
2143 +activation=leaky
2144 +
2145 +[upsample]
2146 +stride=4
2147 +
2148 +[route]
2149 +layers = -1, 17
2150 +
2151 +[convolutional]
2152 +batch_normalize=1
2153 +size=1
2154 +stride=1
2155 +pad=1
2156 +filters=512
2157 +activation=leaky
2158 +
2159 +[convolutional]
2160 +size=1
2161 +stride=1
2162 +pad=1
2163 +filters=24
2164 +activation=linear
2165 +
2166 +[yolo]
2167 +mask = 0,1,2,3
2168 +anchors = 8,8, 10,13, 16,30, 33,23, 32,32, 30,61, 62,45, 64,64, 59,119, 116,90, 156,198, 373,326
2169 +classes=1
2170 +num=12
2171 +jitter=.3
2172 +ignore_thresh = .7
2173 +truth_thresh = 1
2174 +random=0
2175 +
2176 +### TridentNet - small objects - End
2177 +
1 +[net]
2 +# Training
3 +# batch=128
4 +# subdivisions=4
5 +
6 +# Testing
7 +batch=1
8 +subdivisions=1
9 +
10 +height=256
11 +width=256
12 +max_crop=448
13 +channels=3
14 +momentum=0.9
15 +decay=0.0005
16 +
17 +burn_in=1000
18 +learning_rate=0.1
19 +policy=poly
20 +power=4
21 +max_batches=1600000
22 +
23 +angle=7
24 +hue=.1
25 +saturation=.75
26 +exposure=.75
27 +aspect=.75
28 +
29 +[convolutional]
30 +batch_normalize=1
31 +filters=64
32 +size=7
33 +stride=2
34 +pad=1
35 +activation=leaky
36 +
37 +[maxpool]
38 +size=2
39 +stride=2
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=64
44 +size=1
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=256
60 +size=1
61 +stride=1
62 +pad=1
63 +activation=linear
64 +
65 +[shortcut]
66 +from=-4
67 +activation=leaky
68 +
69 +[convolutional]
70 +batch_normalize=1
71 +filters=64
72 +size=1
73 +stride=1
74 +pad=1
75 +activation=leaky
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=64
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=256
88 +size=1
89 +stride=1
90 +pad=1
91 +activation=linear
92 +
93 +[shortcut]
94 +from=-4
95 +activation=leaky
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=64
100 +size=1
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=64
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +[convolutional]
114 +batch_normalize=1
115 +filters=256
116 +size=1
117 +stride=1
118 +pad=1
119 +activation=linear
120 +
121 +[shortcut]
122 +from=-4
123 +activation=leaky
124 +
125 +[convolutional]
126 +batch_normalize=1
127 +filters=128
128 +size=1
129 +stride=1
130 +pad=1
131 +activation=leaky
132 +
133 +[convolutional]
134 +batch_normalize=1
135 +filters=128
136 +size=3
137 +stride=2
138 +pad=1
139 +activation=leaky
140 +
141 +[convolutional]
142 +batch_normalize=1
143 +filters=512
144 +size=1
145 +stride=1
146 +pad=1
147 +activation=linear
148 +
149 +[shortcut]
150 +from=-4
151 +activation=leaky
152 +
153 +[convolutional]
154 +batch_normalize=1
155 +filters=128
156 +size=1
157 +stride=1
158 +pad=1
159 +activation=leaky
160 +
161 +[convolutional]
162 +batch_normalize=1
163 +filters=128
164 +size=3
165 +stride=1
166 +pad=1
167 +activation=leaky
168 +
169 +[convolutional]
170 +batch_normalize=1
171 +filters=512
172 +size=1
173 +stride=1
174 +pad=1
175 +activation=linear
176 +
177 +[shortcut]
178 +from=-4
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=128
184 +size=1
185 +stride=1
186 +pad=1
187 +activation=leaky
188 +
189 +[convolutional]
190 +batch_normalize=1
191 +filters=128
192 +size=3
193 +stride=1
194 +pad=1
195 +activation=leaky
196 +
197 +[convolutional]
198 +batch_normalize=1
199 +filters=512
200 +size=1
201 +stride=1
202 +pad=1
203 +activation=linear
204 +
205 +[shortcut]
206 +from=-4
207 +activation=leaky
208 +
209 +[convolutional]
210 +batch_normalize=1
211 +filters=128
212 +size=1
213 +stride=1
214 +pad=1
215 +activation=leaky
216 +
217 +[convolutional]
218 +batch_normalize=1
219 +filters=128
220 +size=3
221 +stride=1
222 +pad=1
223 +activation=leaky
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +filters=512
228 +size=1
229 +stride=1
230 +pad=1
231 +activation=linear
232 +
233 +[shortcut]
234 +from=-4
235 +activation=leaky
236 +
237 +
238 +# Conv 4
239 +[convolutional]
240 +batch_normalize=1
241 +filters=256
242 +size=1
243 +stride=1
244 +pad=1
245 +activation=leaky
246 +
247 +[convolutional]
248 +batch_normalize=1
249 +filters=256
250 +size=3
251 +stride=2
252 +pad=1
253 +activation=leaky
254 +
255 +[convolutional]
256 +batch_normalize=1
257 +filters=1024
258 +size=1
259 +stride=1
260 +pad=1
261 +activation=linear
262 +
263 +[shortcut]
264 +from=-4
265 +activation=leaky
266 +
267 +[convolutional]
268 +batch_normalize=1
269 +filters=256
270 +size=1
271 +stride=1
272 +pad=1
273 +activation=leaky
274 +
275 +[convolutional]
276 +batch_normalize=1
277 +filters=256
278 +size=3
279 +stride=1
280 +pad=1
281 +activation=leaky
282 +
283 +[convolutional]
284 +batch_normalize=1
285 +filters=1024
286 +size=1
287 +stride=1
288 +pad=1
289 +activation=linear
290 +
291 +[shortcut]
292 +from=-4
293 +activation=leaky
294 +
295 +[convolutional]
296 +batch_normalize=1
297 +filters=256
298 +size=1
299 +stride=1
300 +pad=1
301 +activation=leaky
302 +
303 +[convolutional]
304 +batch_normalize=1
305 +filters=256
306 +size=3
307 +stride=1
308 +pad=1
309 +activation=leaky
310 +
311 +[convolutional]
312 +batch_normalize=1
313 +filters=1024
314 +size=1
315 +stride=1
316 +pad=1
317 +activation=linear
318 +
319 +[shortcut]
320 +from=-4
321 +activation=leaky
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=256
326 +size=1
327 +stride=1
328 +pad=1
329 +activation=leaky
330 +
331 +[convolutional]
332 +batch_normalize=1
333 +filters=256
334 +size=3
335 +stride=1
336 +pad=1
337 +activation=leaky
338 +
339 +[convolutional]
340 +batch_normalize=1
341 +filters=1024
342 +size=1
343 +stride=1
344 +pad=1
345 +activation=linear
346 +
347 +[shortcut]
348 +from=-4
349 +activation=leaky
350 +
351 +[convolutional]
352 +batch_normalize=1
353 +filters=256
354 +size=1
355 +stride=1
356 +pad=1
357 +activation=leaky
358 +
359 +[convolutional]
360 +batch_normalize=1
361 +filters=256
362 +size=3
363 +stride=1
364 +pad=1
365 +activation=leaky
366 +
367 +[convolutional]
368 +batch_normalize=1
369 +filters=1024
370 +size=1
371 +stride=1
372 +pad=1
373 +activation=linear
374 +
375 +[shortcut]
376 +from=-4
377 +activation=leaky
378 +
379 +[convolutional]
380 +batch_normalize=1
381 +filters=256
382 +size=1
383 +stride=1
384 +pad=1
385 +activation=leaky
386 +
387 +[convolutional]
388 +batch_normalize=1
389 +filters=256
390 +size=3
391 +stride=1
392 +pad=1
393 +activation=leaky
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=1024
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=linear
402 +
403 +[shortcut]
404 +from=-4
405 +activation=leaky
406 +
407 +#Conv 5
408 +[convolutional]
409 +batch_normalize=1
410 +filters=512
411 +size=1
412 +stride=1
413 +pad=1
414 +activation=leaky
415 +
416 +[convolutional]
417 +batch_normalize=1
418 +filters=512
419 +size=3
420 +stride=2
421 +pad=1
422 +activation=leaky
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=2048
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=linear
431 +
432 +[shortcut]
433 +from=-4
434 +activation=leaky
435 +
436 +[convolutional]
437 +batch_normalize=1
438 +filters=512
439 +size=1
440 +stride=1
441 +pad=1
442 +activation=leaky
443 +
444 +[convolutional]
445 +batch_normalize=1
446 +filters=512
447 +size=3
448 +stride=1
449 +pad=1
450 +activation=leaky
451 +
452 +[convolutional]
453 +batch_normalize=1
454 +filters=2048
455 +size=1
456 +stride=1
457 +pad=1
458 +activation=linear
459 +
460 +[shortcut]
461 +from=-4
462 +activation=leaky
463 +
464 +[convolutional]
465 +batch_normalize=1
466 +filters=512
467 +size=1
468 +stride=1
469 +pad=1
470 +activation=leaky
471 +
472 +[convolutional]
473 +batch_normalize=1
474 +filters=512
475 +size=3
476 +stride=1
477 +pad=1
478 +activation=leaky
479 +
480 +[convolutional]
481 +batch_normalize=1
482 +filters=2048
483 +size=1
484 +stride=1
485 +pad=1
486 +activation=linear
487 +
488 +[shortcut]
489 +from=-4
490 +activation=leaky
491 +
492 +
493 +
494 +
495 +
496 +
497 +[convolutional]
498 +filters=1000
499 +size=1
500 +stride=1
501 +pad=1
502 +activation=linear
503 +
504 +[avgpool]
505 +
506 +[softmax]
507 +groups=1
508 +
509 +[cost]
510 +type=sse
511 +
1 +[net]
2 +# Training
3 +# batch=128
4 +# subdivisions=16
5 +
6 +# Testing
7 +batch=1
8 +subdivisions=1
9 +
10 +height=256
11 +width=256
12 +channels=3
13 +min_crop=128
14 +max_crop=448
15 +
16 +burn_in=1000
17 +learning_rate=0.1
18 +policy=poly
19 +power=4
20 +max_batches=800000
21 +momentum=0.9
22 +decay=0.0005
23 +
24 +angle=7
25 +hue=.1
26 +saturation=.75
27 +exposure=.75
28 +aspect=.75
29 +
30 +
31 +[convolutional]
32 +batch_normalize=1
33 +filters=64
34 +size=7
35 +stride=2
36 +pad=1
37 +activation=leaky
38 +
39 +[maxpool]
40 +size=2
41 +stride=2
42 +
43 +[convolutional]
44 +batch_normalize=1
45 +filters=64
46 +size=1
47 +stride=1
48 +pad=1
49 +activation=leaky
50 +
51 +[convolutional]
52 +groups = 32
53 +batch_normalize=1
54 +filters=64
55 +size=3
56 +stride=1
57 +pad=1
58 +activation=leaky
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=512
63 +size=1
64 +stride=1
65 +pad=1
66 +activation=linear
67 +
68 +[shortcut]
69 +from=-4
70 +activation=leaky
71 +
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[convolutional]
82 +groups = 32
83 +batch_normalize=1
84 +filters=64
85 +size=3
86 +stride=1
87 +pad=1
88 +activation=leaky
89 +
90 +[convolutional]
91 +batch_normalize=1
92 +filters=512
93 +size=1
94 +stride=1
95 +pad=1
96 +activation=linear
97 +
98 +[shortcut]
99 +from=-4
100 +activation=leaky
101 +
102 +
103 +[convolutional]
104 +batch_normalize=1
105 +filters=64
106 +size=1
107 +stride=1
108 +pad=1
109 +activation=leaky
110 +
111 +[convolutional]
112 +groups = 32
113 +batch_normalize=1
114 +filters=64
115 +size=3
116 +stride=1
117 +pad=1
118 +activation=leaky
119 +
120 +[convolutional]
121 +batch_normalize=1
122 +filters=512
123 +size=1
124 +stride=1
125 +pad=1
126 +activation=linear
127 +
128 +[shortcut]
129 +from=-4
130 +activation=leaky
131 +
132 +
133 +
134 +[convolutional]
135 +batch_normalize=1
136 +filters=128
137 +size=1
138 +stride=1
139 +pad=1
140 +activation=leaky
141 +
142 +[convolutional]
143 +groups = 32
144 +batch_normalize=1
145 +filters=128
146 +size=3
147 +stride=2
148 +pad=1
149 +activation=leaky
150 +
151 +[convolutional]
152 +batch_normalize=1
153 +filters=1024
154 +size=1
155 +stride=1
156 +pad=1
157 +activation=linear
158 +
159 +[shortcut]
160 +from=-4
161 +activation=leaky
162 +
163 +
164 +
165 +[convolutional]
166 +batch_normalize=1
167 +filters=128
168 +size=1
169 +stride=1
170 +pad=1
171 +activation=leaky
172 +
173 +[convolutional]
174 +groups = 32
175 +batch_normalize=1
176 +filters=128
177 +size=3
178 +stride=1
179 +pad=1
180 +activation=leaky
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=1024
185 +size=1
186 +stride=1
187 +pad=1
188 +activation=linear
189 +
190 +[shortcut]
191 +from=-4
192 +activation=leaky
193 +
194 +
195 +[convolutional]
196 +batch_normalize=1
197 +filters=128
198 +size=1
199 +stride=1
200 +pad=1
201 +activation=leaky
202 +
203 +[convolutional]
204 +groups = 32
205 +batch_normalize=1
206 +filters=128
207 +size=3
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +filters=1024
215 +size=1
216 +stride=1
217 +pad=1
218 +activation=linear
219 +
220 +[shortcut]
221 +from=-4
222 +activation=leaky
223 +
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +filters=128
228 +size=1
229 +stride=1
230 +pad=1
231 +activation=leaky
232 +
233 +[convolutional]
234 +groups = 32
235 +batch_normalize=1
236 +filters=128
237 +size=3
238 +stride=1
239 +pad=1
240 +activation=leaky
241 +
242 +[convolutional]
243 +batch_normalize=1
244 +filters=1024
245 +size=1
246 +stride=1
247 +pad=1
248 +activation=linear
249 +
250 +[shortcut]
251 +from=-4
252 +activation=leaky
253 +
254 +
255 +[convolutional]
256 +batch_normalize=1
257 +filters=128
258 +size=1
259 +stride=1
260 +pad=1
261 +activation=leaky
262 +
263 +[convolutional]
264 +groups = 32
265 +batch_normalize=1
266 +filters=128
267 +size=3
268 +stride=1
269 +pad=1
270 +activation=leaky
271 +
272 +[convolutional]
273 +batch_normalize=1
274 +filters=1024
275 +size=1
276 +stride=1
277 +pad=1
278 +activation=linear
279 +
280 +[shortcut]
281 +from=-4
282 +activation=leaky
283 +
284 +
285 +[convolutional]
286 +batch_normalize=1
287 +filters=128
288 +size=1
289 +stride=1
290 +pad=1
291 +activation=leaky
292 +
293 +[convolutional]
294 +groups = 32
295 +batch_normalize=1
296 +filters=128
297 +size=3
298 +stride=1
299 +pad=1
300 +activation=leaky
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=1024
305 +size=1
306 +stride=1
307 +pad=1
308 +activation=linear
309 +
310 +[shortcut]
311 +from=-4
312 +activation=leaky
313 +
314 +
315 +[convolutional]
316 +batch_normalize=1
317 +filters=128
318 +size=1
319 +stride=1
320 +pad=1
321 +activation=leaky
322 +
323 +[convolutional]
324 +groups = 32
325 +batch_normalize=1
326 +filters=128
327 +size=3
328 +stride=1
329 +pad=1
330 +activation=leaky
331 +
332 +[convolutional]
333 +batch_normalize=1
334 +filters=1024
335 +size=1
336 +stride=1
337 +pad=1
338 +activation=linear
339 +
340 +[shortcut]
341 +from=-4
342 +activation=leaky
343 +
344 +
345 +[convolutional]
346 +batch_normalize=1
347 +filters=128
348 +size=1
349 +stride=1
350 +pad=1
351 +activation=leaky
352 +
353 +[convolutional]
354 +groups = 32
355 +batch_normalize=1
356 +filters=128
357 +size=3
358 +stride=1
359 +pad=1
360 +activation=leaky
361 +
362 +[convolutional]
363 +batch_normalize=1
364 +filters=1024
365 +size=1
366 +stride=1
367 +pad=1
368 +activation=linear
369 +
370 +[shortcut]
371 +from=-4
372 +activation=leaky
373 +
374 +
375 +
376 +[convolutional]
377 +batch_normalize=1
378 +filters=256
379 +size=1
380 +stride=1
381 +pad=1
382 +activation=leaky
383 +
384 +[convolutional]
385 +groups = 32
386 +batch_normalize=1
387 +filters=256
388 +size=3
389 +stride=2
390 +pad=1
391 +activation=leaky
392 +
393 +[convolutional]
394 +batch_normalize=1
395 +filters=2048
396 +size=1
397 +stride=1
398 +pad=1
399 +activation=linear
400 +
401 +[shortcut]
402 +from=-4
403 +activation=leaky
404 +
405 +
406 +
407 +[convolutional]
408 +batch_normalize=1
409 +filters=256
410 +size=1
411 +stride=1
412 +pad=1
413 +activation=leaky
414 +
415 +[convolutional]
416 +groups = 32
417 +batch_normalize=1
418 +filters=256
419 +size=3
420 +stride=1
421 +pad=1
422 +activation=leaky
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=2048
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=linear
431 +
432 +[shortcut]
433 +from=-4
434 +activation=leaky
435 +
436 +
437 +[convolutional]
438 +batch_normalize=1
439 +filters=256
440 +size=1
441 +stride=1
442 +pad=1
443 +activation=leaky
444 +
445 +[convolutional]
446 +groups = 32
447 +batch_normalize=1
448 +filters=256
449 +size=3
450 +stride=1
451 +pad=1
452 +activation=leaky
453 +
454 +[convolutional]
455 +batch_normalize=1
456 +filters=2048
457 +size=1
458 +stride=1
459 +pad=1
460 +activation=linear
461 +
462 +[shortcut]
463 +from=-4
464 +activation=leaky
465 +
466 +
467 +[convolutional]
468 +batch_normalize=1
469 +filters=256
470 +size=1
471 +stride=1
472 +pad=1
473 +activation=leaky
474 +
475 +[convolutional]
476 +groups = 32
477 +batch_normalize=1
478 +filters=256
479 +size=3
480 +stride=1
481 +pad=1
482 +activation=leaky
483 +
484 +[convolutional]
485 +batch_normalize=1
486 +filters=2048
487 +size=1
488 +stride=1
489 +pad=1
490 +activation=linear
491 +
492 +[shortcut]
493 +from=-4
494 +activation=leaky
495 +
496 +
497 +[convolutional]
498 +batch_normalize=1
499 +filters=256
500 +size=1
501 +stride=1
502 +pad=1
503 +activation=leaky
504 +
505 +[convolutional]
506 +groups = 32
507 +batch_normalize=1
508 +filters=256
509 +size=3
510 +stride=1
511 +pad=1
512 +activation=leaky
513 +
514 +[convolutional]
515 +batch_normalize=1
516 +filters=2048
517 +size=1
518 +stride=1
519 +pad=1
520 +activation=linear
521 +
522 +[shortcut]
523 +from=-4
524 +activation=leaky
525 +
526 +
527 +[convolutional]
528 +batch_normalize=1
529 +filters=256
530 +size=1
531 +stride=1
532 +pad=1
533 +activation=leaky
534 +
535 +[convolutional]
536 +groups = 32
537 +batch_normalize=1
538 +filters=256
539 +size=3
540 +stride=1
541 +pad=1
542 +activation=leaky
543 +
544 +[convolutional]
545 +batch_normalize=1
546 +filters=2048
547 +size=1
548 +stride=1
549 +pad=1
550 +activation=linear
551 +
552 +[shortcut]
553 +from=-4
554 +activation=leaky
555 +
556 +
557 +[convolutional]
558 +batch_normalize=1
559 +filters=256
560 +size=1
561 +stride=1
562 +pad=1
563 +activation=leaky
564 +
565 +[convolutional]
566 +groups = 32
567 +batch_normalize=1
568 +filters=256
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=leaky
573 +
574 +[convolutional]
575 +batch_normalize=1
576 +filters=2048
577 +size=1
578 +stride=1
579 +pad=1
580 +activation=linear
581 +
582 +[shortcut]
583 +from=-4
584 +activation=leaky
585 +
586 +
587 +[convolutional]
588 +batch_normalize=1
589 +filters=256
590 +size=1
591 +stride=1
592 +pad=1
593 +activation=leaky
594 +
595 +[convolutional]
596 +groups = 32
597 +batch_normalize=1
598 +filters=256
599 +size=3
600 +stride=1
601 +pad=1
602 +activation=leaky
603 +
604 +[convolutional]
605 +batch_normalize=1
606 +filters=2048
607 +size=1
608 +stride=1
609 +pad=1
610 +activation=linear
611 +
612 +[shortcut]
613 +from=-4
614 +activation=leaky
615 +
616 +
617 +[convolutional]
618 +batch_normalize=1
619 +filters=256
620 +size=1
621 +stride=1
622 +pad=1
623 +activation=leaky
624 +
625 +[convolutional]
626 +groups = 32
627 +batch_normalize=1
628 +filters=256
629 +size=3
630 +stride=1
631 +pad=1
632 +activation=leaky
633 +
634 +[convolutional]
635 +batch_normalize=1
636 +filters=2048
637 +size=1
638 +stride=1
639 +pad=1
640 +activation=linear
641 +
642 +[shortcut]
643 +from=-4
644 +activation=leaky
645 +
646 +
647 +[convolutional]
648 +batch_normalize=1
649 +filters=256
650 +size=1
651 +stride=1
652 +pad=1
653 +activation=leaky
654 +
655 +[convolutional]
656 +groups = 32
657 +batch_normalize=1
658 +filters=256
659 +size=3
660 +stride=1
661 +pad=1
662 +activation=leaky
663 +
664 +[convolutional]
665 +batch_normalize=1
666 +filters=2048
667 +size=1
668 +stride=1
669 +pad=1
670 +activation=linear
671 +
672 +[shortcut]
673 +from=-4
674 +activation=leaky
675 +
676 +
677 +[convolutional]
678 +batch_normalize=1
679 +filters=256
680 +size=1
681 +stride=1
682 +pad=1
683 +activation=leaky
684 +
685 +[convolutional]
686 +groups = 32
687 +batch_normalize=1
688 +filters=256
689 +size=3
690 +stride=1
691 +pad=1
692 +activation=leaky
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=2048
697 +size=1
698 +stride=1
699 +pad=1
700 +activation=linear
701 +
702 +[shortcut]
703 +from=-4
704 +activation=leaky
705 +
706 +
707 +[convolutional]
708 +batch_normalize=1
709 +filters=256
710 +size=1
711 +stride=1
712 +pad=1
713 +activation=leaky
714 +
715 +[convolutional]
716 +groups = 32
717 +batch_normalize=1
718 +filters=256
719 +size=3
720 +stride=1
721 +pad=1
722 +activation=leaky
723 +
724 +[convolutional]
725 +batch_normalize=1
726 +filters=2048
727 +size=1
728 +stride=1
729 +pad=1
730 +activation=linear
731 +
732 +[shortcut]
733 +from=-4
734 +activation=leaky
735 +
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=256
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=leaky
744 +
745 +[convolutional]
746 +groups = 32
747 +batch_normalize=1
748 +filters=256
749 +size=3
750 +stride=1
751 +pad=1
752 +activation=leaky
753 +
754 +[convolutional]
755 +batch_normalize=1
756 +filters=2048
757 +size=1
758 +stride=1
759 +pad=1
760 +activation=linear
761 +
762 +[shortcut]
763 +from=-4
764 +activation=leaky
765 +
766 +
767 +[convolutional]
768 +batch_normalize=1
769 +filters=256
770 +size=1
771 +stride=1
772 +pad=1
773 +activation=leaky
774 +
775 +[convolutional]
776 +groups = 32
777 +batch_normalize=1
778 +filters=256
779 +size=3
780 +stride=1
781 +pad=1
782 +activation=leaky
783 +
784 +[convolutional]
785 +batch_normalize=1
786 +filters=2048
787 +size=1
788 +stride=1
789 +pad=1
790 +activation=linear
791 +
792 +[shortcut]
793 +from=-4
794 +activation=leaky
795 +
796 +
797 +[convolutional]
798 +batch_normalize=1
799 +filters=256
800 +size=1
801 +stride=1
802 +pad=1
803 +activation=leaky
804 +
805 +[convolutional]
806 +groups = 32
807 +batch_normalize=1
808 +filters=256
809 +size=3
810 +stride=1
811 +pad=1
812 +activation=leaky
813 +
814 +[convolutional]
815 +batch_normalize=1
816 +filters=2048
817 +size=1
818 +stride=1
819 +pad=1
820 +activation=linear
821 +
822 +[shortcut]
823 +from=-4
824 +activation=leaky
825 +
826 +
827 +[convolutional]
828 +batch_normalize=1
829 +filters=256
830 +size=1
831 +stride=1
832 +pad=1
833 +activation=leaky
834 +
835 +[convolutional]
836 +groups = 32
837 +batch_normalize=1
838 +filters=256
839 +size=3
840 +stride=1
841 +pad=1
842 +activation=leaky
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=2048
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=linear
851 +
852 +[shortcut]
853 +from=-4
854 +activation=leaky
855 +
856 +
857 +[convolutional]
858 +batch_normalize=1
859 +filters=256
860 +size=1
861 +stride=1
862 +pad=1
863 +activation=leaky
864 +
865 +[convolutional]
866 +groups = 32
867 +batch_normalize=1
868 +filters=256
869 +size=3
870 +stride=1
871 +pad=1
872 +activation=leaky
873 +
874 +[convolutional]
875 +batch_normalize=1
876 +filters=2048
877 +size=1
878 +stride=1
879 +pad=1
880 +activation=linear
881 +
882 +[shortcut]
883 +from=-4
884 +activation=leaky
885 +
886 +
887 +[convolutional]
888 +batch_normalize=1
889 +filters=256
890 +size=1
891 +stride=1
892 +pad=1
893 +activation=leaky
894 +
895 +[convolutional]
896 +groups = 32
897 +batch_normalize=1
898 +filters=256
899 +size=3
900 +stride=1
901 +pad=1
902 +activation=leaky
903 +
904 +[convolutional]
905 +batch_normalize=1
906 +filters=2048
907 +size=1
908 +stride=1
909 +pad=1
910 +activation=linear
911 +
912 +[shortcut]
913 +from=-4
914 +activation=leaky
915 +
916 +
917 +[convolutional]
918 +batch_normalize=1
919 +filters=256
920 +size=1
921 +stride=1
922 +pad=1
923 +activation=leaky
924 +
925 +[convolutional]
926 +groups = 32
927 +batch_normalize=1
928 +filters=256
929 +size=3
930 +stride=1
931 +pad=1
932 +activation=leaky
933 +
934 +[convolutional]
935 +batch_normalize=1
936 +filters=2048
937 +size=1
938 +stride=1
939 +pad=1
940 +activation=linear
941 +
942 +[shortcut]
943 +from=-4
944 +activation=leaky
945 +
946 +
947 +[convolutional]
948 +batch_normalize=1
949 +filters=256
950 +size=1
951 +stride=1
952 +pad=1
953 +activation=leaky
954 +
955 +[convolutional]
956 +groups = 32
957 +batch_normalize=1
958 +filters=256
959 +size=3
960 +stride=1
961 +pad=1
962 +activation=leaky
963 +
964 +[convolutional]
965 +batch_normalize=1
966 +filters=2048
967 +size=1
968 +stride=1
969 +pad=1
970 +activation=linear
971 +
972 +[shortcut]
973 +from=-4
974 +activation=leaky
975 +
976 +
977 +[convolutional]
978 +batch_normalize=1
979 +filters=256
980 +size=1
981 +stride=1
982 +pad=1
983 +activation=leaky
984 +
985 +[convolutional]
986 +groups = 32
987 +batch_normalize=1
988 +filters=256
989 +size=3
990 +stride=1
991 +pad=1
992 +activation=leaky
993 +
994 +[convolutional]
995 +batch_normalize=1
996 +filters=2048
997 +size=1
998 +stride=1
999 +pad=1
1000 +activation=linear
1001 +
1002 +[shortcut]
1003 +from=-4
1004 +activation=leaky
1005 +
1006 +
1007 +[convolutional]
1008 +batch_normalize=1
1009 +filters=256
1010 +size=1
1011 +stride=1
1012 +pad=1
1013 +activation=leaky
1014 +
1015 +[convolutional]
1016 +groups = 32
1017 +batch_normalize=1
1018 +filters=256
1019 +size=3
1020 +stride=1
1021 +pad=1
1022 +activation=leaky
1023 +
1024 +[convolutional]
1025 +batch_normalize=1
1026 +filters=2048
1027 +size=1
1028 +stride=1
1029 +pad=1
1030 +activation=linear
1031 +
1032 +[shortcut]
1033 +from=-4
1034 +activation=leaky
1035 +
1036 +
1037 +[convolutional]
1038 +batch_normalize=1
1039 +filters=256
1040 +size=1
1041 +stride=1
1042 +pad=1
1043 +activation=leaky
1044 +
1045 +[convolutional]
1046 +groups = 32
1047 +batch_normalize=1
1048 +filters=256
1049 +size=3
1050 +stride=1
1051 +pad=1
1052 +activation=leaky
1053 +
1054 +[convolutional]
1055 +batch_normalize=1
1056 +filters=2048
1057 +size=1
1058 +stride=1
1059 +pad=1
1060 +activation=linear
1061 +
1062 +[shortcut]
1063 +from=-4
1064 +activation=leaky
1065 +
1066 +
1067 +[convolutional]
1068 +batch_normalize=1
1069 +filters=256
1070 +size=1
1071 +stride=1
1072 +pad=1
1073 +activation=leaky
1074 +
1075 +[convolutional]
1076 +groups = 32
1077 +batch_normalize=1
1078 +filters=256
1079 +size=3
1080 +stride=1
1081 +pad=1
1082 +activation=leaky
1083 +
1084 +[convolutional]
1085 +batch_normalize=1
1086 +filters=2048
1087 +size=1
1088 +stride=1
1089 +pad=1
1090 +activation=linear
1091 +
1092 +[shortcut]
1093 +from=-4
1094 +activation=leaky
1095 +
1096 +
1097 +[convolutional]
1098 +batch_normalize=1
1099 +filters=256
1100 +size=1
1101 +stride=1
1102 +pad=1
1103 +activation=leaky
1104 +
1105 +[convolutional]
1106 +groups = 32
1107 +batch_normalize=1
1108 +filters=256
1109 +size=3
1110 +stride=1
1111 +pad=1
1112 +activation=leaky
1113 +
1114 +[convolutional]
1115 +batch_normalize=1
1116 +filters=2048
1117 +size=1
1118 +stride=1
1119 +pad=1
1120 +activation=linear
1121 +
1122 +[shortcut]
1123 +from=-4
1124 +activation=leaky
1125 +
1126 +
1127 +[convolutional]
1128 +batch_normalize=1
1129 +filters=256
1130 +size=1
1131 +stride=1
1132 +pad=1
1133 +activation=leaky
1134 +
1135 +[convolutional]
1136 +groups = 32
1137 +batch_normalize=1
1138 +filters=256
1139 +size=3
1140 +stride=1
1141 +pad=1
1142 +activation=leaky
1143 +
1144 +[convolutional]
1145 +batch_normalize=1
1146 +filters=2048
1147 +size=1
1148 +stride=1
1149 +pad=1
1150 +activation=linear
1151 +
1152 +[shortcut]
1153 +from=-4
1154 +activation=leaky
1155 +
1156 +
1157 +[convolutional]
1158 +batch_normalize=1
1159 +filters=256
1160 +size=1
1161 +stride=1
1162 +pad=1
1163 +activation=leaky
1164 +
1165 +[convolutional]
1166 +groups = 32
1167 +batch_normalize=1
1168 +filters=256
1169 +size=3
1170 +stride=1
1171 +pad=1
1172 +activation=leaky
1173 +
1174 +[convolutional]
1175 +batch_normalize=1
1176 +filters=2048
1177 +size=1
1178 +stride=1
1179 +pad=1
1180 +activation=linear
1181 +
1182 +[shortcut]
1183 +from=-4
1184 +activation=leaky
1185 +
1186 +
1187 +[convolutional]
1188 +batch_normalize=1
1189 +filters=256
1190 +size=1
1191 +stride=1
1192 +pad=1
1193 +activation=leaky
1194 +
1195 +[convolutional]
1196 +groups = 32
1197 +batch_normalize=1
1198 +filters=256
1199 +size=3
1200 +stride=1
1201 +pad=1
1202 +activation=leaky
1203 +
1204 +[convolutional]
1205 +batch_normalize=1
1206 +filters=2048
1207 +size=1
1208 +stride=1
1209 +pad=1
1210 +activation=linear
1211 +
1212 +[shortcut]
1213 +from=-4
1214 +activation=leaky
1215 +
1216 +
1217 +[convolutional]
1218 +batch_normalize=1
1219 +filters=256
1220 +size=1
1221 +stride=1
1222 +pad=1
1223 +activation=leaky
1224 +
1225 +[convolutional]
1226 +groups = 32
1227 +batch_normalize=1
1228 +filters=256
1229 +size=3
1230 +stride=1
1231 +pad=1
1232 +activation=leaky
1233 +
1234 +[convolutional]
1235 +batch_normalize=1
1236 +filters=2048
1237 +size=1
1238 +stride=1
1239 +pad=1
1240 +activation=linear
1241 +
1242 +[shortcut]
1243 +from=-4
1244 +activation=leaky
1245 +
1246 +
1247 +[convolutional]
1248 +batch_normalize=1
1249 +filters=256
1250 +size=1
1251 +stride=1
1252 +pad=1
1253 +activation=leaky
1254 +
1255 +[convolutional]
1256 +groups = 32
1257 +batch_normalize=1
1258 +filters=256
1259 +size=3
1260 +stride=1
1261 +pad=1
1262 +activation=leaky
1263 +
1264 +[convolutional]
1265 +batch_normalize=1
1266 +filters=2048
1267 +size=1
1268 +stride=1
1269 +pad=1
1270 +activation=linear
1271 +
1272 +[shortcut]
1273 +from=-4
1274 +activation=leaky
1275 +
1276 +
1277 +[convolutional]
1278 +batch_normalize=1
1279 +filters=256
1280 +size=1
1281 +stride=1
1282 +pad=1
1283 +activation=leaky
1284 +
1285 +[convolutional]
1286 +groups = 32
1287 +batch_normalize=1
1288 +filters=256
1289 +size=3
1290 +stride=1
1291 +pad=1
1292 +activation=leaky
1293 +
1294 +[convolutional]
1295 +batch_normalize=1
1296 +filters=2048
1297 +size=1
1298 +stride=1
1299 +pad=1
1300 +activation=linear
1301 +
1302 +[shortcut]
1303 +from=-4
1304 +activation=leaky
1305 +
1306 +
1307 +[convolutional]
1308 +batch_normalize=1
1309 +filters=256
1310 +size=1
1311 +stride=1
1312 +pad=1
1313 +activation=leaky
1314 +
1315 +[convolutional]
1316 +groups = 32
1317 +batch_normalize=1
1318 +filters=256
1319 +size=3
1320 +stride=1
1321 +pad=1
1322 +activation=leaky
1323 +
1324 +[convolutional]
1325 +batch_normalize=1
1326 +filters=2048
1327 +size=1
1328 +stride=1
1329 +pad=1
1330 +activation=linear
1331 +
1332 +[shortcut]
1333 +from=-4
1334 +activation=leaky
1335 +
1336 +
1337 +[convolutional]
1338 +batch_normalize=1
1339 +filters=256
1340 +size=1
1341 +stride=1
1342 +pad=1
1343 +activation=leaky
1344 +
1345 +[convolutional]
1346 +groups = 32
1347 +batch_normalize=1
1348 +filters=256
1349 +size=3
1350 +stride=1
1351 +pad=1
1352 +activation=leaky
1353 +
1354 +[convolutional]
1355 +batch_normalize=1
1356 +filters=2048
1357 +size=1
1358 +stride=1
1359 +pad=1
1360 +activation=linear
1361 +
1362 +[shortcut]
1363 +from=-4
1364 +activation=leaky
1365 +
1366 +
1367 +[convolutional]
1368 +batch_normalize=1
1369 +filters=256
1370 +size=1
1371 +stride=1
1372 +pad=1
1373 +activation=leaky
1374 +
1375 +[convolutional]
1376 +groups = 32
1377 +batch_normalize=1
1378 +filters=256
1379 +size=3
1380 +stride=1
1381 +pad=1
1382 +activation=leaky
1383 +
1384 +[convolutional]
1385 +batch_normalize=1
1386 +filters=2048
1387 +size=1
1388 +stride=1
1389 +pad=1
1390 +activation=linear
1391 +
1392 +[shortcut]
1393 +from=-4
1394 +activation=leaky
1395 +
1396 +
1397 +[convolutional]
1398 +batch_normalize=1
1399 +filters=256
1400 +size=1
1401 +stride=1
1402 +pad=1
1403 +activation=leaky
1404 +
1405 +[convolutional]
1406 +groups = 32
1407 +batch_normalize=1
1408 +filters=256
1409 +size=3
1410 +stride=1
1411 +pad=1
1412 +activation=leaky
1413 +
1414 +[convolutional]
1415 +batch_normalize=1
1416 +filters=2048
1417 +size=1
1418 +stride=1
1419 +pad=1
1420 +activation=linear
1421 +
1422 +[shortcut]
1423 +from=-4
1424 +activation=leaky
1425 +
1426 +
1427 +[convolutional]
1428 +batch_normalize=1
1429 +filters=256
1430 +size=1
1431 +stride=1
1432 +pad=1
1433 +activation=leaky
1434 +
1435 +[convolutional]
1436 +groups = 32
1437 +batch_normalize=1
1438 +filters=256
1439 +size=3
1440 +stride=1
1441 +pad=1
1442 +activation=leaky
1443 +
1444 +[convolutional]
1445 +batch_normalize=1
1446 +filters=2048
1447 +size=1
1448 +stride=1
1449 +pad=1
1450 +activation=linear
1451 +
1452 +[shortcut]
1453 +from=-4
1454 +activation=leaky
1455 +
1456 +
1457 +
1458 +[convolutional]
1459 +batch_normalize=1
1460 +filters=512
1461 +size=1
1462 +stride=1
1463 +pad=1
1464 +activation=leaky
1465 +
1466 +[convolutional]
1467 +groups = 32
1468 +batch_normalize=1
1469 +filters=512
1470 +size=3
1471 +stride=2
1472 +pad=1
1473 +activation=leaky
1474 +
1475 +[convolutional]
1476 +batch_normalize=1
1477 +filters=4096
1478 +size=1
1479 +stride=1
1480 +pad=1
1481 +activation=linear
1482 +
1483 +[shortcut]
1484 +from=-4
1485 +activation=leaky
1486 +
1487 +
1488 +
1489 +[convolutional]
1490 +batch_normalize=1
1491 +filters=512
1492 +size=1
1493 +stride=1
1494 +pad=1
1495 +activation=leaky
1496 +
1497 +[convolutional]
1498 +groups = 32
1499 +batch_normalize=1
1500 +filters=512
1501 +size=3
1502 +stride=1
1503 +pad=1
1504 +activation=leaky
1505 +
1506 +[convolutional]
1507 +batch_normalize=1
1508 +filters=4096
1509 +size=1
1510 +stride=1
1511 +pad=1
1512 +activation=linear
1513 +
1514 +[shortcut]
1515 +from=-4
1516 +activation=leaky
1517 +
1518 +
1519 +[convolutional]
1520 +batch_normalize=1
1521 +filters=512
1522 +size=1
1523 +stride=1
1524 +pad=1
1525 +activation=leaky
1526 +
1527 +[convolutional]
1528 +groups = 32
1529 +batch_normalize=1
1530 +filters=512
1531 +size=3
1532 +stride=1
1533 +pad=1
1534 +activation=leaky
1535 +
1536 +[convolutional]
1537 +batch_normalize=1
1538 +filters=4096
1539 +size=1
1540 +stride=1
1541 +pad=1
1542 +activation=linear
1543 +
1544 +[shortcut]
1545 +from=-4
1546 +activation=leaky
1547 +
1548 +
1549 +
1550 +
1551 +[avgpool]
1552 +
1553 +[convolutional]
1554 +filters=1000
1555 +size=1
1556 +stride=1
1557 +pad=1
1558 +activation=linear
1559 +
1560 +[softmax]
1561 +groups=1
1562 +
1 +[net]
2 +subdivisions=1
3 +inputs=256
4 +batch = 1
5 +momentum=0.9
6 +decay=0.001
7 +max_batches = 2000
8 +time_steps=1
9 +learning_rate=0.1
10 +policy=steps
11 +steps=1000,1500
12 +scales=.1,.1
13 +
14 +[rnn]
15 +batch_normalize=1
16 +output = 1024
17 +hidden=1024
18 +activation=leaky
19 +
20 +[rnn]
21 +batch_normalize=1
22 +output = 1024
23 +hidden=1024
24 +activation=leaky
25 +
26 +[rnn]
27 +batch_normalize=1
28 +output = 1024
29 +hidden=1024
30 +activation=leaky
31 +
32 +[connected]
33 +output=256
34 +activation=leaky
35 +
36 +[softmax]
37 +
38 +[cost]
39 +type=sse
40 +
1 +[net]
2 +subdivisions=8
3 +inputs=256
4 +batch = 128
5 +momentum=0.9
6 +decay=0.001
7 +max_batches = 2000
8 +time_steps=576
9 +learning_rate=0.1
10 +policy=steps
11 +steps=1000,1500
12 +scales=.1,.1
13 +
14 +[rnn]
15 +batch_normalize=1
16 +output = 1024
17 +hidden=1024
18 +activation=leaky
19 +
20 +[rnn]
21 +batch_normalize=1
22 +output = 1024
23 +hidden=1024
24 +activation=leaky
25 +
26 +[rnn]
27 +batch_normalize=1
28 +output = 1024
29 +hidden=1024
30 +activation=leaky
31 +
32 +[connected]
33 +output=256
34 +activation=leaky
35 +
36 +[softmax]
37 +
38 +[cost]
39 +type=sse
40 +
1 +[net]
2 +batch=128
3 +subdivisions=4
4 +height=256
5 +width=256
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +
10 +learning_rate=0.01
11 +policy=steps
12 +scales=.1,.1,.1
13 +steps=200000,300000,400000
14 +max_batches=800000
15 +
16 +
17 +[crop]
18 +crop_height=224
19 +crop_width=224
20 +flip=1
21 +angle=0
22 +saturation=1
23 +exposure=1
24 +shift=.2
25 +
26 +[convolutional]
27 +filters=64
28 +size=7
29 +stride=2
30 +pad=1
31 +activation=ramp
32 +
33 +[convolutional]
34 +filters=192
35 +size=3
36 +stride=2
37 +pad=1
38 +activation=ramp
39 +
40 +[convolutional]
41 +filters=128
42 +size=1
43 +stride=1
44 +pad=1
45 +activation=ramp
46 +
47 +[convolutional]
48 +filters=256
49 +size=3
50 +stride=2
51 +pad=1
52 +activation=ramp
53 +
54 +[convolutional]
55 +filters=128
56 +size=1
57 +stride=1
58 +pad=1
59 +activation=ramp
60 +
61 +[convolutional]
62 +filters=256
63 +size=3
64 +stride=1
65 +pad=1
66 +activation=ramp
67 +
68 +[convolutional]
69 +filters=128
70 +size=1
71 +stride=1
72 +pad=1
73 +activation=ramp
74 +
75 +[convolutional]
76 +filters=512
77 +size=3
78 +stride=2
79 +pad=1
80 +activation=ramp
81 +
82 +[convolutional]
83 +filters=256
84 +size=1
85 +stride=1
86 +pad=1
87 +activation=ramp
88 +
89 +[convolutional]
90 +filters=512
91 +size=3
92 +stride=1
93 +pad=1
94 +activation=ramp
95 +
96 +[convolutional]
97 +filters=256
98 +size=1
99 +stride=1
100 +pad=1
101 +activation=ramp
102 +
103 +[convolutional]
104 +filters=512
105 +size=3
106 +stride=1
107 +pad=1
108 +activation=ramp
109 +
110 +[convolutional]
111 +filters=256
112 +size=1
113 +stride=1
114 +pad=1
115 +activation=ramp
116 +
117 +[convolutional]
118 +filters=512
119 +size=3
120 +stride=1
121 +pad=1
122 +activation=ramp
123 +
124 +[convolutional]
125 +filters=256
126 +size=1
127 +stride=1
128 +pad=1
129 +activation=ramp
130 +
131 +[convolutional]
132 +filters=512
133 +size=3
134 +stride=1
135 +pad=1
136 +activation=ramp
137 +
138 +[convolutional]
139 +filters=256
140 +size=1
141 +stride=1
142 +pad=1
143 +activation=ramp
144 +
145 +[convolutional]
146 +filters=1024
147 +size=3
148 +stride=2
149 +pad=1
150 +activation=ramp
151 +
152 +[convolutional]
153 +filters=512
154 +size=1
155 +stride=1
156 +pad=1
157 +activation=ramp
158 +
159 +[convolutional]
160 +filters=1024
161 +size=3
162 +stride=1
163 +pad=1
164 +activation=ramp
165 +
166 +[maxpool]
167 +size=3
168 +stride=2
169 +
170 +[connected]
171 +output=4096
172 +activation=ramp
173 +
174 +[dropout]
175 +probability=0.5
176 +
177 +[connected]
178 +output=1000
179 +activation=ramp
180 +
181 +[softmax]
182 +
183 +[cost]
184 +type=sse
185 +
1 +[net]
2 +batch=1
3 +subdivisions=1
4 +height=224
5 +width=224
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +
10 +learning_rate=0.0005
11 +policy=steps
12 +steps=200,400,600,20000,30000
13 +scales=2.5,2,2,.1,.1
14 +max_batches = 40000
15 +
16 +[convolutional]
17 +filters=16
18 +size=3
19 +stride=1
20 +pad=1
21 +activation=leaky
22 +
23 +[maxpool]
24 +size=2
25 +stride=2
26 +
27 +[convolutional]
28 +filters=32
29 +size=3
30 +stride=1
31 +pad=1
32 +activation=leaky
33 +
34 +[maxpool]
35 +size=2
36 +stride=2
37 +
38 +[convolutional]
39 +filters=64
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +filters=128
51 +size=3
52 +stride=1
53 +pad=1
54 +activation=leaky
55 +
56 +[maxpool]
57 +size=2
58 +stride=2
59 +
60 +[convolutional]
61 +filters=256
62 +size=3
63 +stride=1
64 +pad=1
65 +activation=leaky
66 +
67 +[maxpool]
68 +size=2
69 +stride=2
70 +
71 +[convolutional]
72 +filters=512
73 +size=3
74 +stride=1
75 +pad=1
76 +activation=leaky
77 +
78 +[convolutional]
79 +filters=1024
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +filters=1024
87 +size=3
88 +stride=1
89 +pad=1
90 +activation=leaky
91 +
92 +[convolutional]
93 +filters=256
94 +size=3
95 +stride=1
96 +pad=1
97 +activation=leaky
98 +
99 +[connected]
100 +output= 1470
101 +activation=linear
102 +
103 +[detection]
104 +classes=20
105 +coords=4
106 +rescore=1
107 +side=7
108 +num=2
109 +softmax=0
110 +sqrt=1
111 +jitter=.2
112 +
113 +object_scale=1
114 +noobject_scale=.5
115 +class_scale=1
116 +coord_scale=5
117 +
1 +[net]
2 +batch=64
3 +subdivisions=8
4 +width=416
5 +height=416
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +angle=0
10 +saturation = 1.5
11 +exposure = 1.5
12 +hue=.1
13 +
14 +learning_rate=0.001
15 +max_batches = 40200
16 +policy=steps
17 +steps=-1,100,20000,30000
18 +scales=.1,10,.1,.1
19 +
20 +[convolutional]
21 +batch_normalize=1
22 +filters=16
23 +size=3
24 +stride=1
25 +pad=1
26 +activation=leaky
27 +
28 +[maxpool]
29 +size=2
30 +stride=2
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=32
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=leaky
39 +
40 +[maxpool]
41 +size=2
42 +stride=2
43 +
44 +[convolutional]
45 +batch_normalize=1
46 +filters=64
47 +size=3
48 +stride=1
49 +pad=1
50 +activation=leaky
51 +
52 +[maxpool]
53 +size=2
54 +stride=2
55 +
56 +[convolutional]
57 +batch_normalize=1
58 +filters=128
59 +size=3
60 +stride=1
61 +pad=1
62 +activation=leaky
63 +
64 +[maxpool]
65 +size=2
66 +stride=2
67 +
68 +[convolutional]
69 +batch_normalize=1
70 +filters=256
71 +size=3
72 +stride=1
73 +pad=1
74 +activation=leaky
75 +
76 +[maxpool]
77 +size=2
78 +stride=2
79 +
80 +[convolutional]
81 +batch_normalize=1
82 +filters=512
83 +size=3
84 +stride=1
85 +pad=1
86 +activation=leaky
87 +
88 +[maxpool]
89 +size=2
90 +stride=1
91 +
92 +[convolutional]
93 +batch_normalize=1
94 +filters=1024
95 +size=3
96 +stride=1
97 +pad=1
98 +activation=leaky
99 +
100 +###########
101 +
102 +[convolutional]
103 +batch_normalize=1
104 +size=3
105 +stride=1
106 +pad=1
107 +filters=1024
108 +activation=leaky
109 +
110 +[convolutional]
111 +size=1
112 +stride=1
113 +pad=1
114 +filters=125
115 +activation=linear
116 +
117 +[region]
118 +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
119 +bias_match=1
120 +classes=20
121 +coords=4
122 +num=5
123 +softmax=1
124 +jitter=.2
125 +rescore=1
126 +
127 +object_scale=5
128 +noobject_scale=1
129 +class_scale=1
130 +coord_scale=1
131 +
132 +absolute=1
133 +thresh = .6
134 +random=1
1 +[net]
2 +batch=64
3 +subdivisions=8
4 +width=416
5 +height=416
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +angle=0
10 +saturation = 1.5
11 +exposure = 1.5
12 +hue=.1
13 +
14 +learning_rate=0.001
15 +max_batches = 120000
16 +policy=steps
17 +steps=-1,100,80000,100000
18 +scales=.1,10,.1,.1
19 +
20 +[convolutional]
21 +batch_normalize=1
22 +filters=16
23 +size=3
24 +stride=1
25 +pad=1
26 +activation=leaky
27 +
28 +[maxpool]
29 +size=2
30 +stride=2
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=32
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=leaky
39 +
40 +[maxpool]
41 +size=2
42 +stride=2
43 +
44 +[convolutional]
45 +batch_normalize=1
46 +filters=64
47 +size=3
48 +stride=1
49 +pad=1
50 +activation=leaky
51 +
52 +[maxpool]
53 +size=2
54 +stride=2
55 +
56 +[convolutional]
57 +batch_normalize=1
58 +filters=128
59 +size=3
60 +stride=1
61 +pad=1
62 +activation=leaky
63 +
64 +[maxpool]
65 +size=2
66 +stride=2
67 +
68 +[convolutional]
69 +batch_normalize=1
70 +filters=256
71 +size=3
72 +stride=1
73 +pad=1
74 +activation=leaky
75 +
76 +[maxpool]
77 +size=2
78 +stride=2
79 +
80 +[convolutional]
81 +batch_normalize=1
82 +filters=512
83 +size=3
84 +stride=1
85 +pad=1
86 +activation=leaky
87 +
88 +[maxpool]
89 +size=2
90 +stride=1
91 +
92 +[convolutional]
93 +batch_normalize=1
94 +filters=1024
95 +size=3
96 +stride=1
97 +pad=1
98 +activation=leaky
99 +
100 +###########
101 +
102 +[convolutional]
103 +batch_normalize=1
104 +size=3
105 +stride=1
106 +pad=1
107 +filters=1024
108 +activation=leaky
109 +
110 +[convolutional]
111 +size=1
112 +stride=1
113 +pad=1
114 +filters=425
115 +activation=linear
116 +
117 +[region]
118 +anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
119 +bias_match=1
120 +classes=80
121 +coords=4
122 +num=5
123 +softmax=1
124 +jitter=.2
125 +rescore=1
126 +
127 +object_scale=5
128 +noobject_scale=1
129 +class_scale=1
130 +coord_scale=1
131 +
132 +absolute=1
133 +thresh = .6
134 +random=1
1 +[net]
2 +batch=64
3 +subdivisions=8
4 +width=416
5 +height=416
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +angle=0
10 +saturation = 1.5
11 +exposure = 1.5
12 +hue=.1
13 +
14 +learning_rate=0.001
15 +max_batches = 40200
16 +policy=steps
17 +steps=-1,100,20000,30000
18 +scales=.1,10,.1,.1
19 +
20 +[convolutional]
21 +#xnor=1
22 +batch_normalize=1
23 +filters=16
24 +size=3
25 +stride=1
26 +pad=1
27 +activation=leaky
28 +
29 +[maxpool]
30 +size=2
31 +stride=2
32 +
33 +[convolutional]
34 +xnor=1
35 +bin_output=1
36 +batch_normalize=1
37 +filters=32
38 +size=3
39 +stride=1
40 +pad=1
41 +activation=leaky
42 +
43 +[maxpool]
44 +size=2
45 +stride=2
46 +
47 +[convolutional]
48 +xnor=1
49 +bin_output=1
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[maxpool]
58 +size=2
59 +stride=2
60 +
61 +[convolutional]
62 +xnor=1
63 +bin_output=1
64 +batch_normalize=1
65 +filters=128
66 +size=3
67 +stride=1
68 +pad=1
69 +activation=leaky
70 +
71 +[maxpool]
72 +size=2
73 +stride=2
74 +
75 +[convolutional]
76 +xnor=1
77 +bin_output=1
78 +batch_normalize=1
79 +filters=256
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[maxpool]
86 +size=2
87 +stride=2
88 +
89 +[convolutional]
90 +xnor=1
91 +bin_output=1
92 +batch_normalize=1
93 +filters=512
94 +size=3
95 +stride=1
96 +pad=1
97 +activation=leaky
98 +
99 +[maxpool]
100 +size=2
101 +stride=1
102 +
103 +[convolutional]
104 +xnor=1
105 +bin_output=1
106 +batch_normalize=1
107 +filters=1024
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +###########
114 +
115 +[convolutional]
116 +xnor=1
117 +batch_normalize=1
118 +size=3
119 +stride=1
120 +pad=1
121 +filters=1024
122 +activation=leaky
123 +
124 +[convolutional]
125 +size=1
126 +stride=1
127 +pad=1
128 +filters=425
129 +activation=linear
130 +
131 +[region]
132 +anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
133 +bias_match=1
134 +classes=80
135 +coords=4
136 +num=5
137 +softmax=1
138 +jitter=.2
139 +rescore=1
140 +
141 +object_scale=5
142 +noobject_scale=1
143 +class_scale=1
144 +coord_scale=1
145 +
146 +absolute=1
147 +thresh = .6
148 +random=1
1 +[net]
2 +batch=128
3 +subdivisions=1
4 +height=224
5 +width=224
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +max_crop=320
10 +
11 +learning_rate=0.1
12 +policy=poly
13 +power=4
14 +max_batches=1600000
15 +
16 +angle=7
17 +hue=.1
18 +saturation=.75
19 +exposure=.75
20 +aspect=.75
21 +
22 +[convolutional]
23 +batch_normalize=1
24 +filters=16
25 +size=3
26 +stride=1
27 +pad=1
28 +activation=leaky
29 +
30 +[maxpool]
31 +size=2
32 +stride=2
33 +
34 +[convolutional]
35 +batch_normalize=1
36 +filters=32
37 +size=3
38 +stride=1
39 +pad=1
40 +activation=leaky
41 +
42 +[maxpool]
43 +size=2
44 +stride=2
45 +
46 +[convolutional]
47 +batch_normalize=1
48 +filters=16
49 +size=1
50 +stride=1
51 +pad=1
52 +activation=leaky
53 +
54 +[convolutional]
55 +batch_normalize=1
56 +filters=128
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=leaky
61 +
62 +[convolutional]
63 +batch_normalize=1
64 +filters=16
65 +size=1
66 +stride=1
67 +pad=1
68 +activation=leaky
69 +
70 +[convolutional]
71 +batch_normalize=1
72 +filters=128
73 +size=3
74 +stride=1
75 +pad=1
76 +activation=leaky
77 +
78 +[maxpool]
79 +size=2
80 +stride=2
81 +
82 +[convolutional]
83 +batch_normalize=1
84 +filters=32
85 +size=1
86 +stride=1
87 +pad=1
88 +activation=leaky
89 +
90 +[convolutional]
91 +batch_normalize=1
92 +filters=256
93 +size=3
94 +stride=1
95 +pad=1
96 +activation=leaky
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=32
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=leaky
105 +
106 +[convolutional]
107 +batch_normalize=1
108 +filters=256
109 +size=3
110 +stride=1
111 +pad=1
112 +activation=leaky
113 +
114 +[maxpool]
115 +size=2
116 +stride=2
117 +
118 +[convolutional]
119 +batch_normalize=1
120 +filters=64
121 +size=1
122 +stride=1
123 +pad=1
124 +activation=leaky
125 +
126 +[convolutional]
127 +batch_normalize=1
128 +filters=512
129 +size=3
130 +stride=1
131 +pad=1
132 +activation=leaky
133 +
134 +[convolutional]
135 +batch_normalize=1
136 +filters=64
137 +size=1
138 +stride=1
139 +pad=1
140 +activation=leaky
141 +
142 +[convolutional]
143 +batch_normalize=1
144 +filters=512
145 +size=3
146 +stride=1
147 +pad=1
148 +activation=leaky
149 +
150 +[convolutional]
151 +batch_normalize=1
152 +filters=128
153 +size=1
154 +stride=1
155 +pad=1
156 +activation=leaky
157 +
158 +[convolutional]
159 +filters=1000
160 +size=1
161 +stride=1
162 +pad=1
163 +activation=linear
164 +
165 +[avgpool]
166 +
167 +[softmax]
168 +groups=1
169 +
170 +[cost]
171 +type=sse
172 +
1 +[net]
2 +batch=128
3 +subdivisions=4
4 +height=256
5 +width=256
6 +channels=3
7 +learning_rate=0.00001
8 +momentum=0.9
9 +decay=0.0005
10 +
11 +[crop]
12 +crop_height=224
13 +crop_width=224
14 +flip=1
15 +exposure=1
16 +saturation=1
17 +angle=0
18 +
19 +[convolutional]
20 +filters=64
21 +size=3
22 +stride=1
23 +pad=1
24 +activation=relu
25 +
26 +[convolutional]
27 +filters=64
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=relu
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +filters=128
39 +size=3
40 +stride=1
41 +pad=1
42 +activation=relu
43 +
44 +[convolutional]
45 +filters=128
46 +size=3
47 +stride=1
48 +pad=1
49 +activation=relu
50 +
51 +[maxpool]
52 +size=2
53 +stride=2
54 +
55 +[convolutional]
56 +filters=256
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=relu
61 +
62 +[convolutional]
63 +filters=256
64 +size=3
65 +stride=1
66 +pad=1
67 +activation=relu
68 +
69 +[convolutional]
70 +filters=256
71 +size=3
72 +stride=1
73 +pad=1
74 +activation=relu
75 +
76 +[maxpool]
77 +size=2
78 +stride=2
79 +
80 +[convolutional]
81 +filters=512
82 +size=3
83 +stride=1
84 +pad=1
85 +activation=relu
86 +
87 +[convolutional]
88 +filters=512
89 +size=3
90 +stride=1
91 +pad=1
92 +activation=relu
93 +
94 +[convolutional]
95 +filters=512
96 +size=3
97 +stride=1
98 +pad=1
99 +activation=relu
100 +
101 +[maxpool]
102 +size=2
103 +stride=2
104 +
105 +[convolutional]
106 +filters=512
107 +size=3
108 +stride=1
109 +pad=1
110 +activation=relu
111 +
112 +[convolutional]
113 +filters=512
114 +size=3
115 +stride=1
116 +pad=1
117 +activation=relu
118 +
119 +[convolutional]
120 +filters=512
121 +size=3
122 +stride=1
123 +pad=1
124 +activation=relu
125 +
126 +[maxpool]
127 +size=2
128 +stride=2
129 +
130 +[connected]
131 +output=4096
132 +activation=relu
133 +
134 +[dropout]
135 +probability=.5
136 +
137 +[connected]
138 +output=4096
139 +activation=relu
140 +
141 +[dropout]
142 +probability=.5
143 +
144 +[connected]
145 +output=1000
146 +activation=linear
147 +
148 +[softmax]
149 +groups=1
150 +
151 +[cost]
152 +type=sse
153 +
1 +[net]
2 +batch=1
3 +subdivisions=1
4 +width=112
5 +height=112
6 +#width=224
7 +#height=224
8 +channels=3
9 +learning_rate=0.00001
10 +momentum=0.9
11 +decay=0.0005
12 +
13 +[convolutional]
14 +filters=64
15 +size=3
16 +stride=1
17 +pad=1
18 +activation=relu
19 +
20 +[convolutional]
21 +filters=64
22 +size=3
23 +stride=1
24 +pad=1
25 +activation=relu
26 +
27 +[maxpool]
28 +size=2
29 +stride=2
30 +
31 +[convolutional]
32 +filters=128
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=relu
37 +
38 +[convolutional]
39 +filters=128
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=relu
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +filters=256
51 +size=3
52 +stride=1
53 +pad=1
54 +activation=relu
55 +
56 +[convolutional]
57 +filters=256
58 +size=3
59 +stride=1
60 +pad=1
61 +activation=relu
62 +
63 +[convolutional]
64 +filters=256
65 +size=3
66 +stride=1
67 +pad=1
68 +activation=relu
69 +
70 +[maxpool]
71 +size=2
72 +stride=2
73 +
74 +[convolutional]
75 +filters=512
76 +size=3
77 +stride=1
78 +pad=1
79 +activation=relu
80 +
81 +[convolutional]
82 +filters=512
83 +size=3
84 +stride=1
85 +pad=1
86 +activation=relu
87 +
88 +[convolutional]
89 +filters=512
90 +size=3
91 +stride=1
92 +pad=1
93 +activation=relu
94 +
95 +[maxpool]
96 +size=2
97 +stride=2
98 +
99 +[convolutional]
100 +filters=512
101 +size=3
102 +stride=1
103 +pad=1
104 +activation=relu
105 +
106 +[convolutional]
107 +filters=512
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=relu
112 +
113 +[convolutional]
114 +filters=512
115 +size=3
116 +stride=1
117 +pad=1
118 +activation=relu
119 +
120 +[maxpool]
121 +size=2
122 +stride=2
123 +
1 +classes= 20
2 +train = data/train_voc.txt
3 +valid = data/2007_test.txt
4 +#difficult = data/difficult_2007_test.txt
5 +names = data/voc.names
6 +backup = backup/
7 +
1 +[net]
2 +batch=128
3 +subdivisions=2
4 +height=256
5 +width=256
6 +channels=3
7 +learning_rate=0.00000001
8 +momentum=0.9
9 +decay=0.0005
10 +seen=0
11 +
12 +[convolutional]
13 +filters=32
14 +size=3
15 +stride=1
16 +pad=1
17 +activation=leaky
18 +
19 +[convolutional]
20 +filters=32
21 +size=3
22 +stride=1
23 +pad=1
24 +activation=leaky
25 +
26 +[convolutional]
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[convolutional]
34 +filters=1
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=logistic
39 +
40 +[cost]
41 +
1 +[net]
2 +batch=64
3 +subdivisions=8
4 +height=416
5 +width=416
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +angle=0
10 +saturation = 1.5
11 +exposure = 1.5
12 +hue=.1
13 +
14 +learning_rate=0.0001
15 +max_batches = 45000
16 +policy=steps
17 +steps=100,25000,35000
18 +scales=10,.1,.1
19 +
20 +[convolutional]
21 +batch_normalize=1
22 +filters=32
23 +size=3
24 +stride=1
25 +pad=1
26 +activation=leaky
27 +
28 +[maxpool]
29 +size=2
30 +stride=2
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=64
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=leaky
39 +
40 +[maxpool]
41 +size=2
42 +stride=2
43 +
44 +[convolutional]
45 +batch_normalize=1
46 +filters=128
47 +size=3
48 +stride=1
49 +pad=1
50 +activation=leaky
51 +
52 +[convolutional]
53 +batch_normalize=1
54 +filters=64
55 +size=1
56 +stride=1
57 +pad=1
58 +activation=leaky
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=128
63 +size=3
64 +stride=1
65 +pad=1
66 +activation=leaky
67 +
68 +[maxpool]
69 +size=2
70 +stride=2
71 +
72 +[convolutional]
73 +batch_normalize=1
74 +filters=256
75 +size=3
76 +stride=1
77 +pad=1
78 +activation=leaky
79 +
80 +[convolutional]
81 +batch_normalize=1
82 +filters=128
83 +size=1
84 +stride=1
85 +pad=1
86 +activation=leaky
87 +
88 +[convolutional]
89 +batch_normalize=1
90 +filters=256
91 +size=3
92 +stride=1
93 +pad=1
94 +activation=leaky
95 +
96 +[maxpool]
97 +size=2
98 +stride=2
99 +
100 +[convolutional]
101 +batch_normalize=1
102 +filters=512
103 +size=3
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=256
111 +size=1
112 +stride=1
113 +pad=1
114 +activation=leaky
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=512
119 +size=3
120 +stride=1
121 +pad=1
122 +activation=leaky
123 +
124 +[convolutional]
125 +batch_normalize=1
126 +filters=256
127 +size=1
128 +stride=1
129 +pad=1
130 +activation=leaky
131 +
132 +[convolutional]
133 +batch_normalize=1
134 +filters=512
135 +size=3
136 +stride=1
137 +pad=1
138 +activation=leaky
139 +
140 +[maxpool]
141 +size=2
142 +stride=2
143 +
144 +[convolutional]
145 +batch_normalize=1
146 +filters=1024
147 +size=3
148 +stride=1
149 +pad=1
150 +activation=leaky
151 +
152 +[convolutional]
153 +batch_normalize=1
154 +filters=512
155 +size=1
156 +stride=1
157 +pad=1
158 +activation=leaky
159 +
160 +[convolutional]
161 +batch_normalize=1
162 +filters=1024
163 +size=3
164 +stride=1
165 +pad=1
166 +activation=leaky
167 +
168 +[convolutional]
169 +batch_normalize=1
170 +filters=512
171 +size=1
172 +stride=1
173 +pad=1
174 +activation=leaky
175 +
176 +[convolutional]
177 +batch_normalize=1
178 +filters=1024
179 +size=3
180 +stride=1
181 +pad=1
182 +activation=leaky
183 +
184 +
185 +#######
186 +
187 +[convolutional]
188 +batch_normalize=1
189 +size=3
190 +stride=1
191 +pad=1
192 +filters=1024
193 +activation=leaky
194 +
195 +[convolutional]
196 +batch_normalize=1
197 +size=3
198 +stride=1
199 +pad=1
200 +filters=1024
201 +activation=leaky
202 +
203 +[route]
204 +layers=-9
205 +
206 +[reorg]
207 +stride=2
208 +
209 +[route]
210 +layers=-1,-3
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +size=3
215 +stride=1
216 +pad=1
217 +filters=1024
218 +activation=leaky
219 +
220 +[convolutional]
221 +size=1
222 +stride=1
223 +pad=1
224 +filters=125
225 +activation=linear
226 +
227 +[region]
228 +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
229 +bias_match=1
230 +classes=20
231 +coords=4
232 +num=5
233 +softmax=1
234 +jitter=.2
235 +rescore=1
236 +
237 +object_scale=5
238 +noobject_scale=1
239 +class_scale=1
240 +coord_scale=1
241 +
242 +absolute=1
243 +thresh = .6
244 +random=0
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=8
8 +height=416
9 +width=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 80200
21 +policy=steps
22 +steps=40000,60000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=64
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=128
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=64
60 +size=1
61 +stride=1
62 +pad=1
63 +activation=leaky
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=1
70 +pad=1
71 +activation=leaky
72 +
73 +[maxpool]
74 +size=2
75 +stride=2
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=256
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=128
88 +size=1
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=256
96 +size=3
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[maxpool]
102 +size=2
103 +stride=2
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=512
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +[convolutional]
114 +batch_normalize=1
115 +filters=256
116 +size=1
117 +stride=1
118 +pad=1
119 +activation=leaky
120 +
121 +[convolutional]
122 +batch_normalize=1
123 +filters=512
124 +size=3
125 +stride=1
126 +pad=1
127 +activation=leaky
128 +
129 +[convolutional]
130 +batch_normalize=1
131 +filters=256
132 +size=1
133 +stride=1
134 +pad=1
135 +activation=leaky
136 +
137 +[convolutional]
138 +batch_normalize=1
139 +filters=512
140 +size=3
141 +stride=1
142 +pad=1
143 +activation=leaky
144 +
145 +[maxpool]
146 +size=2
147 +stride=2
148 +
149 +[convolutional]
150 +batch_normalize=1
151 +filters=1024
152 +size=3
153 +stride=1
154 +pad=1
155 +activation=leaky
156 +
157 +[convolutional]
158 +batch_normalize=1
159 +filters=512
160 +size=1
161 +stride=1
162 +pad=1
163 +activation=leaky
164 +
165 +[convolutional]
166 +batch_normalize=1
167 +filters=1024
168 +size=3
169 +stride=1
170 +pad=1
171 +activation=leaky
172 +
173 +[convolutional]
174 +batch_normalize=1
175 +filters=512
176 +size=1
177 +stride=1
178 +pad=1
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=1024
184 +size=3
185 +stride=1
186 +pad=1
187 +activation=leaky
188 +
189 +
190 +#######
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +size=3
195 +stride=1
196 +pad=1
197 +filters=1024
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +size=3
203 +stride=1
204 +pad=1
205 +filters=1024
206 +activation=leaky
207 +
208 +[route]
209 +layers=-9
210 +
211 +[convolutional]
212 +batch_normalize=1
213 +size=1
214 +stride=1
215 +pad=1
216 +filters=64
217 +activation=leaky
218 +
219 +[reorg]
220 +stride=2
221 +
222 +[route]
223 +layers=-1,-4
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +size=3
228 +stride=1
229 +pad=1
230 +filters=1024
231 +activation=leaky
232 +
233 +[convolutional]
234 +size=1
235 +stride=1
236 +pad=1
237 +filters=125
238 +activation=linear
239 +
240 +
241 +[region]
242 +anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
243 +bias_match=1
244 +classes=20
245 +coords=4
246 +num=5
247 +softmax=1
248 +jitter=.3
249 +rescore=1
250 +
251 +object_scale=5
252 +noobject_scale=1
253 +class_scale=1
254 +coord_scale=1
255 +
256 +absolute=1
257 +thresh = .6
258 +random=1
1 +[net]
2 +batch=1
3 +subdivisions=1
4 +width=416
5 +height=416
6 +channels=3
7 +momentum=0.9
8 +decay=0.0005
9 +angle=0
10 +saturation = 1.5
11 +exposure = 1.5
12 +hue=.1
13 +
14 +learning_rate=0.001
15 +max_batches = 120000
16 +policy=steps
17 +steps=-1,100,80000,100000
18 +scales=.1,10,.1,.1
19 +
20 +[convolutional]
21 +batch_normalize=1
22 +filters=32
23 +size=3
24 +stride=1
25 +pad=1
26 +activation=leaky
27 +
28 +[maxpool]
29 +size=2
30 +stride=2
31 +
32 +[convolutional]
33 +batch_normalize=1
34 +filters=64
35 +size=3
36 +stride=1
37 +pad=1
38 +activation=leaky
39 +
40 +[maxpool]
41 +size=2
42 +stride=2
43 +
44 +[convolutional]
45 +batch_normalize=1
46 +filters=128
47 +size=3
48 +stride=1
49 +pad=1
50 +activation=leaky
51 +
52 +[convolutional]
53 +batch_normalize=1
54 +filters=64
55 +size=1
56 +stride=1
57 +pad=1
58 +activation=leaky
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=128
63 +size=3
64 +stride=1
65 +pad=1
66 +activation=leaky
67 +
68 +[maxpool]
69 +size=2
70 +stride=2
71 +
72 +[convolutional]
73 +batch_normalize=1
74 +filters=256
75 +size=3
76 +stride=1
77 +pad=1
78 +activation=leaky
79 +
80 +[convolutional]
81 +batch_normalize=1
82 +filters=128
83 +size=1
84 +stride=1
85 +pad=1
86 +activation=leaky
87 +
88 +[convolutional]
89 +batch_normalize=1
90 +filters=256
91 +size=3
92 +stride=1
93 +pad=1
94 +activation=leaky
95 +
96 +[maxpool]
97 +size=2
98 +stride=2
99 +
100 +[convolutional]
101 +batch_normalize=1
102 +filters=512
103 +size=3
104 +stride=1
105 +pad=1
106 +activation=leaky
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=256
111 +size=1
112 +stride=1
113 +pad=1
114 +activation=leaky
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=512
119 +size=3
120 +stride=1
121 +pad=1
122 +activation=leaky
123 +
124 +[convolutional]
125 +batch_normalize=1
126 +filters=256
127 +size=1
128 +stride=1
129 +pad=1
130 +activation=leaky
131 +
132 +[convolutional]
133 +batch_normalize=1
134 +filters=512
135 +size=3
136 +stride=1
137 +pad=1
138 +activation=leaky
139 +
140 +[maxpool]
141 +size=2
142 +stride=2
143 +
144 +[convolutional]
145 +batch_normalize=1
146 +filters=1024
147 +size=3
148 +stride=1
149 +pad=1
150 +activation=leaky
151 +
152 +[convolutional]
153 +batch_normalize=1
154 +filters=512
155 +size=1
156 +stride=1
157 +pad=1
158 +activation=leaky
159 +
160 +[convolutional]
161 +batch_normalize=1
162 +filters=1024
163 +size=3
164 +stride=1
165 +pad=1
166 +activation=leaky
167 +
168 +[convolutional]
169 +batch_normalize=1
170 +filters=512
171 +size=1
172 +stride=1
173 +pad=1
174 +activation=leaky
175 +
176 +[convolutional]
177 +batch_normalize=1
178 +filters=1024
179 +size=3
180 +stride=1
181 +pad=1
182 +activation=leaky
183 +
184 +
185 +#######
186 +
187 +[convolutional]
188 +batch_normalize=1
189 +size=3
190 +stride=1
191 +pad=1
192 +filters=1024
193 +activation=leaky
194 +
195 +[convolutional]
196 +batch_normalize=1
197 +size=3
198 +stride=1
199 +pad=1
200 +filters=1024
201 +activation=leaky
202 +
203 +[route]
204 +layers=-9
205 +
206 +[reorg]
207 +stride=2
208 +
209 +[route]
210 +layers=-1,-3
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +size=3
215 +stride=1
216 +pad=1
217 +filters=1024
218 +activation=leaky
219 +
220 +[convolutional]
221 +size=1
222 +stride=1
223 +pad=1
224 +filters=425
225 +activation=linear
226 +
227 +[region]
228 +anchors = 0.738768,0.874946, 2.42204,2.65704, 4.30971,7.04493, 10.246,4.59428, 12.6868,11.8741
229 +bias_match=1
230 +classes=80
231 +coords=4
232 +num=5
233 +softmax=1
234 +jitter=.2
235 +rescore=1
236 +
237 +object_scale=5
238 +noobject_scale=1
239 +class_scale=1
240 +coord_scale=1
241 +
242 +absolute=1
243 +thresh = .6
244 +random=0
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=8
8 +height=416
9 +width=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=64
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=128
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=64
60 +size=1
61 +stride=1
62 +pad=1
63 +activation=leaky
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=1
70 +pad=1
71 +activation=leaky
72 +
73 +[maxpool]
74 +size=2
75 +stride=2
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=256
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=128
88 +size=1
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=256
96 +size=3
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[maxpool]
102 +size=2
103 +stride=2
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=512
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +[convolutional]
114 +batch_normalize=1
115 +filters=256
116 +size=1
117 +stride=1
118 +pad=1
119 +activation=leaky
120 +
121 +[convolutional]
122 +batch_normalize=1
123 +filters=512
124 +size=3
125 +stride=1
126 +pad=1
127 +activation=leaky
128 +
129 +[convolutional]
130 +batch_normalize=1
131 +filters=256
132 +size=1
133 +stride=1
134 +pad=1
135 +activation=leaky
136 +
137 +[convolutional]
138 +batch_normalize=1
139 +filters=512
140 +size=3
141 +stride=1
142 +pad=1
143 +activation=leaky
144 +
145 +[maxpool]
146 +size=2
147 +stride=2
148 +
149 +[convolutional]
150 +batch_normalize=1
151 +filters=1024
152 +size=3
153 +stride=1
154 +pad=1
155 +activation=leaky
156 +
157 +[convolutional]
158 +batch_normalize=1
159 +filters=512
160 +size=1
161 +stride=1
162 +pad=1
163 +activation=leaky
164 +
165 +[convolutional]
166 +batch_normalize=1
167 +filters=1024
168 +size=3
169 +stride=1
170 +pad=1
171 +activation=leaky
172 +
173 +[convolutional]
174 +batch_normalize=1
175 +filters=512
176 +size=1
177 +stride=1
178 +pad=1
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=1024
184 +size=3
185 +stride=1
186 +pad=1
187 +activation=leaky
188 +
189 +
190 +#######
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +size=3
195 +stride=1
196 +pad=1
197 +filters=1024
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +size=3
203 +stride=1
204 +pad=1
205 +filters=1024
206 +activation=leaky
207 +
208 +[route]
209 +layers=-9
210 +
211 +[convolutional]
212 +batch_normalize=1
213 +size=1
214 +stride=1
215 +pad=1
216 +filters=64
217 +activation=leaky
218 +
219 +[reorg]
220 +stride=2
221 +
222 +[route]
223 +layers=-1,-4
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +size=3
228 +stride=1
229 +pad=1
230 +filters=1024
231 +activation=leaky
232 +
233 +[convolutional]
234 +size=1
235 +stride=1
236 +pad=1
237 +filters=425
238 +activation=linear
239 +
240 +
241 +[region]
242 +anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
243 +bias_match=1
244 +classes=80
245 +coords=4
246 +num=5
247 +softmax=1
248 +jitter=.3
249 +rescore=1
250 +
251 +object_scale=5
252 +noobject_scale=1
253 +class_scale=1
254 +coord_scale=1
255 +
256 +absolute=1
257 +thresh = .6
258 +random=1
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=8
8 +batch=1
9 +subdivisions=1
10 +height=544
11 +width=544
12 +channels=3
13 +momentum=0.9
14 +decay=0.0005
15 +
16 +learning_rate=0.001
17 +burn_in=1000
18 +max_batches = 500200
19 +policy=steps
20 +steps=400000,450000
21 +scales=.1,.1
22 +
23 +hue=.1
24 +saturation=.75
25 +exposure=.75
26 +
27 +[convolutional]
28 +batch_normalize=1
29 +filters=32
30 +size=3
31 +stride=1
32 +pad=1
33 +activation=leaky
34 +
35 +[maxpool]
36 +size=2
37 +stride=2
38 +
39 +[convolutional]
40 +batch_normalize=1
41 +filters=64
42 +size=3
43 +stride=1
44 +pad=1
45 +activation=leaky
46 +
47 +[maxpool]
48 +size=2
49 +stride=2
50 +
51 +[convolutional]
52 +batch_normalize=1
53 +filters=128
54 +size=3
55 +stride=1
56 +pad=1
57 +activation=leaky
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=64
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=leaky
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=128
70 +size=3
71 +stride=1
72 +pad=1
73 +activation=leaky
74 +
75 +[maxpool]
76 +size=2
77 +stride=2
78 +
79 +[convolutional]
80 +batch_normalize=1
81 +filters=256
82 +size=3
83 +stride=1
84 +pad=1
85 +activation=leaky
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=128
90 +size=1
91 +stride=1
92 +pad=1
93 +activation=leaky
94 +
95 +[convolutional]
96 +batch_normalize=1
97 +filters=256
98 +size=3
99 +stride=1
100 +pad=1
101 +activation=leaky
102 +
103 +[maxpool]
104 +size=2
105 +stride=2
106 +
107 +[convolutional]
108 +batch_normalize=1
109 +filters=512
110 +size=3
111 +stride=1
112 +pad=1
113 +activation=leaky
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=256
118 +size=1
119 +stride=1
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +batch_normalize=1
125 +filters=512
126 +size=3
127 +stride=1
128 +pad=1
129 +activation=leaky
130 +
131 +[convolutional]
132 +batch_normalize=1
133 +filters=256
134 +size=1
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[convolutional]
140 +batch_normalize=1
141 +filters=512
142 +size=3
143 +stride=1
144 +pad=1
145 +activation=leaky
146 +
147 +[maxpool]
148 +size=2
149 +stride=2
150 +
151 +[convolutional]
152 +batch_normalize=1
153 +filters=1024
154 +size=3
155 +stride=1
156 +pad=1
157 +activation=leaky
158 +
159 +[convolutional]
160 +batch_normalize=1
161 +filters=512
162 +size=1
163 +stride=1
164 +pad=1
165 +activation=leaky
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=1024
170 +size=3
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=512
178 +size=1
179 +stride=1
180 +pad=1
181 +activation=leaky
182 +
183 +[convolutional]
184 +batch_normalize=1
185 +filters=1024
186 +size=3
187 +stride=1
188 +pad=1
189 +activation=leaky
190 +
191 +[convolutional]
192 +filters=28269
193 +size=1
194 +stride=1
195 +pad=1
196 +activation=linear
197 +
198 +[region]
199 +anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974
200 +bias_match=1
201 +classes=9418
202 +coords=4
203 +num=3
204 +softmax=1
205 +jitter=.2
206 +rescore=1
207 +
208 +object_scale=5
209 +noobject_scale=1
210 +class_scale=1
211 +coord_scale=1
212 +
213 +thresh = .6
214 +absolute=1
215 +random=1
216 +
217 +tree=data/9k.tree
218 +map = data/coco9k.map
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=2
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +max_batches = 40200
20 +policy=steps
21 +steps=-1,100,20000,30000
22 +scales=.1,10,.1,.1
23 +
24 +[convolutional]
25 +batch_normalize=1
26 +filters=16
27 +size=3
28 +stride=1
29 +pad=1
30 +activation=leaky
31 +
32 +[maxpool]
33 +size=2
34 +stride=2
35 +
36 +[convolutional]
37 +batch_normalize=1
38 +filters=32
39 +size=3
40 +stride=1
41 +pad=1
42 +activation=leaky
43 +
44 +[maxpool]
45 +size=2
46 +stride=2
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=3
52 +stride=1
53 +pad=1
54 +activation=leaky
55 +
56 +[maxpool]
57 +size=2
58 +stride=2
59 +
60 +[convolutional]
61 +batch_normalize=1
62 +filters=128
63 +size=3
64 +stride=1
65 +pad=1
66 +activation=leaky
67 +
68 +[maxpool]
69 +size=2
70 +stride=2
71 +
72 +[convolutional]
73 +batch_normalize=1
74 +filters=256
75 +size=3
76 +stride=1
77 +pad=1
78 +activation=leaky
79 +
80 +[maxpool]
81 +size=2
82 +stride=2
83 +
84 +[convolutional]
85 +batch_normalize=1
86 +filters=512
87 +size=3
88 +stride=1
89 +pad=1
90 +activation=leaky
91 +
92 +[maxpool]
93 +size=2
94 +stride=1
95 +
96 +[convolutional]
97 +batch_normalize=1
98 +filters=1024
99 +size=3
100 +stride=1
101 +pad=1
102 +activation=leaky
103 +
104 +###########
105 +
106 +[convolutional]
107 +batch_normalize=1
108 +size=3
109 +stride=1
110 +pad=1
111 +filters=1024
112 +activation=leaky
113 +
114 +[convolutional]
115 +size=1
116 +stride=1
117 +pad=1
118 +filters=125
119 +activation=linear
120 +
121 +[region]
122 +anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
123 +bias_match=1
124 +classes=20
125 +coords=4
126 +num=5
127 +softmax=1
128 +jitter=.2
129 +rescore=1
130 +
131 +object_scale=5
132 +noobject_scale=1
133 +class_scale=1
134 +coord_scale=1
135 +
136 +absolute=1
137 +thresh = .6
138 +random=1
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=2
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=16
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=32
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[maxpool]
58 +size=2
59 +stride=2
60 +
61 +[convolutional]
62 +batch_normalize=1
63 +filters=128
64 +size=3
65 +stride=1
66 +pad=1
67 +activation=leaky
68 +
69 +[maxpool]
70 +size=2
71 +stride=2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=256
76 +size=3
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[maxpool]
82 +size=2
83 +stride=2
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=512
88 +size=3
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[maxpool]
94 +size=2
95 +stride=1
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=1024
100 +size=3
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +###########
106 +
107 +[convolutional]
108 +batch_normalize=1
109 +size=3
110 +stride=1
111 +pad=1
112 +filters=512
113 +activation=leaky
114 +
115 +[convolutional]
116 +size=1
117 +stride=1
118 +pad=1
119 +filters=425
120 +activation=linear
121 +
122 +[region]
123 +anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
124 +bias_match=1
125 +classes=80
126 +coords=4
127 +num=5
128 +softmax=1
129 +jitter=.2
130 +rescore=0
131 +
132 +object_scale=5
133 +noobject_scale=1
134 +class_scale=1
135 +coord_scale=1
136 +
137 +absolute=1
138 +thresh = .6
139 +random=1
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=8
8 +height=416
9 +width=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 80200
21 +policy=steps
22 +steps=40000,60000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=64
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=128
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=64
60 +size=1
61 +stride=1
62 +pad=1
63 +activation=leaky
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=1
70 +pad=1
71 +activation=leaky
72 +
73 +[maxpool]
74 +size=2
75 +stride=2
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=256
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=128
88 +size=1
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=256
96 +size=3
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[maxpool]
102 +size=2
103 +stride=2
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=512
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +[convolutional]
114 +batch_normalize=1
115 +filters=256
116 +size=1
117 +stride=1
118 +pad=1
119 +activation=leaky
120 +
121 +[convolutional]
122 +batch_normalize=1
123 +filters=512
124 +size=3
125 +stride=1
126 +pad=1
127 +activation=leaky
128 +
129 +[convolutional]
130 +batch_normalize=1
131 +filters=256
132 +size=1
133 +stride=1
134 +pad=1
135 +activation=leaky
136 +
137 +[convolutional]
138 +batch_normalize=1
139 +filters=512
140 +size=3
141 +stride=1
142 +pad=1
143 +activation=leaky
144 +
145 +[maxpool]
146 +size=2
147 +stride=2
148 +
149 +[convolutional]
150 +batch_normalize=1
151 +filters=1024
152 +size=3
153 +stride=1
154 +pad=1
155 +activation=leaky
156 +
157 +[convolutional]
158 +batch_normalize=1
159 +filters=512
160 +size=1
161 +stride=1
162 +pad=1
163 +activation=leaky
164 +
165 +[convolutional]
166 +batch_normalize=1
167 +filters=1024
168 +size=3
169 +stride=1
170 +pad=1
171 +activation=leaky
172 +
173 +[convolutional]
174 +batch_normalize=1
175 +filters=512
176 +size=1
177 +stride=1
178 +pad=1
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=1024
184 +size=3
185 +stride=1
186 +pad=1
187 +activation=leaky
188 +
189 +
190 +#######
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +size=3
195 +stride=1
196 +pad=1
197 +filters=1024
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +size=3
203 +stride=1
204 +pad=1
205 +filters=1024
206 +activation=leaky
207 +
208 +[route]
209 +layers=-9
210 +
211 +[convolutional]
212 +batch_normalize=1
213 +size=1
214 +stride=1
215 +pad=1
216 +filters=64
217 +activation=leaky
218 +
219 +[reorg]
220 +stride=2
221 +
222 +[route]
223 +layers=-1,-4
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +size=3
228 +stride=1
229 +pad=1
230 +filters=1024
231 +activation=leaky
232 +
233 +[convolutional]
234 +size=1
235 +stride=1
236 +pad=1
237 +filters=125
238 +activation=linear
239 +
240 +
241 +[region]
242 +anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
243 +bias_match=1
244 +classes=20
245 +coords=4
246 +num=5
247 +softmax=1
248 +jitter=.3
249 +rescore=1
250 +
251 +object_scale=5
252 +noobject_scale=1
253 +class_scale=1
254 +coord_scale=1
255 +
256 +absolute=1
257 +thresh = .6
258 +random=1
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=8
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=64
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=128
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[convolutional]
58 +batch_normalize=1
59 +filters=64
60 +size=1
61 +stride=1
62 +pad=1
63 +activation=leaky
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=1
70 +pad=1
71 +activation=leaky
72 +
73 +[maxpool]
74 +size=2
75 +stride=2
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=256
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=128
88 +size=1
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=256
96 +size=3
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[maxpool]
102 +size=2
103 +stride=2
104 +
105 +[convolutional]
106 +batch_normalize=1
107 +filters=512
108 +size=3
109 +stride=1
110 +pad=1
111 +activation=leaky
112 +
113 +[convolutional]
114 +batch_normalize=1
115 +filters=256
116 +size=1
117 +stride=1
118 +pad=1
119 +activation=leaky
120 +
121 +[convolutional]
122 +batch_normalize=1
123 +filters=512
124 +size=3
125 +stride=1
126 +pad=1
127 +activation=leaky
128 +
129 +[convolutional]
130 +batch_normalize=1
131 +filters=256
132 +size=1
133 +stride=1
134 +pad=1
135 +activation=leaky
136 +
137 +[convolutional]
138 +batch_normalize=1
139 +filters=512
140 +size=3
141 +stride=1
142 +pad=1
143 +activation=leaky
144 +
145 +[maxpool]
146 +size=2
147 +stride=2
148 +
149 +[convolutional]
150 +batch_normalize=1
151 +filters=1024
152 +size=3
153 +stride=1
154 +pad=1
155 +activation=leaky
156 +
157 +[convolutional]
158 +batch_normalize=1
159 +filters=512
160 +size=1
161 +stride=1
162 +pad=1
163 +activation=leaky
164 +
165 +[convolutional]
166 +batch_normalize=1
167 +filters=1024
168 +size=3
169 +stride=1
170 +pad=1
171 +activation=leaky
172 +
173 +[convolutional]
174 +batch_normalize=1
175 +filters=512
176 +size=1
177 +stride=1
178 +pad=1
179 +activation=leaky
180 +
181 +[convolutional]
182 +batch_normalize=1
183 +filters=1024
184 +size=3
185 +stride=1
186 +pad=1
187 +activation=leaky
188 +
189 +
190 +#######
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +size=3
195 +stride=1
196 +pad=1
197 +filters=1024
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +size=3
203 +stride=1
204 +pad=1
205 +filters=1024
206 +activation=leaky
207 +
208 +[route]
209 +layers=-9
210 +
211 +[convolutional]
212 +batch_normalize=1
213 +size=1
214 +stride=1
215 +pad=1
216 +filters=64
217 +activation=leaky
218 +
219 +[reorg]
220 +stride=2
221 +
222 +[route]
223 +layers=-1,-4
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +size=3
228 +stride=1
229 +pad=1
230 +filters=1024
231 +activation=leaky
232 +
233 +[convolutional]
234 +size=1
235 +stride=1
236 +pad=1
237 +filters=425
238 +activation=linear
239 +
240 +
241 +[region]
242 +anchors = 0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
243 +bias_match=1
244 +classes=80
245 +coords=4
246 +num=5
247 +softmax=1
248 +jitter=.3
249 +rescore=1
250 +
251 +object_scale=5
252 +noobject_scale=1
253 +class_scale=1
254 +coord_scale=1
255 +
256 +absolute=1
257 +thresh = .6
258 +random=1
1 +[net]
2 +# Testing
3 + batch=1
4 + subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=5000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +# Downsample
34 +
35 +[convolutional]
36 +batch_normalize=1
37 +filters=64
38 +size=3
39 +stride=2
40 +pad=1
41 +activation=leaky
42 +
43 +[convolutional]
44 +batch_normalize=1
45 +filters=32
46 +size=1
47 +stride=1
48 +pad=1
49 +activation=leaky
50 +
51 +[convolutional]
52 +batch_normalize=1
53 +filters=64
54 +size=3
55 +stride=1
56 +pad=1
57 +activation=leaky
58 +
59 +[shortcut]
60 +from=-3
61 +activation=linear
62 +
63 +# Downsample
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=2
70 +pad=1
71 +activation=leaky
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[convolutional]
82 +batch_normalize=1
83 +filters=128
84 +size=3
85 +stride=1
86 +pad=1
87 +activation=leaky
88 +
89 +[shortcut]
90 +from=-3
91 +activation=linear
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=64
96 +size=1
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=128
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[shortcut]
110 +from=-3
111 +activation=linear
112 +
113 +# Downsample
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=256
118 +size=3
119 +stride=2
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +batch_normalize=1
125 +filters=128
126 +size=1
127 +stride=1
128 +pad=1
129 +activation=leaky
130 +
131 +[convolutional]
132 +batch_normalize=1
133 +filters=256
134 +size=3
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[shortcut]
140 +from=-3
141 +activation=linear
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=128
146 +size=1
147 +stride=1
148 +pad=1
149 +activation=leaky
150 +
151 +[convolutional]
152 +batch_normalize=1
153 +filters=256
154 +size=3
155 +stride=1
156 +pad=1
157 +activation=leaky
158 +
159 +[shortcut]
160 +from=-3
161 +activation=linear
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=128
166 +size=1
167 +stride=1
168 +pad=1
169 +activation=leaky
170 +
171 +[convolutional]
172 +batch_normalize=1
173 +filters=256
174 +size=3
175 +stride=1
176 +pad=1
177 +activation=leaky
178 +
179 +[shortcut]
180 +from=-3
181 +activation=linear
182 +
183 +[convolutional]
184 +batch_normalize=1
185 +filters=128
186 +size=1
187 +stride=1
188 +pad=1
189 +activation=leaky
190 +
191 +[convolutional]
192 +batch_normalize=1
193 +filters=256
194 +size=3
195 +stride=1
196 +pad=1
197 +activation=leaky
198 +
199 +[shortcut]
200 +from=-3
201 +activation=linear
202 +
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +filters=256
215 +size=3
216 +stride=1
217 +pad=1
218 +activation=leaky
219 +
220 +[shortcut]
221 +from=-3
222 +activation=linear
223 +
224 +[convolutional]
225 +batch_normalize=1
226 +filters=128
227 +size=1
228 +stride=1
229 +pad=1
230 +activation=leaky
231 +
232 +[convolutional]
233 +batch_normalize=1
234 +filters=256
235 +size=3
236 +stride=1
237 +pad=1
238 +activation=leaky
239 +
240 +[shortcut]
241 +from=-3
242 +activation=linear
243 +
244 +[convolutional]
245 +batch_normalize=1
246 +filters=128
247 +size=1
248 +stride=1
249 +pad=1
250 +activation=leaky
251 +
252 +[convolutional]
253 +batch_normalize=1
254 +filters=256
255 +size=3
256 +stride=1
257 +pad=1
258 +activation=leaky
259 +
260 +[shortcut]
261 +from=-3
262 +activation=linear
263 +
264 +[convolutional]
265 +batch_normalize=1
266 +filters=128
267 +size=1
268 +stride=1
269 +pad=1
270 +activation=leaky
271 +
272 +[convolutional]
273 +batch_normalize=1
274 +filters=256
275 +size=3
276 +stride=1
277 +pad=1
278 +activation=leaky
279 +
280 +[shortcut]
281 +from=-3
282 +activation=linear
283 +
284 +# Downsample
285 +
286 +[convolutional]
287 +batch_normalize=1
288 +filters=512
289 +size=3
290 +stride=2
291 +pad=1
292 +activation=leaky
293 +
294 +[convolutional]
295 +batch_normalize=1
296 +filters=256
297 +size=1
298 +stride=1
299 +pad=1
300 +activation=leaky
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=512
305 +size=3
306 +stride=1
307 +pad=1
308 +activation=leaky
309 +
310 +[shortcut]
311 +from=-3
312 +activation=linear
313 +
314 +
315 +[convolutional]
316 +batch_normalize=1
317 +filters=256
318 +size=1
319 +stride=1
320 +pad=1
321 +activation=leaky
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=512
326 +size=3
327 +stride=1
328 +pad=1
329 +activation=leaky
330 +
331 +[shortcut]
332 +from=-3
333 +activation=linear
334 +
335 +
336 +[convolutional]
337 +batch_normalize=1
338 +filters=256
339 +size=1
340 +stride=1
341 +pad=1
342 +activation=leaky
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=512
347 +size=3
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[shortcut]
353 +from=-3
354 +activation=linear
355 +
356 +
357 +[convolutional]
358 +batch_normalize=1
359 +filters=256
360 +size=1
361 +stride=1
362 +pad=1
363 +activation=leaky
364 +
365 +[convolutional]
366 +batch_normalize=1
367 +filters=512
368 +size=3
369 +stride=1
370 +pad=1
371 +activation=leaky
372 +
373 +[shortcut]
374 +from=-3
375 +activation=linear
376 +
377 +[convolutional]
378 +batch_normalize=1
379 +filters=256
380 +size=1
381 +stride=1
382 +pad=1
383 +activation=leaky
384 +
385 +[convolutional]
386 +batch_normalize=1
387 +filters=512
388 +size=3
389 +stride=1
390 +pad=1
391 +activation=leaky
392 +
393 +[shortcut]
394 +from=-3
395 +activation=linear
396 +
397 +
398 +[convolutional]
399 +batch_normalize=1
400 +filters=256
401 +size=1
402 +stride=1
403 +pad=1
404 +activation=leaky
405 +
406 +[convolutional]
407 +batch_normalize=1
408 +filters=512
409 +size=3
410 +stride=1
411 +pad=1
412 +activation=leaky
413 +
414 +[shortcut]
415 +from=-3
416 +activation=linear
417 +
418 +
419 +[convolutional]
420 +batch_normalize=1
421 +filters=256
422 +size=1
423 +stride=1
424 +pad=1
425 +activation=leaky
426 +
427 +[convolutional]
428 +batch_normalize=1
429 +filters=512
430 +size=3
431 +stride=1
432 +pad=1
433 +activation=leaky
434 +
435 +[shortcut]
436 +from=-3
437 +activation=linear
438 +
439 +[convolutional]
440 +batch_normalize=1
441 +filters=256
442 +size=1
443 +stride=1
444 +pad=1
445 +activation=leaky
446 +
447 +[convolutional]
448 +batch_normalize=1
449 +filters=512
450 +size=3
451 +stride=1
452 +pad=1
453 +activation=leaky
454 +
455 +[shortcut]
456 +from=-3
457 +activation=linear
458 +
459 +# Downsample
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=1024
464 +size=3
465 +stride=2
466 +pad=1
467 +activation=leaky
468 +
469 +[convolutional]
470 +batch_normalize=1
471 +filters=512
472 +size=1
473 +stride=1
474 +pad=1
475 +activation=leaky
476 +
477 +[convolutional]
478 +batch_normalize=1
479 +filters=1024
480 +size=3
481 +stride=1
482 +pad=1
483 +activation=leaky
484 +
485 +[shortcut]
486 +from=-3
487 +activation=linear
488 +
489 +[convolutional]
490 +batch_normalize=1
491 +filters=512
492 +size=1
493 +stride=1
494 +pad=1
495 +activation=leaky
496 +
497 +[convolutional]
498 +batch_normalize=1
499 +filters=1024
500 +size=3
501 +stride=1
502 +pad=1
503 +activation=leaky
504 +
505 +[shortcut]
506 +from=-3
507 +activation=linear
508 +
509 +[convolutional]
510 +batch_normalize=1
511 +filters=512
512 +size=1
513 +stride=1
514 +pad=1
515 +activation=leaky
516 +
517 +[convolutional]
518 +batch_normalize=1
519 +filters=1024
520 +size=3
521 +stride=1
522 +pad=1
523 +activation=leaky
524 +
525 +[shortcut]
526 +from=-3
527 +activation=linear
528 +
529 +[convolutional]
530 +batch_normalize=1
531 +filters=512
532 +size=1
533 +stride=1
534 +pad=1
535 +activation=leaky
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=1024
540 +size=3
541 +stride=1
542 +pad=1
543 +activation=leaky
544 +
545 +[shortcut]
546 +from=-3
547 +activation=linear
548 +
549 +######################
550 +
551 +[convolutional]
552 +batch_normalize=1
553 +filters=512
554 +size=1
555 +stride=1
556 +pad=1
557 +activation=leaky
558 +
559 +[convolutional]
560 +batch_normalize=1
561 +size=3
562 +stride=1
563 +pad=1
564 +filters=1024
565 +activation=leaky
566 +
567 +[convolutional]
568 +batch_normalize=1
569 +filters=512
570 +size=1
571 +stride=1
572 +pad=1
573 +activation=leaky
574 +
575 +[convolutional]
576 +batch_normalize=1
577 +size=3
578 +stride=1
579 +pad=1
580 +filters=1024
581 +activation=leaky
582 +
583 +[convolutional]
584 +batch_normalize=1
585 +filters=512
586 +size=1
587 +stride=1
588 +pad=1
589 +activation=leaky
590 +
591 +[convolutional]
592 +batch_normalize=1
593 +size=3
594 +stride=1
595 +pad=1
596 +filters=1024
597 +activation=leaky
598 +
599 +[convolutional]
600 +size=1
601 +stride=1
602 +pad=1
603 +filters=1818
604 +activation=linear
605 +
606 +
607 +[yolo]
608 +mask = 6,7,8
609 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
610 +classes=601
611 +num=9
612 +jitter=.3
613 +ignore_thresh = .7
614 +truth_thresh = 1
615 +random=1
616 +
617 +
618 +[route]
619 +layers = -4
620 +
621 +[convolutional]
622 +batch_normalize=1
623 +filters=256
624 +size=1
625 +stride=1
626 +pad=1
627 +activation=leaky
628 +
629 +[upsample]
630 +stride=2
631 +
632 +[route]
633 +layers = -1, 61
634 +
635 +
636 +
637 +[convolutional]
638 +batch_normalize=1
639 +filters=256
640 +size=1
641 +stride=1
642 +pad=1
643 +activation=leaky
644 +
645 +[convolutional]
646 +batch_normalize=1
647 +size=3
648 +stride=1
649 +pad=1
650 +filters=512
651 +activation=leaky
652 +
653 +[convolutional]
654 +batch_normalize=1
655 +filters=256
656 +size=1
657 +stride=1
658 +pad=1
659 +activation=leaky
660 +
661 +[convolutional]
662 +batch_normalize=1
663 +size=3
664 +stride=1
665 +pad=1
666 +filters=512
667 +activation=leaky
668 +
669 +[convolutional]
670 +batch_normalize=1
671 +filters=256
672 +size=1
673 +stride=1
674 +pad=1
675 +activation=leaky
676 +
677 +[convolutional]
678 +batch_normalize=1
679 +size=3
680 +stride=1
681 +pad=1
682 +filters=512
683 +activation=leaky
684 +
685 +[convolutional]
686 +size=1
687 +stride=1
688 +pad=1
689 +filters=1818
690 +activation=linear
691 +
692 +
693 +[yolo]
694 +mask = 3,4,5
695 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
696 +classes=601
697 +num=9
698 +jitter=.3
699 +ignore_thresh = .7
700 +truth_thresh = 1
701 +random=1
702 +
703 +
704 +
705 +[route]
706 +layers = -4
707 +
708 +[convolutional]
709 +batch_normalize=1
710 +filters=128
711 +size=1
712 +stride=1
713 +pad=1
714 +activation=leaky
715 +
716 +[upsample]
717 +stride=2
718 +
719 +[route]
720 +layers = -1, 36
721 +
722 +
723 +
724 +[convolutional]
725 +batch_normalize=1
726 +filters=128
727 +size=1
728 +stride=1
729 +pad=1
730 +activation=leaky
731 +
732 +[convolutional]
733 +batch_normalize=1
734 +size=3
735 +stride=1
736 +pad=1
737 +filters=256
738 +activation=leaky
739 +
740 +[convolutional]
741 +batch_normalize=1
742 +filters=128
743 +size=1
744 +stride=1
745 +pad=1
746 +activation=leaky
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +size=3
751 +stride=1
752 +pad=1
753 +filters=256
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +filters=128
759 +size=1
760 +stride=1
761 +pad=1
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +size=3
767 +stride=1
768 +pad=1
769 +filters=256
770 +activation=leaky
771 +
772 +[convolutional]
773 +size=1
774 +stride=1
775 +pad=1
776 +filters=1818
777 +activation=linear
778 +
779 +
780 +[yolo]
781 +mask = 0,1,2
782 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
783 +classes=601
784 +num=9
785 +jitter=.3
786 +ignore_thresh = .7
787 +truth_thresh = 1
788 +random=1
789 +
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=16
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +# Downsample
34 +
35 +[convolutional]
36 +batch_normalize=1
37 +filters=64
38 +size=3
39 +stride=2
40 +pad=1
41 +activation=leaky
42 +
43 +[convolutional]
44 +batch_normalize=1
45 +filters=32
46 +size=1
47 +stride=1
48 +pad=1
49 +activation=leaky
50 +
51 +[convolutional]
52 +batch_normalize=1
53 +filters=64
54 +size=3
55 +stride=1
56 +pad=1
57 +activation=leaky
58 +
59 +[shortcut]
60 +from=-3
61 +activation=linear
62 +
63 +# Downsample
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=2
70 +pad=1
71 +activation=leaky
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[convolutional]
82 +batch_normalize=1
83 +filters=128
84 +size=3
85 +stride=1
86 +pad=1
87 +activation=leaky
88 +
89 +[shortcut]
90 +from=-3
91 +activation=linear
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=64
96 +size=1
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=128
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[shortcut]
110 +from=-3
111 +activation=linear
112 +
113 +# Downsample
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=256
118 +size=3
119 +stride=2
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +batch_normalize=1
125 +filters=128
126 +size=1
127 +stride=1
128 +pad=1
129 +activation=leaky
130 +
131 +[convolutional]
132 +batch_normalize=1
133 +filters=256
134 +size=3
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[shortcut]
140 +from=-3
141 +activation=linear
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=128
146 +size=1
147 +stride=1
148 +pad=1
149 +activation=leaky
150 +
151 +[convolutional]
152 +batch_normalize=1
153 +filters=256
154 +size=3
155 +stride=1
156 +pad=1
157 +activation=leaky
158 +
159 +[shortcut]
160 +from=-3
161 +activation=linear
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=128
166 +size=1
167 +stride=1
168 +pad=1
169 +activation=leaky
170 +
171 +[convolutional]
172 +batch_normalize=1
173 +filters=256
174 +size=3
175 +stride=1
176 +pad=1
177 +activation=leaky
178 +
179 +[shortcut]
180 +from=-3
181 +activation=linear
182 +
183 +[convolutional]
184 +batch_normalize=1
185 +filters=128
186 +size=1
187 +stride=1
188 +pad=1
189 +activation=leaky
190 +
191 +[convolutional]
192 +batch_normalize=1
193 +filters=256
194 +size=3
195 +stride=1
196 +pad=1
197 +activation=leaky
198 +
199 +[shortcut]
200 +from=-3
201 +activation=linear
202 +
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +filters=256
215 +size=3
216 +stride=1
217 +pad=1
218 +activation=leaky
219 +
220 +[shortcut]
221 +from=-3
222 +activation=linear
223 +
224 +[convolutional]
225 +batch_normalize=1
226 +filters=128
227 +size=1
228 +stride=1
229 +pad=1
230 +activation=leaky
231 +
232 +[convolutional]
233 +batch_normalize=1
234 +filters=256
235 +size=3
236 +stride=1
237 +pad=1
238 +activation=leaky
239 +
240 +[shortcut]
241 +from=-3
242 +activation=linear
243 +
244 +[convolutional]
245 +batch_normalize=1
246 +filters=128
247 +size=1
248 +stride=1
249 +pad=1
250 +activation=leaky
251 +
252 +[convolutional]
253 +batch_normalize=1
254 +filters=256
255 +size=3
256 +stride=1
257 +pad=1
258 +activation=leaky
259 +
260 +[shortcut]
261 +from=-3
262 +activation=linear
263 +
264 +[convolutional]
265 +batch_normalize=1
266 +filters=128
267 +size=1
268 +stride=1
269 +pad=1
270 +activation=leaky
271 +
272 +[convolutional]
273 +batch_normalize=1
274 +filters=256
275 +size=3
276 +stride=1
277 +pad=1
278 +activation=leaky
279 +
280 +[shortcut]
281 +from=-3
282 +activation=linear
283 +
284 +# Downsample
285 +
286 +[convolutional]
287 +batch_normalize=1
288 +filters=512
289 +size=3
290 +stride=2
291 +pad=1
292 +activation=leaky
293 +
294 +[convolutional]
295 +batch_normalize=1
296 +filters=256
297 +size=1
298 +stride=1
299 +pad=1
300 +activation=leaky
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=512
305 +size=3
306 +stride=1
307 +pad=1
308 +activation=leaky
309 +
310 +[shortcut]
311 +from=-3
312 +activation=linear
313 +
314 +
315 +[convolutional]
316 +batch_normalize=1
317 +filters=256
318 +size=1
319 +stride=1
320 +pad=1
321 +activation=leaky
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=512
326 +size=3
327 +stride=1
328 +pad=1
329 +activation=leaky
330 +
331 +[shortcut]
332 +from=-3
333 +activation=linear
334 +
335 +
336 +[convolutional]
337 +batch_normalize=1
338 +filters=256
339 +size=1
340 +stride=1
341 +pad=1
342 +activation=leaky
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=512
347 +size=3
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[shortcut]
353 +from=-3
354 +activation=linear
355 +
356 +
357 +[convolutional]
358 +batch_normalize=1
359 +filters=256
360 +size=1
361 +stride=1
362 +pad=1
363 +activation=leaky
364 +
365 +[convolutional]
366 +batch_normalize=1
367 +filters=512
368 +size=3
369 +stride=1
370 +pad=1
371 +activation=leaky
372 +
373 +[shortcut]
374 +from=-3
375 +activation=linear
376 +
377 +[convolutional]
378 +batch_normalize=1
379 +filters=256
380 +size=1
381 +stride=1
382 +pad=1
383 +activation=leaky
384 +
385 +[convolutional]
386 +batch_normalize=1
387 +filters=512
388 +size=3
389 +stride=1
390 +pad=1
391 +activation=leaky
392 +
393 +[shortcut]
394 +from=-3
395 +activation=linear
396 +
397 +
398 +[convolutional]
399 +batch_normalize=1
400 +filters=256
401 +size=1
402 +stride=1
403 +pad=1
404 +activation=leaky
405 +
406 +[convolutional]
407 +batch_normalize=1
408 +filters=512
409 +size=3
410 +stride=1
411 +pad=1
412 +activation=leaky
413 +
414 +[shortcut]
415 +from=-3
416 +activation=linear
417 +
418 +
419 +[convolutional]
420 +batch_normalize=1
421 +filters=256
422 +size=1
423 +stride=1
424 +pad=1
425 +activation=leaky
426 +
427 +[convolutional]
428 +batch_normalize=1
429 +filters=512
430 +size=3
431 +stride=1
432 +pad=1
433 +activation=leaky
434 +
435 +[shortcut]
436 +from=-3
437 +activation=linear
438 +
439 +[convolutional]
440 +batch_normalize=1
441 +filters=256
442 +size=1
443 +stride=1
444 +pad=1
445 +activation=leaky
446 +
447 +[convolutional]
448 +batch_normalize=1
449 +filters=512
450 +size=3
451 +stride=1
452 +pad=1
453 +activation=leaky
454 +
455 +[shortcut]
456 +from=-3
457 +activation=linear
458 +
459 +# Downsample
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=1024
464 +size=3
465 +stride=2
466 +pad=1
467 +activation=leaky
468 +
469 +[convolutional]
470 +batch_normalize=1
471 +filters=512
472 +size=1
473 +stride=1
474 +pad=1
475 +activation=leaky
476 +
477 +[convolutional]
478 +batch_normalize=1
479 +filters=1024
480 +size=3
481 +stride=1
482 +pad=1
483 +activation=leaky
484 +
485 +[shortcut]
486 +from=-3
487 +activation=linear
488 +
489 +[convolutional]
490 +batch_normalize=1
491 +filters=512
492 +size=1
493 +stride=1
494 +pad=1
495 +activation=leaky
496 +
497 +[convolutional]
498 +batch_normalize=1
499 +filters=1024
500 +size=3
501 +stride=1
502 +pad=1
503 +activation=leaky
504 +
505 +[shortcut]
506 +from=-3
507 +activation=linear
508 +
509 +[convolutional]
510 +batch_normalize=1
511 +filters=512
512 +size=1
513 +stride=1
514 +pad=1
515 +activation=leaky
516 +
517 +[convolutional]
518 +batch_normalize=1
519 +filters=1024
520 +size=3
521 +stride=1
522 +pad=1
523 +activation=leaky
524 +
525 +[shortcut]
526 +from=-3
527 +activation=linear
528 +
529 +[convolutional]
530 +batch_normalize=1
531 +filters=512
532 +size=1
533 +stride=1
534 +pad=1
535 +activation=leaky
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=1024
540 +size=3
541 +stride=1
542 +pad=1
543 +activation=leaky
544 +
545 +[shortcut]
546 +from=-3
547 +activation=linear
548 +
549 +######################
550 +
551 +[convolutional]
552 +batch_normalize=1
553 +filters=512
554 +size=1
555 +stride=1
556 +pad=1
557 +activation=leaky
558 +
559 +[convolutional]
560 +batch_normalize=1
561 +size=3
562 +stride=1
563 +pad=1
564 +filters=1024
565 +activation=leaky
566 +
567 +[convolutional]
568 +batch_normalize=1
569 +filters=512
570 +size=1
571 +stride=1
572 +pad=1
573 +activation=leaky
574 +
575 +### SPP ###
576 +[maxpool]
577 +stride=1
578 +size=5
579 +
580 +[route]
581 +layers=-2
582 +
583 +[maxpool]
584 +stride=1
585 +size=9
586 +
587 +[route]
588 +layers=-4
589 +
590 +[maxpool]
591 +stride=1
592 +size=13
593 +
594 +[route]
595 +layers=-1,-3,-5,-6
596 +
597 +### End SPP ###
598 +
599 +[convolutional]
600 +batch_normalize=1
601 +filters=512
602 +size=1
603 +stride=1
604 +pad=1
605 +activation=leaky
606 +
607 +
608 +[convolutional]
609 +batch_normalize=1
610 +size=3
611 +stride=1
612 +pad=1
613 +filters=1024
614 +activation=leaky
615 +
616 +[convolutional]
617 +batch_normalize=1
618 +filters=512
619 +size=1
620 +stride=1
621 +pad=1
622 +activation=leaky
623 +
624 +[convolutional]
625 +batch_normalize=1
626 +size=3
627 +stride=1
628 +pad=1
629 +filters=1024
630 +activation=leaky
631 +
632 +[convolutional]
633 +size=1
634 +stride=1
635 +pad=1
636 +filters=255
637 +activation=linear
638 +
639 +
640 +[yolo]
641 +mask = 6,7,8
642 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
643 +classes=80
644 +num=9
645 +jitter=.3
646 +ignore_thresh = .7
647 +truth_thresh = 1
648 +random=1
649 +
650 +
651 +[route]
652 +layers = -4
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=256
657 +size=1
658 +stride=1
659 +pad=1
660 +activation=leaky
661 +
662 +[upsample]
663 +stride=2
664 +
665 +[route]
666 +layers = -1, 61
667 +
668 +
669 +
670 +[convolutional]
671 +batch_normalize=1
672 +filters=256
673 +size=1
674 +stride=1
675 +pad=1
676 +activation=leaky
677 +
678 +[convolutional]
679 +batch_normalize=1
680 +size=3
681 +stride=1
682 +pad=1
683 +filters=512
684 +activation=leaky
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=256
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=leaky
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +size=3
697 +stride=1
698 +pad=1
699 +filters=512
700 +activation=leaky
701 +
702 +[convolutional]
703 +batch_normalize=1
704 +filters=256
705 +size=1
706 +stride=1
707 +pad=1
708 +activation=leaky
709 +
710 +[convolutional]
711 +batch_normalize=1
712 +size=3
713 +stride=1
714 +pad=1
715 +filters=512
716 +activation=leaky
717 +
718 +[convolutional]
719 +size=1
720 +stride=1
721 +pad=1
722 +filters=255
723 +activation=linear
724 +
725 +
726 +[yolo]
727 +mask = 3,4,5
728 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
729 +classes=80
730 +num=9
731 +jitter=.3
732 +ignore_thresh = .7
733 +truth_thresh = 1
734 +random=1
735 +
736 +
737 +
738 +[route]
739 +layers = -4
740 +
741 +[convolutional]
742 +batch_normalize=1
743 +filters=128
744 +size=1
745 +stride=1
746 +pad=1
747 +activation=leaky
748 +
749 +[upsample]
750 +stride=2
751 +
752 +[route]
753 +layers = -1, 36
754 +
755 +
756 +
757 +[convolutional]
758 +batch_normalize=1
759 +filters=128
760 +size=1
761 +stride=1
762 +pad=1
763 +activation=leaky
764 +
765 +[convolutional]
766 +batch_normalize=1
767 +size=3
768 +stride=1
769 +pad=1
770 +filters=256
771 +activation=leaky
772 +
773 +[convolutional]
774 +batch_normalize=1
775 +filters=128
776 +size=1
777 +stride=1
778 +pad=1
779 +activation=leaky
780 +
781 +[convolutional]
782 +batch_normalize=1
783 +size=3
784 +stride=1
785 +pad=1
786 +filters=256
787 +activation=leaky
788 +
789 +[convolutional]
790 +batch_normalize=1
791 +filters=128
792 +size=1
793 +stride=1
794 +pad=1
795 +activation=leaky
796 +
797 +[convolutional]
798 +batch_normalize=1
799 +size=3
800 +stride=1
801 +pad=1
802 +filters=256
803 +activation=leaky
804 +
805 +[convolutional]
806 +size=1
807 +stride=1
808 +pad=1
809 +filters=255
810 +activation=linear
811 +
812 +
813 +[yolo]
814 +mask = 0,1,2
815 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
816 +classes=80
817 +num=9
818 +jitter=.3
819 +ignore_thresh = .7
820 +truth_thresh = 1
821 +random=1
822 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=8
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=16
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=32
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[maxpool]
58 +size=2
59 +stride=2
60 +
61 +[convolutional]
62 +batch_normalize=1
63 +filters=128
64 +size=3
65 +stride=1
66 +pad=1
67 +activation=leaky
68 +
69 +[maxpool]
70 +size=2
71 +stride=2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=256
76 +size=3
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[maxpool]
82 +size=2
83 +stride=2
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=512
88 +size=3
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[maxpool]
94 +size=2
95 +stride=1
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=512
100 +size=3
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +[shortcut]
106 +activation=leaky
107 +from=-3
108 +
109 +###########
110 +
111 +[convolutional]
112 +batch_normalize=1
113 +filters=256
114 +size=1
115 +stride=1
116 +pad=1
117 +activation=leaky
118 +
119 +[convolutional]
120 +batch_normalize=1
121 +filters=256
122 +size=3
123 +stride=1
124 +pad=1
125 +activation=leaky
126 +
127 +[shortcut]
128 +activation=leaky
129 +from=-2
130 +
131 +[convolutional]
132 +size=1
133 +stride=1
134 +pad=1
135 +filters=255
136 +activation=linear
137 +
138 +
139 +
140 +[yolo]
141 +mask = 3,4,5
142 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
143 +classes=80
144 +num=6
145 +jitter=.3
146 +ignore_thresh = .7
147 +truth_thresh = 1
148 +random=1
149 +
150 +[route]
151 +layers = -4
152 +
153 +[convolutional]
154 +batch_normalize=1
155 +filters=128
156 +size=1
157 +stride=1
158 +pad=1
159 +activation=leaky
160 +
161 +[upsample]
162 +stride=2
163 +
164 +[shortcut]
165 +activation=leaky
166 +from=8
167 +
168 +[convolutional]
169 +batch_normalize=1
170 +filters=128
171 +size=3
172 +stride=1
173 +pad=1
174 +activation=leaky
175 +
176 +[shortcut]
177 +activation=leaky
178 +from=-3
179 +
180 +[shortcut]
181 +activation=leaky
182 +from=8
183 +
184 +[convolutional]
185 +size=1
186 +stride=1
187 +pad=1
188 +filters=255
189 +activation=linear
190 +
191 +[yolo]
192 +mask = 1,2,3
193 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
194 +classes=80
195 +num=6
196 +jitter=.3
197 +ignore_thresh = .7
198 +truth_thresh = 1
199 +random=1
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=2
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=16
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=32
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[maxpool]
58 +size=2
59 +stride=2
60 +
61 +[convolutional]
62 +batch_normalize=1
63 +filters=128
64 +size=3
65 +stride=1
66 +pad=1
67 +activation=leaky
68 +
69 +[maxpool]
70 +size=2
71 +stride=2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=256
76 +size=3
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[maxpool]
82 +size=2
83 +stride=2
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=512
88 +size=3
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[maxpool]
94 +size=2
95 +stride=1
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=1024
100 +size=3
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +###########
106 +
107 +[convolutional]
108 +batch_normalize=1
109 +filters=256
110 +size=1
111 +stride=1
112 +pad=1
113 +activation=leaky
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=512
118 +size=3
119 +stride=1
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +size=1
125 +stride=1
126 +pad=1
127 +filters=255
128 +activation=linear
129 +
130 +
131 +
132 +[yolo]
133 +mask = 3,4,5
134 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
135 +classes=80
136 +num=6
137 +jitter=.3
138 +ignore_thresh = .7
139 +truth_thresh = 1
140 +random=1
141 +
142 +[route]
143 +layers = -4
144 +
145 +[convolutional]
146 +batch_normalize=1
147 +filters=128
148 +size=1
149 +stride=1
150 +pad=1
151 +activation=leaky
152 +
153 +[upsample]
154 +stride=2
155 +
156 +[route]
157 +layers = -1, 8
158 +
159 +[convolutional]
160 +batch_normalize=1
161 +filters=256
162 +size=3
163 +stride=1
164 +pad=1
165 +activation=leaky
166 +
167 +[convolutional]
168 +size=1
169 +stride=1
170 +pad=1
171 +filters=255
172 +activation=linear
173 +
174 +[yolo]
175 +mask = 0,1,2
176 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
177 +classes=80
178 +num=6
179 +jitter=.3
180 +ignore_thresh = .7
181 +truth_thresh = 1
182 +random=1
1 +[net]
2 +# Testing
3 +# batch=1
4 +# subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 200000
21 +policy=steps
22 +steps=180000,190000
23 +scales=.1,.1
24 +
25 +
26 +[convolutional]
27 +batch_normalize=1
28 +filters=16
29 +size=3
30 +stride=1
31 +pad=1
32 +activation=leaky
33 +
34 +[maxpool]
35 +size=2
36 +stride=2
37 +
38 +[convolutional]
39 +batch_normalize=1
40 +filters=32
41 +size=3
42 +stride=1
43 +pad=1
44 +activation=leaky
45 +
46 +[maxpool]
47 +size=2
48 +stride=2
49 +
50 +[convolutional]
51 +batch_normalize=1
52 +filters=64
53 +size=3
54 +stride=1
55 +pad=1
56 +activation=leaky
57 +
58 +[maxpool]
59 +size=2
60 +stride=2
61 +
62 +[convolutional]
63 +batch_normalize=1
64 +filters=128
65 +size=3
66 +stride=1
67 +pad=1
68 +activation=leaky
69 +
70 +[maxpool]
71 +size=2
72 +stride=2
73 +
74 +[convolutional]
75 +batch_normalize=1
76 +filters=256
77 +size=3
78 +stride=1
79 +pad=1
80 +activation=leaky
81 +
82 +[maxpool]
83 +size=2
84 +stride=2
85 +
86 +[convolutional]
87 +batch_normalize=1
88 +filters=512
89 +size=3
90 +stride=1
91 +pad=1
92 +activation=leaky
93 +
94 +[maxpool]
95 +size=2
96 +stride=1
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=1024
101 +size=3
102 +stride=1
103 +pad=1
104 +activation=leaky
105 +
106 +###########
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=256
111 +size=1
112 +stride=1
113 +pad=1
114 +activation=leaky
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=512
119 +size=3
120 +stride=1
121 +pad=1
122 +activation=leaky
123 +
124 +[convolutional]
125 +size=1
126 +stride=1
127 +pad=1
128 +filters=21
129 +activation=linear
130 +
131 +
132 +
133 +[yolo]
134 +mask = 6,7,8
135 +anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
136 +classes=2
137 +num=9
138 +jitter=.3
139 +ignore_thresh = .7
140 +truth_thresh = 1
141 +random=1
142 +
143 +[route]
144 +layers = -4
145 +
146 +[convolutional]
147 +batch_normalize=1
148 +filters=128
149 +size=1
150 +stride=1
151 +pad=1
152 +activation=leaky
153 +
154 +[upsample]
155 +stride=2
156 +
157 +[route]
158 +layers = -1, 8
159 +
160 +[convolutional]
161 +batch_normalize=1
162 +filters=256
163 +size=3
164 +stride=1
165 +pad=1
166 +activation=leaky
167 +
168 +[convolutional]
169 +size=1
170 +stride=1
171 +pad=1
172 +filters=21
173 +activation=linear
174 +
175 +[yolo]
176 +mask = 3,4,5
177 +anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
178 +classes=2
179 +num=9
180 +jitter=.3
181 +ignore_thresh = .7
182 +truth_thresh = 1
183 +random=1
184 +
185 +
186 +
187 +[route]
188 +layers = -3
189 +
190 +[convolutional]
191 +batch_normalize=1
192 +filters=128
193 +size=1
194 +stride=1
195 +pad=1
196 +activation=leaky
197 +
198 +[upsample]
199 +stride=2
200 +
201 +[route]
202 +layers = -1, 6
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=3
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[convolutional]
213 +size=1
214 +stride=1
215 +pad=1
216 +filters=21
217 +activation=linear
218 +
219 +[yolo]
220 +mask = 0,1,2
221 +anchors = 4,7, 7,15, 13,25, 25,42, 41,67, 75,94, 91,162, 158,205, 250,332
222 +classes=2
223 +num=9
224 +jitter=.3
225 +ignore_thresh = .7
226 +truth_thresh = 1
227 +random=1
...\ No newline at end of file ...\ No newline at end of file
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=2
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=16
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=32
40 +size=3
41 +stride=1
42 +pad=1
43 +activation=leaky
44 +
45 +[maxpool]
46 +size=2
47 +stride=2
48 +
49 +[convolutional]
50 +batch_normalize=1
51 +filters=64
52 +size=3
53 +stride=1
54 +pad=1
55 +activation=leaky
56 +
57 +[maxpool]
58 +size=2
59 +stride=2
60 +
61 +[convolutional]
62 +batch_normalize=1
63 +filters=128
64 +size=3
65 +stride=1
66 +pad=1
67 +activation=leaky
68 +
69 +[maxpool]
70 +size=2
71 +stride=2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=256
76 +size=3
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[maxpool]
82 +size=2
83 +stride=2
84 +
85 +[convolutional]
86 +batch_normalize=1
87 +filters=512
88 +size=3
89 +stride=1
90 +pad=1
91 +activation=leaky
92 +
93 +[maxpool]
94 +size=2
95 +stride=1
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=1024
100 +size=3
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +###########
106 +
107 +[convolutional]
108 +batch_normalize=1
109 +filters=256
110 +size=1
111 +stride=1
112 +pad=1
113 +activation=leaky
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=512
118 +size=3
119 +stride=1
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +size=1
125 +stride=1
126 +pad=1
127 +filters=255
128 +activation=linear
129 +
130 +
131 +
132 +[yolo]
133 +mask = 3,4,5
134 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
135 +classes=80
136 +num=6
137 +jitter=.3
138 +ignore_thresh = .7
139 +truth_thresh = 1
140 +random=1
141 +
142 +[route]
143 +layers = -4
144 +
145 +[convolutional]
146 +batch_normalize=1
147 +filters=128
148 +size=1
149 +stride=1
150 +pad=1
151 +activation=leaky
152 +
153 +[upsample]
154 +stride=2
155 +
156 +[route]
157 +layers = -1, 8
158 +
159 +[convolutional]
160 +batch_normalize=1
161 +filters=256
162 +size=3
163 +stride=1
164 +pad=1
165 +activation=leaky
166 +
167 +[convolutional]
168 +size=1
169 +stride=1
170 +pad=1
171 +filters=255
172 +activation=linear
173 +
174 +[yolo]
175 +mask = 0,1,2
176 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
177 +classes=80
178 +num=6
179 +jitter=.3
180 +ignore_thresh = .7
181 +truth_thresh = 1
182 +random=1
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=8
7 +subdivisions=4
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +track=1
19 +time_steps=20
20 +augment_speed=3
21 +
22 +learning_rate=0.001
23 +burn_in=1000
24 +max_batches = 10000
25 +policy=steps
26 +steps=9000,9500
27 +scales=.1,.1
28 +
29 +[convolutional]
30 +batch_normalize=1
31 +filters=16
32 +size=3
33 +stride=1
34 +pad=1
35 +activation=leaky
36 +
37 +[maxpool]
38 +size=2
39 +stride=2
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=32
44 +size=3
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[maxpool]
50 +size=2
51 +stride=2
52 +
53 +[convolutional]
54 +batch_normalize=1
55 +filters=64
56 +size=3
57 +stride=1
58 +pad=1
59 +activation=leaky
60 +
61 +[maxpool]
62 +size=2
63 +stride=2
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=1
70 +pad=1
71 +activation=leaky
72 +
73 +[maxpool]
74 +size=2
75 +stride=2
76 +
77 +[convolutional]
78 +batch_normalize=1
79 +filters=256
80 +size=3
81 +stride=1
82 +pad=1
83 +activation=leaky
84 +
85 +[maxpool]
86 +size=2
87 +stride=2
88 +
89 +[convolutional]
90 +batch_normalize=1
91 +filters=512
92 +size=3
93 +stride=1
94 +pad=1
95 +activation=leaky
96 +
97 +[maxpool]
98 +size=2
99 +stride=1
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=1024
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +###########
110 +
111 +
112 +[crnn]
113 +batch_normalize=1
114 +size=3
115 +pad=1
116 +output=512
117 +hidden=256
118 +activation=leaky
119 +
120 +#[shortcut]
121 +#from=-2
122 +#activation=linear
123 +
124 +###########
125 +
126 +[convolutional]
127 +batch_normalize=1
128 +filters=256
129 +size=1
130 +stride=1
131 +pad=1
132 +activation=leaky
133 +
134 +[convolutional]
135 +batch_normalize=1
136 +filters=512
137 +size=3
138 +stride=1
139 +pad=1
140 +activation=leaky
141 +
142 +[convolutional]
143 +batch_normalize=1
144 +filters=512
145 +size=3
146 +stride=1
147 +pad=1
148 +activation=leaky
149 +
150 +[convolutional]
151 +size=1
152 +stride=1
153 +pad=1
154 +filters=18
155 +activation=linear
156 +
157 +
158 +
159 +[yolo]
160 +mask = 3,4,5
161 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
162 +classes=1
163 +num=6
164 +jitter=.3
165 +ignore_thresh = .7
166 +truth_thresh = 1
167 +random=0
168 +
169 +[route]
170 +layers = -4
171 +
172 +[convolutional]
173 +batch_normalize=1
174 +filters=128
175 +size=1
176 +stride=1
177 +pad=1
178 +activation=leaky
179 +
180 +[upsample]
181 +stride=2
182 +
183 +[route]
184 +layers = -1, 8
185 +
186 +[crnn]
187 +batch_normalize=1
188 +size=3
189 +pad=1
190 +output=256
191 +hidden=128
192 +activation=leaky
193 +
194 +[convolutional]
195 +batch_normalize=1
196 +filters=256
197 +size=3
198 +stride=1
199 +pad=1
200 +activation=leaky
201 +
202 +
203 +[convolutional]
204 +size=1
205 +stride=1
206 +pad=1
207 +filters=18
208 +activation=linear
209 +
210 +[yolo]
211 +mask = 0,1,2
212 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
213 +classes=1
214 +num=6
215 +jitter=.3
216 +ignore_thresh = .7
217 +truth_thresh = 1
218 +random=0
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=2
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=16
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +[maxpool]
34 +size=2
35 +stride=2
36 +
37 +[convolutional]
38 +xnor=1
39 +bin_output=1
40 +batch_normalize=1
41 +filters=32
42 +size=3
43 +stride=1
44 +pad=1
45 +activation=leaky
46 +
47 +[maxpool]
48 +size=2
49 +stride=2
50 +
51 +[convolutional]
52 +xnor=1
53 +bin_output=1
54 +batch_normalize=1
55 +filters=64
56 +size=3
57 +stride=1
58 +pad=1
59 +activation=leaky
60 +
61 +[maxpool]
62 +size=2
63 +stride=2
64 +
65 +[convolutional]
66 +xnor=1
67 +bin_output=1
68 +batch_normalize=1
69 +filters=128
70 +size=3
71 +stride=1
72 +pad=1
73 +activation=leaky
74 +
75 +[maxpool]
76 +size=2
77 +stride=2
78 +
79 +[convolutional]
80 +xnor=1
81 +batch_normalize=1
82 +filters=256
83 +size=3
84 +stride=1
85 +pad=1
86 +activation=leaky
87 +
88 +[maxpool]
89 +size=2
90 +stride=2
91 +
92 +[convolutional]
93 +xnor=1
94 +bin_output=1
95 +batch_normalize=1
96 +filters=512
97 +size=3
98 +stride=1
99 +pad=1
100 +activation=leaky
101 +
102 +[maxpool]
103 +size=2
104 +stride=1
105 +
106 +[convolutional]
107 +xnor=1
108 +bin_output=1
109 +batch_normalize=1
110 +filters=1024
111 +size=3
112 +stride=1
113 +pad=1
114 +activation=leaky
115 +
116 +###########
117 +
118 +[convolutional]
119 +xnor=1
120 +batch_normalize=1
121 +filters=256
122 +size=1
123 +stride=1
124 +pad=1
125 +activation=leaky
126 +
127 +[convolutional]
128 +batch_normalize=1
129 +filters=512
130 +size=3
131 +stride=1
132 +pad=1
133 +activation=leaky
134 +
135 +[convolutional]
136 +size=1
137 +stride=1
138 +pad=1
139 +filters=255
140 +activation=linear
141 +
142 +
143 +
144 +[yolo]
145 +mask = 3,4,5
146 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
147 +classes=80
148 +num=6
149 +jitter=.3
150 +ignore_thresh = .7
151 +truth_thresh = 1
152 +random=1
153 +
154 +[route]
155 +layers = -4
156 +
157 +[convolutional]
158 +xnor=1
159 +batch_normalize=1
160 +filters=128
161 +size=1
162 +stride=1
163 +pad=1
164 +activation=leaky
165 +
166 +[upsample]
167 +stride=2
168 +
169 +[route]
170 +layers = -1, 8
171 +
172 +[convolutional]
173 +xnor=1
174 +batch_normalize=1
175 +filters=256
176 +size=3
177 +stride=1
178 +pad=1
179 +activation=leaky
180 +
181 +
182 +[convolutional]
183 +size=1
184 +stride=1
185 +pad=1
186 +filters=255
187 +activation=linear
188 +
189 +[yolo]
190 +mask = 0,1,2
191 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
192 +classes=80
193 +num=6
194 +jitter=.3
195 +ignore_thresh = .7
196 +truth_thresh = 1
197 +random=1
1 +[net]
2 +# Testing
3 + batch=1
4 + subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 50200
21 +policy=steps
22 +steps=40000,45000
23 +scales=.1,.1
24 +
25 +
26 +
27 +[convolutional]
28 +batch_normalize=1
29 +filters=32
30 +size=3
31 +stride=1
32 +pad=1
33 +activation=leaky
34 +
35 +# Downsample
36 +
37 +[convolutional]
38 +batch_normalize=1
39 +filters=64
40 +size=3
41 +stride=2
42 +pad=1
43 +activation=leaky
44 +
45 +[convolutional]
46 +batch_normalize=1
47 +filters=32
48 +size=1
49 +stride=1
50 +pad=1
51 +activation=leaky
52 +
53 +[convolutional]
54 +batch_normalize=1
55 +filters=64
56 +size=3
57 +stride=1
58 +pad=1
59 +activation=leaky
60 +
61 +[shortcut]
62 +from=-3
63 +activation=linear
64 +
65 +# Downsample
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=128
70 +size=3
71 +stride=2
72 +pad=1
73 +activation=leaky
74 +
75 +[convolutional]
76 +batch_normalize=1
77 +filters=64
78 +size=1
79 +stride=1
80 +pad=1
81 +activation=leaky
82 +
83 +[convolutional]
84 +batch_normalize=1
85 +filters=128
86 +size=3
87 +stride=1
88 +pad=1
89 +activation=leaky
90 +
91 +[shortcut]
92 +from=-3
93 +activation=linear
94 +
95 +[convolutional]
96 +batch_normalize=1
97 +filters=64
98 +size=1
99 +stride=1
100 +pad=1
101 +activation=leaky
102 +
103 +[convolutional]
104 +batch_normalize=1
105 +filters=128
106 +size=3
107 +stride=1
108 +pad=1
109 +activation=leaky
110 +
111 +[shortcut]
112 +from=-3
113 +activation=linear
114 +
115 +# Downsample
116 +
117 +[convolutional]
118 +batch_normalize=1
119 +filters=256
120 +size=3
121 +stride=2
122 +pad=1
123 +activation=leaky
124 +
125 +[convolutional]
126 +batch_normalize=1
127 +filters=128
128 +size=1
129 +stride=1
130 +pad=1
131 +activation=leaky
132 +
133 +[convolutional]
134 +batch_normalize=1
135 +filters=256
136 +size=3
137 +stride=1
138 +pad=1
139 +activation=leaky
140 +
141 +[shortcut]
142 +from=-3
143 +activation=linear
144 +
145 +[convolutional]
146 +batch_normalize=1
147 +filters=128
148 +size=1
149 +stride=1
150 +pad=1
151 +activation=leaky
152 +
153 +[convolutional]
154 +batch_normalize=1
155 +filters=256
156 +size=3
157 +stride=1
158 +pad=1
159 +activation=leaky
160 +
161 +[shortcut]
162 +from=-3
163 +activation=linear
164 +
165 +[convolutional]
166 +batch_normalize=1
167 +filters=128
168 +size=1
169 +stride=1
170 +pad=1
171 +activation=leaky
172 +
173 +[convolutional]
174 +batch_normalize=1
175 +filters=256
176 +size=3
177 +stride=1
178 +pad=1
179 +activation=leaky
180 +
181 +[shortcut]
182 +from=-3
183 +activation=linear
184 +
185 +[convolutional]
186 +batch_normalize=1
187 +filters=128
188 +size=1
189 +stride=1
190 +pad=1
191 +activation=leaky
192 +
193 +[convolutional]
194 +batch_normalize=1
195 +filters=256
196 +size=3
197 +stride=1
198 +pad=1
199 +activation=leaky
200 +
201 +[shortcut]
202 +from=-3
203 +activation=linear
204 +
205 +
206 +[convolutional]
207 +batch_normalize=1
208 +filters=128
209 +size=1
210 +stride=1
211 +pad=1
212 +activation=leaky
213 +
214 +[convolutional]
215 +batch_normalize=1
216 +filters=256
217 +size=3
218 +stride=1
219 +pad=1
220 +activation=leaky
221 +
222 +[shortcut]
223 +from=-3
224 +activation=linear
225 +
226 +[convolutional]
227 +batch_normalize=1
228 +filters=128
229 +size=1
230 +stride=1
231 +pad=1
232 +activation=leaky
233 +
234 +[convolutional]
235 +batch_normalize=1
236 +filters=256
237 +size=3
238 +stride=1
239 +pad=1
240 +activation=leaky
241 +
242 +[shortcut]
243 +from=-3
244 +activation=linear
245 +
246 +[convolutional]
247 +batch_normalize=1
248 +filters=128
249 +size=1
250 +stride=1
251 +pad=1
252 +activation=leaky
253 +
254 +[convolutional]
255 +batch_normalize=1
256 +filters=256
257 +size=3
258 +stride=1
259 +pad=1
260 +activation=leaky
261 +
262 +[shortcut]
263 +from=-3
264 +activation=linear
265 +
266 +[convolutional]
267 +batch_normalize=1
268 +filters=128
269 +size=1
270 +stride=1
271 +pad=1
272 +activation=leaky
273 +
274 +[convolutional]
275 +batch_normalize=1
276 +filters=256
277 +size=3
278 +stride=1
279 +pad=1
280 +activation=leaky
281 +
282 +[shortcut]
283 +from=-3
284 +activation=linear
285 +
286 +# Downsample
287 +
288 +[convolutional]
289 +batch_normalize=1
290 +filters=512
291 +size=3
292 +stride=2
293 +pad=1
294 +activation=leaky
295 +
296 +[convolutional]
297 +batch_normalize=1
298 +filters=256
299 +size=1
300 +stride=1
301 +pad=1
302 +activation=leaky
303 +
304 +[convolutional]
305 +batch_normalize=1
306 +filters=512
307 +size=3
308 +stride=1
309 +pad=1
310 +activation=leaky
311 +
312 +[shortcut]
313 +from=-3
314 +activation=linear
315 +
316 +
317 +[convolutional]
318 +batch_normalize=1
319 +filters=256
320 +size=1
321 +stride=1
322 +pad=1
323 +activation=leaky
324 +
325 +[convolutional]
326 +batch_normalize=1
327 +filters=512
328 +size=3
329 +stride=1
330 +pad=1
331 +activation=leaky
332 +
333 +[shortcut]
334 +from=-3
335 +activation=linear
336 +
337 +
338 +[convolutional]
339 +batch_normalize=1
340 +filters=256
341 +size=1
342 +stride=1
343 +pad=1
344 +activation=leaky
345 +
346 +[convolutional]
347 +batch_normalize=1
348 +filters=512
349 +size=3
350 +stride=1
351 +pad=1
352 +activation=leaky
353 +
354 +[shortcut]
355 +from=-3
356 +activation=linear
357 +
358 +
359 +[convolutional]
360 +batch_normalize=1
361 +filters=256
362 +size=1
363 +stride=1
364 +pad=1
365 +activation=leaky
366 +
367 +[convolutional]
368 +batch_normalize=1
369 +filters=512
370 +size=3
371 +stride=1
372 +pad=1
373 +activation=leaky
374 +
375 +[shortcut]
376 +from=-3
377 +activation=linear
378 +
379 +[convolutional]
380 +batch_normalize=1
381 +filters=256
382 +size=1
383 +stride=1
384 +pad=1
385 +activation=leaky
386 +
387 +[convolutional]
388 +batch_normalize=1
389 +filters=512
390 +size=3
391 +stride=1
392 +pad=1
393 +activation=leaky
394 +
395 +[shortcut]
396 +from=-3
397 +activation=linear
398 +
399 +
400 +[convolutional]
401 +batch_normalize=1
402 +filters=256
403 +size=1
404 +stride=1
405 +pad=1
406 +activation=leaky
407 +
408 +[convolutional]
409 +batch_normalize=1
410 +filters=512
411 +size=3
412 +stride=1
413 +pad=1
414 +activation=leaky
415 +
416 +[shortcut]
417 +from=-3
418 +activation=linear
419 +
420 +
421 +[convolutional]
422 +batch_normalize=1
423 +filters=256
424 +size=1
425 +stride=1
426 +pad=1
427 +activation=leaky
428 +
429 +[convolutional]
430 +batch_normalize=1
431 +filters=512
432 +size=3
433 +stride=1
434 +pad=1
435 +activation=leaky
436 +
437 +[shortcut]
438 +from=-3
439 +activation=linear
440 +
441 +[convolutional]
442 +batch_normalize=1
443 +filters=256
444 +size=1
445 +stride=1
446 +pad=1
447 +activation=leaky
448 +
449 +[convolutional]
450 +batch_normalize=1
451 +filters=512
452 +size=3
453 +stride=1
454 +pad=1
455 +activation=leaky
456 +
457 +[shortcut]
458 +from=-3
459 +activation=linear
460 +
461 +# Downsample
462 +
463 +[convolutional]
464 +batch_normalize=1
465 +filters=1024
466 +size=3
467 +stride=2
468 +pad=1
469 +activation=leaky
470 +
471 +[convolutional]
472 +batch_normalize=1
473 +filters=512
474 +size=1
475 +stride=1
476 +pad=1
477 +activation=leaky
478 +
479 +[convolutional]
480 +batch_normalize=1
481 +filters=1024
482 +size=3
483 +stride=1
484 +pad=1
485 +activation=leaky
486 +
487 +[shortcut]
488 +from=-3
489 +activation=linear
490 +
491 +[convolutional]
492 +batch_normalize=1
493 +filters=512
494 +size=1
495 +stride=1
496 +pad=1
497 +activation=leaky
498 +
499 +[convolutional]
500 +batch_normalize=1
501 +filters=1024
502 +size=3
503 +stride=1
504 +pad=1
505 +activation=leaky
506 +
507 +[shortcut]
508 +from=-3
509 +activation=linear
510 +
511 +[convolutional]
512 +batch_normalize=1
513 +filters=512
514 +size=1
515 +stride=1
516 +pad=1
517 +activation=leaky
518 +
519 +[convolutional]
520 +batch_normalize=1
521 +filters=1024
522 +size=3
523 +stride=1
524 +pad=1
525 +activation=leaky
526 +
527 +[shortcut]
528 +from=-3
529 +activation=linear
530 +
531 +[convolutional]
532 +batch_normalize=1
533 +filters=512
534 +size=1
535 +stride=1
536 +pad=1
537 +activation=leaky
538 +
539 +[convolutional]
540 +batch_normalize=1
541 +filters=1024
542 +size=3
543 +stride=1
544 +pad=1
545 +activation=leaky
546 +
547 +[shortcut]
548 +from=-3
549 +activation=linear
550 +
551 +######################
552 +
553 +[convolutional]
554 +batch_normalize=1
555 +filters=512
556 +size=1
557 +stride=1
558 +pad=1
559 +activation=leaky
560 +
561 +[convolutional]
562 +batch_normalize=1
563 +size=3
564 +stride=1
565 +pad=1
566 +filters=1024
567 +activation=leaky
568 +
569 +[convolutional]
570 +batch_normalize=1
571 +filters=512
572 +size=1
573 +stride=1
574 +pad=1
575 +activation=leaky
576 +
577 +[convolutional]
578 +batch_normalize=1
579 +size=3
580 +stride=1
581 +pad=1
582 +filters=1024
583 +activation=leaky
584 +
585 +[convolutional]
586 +batch_normalize=1
587 +filters=512
588 +size=1
589 +stride=1
590 +pad=1
591 +activation=leaky
592 +
593 +[convolutional]
594 +batch_normalize=1
595 +size=3
596 +stride=1
597 +pad=1
598 +filters=1024
599 +activation=leaky
600 +
601 +[convolutional]
602 +size=1
603 +stride=1
604 +pad=1
605 +filters=75
606 +activation=linear
607 +
608 +[yolo]
609 +mask = 6,7,8
610 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
611 +classes=20
612 +num=9
613 +jitter=.3
614 +ignore_thresh = .5
615 +truth_thresh = 1
616 +random=1
617 +
618 +[route]
619 +layers = -4
620 +
621 +[convolutional]
622 +batch_normalize=1
623 +filters=256
624 +size=1
625 +stride=1
626 +pad=1
627 +activation=leaky
628 +
629 +[upsample]
630 +stride=2
631 +
632 +[route]
633 +layers = -1, 61
634 +
635 +
636 +
637 +[convolutional]
638 +batch_normalize=1
639 +filters=256
640 +size=1
641 +stride=1
642 +pad=1
643 +activation=leaky
644 +
645 +[convolutional]
646 +batch_normalize=1
647 +size=3
648 +stride=1
649 +pad=1
650 +filters=512
651 +activation=leaky
652 +
653 +[convolutional]
654 +batch_normalize=1
655 +filters=256
656 +size=1
657 +stride=1
658 +pad=1
659 +activation=leaky
660 +
661 +[convolutional]
662 +batch_normalize=1
663 +size=3
664 +stride=1
665 +pad=1
666 +filters=512
667 +activation=leaky
668 +
669 +[convolutional]
670 +batch_normalize=1
671 +filters=256
672 +size=1
673 +stride=1
674 +pad=1
675 +activation=leaky
676 +
677 +[convolutional]
678 +batch_normalize=1
679 +size=3
680 +stride=1
681 +pad=1
682 +filters=512
683 +activation=leaky
684 +
685 +[convolutional]
686 +size=1
687 +stride=1
688 +pad=1
689 +filters=75
690 +activation=linear
691 +
692 +[yolo]
693 +mask = 3,4,5
694 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
695 +classes=20
696 +num=9
697 +jitter=.3
698 +ignore_thresh = .5
699 +truth_thresh = 1
700 +random=1
701 +
702 +[route]
703 +layers = -4
704 +
705 +[convolutional]
706 +batch_normalize=1
707 +filters=128
708 +size=1
709 +stride=1
710 +pad=1
711 +activation=leaky
712 +
713 +[upsample]
714 +stride=2
715 +
716 +[route]
717 +layers = -1, 36
718 +
719 +
720 +
721 +[convolutional]
722 +batch_normalize=1
723 +filters=128
724 +size=1
725 +stride=1
726 +pad=1
727 +activation=leaky
728 +
729 +[convolutional]
730 +batch_normalize=1
731 +size=3
732 +stride=1
733 +pad=1
734 +filters=256
735 +activation=leaky
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=128
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=leaky
744 +
745 +[convolutional]
746 +batch_normalize=1
747 +size=3
748 +stride=1
749 +pad=1
750 +filters=256
751 +activation=leaky
752 +
753 +[convolutional]
754 +batch_normalize=1
755 +filters=128
756 +size=1
757 +stride=1
758 +pad=1
759 +activation=leaky
760 +
761 +[convolutional]
762 +batch_normalize=1
763 +size=3
764 +stride=1
765 +pad=1
766 +filters=256
767 +activation=leaky
768 +
769 +[convolutional]
770 +size=1
771 +stride=1
772 +pad=1
773 +filters=75
774 +activation=linear
775 +
776 +[yolo]
777 +mask = 0,1,2
778 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
779 +classes=20
780 +num=9
781 +jitter=.3
782 +ignore_thresh = .5
783 +truth_thresh = 1
784 +random=1
785 +
1 +[net]
2 +# Testing
3 +# batch=1
4 +# subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +## single gpu
19 +learning_rate=0.001
20 +burn_in=1000
21 +max_batches = 100400
22 +
23 +## 2x
24 +#learning_rate=0.0005
25 +#burn_in=2000
26 +#max_batches = 100400
27 +#max_batches = 200800
28 +
29 +## 4x
30 +#learning_rate=0.00025
31 +#burn_in=4000
32 +#max_batches = 50200
33 +##max_batches = 200800
34 +
35 +policy=steps
36 +steps=40000,45000
37 +scales=.1,.1
38 +
39 +
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=32
44 +size=3
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +# Downsample
50 +
51 +[convolutional]
52 +batch_normalize=1
53 +filters=64
54 +size=3
55 +stride=2
56 +pad=1
57 +activation=leaky
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=32
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=leaky
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=64
70 +size=3
71 +stride=1
72 +pad=1
73 +activation=leaky
74 +
75 +[shortcut]
76 +from=-3
77 +activation=linear
78 +
79 +# Downsample
80 +
81 +[convolutional]
82 +batch_normalize=1
83 +filters=128
84 +size=3
85 +stride=2
86 +pad=1
87 +activation=leaky
88 +
89 +[convolutional]
90 +batch_normalize=1
91 +filters=64
92 +size=1
93 +stride=1
94 +pad=1
95 +activation=leaky
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=128
100 +size=3
101 +stride=1
102 +pad=1
103 +activation=leaky
104 +
105 +[shortcut]
106 +from=-3
107 +activation=linear
108 +
109 +[convolutional]
110 +batch_normalize=1
111 +filters=64
112 +size=1
113 +stride=1
114 +pad=1
115 +activation=leaky
116 +
117 +[convolutional]
118 +batch_normalize=1
119 +filters=128
120 +size=3
121 +stride=1
122 +pad=1
123 +activation=leaky
124 +
125 +[shortcut]
126 +from=-3
127 +activation=linear
128 +
129 +# Downsample
130 +
131 +[convolutional]
132 +batch_normalize=1
133 +filters=256
134 +size=3
135 +stride=2
136 +pad=1
137 +activation=leaky
138 +
139 +[convolutional]
140 +batch_normalize=1
141 +filters=128
142 +size=1
143 +stride=1
144 +pad=1
145 +activation=leaky
146 +
147 +[convolutional]
148 +batch_normalize=1
149 +filters=256
150 +size=3
151 +stride=1
152 +pad=1
153 +activation=leaky
154 +
155 +[shortcut]
156 +from=-3
157 +activation=linear
158 +
159 +[convolutional]
160 +batch_normalize=1
161 +filters=128
162 +size=1
163 +stride=1
164 +pad=1
165 +activation=leaky
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=256
170 +size=3
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[shortcut]
176 +from=-3
177 +activation=linear
178 +
179 +[convolutional]
180 +batch_normalize=1
181 +filters=128
182 +size=1
183 +stride=1
184 +pad=1
185 +activation=leaky
186 +
187 +[convolutional]
188 +batch_normalize=1
189 +filters=256
190 +size=3
191 +stride=1
192 +pad=1
193 +activation=leaky
194 +
195 +[shortcut]
196 +from=-3
197 +activation=linear
198 +
199 +[convolutional]
200 +batch_normalize=1
201 +filters=128
202 +size=1
203 +stride=1
204 +pad=1
205 +activation=leaky
206 +
207 +[convolutional]
208 +batch_normalize=1
209 +filters=256
210 +size=3
211 +stride=1
212 +pad=1
213 +activation=leaky
214 +
215 +[shortcut]
216 +from=-3
217 +activation=linear
218 +
219 +
220 +[convolutional]
221 +batch_normalize=1
222 +filters=128
223 +size=1
224 +stride=1
225 +pad=1
226 +activation=leaky
227 +
228 +[convolutional]
229 +batch_normalize=1
230 +filters=256
231 +size=3
232 +stride=1
233 +pad=1
234 +activation=leaky
235 +
236 +[shortcut]
237 +from=-3
238 +activation=linear
239 +
240 +[convolutional]
241 +batch_normalize=1
242 +filters=128
243 +size=1
244 +stride=1
245 +pad=1
246 +activation=leaky
247 +
248 +[convolutional]
249 +batch_normalize=1
250 +filters=256
251 +size=3
252 +stride=1
253 +pad=1
254 +activation=leaky
255 +
256 +[shortcut]
257 +from=-3
258 +activation=linear
259 +
260 +[convolutional]
261 +batch_normalize=1
262 +filters=128
263 +size=1
264 +stride=1
265 +pad=1
266 +activation=leaky
267 +
268 +[convolutional]
269 +batch_normalize=1
270 +filters=256
271 +size=3
272 +stride=1
273 +pad=1
274 +activation=leaky
275 +
276 +[shortcut]
277 +from=-3
278 +activation=linear
279 +
280 +[convolutional]
281 +batch_normalize=1
282 +filters=128
283 +size=1
284 +stride=1
285 +pad=1
286 +activation=leaky
287 +
288 +[convolutional]
289 +batch_normalize=1
290 +filters=256
291 +size=3
292 +stride=1
293 +pad=1
294 +activation=leaky
295 +
296 +[shortcut]
297 +from=-3
298 +activation=linear
299 +
300 +# Downsample
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=512
305 +size=3
306 +stride=2
307 +pad=1
308 +activation=leaky
309 +
310 +[convolutional]
311 +batch_normalize=1
312 +filters=256
313 +size=1
314 +stride=1
315 +pad=1
316 +activation=leaky
317 +
318 +[convolutional]
319 +batch_normalize=1
320 +filters=512
321 +size=3
322 +stride=1
323 +pad=1
324 +activation=leaky
325 +
326 +[shortcut]
327 +from=-3
328 +activation=linear
329 +
330 +
331 +[convolutional]
332 +batch_normalize=1
333 +filters=256
334 +size=1
335 +stride=1
336 +pad=1
337 +activation=leaky
338 +
339 +[convolutional]
340 +batch_normalize=1
341 +filters=512
342 +size=3
343 +stride=1
344 +pad=1
345 +activation=leaky
346 +
347 +[shortcut]
348 +from=-3
349 +activation=linear
350 +
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=256
355 +size=1
356 +stride=1
357 +pad=1
358 +activation=leaky
359 +
360 +[convolutional]
361 +batch_normalize=1
362 +filters=512
363 +size=3
364 +stride=1
365 +pad=1
366 +activation=leaky
367 +
368 +[shortcut]
369 +from=-3
370 +activation=linear
371 +
372 +
373 +[convolutional]
374 +batch_normalize=1
375 +filters=256
376 +size=1
377 +stride=1
378 +pad=1
379 +activation=leaky
380 +
381 +[convolutional]
382 +batch_normalize=1
383 +filters=512
384 +size=3
385 +stride=1
386 +pad=1
387 +activation=leaky
388 +
389 +[shortcut]
390 +from=-3
391 +activation=linear
392 +
393 +[convolutional]
394 +batch_normalize=1
395 +filters=256
396 +size=1
397 +stride=1
398 +pad=1
399 +activation=leaky
400 +
401 +[convolutional]
402 +batch_normalize=1
403 +filters=512
404 +size=3
405 +stride=1
406 +pad=1
407 +activation=leaky
408 +
409 +[shortcut]
410 +from=-3
411 +activation=linear
412 +
413 +
414 +[convolutional]
415 +batch_normalize=1
416 +filters=256
417 +size=1
418 +stride=1
419 +pad=1
420 +activation=leaky
421 +
422 +[convolutional]
423 +batch_normalize=1
424 +filters=512
425 +size=3
426 +stride=1
427 +pad=1
428 +activation=leaky
429 +
430 +[shortcut]
431 +from=-3
432 +activation=linear
433 +
434 +
435 +[convolutional]
436 +batch_normalize=1
437 +filters=256
438 +size=1
439 +stride=1
440 +pad=1
441 +activation=leaky
442 +
443 +[convolutional]
444 +batch_normalize=1
445 +filters=512
446 +size=3
447 +stride=1
448 +pad=1
449 +activation=leaky
450 +
451 +[shortcut]
452 +from=-3
453 +activation=linear
454 +
455 +[convolutional]
456 +batch_normalize=1
457 +filters=256
458 +size=1
459 +stride=1
460 +pad=1
461 +activation=leaky
462 +
463 +[convolutional]
464 +batch_normalize=1
465 +filters=512
466 +size=3
467 +stride=1
468 +pad=1
469 +activation=leaky
470 +
471 +[shortcut]
472 +from=-3
473 +activation=linear
474 +
475 +# Downsample
476 +
477 +[convolutional]
478 +batch_normalize=1
479 +filters=1024
480 +size=3
481 +stride=2
482 +pad=1
483 +activation=leaky
484 +
485 +[convolutional]
486 +batch_normalize=1
487 +filters=512
488 +size=1
489 +stride=1
490 +pad=1
491 +activation=leaky
492 +
493 +[convolutional]
494 +batch_normalize=1
495 +filters=1024
496 +size=3
497 +stride=1
498 +pad=1
499 +activation=leaky
500 +
501 +[shortcut]
502 +from=-3
503 +activation=linear
504 +
505 +[convolutional]
506 +batch_normalize=1
507 +filters=512
508 +size=1
509 +stride=1
510 +pad=1
511 +activation=leaky
512 +
513 +[convolutional]
514 +batch_normalize=1
515 +filters=1024
516 +size=3
517 +stride=1
518 +pad=1
519 +activation=leaky
520 +
521 +[shortcut]
522 +from=-3
523 +activation=linear
524 +
525 +[convolutional]
526 +batch_normalize=1
527 +filters=512
528 +size=1
529 +stride=1
530 +pad=1
531 +activation=leaky
532 +
533 +[convolutional]
534 +batch_normalize=1
535 +filters=1024
536 +size=3
537 +stride=1
538 +pad=1
539 +activation=leaky
540 +
541 +[shortcut]
542 +from=-3
543 +activation=linear
544 +
545 +[convolutional]
546 +batch_normalize=1
547 +filters=512
548 +size=1
549 +stride=1
550 +pad=1
551 +activation=leaky
552 +
553 +[convolutional]
554 +batch_normalize=1
555 +filters=1024
556 +size=3
557 +stride=1
558 +pad=1
559 +activation=leaky
560 +
561 +[shortcut]
562 +from=-3
563 +activation=linear
564 +
565 +######################
566 +
567 +[convolutional]
568 +batch_normalize=1
569 +filters=512
570 +size=1
571 +stride=1
572 +pad=1
573 +activation=leaky
574 +
575 +[convolutional]
576 +batch_normalize=1
577 +size=3
578 +stride=1
579 +pad=1
580 +filters=1024
581 +activation=leaky
582 +
583 +[convolutional]
584 +batch_normalize=1
585 +filters=512
586 +size=1
587 +stride=1
588 +pad=1
589 +activation=leaky
590 +
591 +[convolutional]
592 +batch_normalize=1
593 +size=3
594 +stride=1
595 +pad=1
596 +filters=1024
597 +activation=leaky
598 +
599 +[convolutional]
600 +batch_normalize=1
601 +filters=512
602 +size=1
603 +stride=1
604 +pad=1
605 +activation=leaky
606 +
607 +[convolutional]
608 +batch_normalize=1
609 +size=3
610 +stride=1
611 +pad=1
612 +filters=1024
613 +activation=leaky
614 +
615 +[convolutional]
616 +size=1
617 +stride=1
618 +pad=1
619 +filters=75
620 +activation=linear
621 +
622 +[yolo]
623 +mask = 6,7,8
624 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
625 +classes=20
626 +num=9
627 +jitter=.3
628 +ignore_thresh = .5
629 +truth_thresh = 1
630 +random=1
631 +iou_normalizer=0.25
632 +cls_normalizer=1.0
633 +iou_loss=giou
634 +
635 +[route]
636 +layers = -4
637 +
638 +[convolutional]
639 +batch_normalize=1
640 +filters=256
641 +size=1
642 +stride=1
643 +pad=1
644 +activation=leaky
645 +
646 +[upsample]
647 +stride=2
648 +
649 +[route]
650 +layers = -1, 61
651 +
652 +
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=256
657 +size=1
658 +stride=1
659 +pad=1
660 +activation=leaky
661 +
662 +[convolutional]
663 +batch_normalize=1
664 +size=3
665 +stride=1
666 +pad=1
667 +filters=512
668 +activation=leaky
669 +
670 +[convolutional]
671 +batch_normalize=1
672 +filters=256
673 +size=1
674 +stride=1
675 +pad=1
676 +activation=leaky
677 +
678 +[convolutional]
679 +batch_normalize=1
680 +size=3
681 +stride=1
682 +pad=1
683 +filters=512
684 +activation=leaky
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=256
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=leaky
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +size=3
697 +stride=1
698 +pad=1
699 +filters=512
700 +activation=leaky
701 +
702 +[convolutional]
703 +size=1
704 +stride=1
705 +pad=1
706 +filters=75
707 +activation=linear
708 +
709 +[yolo]
710 +mask = 3,4,5
711 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
712 +classes=20
713 +num=9
714 +jitter=.3
715 +ignore_thresh = .5
716 +truth_thresh = 1
717 +random=1
718 +iou_normalizer=0.25
719 +cls_normalizer=1.0
720 +iou_loss=giou
721 +
722 +[route]
723 +layers = -4
724 +
725 +[convolutional]
726 +batch_normalize=1
727 +filters=128
728 +size=1
729 +stride=1
730 +pad=1
731 +activation=leaky
732 +
733 +[upsample]
734 +stride=2
735 +
736 +[route]
737 +layers = -1, 36
738 +
739 +
740 +
741 +[convolutional]
742 +batch_normalize=1
743 +filters=128
744 +size=1
745 +stride=1
746 +pad=1
747 +activation=leaky
748 +
749 +[convolutional]
750 +batch_normalize=1
751 +size=3
752 +stride=1
753 +pad=1
754 +filters=256
755 +activation=leaky
756 +
757 +[convolutional]
758 +batch_normalize=1
759 +filters=128
760 +size=1
761 +stride=1
762 +pad=1
763 +activation=leaky
764 +
765 +[convolutional]
766 +batch_normalize=1
767 +size=3
768 +stride=1
769 +pad=1
770 +filters=256
771 +activation=leaky
772 +
773 +[convolutional]
774 +batch_normalize=1
775 +filters=128
776 +size=1
777 +stride=1
778 +pad=1
779 +activation=leaky
780 +
781 +[convolutional]
782 +batch_normalize=1
783 +size=3
784 +stride=1
785 +pad=1
786 +filters=256
787 +activation=leaky
788 +
789 +[convolutional]
790 +size=1
791 +stride=1
792 +pad=1
793 +filters=75
794 +activation=linear
795 +
796 +[yolo]
797 +mask = 0,1,2
798 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
799 +classes=20
800 +num=9
801 +jitter=.3
802 +ignore_thresh = .5
803 +truth_thresh = 1
804 +random=1
805 +iou_normalizer=0.25
806 +cls_normalizer=1.0
807 +iou_loss=giou
808 +
1 +[net]
2 +# Testing
3 +batch=1
4 +subdivisions=1
5 +# Training
6 +# batch=64
7 +# subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +# Downsample
34 +
35 +[convolutional]
36 +batch_normalize=1
37 +filters=64
38 +size=3
39 +stride=2
40 +pad=1
41 +activation=leaky
42 +
43 +[convolutional]
44 +batch_normalize=1
45 +filters=32
46 +size=1
47 +stride=1
48 +pad=1
49 +activation=leaky
50 +
51 +[convolutional]
52 +batch_normalize=1
53 +filters=64
54 +size=3
55 +stride=1
56 +pad=1
57 +activation=leaky
58 +
59 +[shortcut]
60 +from=-3
61 +activation=linear
62 +
63 +# Downsample
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=2
70 +pad=1
71 +activation=leaky
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[convolutional]
82 +batch_normalize=1
83 +filters=128
84 +size=3
85 +stride=1
86 +pad=1
87 +activation=leaky
88 +
89 +[shortcut]
90 +from=-3
91 +activation=linear
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=64
96 +size=1
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=128
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[shortcut]
110 +from=-3
111 +activation=linear
112 +
113 +# Downsample
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=256
118 +size=3
119 +stride=2
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +batch_normalize=1
125 +filters=128
126 +size=1
127 +stride=1
128 +pad=1
129 +activation=leaky
130 +
131 +[convolutional]
132 +batch_normalize=1
133 +filters=256
134 +size=3
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[shortcut]
140 +from=-3
141 +activation=linear
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=128
146 +size=1
147 +stride=1
148 +pad=1
149 +activation=leaky
150 +
151 +[convolutional]
152 +batch_normalize=1
153 +filters=256
154 +size=3
155 +stride=1
156 +pad=1
157 +activation=leaky
158 +
159 +[shortcut]
160 +from=-3
161 +activation=linear
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=128
166 +size=1
167 +stride=1
168 +pad=1
169 +activation=leaky
170 +
171 +[convolutional]
172 +batch_normalize=1
173 +filters=256
174 +size=3
175 +stride=1
176 +pad=1
177 +activation=leaky
178 +
179 +[shortcut]
180 +from=-3
181 +activation=linear
182 +
183 +[convolutional]
184 +batch_normalize=1
185 +filters=128
186 +size=1
187 +stride=1
188 +pad=1
189 +activation=leaky
190 +
191 +[convolutional]
192 +batch_normalize=1
193 +filters=256
194 +size=3
195 +stride=1
196 +pad=1
197 +activation=leaky
198 +
199 +[shortcut]
200 +from=-3
201 +activation=linear
202 +
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +filters=256
215 +size=3
216 +stride=1
217 +pad=1
218 +activation=leaky
219 +
220 +[shortcut]
221 +from=-3
222 +activation=linear
223 +
224 +[convolutional]
225 +batch_normalize=1
226 +filters=128
227 +size=1
228 +stride=1
229 +pad=1
230 +activation=leaky
231 +
232 +[convolutional]
233 +batch_normalize=1
234 +filters=256
235 +size=3
236 +stride=1
237 +pad=1
238 +activation=leaky
239 +
240 +[shortcut]
241 +from=-3
242 +activation=linear
243 +
244 +[convolutional]
245 +batch_normalize=1
246 +filters=128
247 +size=1
248 +stride=1
249 +pad=1
250 +activation=leaky
251 +
252 +[convolutional]
253 +batch_normalize=1
254 +filters=256
255 +size=3
256 +stride=1
257 +pad=1
258 +activation=leaky
259 +
260 +[shortcut]
261 +from=-3
262 +activation=linear
263 +
264 +[convolutional]
265 +batch_normalize=1
266 +filters=128
267 +size=1
268 +stride=1
269 +pad=1
270 +activation=leaky
271 +
272 +[convolutional]
273 +batch_normalize=1
274 +filters=256
275 +size=3
276 +stride=1
277 +pad=1
278 +activation=leaky
279 +
280 +[shortcut]
281 +from=-3
282 +activation=linear
283 +
284 +# Downsample
285 +
286 +[convolutional]
287 +batch_normalize=1
288 +filters=512
289 +size=3
290 +stride=2
291 +pad=1
292 +activation=leaky
293 +
294 +[convolutional]
295 +batch_normalize=1
296 +filters=256
297 +size=1
298 +stride=1
299 +pad=1
300 +activation=leaky
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=512
305 +size=3
306 +stride=1
307 +pad=1
308 +activation=leaky
309 +
310 +[shortcut]
311 +from=-3
312 +activation=linear
313 +
314 +
315 +[convolutional]
316 +batch_normalize=1
317 +filters=256
318 +size=1
319 +stride=1
320 +pad=1
321 +activation=leaky
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=512
326 +size=3
327 +stride=1
328 +pad=1
329 +activation=leaky
330 +
331 +[shortcut]
332 +from=-3
333 +activation=linear
334 +
335 +
336 +[convolutional]
337 +batch_normalize=1
338 +filters=256
339 +size=1
340 +stride=1
341 +pad=1
342 +activation=leaky
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=512
347 +size=3
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[shortcut]
353 +from=-3
354 +activation=linear
355 +
356 +
357 +[convolutional]
358 +batch_normalize=1
359 +filters=256
360 +size=1
361 +stride=1
362 +pad=1
363 +activation=leaky
364 +
365 +[convolutional]
366 +batch_normalize=1
367 +filters=512
368 +size=3
369 +stride=1
370 +pad=1
371 +activation=leaky
372 +
373 +[shortcut]
374 +from=-3
375 +activation=linear
376 +
377 +[convolutional]
378 +batch_normalize=1
379 +filters=256
380 +size=1
381 +stride=1
382 +pad=1
383 +activation=leaky
384 +
385 +[convolutional]
386 +batch_normalize=1
387 +filters=512
388 +size=3
389 +stride=1
390 +pad=1
391 +activation=leaky
392 +
393 +[shortcut]
394 +from=-3
395 +activation=linear
396 +
397 +
398 +[convolutional]
399 +batch_normalize=1
400 +filters=256
401 +size=1
402 +stride=1
403 +pad=1
404 +activation=leaky
405 +
406 +[convolutional]
407 +batch_normalize=1
408 +filters=512
409 +size=3
410 +stride=1
411 +pad=1
412 +activation=leaky
413 +
414 +[shortcut]
415 +from=-3
416 +activation=linear
417 +
418 +
419 +[convolutional]
420 +batch_normalize=1
421 +filters=256
422 +size=1
423 +stride=1
424 +pad=1
425 +activation=leaky
426 +
427 +[convolutional]
428 +batch_normalize=1
429 +filters=512
430 +size=3
431 +stride=1
432 +pad=1
433 +activation=leaky
434 +
435 +[shortcut]
436 +from=-3
437 +activation=linear
438 +
439 +[convolutional]
440 +batch_normalize=1
441 +filters=256
442 +size=1
443 +stride=1
444 +pad=1
445 +activation=leaky
446 +
447 +[convolutional]
448 +batch_normalize=1
449 +filters=512
450 +size=3
451 +stride=1
452 +pad=1
453 +activation=leaky
454 +
455 +[shortcut]
456 +from=-3
457 +activation=linear
458 +
459 +# Downsample
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=1024
464 +size=3
465 +stride=2
466 +pad=1
467 +activation=leaky
468 +
469 +[convolutional]
470 +batch_normalize=1
471 +filters=512
472 +size=1
473 +stride=1
474 +pad=1
475 +activation=leaky
476 +
477 +[convolutional]
478 +batch_normalize=1
479 +filters=1024
480 +size=3
481 +stride=1
482 +pad=1
483 +activation=leaky
484 +
485 +[shortcut]
486 +from=-3
487 +activation=linear
488 +
489 +[convolutional]
490 +batch_normalize=1
491 +filters=512
492 +size=1
493 +stride=1
494 +pad=1
495 +activation=leaky
496 +
497 +[convolutional]
498 +batch_normalize=1
499 +filters=1024
500 +size=3
501 +stride=1
502 +pad=1
503 +activation=leaky
504 +
505 +[shortcut]
506 +from=-3
507 +activation=linear
508 +
509 +[convolutional]
510 +batch_normalize=1
511 +filters=512
512 +size=1
513 +stride=1
514 +pad=1
515 +activation=leaky
516 +
517 +[convolutional]
518 +batch_normalize=1
519 +filters=1024
520 +size=3
521 +stride=1
522 +pad=1
523 +activation=leaky
524 +
525 +[shortcut]
526 +from=-3
527 +activation=linear
528 +
529 +[convolutional]
530 +batch_normalize=1
531 +filters=512
532 +size=1
533 +stride=1
534 +pad=1
535 +activation=leaky
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=1024
540 +size=3
541 +stride=1
542 +pad=1
543 +activation=leaky
544 +
545 +[shortcut]
546 +from=-3
547 +activation=linear
548 +
549 +######################
550 +
551 +[convolutional]
552 +batch_normalize=1
553 +filters=512
554 +size=1
555 +stride=1
556 +pad=1
557 +activation=leaky
558 +
559 +[convolutional]
560 +batch_normalize=1
561 +size=3
562 +stride=1
563 +pad=1
564 +filters=1024
565 +activation=leaky
566 +
567 +[convolutional]
568 +batch_normalize=1
569 +filters=512
570 +size=1
571 +stride=1
572 +pad=1
573 +activation=leaky
574 +
575 +[convolutional]
576 +batch_normalize=1
577 +size=3
578 +stride=1
579 +pad=1
580 +filters=1024
581 +activation=leaky
582 +
583 +[convolutional]
584 +batch_normalize=1
585 +filters=512
586 +size=1
587 +stride=1
588 +pad=1
589 +activation=leaky
590 +
591 +[convolutional]
592 +batch_normalize=1
593 +size=3
594 +stride=1
595 +pad=1
596 +filters=1024
597 +activation=leaky
598 +
599 +[convolutional]
600 +size=1
601 +stride=1
602 +pad=1
603 +filters=255
604 +activation=linear
605 +
606 +
607 +[yolo]
608 +mask = 6,7,8
609 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
610 +classes=80
611 +num=9
612 +jitter=.3
613 +ignore_thresh = .7
614 +truth_thresh = 1
615 +random=1
616 +
617 +
618 +[route]
619 +layers = -4
620 +
621 +[convolutional]
622 +batch_normalize=1
623 +filters=256
624 +size=1
625 +stride=1
626 +pad=1
627 +activation=leaky
628 +
629 +[upsample]
630 +stride=2
631 +
632 +[route]
633 +layers = -1, 61
634 +
635 +
636 +
637 +[convolutional]
638 +batch_normalize=1
639 +filters=256
640 +size=1
641 +stride=1
642 +pad=1
643 +activation=leaky
644 +
645 +[convolutional]
646 +batch_normalize=1
647 +size=3
648 +stride=1
649 +pad=1
650 +filters=512
651 +activation=leaky
652 +
653 +[convolutional]
654 +batch_normalize=1
655 +filters=256
656 +size=1
657 +stride=1
658 +pad=1
659 +activation=leaky
660 +
661 +[convolutional]
662 +batch_normalize=1
663 +size=3
664 +stride=1
665 +pad=1
666 +filters=512
667 +activation=leaky
668 +
669 +[convolutional]
670 +batch_normalize=1
671 +filters=256
672 +size=1
673 +stride=1
674 +pad=1
675 +activation=leaky
676 +
677 +[convolutional]
678 +batch_normalize=1
679 +size=3
680 +stride=1
681 +pad=1
682 +filters=512
683 +activation=leaky
684 +
685 +[convolutional]
686 +size=1
687 +stride=1
688 +pad=1
689 +filters=255
690 +activation=linear
691 +
692 +
693 +[yolo]
694 +mask = 3,4,5
695 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
696 +classes=80
697 +num=9
698 +jitter=.3
699 +ignore_thresh = .7
700 +truth_thresh = 1
701 +random=1
702 +
703 +
704 +
705 +[route]
706 +layers = -4
707 +
708 +[convolutional]
709 +batch_normalize=1
710 +filters=128
711 +size=1
712 +stride=1
713 +pad=1
714 +activation=leaky
715 +
716 +[upsample]
717 +stride=2
718 +
719 +[route]
720 +layers = -1, 36
721 +
722 +
723 +
724 +[convolutional]
725 +batch_normalize=1
726 +filters=128
727 +size=1
728 +stride=1
729 +pad=1
730 +activation=leaky
731 +
732 +[convolutional]
733 +batch_normalize=1
734 +size=3
735 +stride=1
736 +pad=1
737 +filters=256
738 +activation=leaky
739 +
740 +[convolutional]
741 +batch_normalize=1
742 +filters=128
743 +size=1
744 +stride=1
745 +pad=1
746 +activation=leaky
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +size=3
751 +stride=1
752 +pad=1
753 +filters=256
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +filters=128
759 +size=1
760 +stride=1
761 +pad=1
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +size=3
767 +stride=1
768 +pad=1
769 +filters=256
770 +activation=leaky
771 +
772 +[convolutional]
773 +size=1
774 +stride=1
775 +pad=1
776 +filters=255
777 +activation=linear
778 +
779 +
780 +[yolo]
781 +mask = 0,1,2
782 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
783 +classes=80
784 +num=9
785 +jitter=.3
786 +ignore_thresh = .7
787 +truth_thresh = 1
788 +random=1
789 +
1 +[net]
2 +# Testing
3 +# batch=1
4 +# subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +## single gpu
19 +learning_rate=0.001
20 +burn_in=1000
21 +max_batches = 550400
22 +
23 +## 2 gpu
24 +#learning_rate=0.0005
25 +#burn_in=2000
26 +#max_batches = 500200
27 +
28 +## 4 gpu
29 +#learning_rate=0.00025
30 +#burn_in=4000
31 +#max_batches = 500200
32 +###max_batches = 2000800
33 +
34 +policy=steps
35 +steps=400000,450000
36 +scales=.1,.1
37 +
38 +[convolutional]
39 +batch_normalize=1
40 +filters=32
41 +size=3
42 +stride=1
43 +pad=1
44 +activation=leaky
45 +
46 +# Downsample
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=3
52 +stride=2
53 +pad=1
54 +activation=leaky
55 +
56 +[convolutional]
57 +batch_normalize=1
58 +filters=32
59 +size=1
60 +stride=1
61 +pad=1
62 +activation=leaky
63 +
64 +[convolutional]
65 +batch_normalize=1
66 +filters=64
67 +size=3
68 +stride=1
69 +pad=1
70 +activation=leaky
71 +
72 +[shortcut]
73 +from=-3
74 +activation=linear
75 +
76 +# Downsample
77 +
78 +[convolutional]
79 +batch_normalize=1
80 +filters=128
81 +size=3
82 +stride=2
83 +pad=1
84 +activation=leaky
85 +
86 +[convolutional]
87 +batch_normalize=1
88 +filters=64
89 +size=1
90 +stride=1
91 +pad=1
92 +activation=leaky
93 +
94 +[convolutional]
95 +batch_normalize=1
96 +filters=128
97 +size=3
98 +stride=1
99 +pad=1
100 +activation=leaky
101 +
102 +[shortcut]
103 +from=-3
104 +activation=linear
105 +
106 +[convolutional]
107 +batch_normalize=1
108 +filters=64
109 +size=1
110 +stride=1
111 +pad=1
112 +activation=leaky
113 +
114 +[convolutional]
115 +batch_normalize=1
116 +filters=128
117 +size=3
118 +stride=1
119 +pad=1
120 +activation=leaky
121 +
122 +[shortcut]
123 +from=-3
124 +activation=linear
125 +
126 +# Downsample
127 +
128 +[convolutional]
129 +batch_normalize=1
130 +filters=256
131 +size=3
132 +stride=2
133 +pad=1
134 +activation=leaky
135 +
136 +[convolutional]
137 +batch_normalize=1
138 +filters=128
139 +size=1
140 +stride=1
141 +pad=1
142 +activation=leaky
143 +
144 +[convolutional]
145 +batch_normalize=1
146 +filters=256
147 +size=3
148 +stride=1
149 +pad=1
150 +activation=leaky
151 +
152 +[shortcut]
153 +from=-3
154 +activation=linear
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=128
159 +size=1
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[convolutional]
165 +batch_normalize=1
166 +filters=256
167 +size=3
168 +stride=1
169 +pad=1
170 +activation=leaky
171 +
172 +[shortcut]
173 +from=-3
174 +activation=linear
175 +
176 +[convolutional]
177 +batch_normalize=1
178 +filters=128
179 +size=1
180 +stride=1
181 +pad=1
182 +activation=leaky
183 +
184 +[convolutional]
185 +batch_normalize=1
186 +filters=256
187 +size=3
188 +stride=1
189 +pad=1
190 +activation=leaky
191 +
192 +[shortcut]
193 +from=-3
194 +activation=linear
195 +
196 +[convolutional]
197 +batch_normalize=1
198 +filters=128
199 +size=1
200 +stride=1
201 +pad=1
202 +activation=leaky
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=256
207 +size=3
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[shortcut]
213 +from=-3
214 +activation=linear
215 +
216 +
217 +[convolutional]
218 +batch_normalize=1
219 +filters=128
220 +size=1
221 +stride=1
222 +pad=1
223 +activation=leaky
224 +
225 +[convolutional]
226 +batch_normalize=1
227 +filters=256
228 +size=3
229 +stride=1
230 +pad=1
231 +activation=leaky
232 +
233 +[shortcut]
234 +from=-3
235 +activation=linear
236 +
237 +[convolutional]
238 +batch_normalize=1
239 +filters=128
240 +size=1
241 +stride=1
242 +pad=1
243 +activation=leaky
244 +
245 +[convolutional]
246 +batch_normalize=1
247 +filters=256
248 +size=3
249 +stride=1
250 +pad=1
251 +activation=leaky
252 +
253 +[shortcut]
254 +from=-3
255 +activation=linear
256 +
257 +[convolutional]
258 +batch_normalize=1
259 +filters=128
260 +size=1
261 +stride=1
262 +pad=1
263 +activation=leaky
264 +
265 +[convolutional]
266 +batch_normalize=1
267 +filters=256
268 +size=3
269 +stride=1
270 +pad=1
271 +activation=leaky
272 +
273 +[shortcut]
274 +from=-3
275 +activation=linear
276 +
277 +[convolutional]
278 +batch_normalize=1
279 +filters=128
280 +size=1
281 +stride=1
282 +pad=1
283 +activation=leaky
284 +
285 +[convolutional]
286 +batch_normalize=1
287 +filters=256
288 +size=3
289 +stride=1
290 +pad=1
291 +activation=leaky
292 +
293 +[shortcut]
294 +from=-3
295 +activation=linear
296 +
297 +# Downsample
298 +
299 +[convolutional]
300 +batch_normalize=1
301 +filters=512
302 +size=3
303 +stride=2
304 +pad=1
305 +activation=leaky
306 +
307 +[convolutional]
308 +batch_normalize=1
309 +filters=256
310 +size=1
311 +stride=1
312 +pad=1
313 +activation=leaky
314 +
315 +[convolutional]
316 +batch_normalize=1
317 +filters=512
318 +size=3
319 +stride=1
320 +pad=1
321 +activation=leaky
322 +
323 +[shortcut]
324 +from=-3
325 +activation=linear
326 +
327 +
328 +[convolutional]
329 +batch_normalize=1
330 +filters=256
331 +size=1
332 +stride=1
333 +pad=1
334 +activation=leaky
335 +
336 +[convolutional]
337 +batch_normalize=1
338 +filters=512
339 +size=3
340 +stride=1
341 +pad=1
342 +activation=leaky
343 +
344 +[shortcut]
345 +from=-3
346 +activation=linear
347 +
348 +
349 +[convolutional]
350 +batch_normalize=1
351 +filters=256
352 +size=1
353 +stride=1
354 +pad=1
355 +activation=leaky
356 +
357 +[convolutional]
358 +batch_normalize=1
359 +filters=512
360 +size=3
361 +stride=1
362 +pad=1
363 +activation=leaky
364 +
365 +[shortcut]
366 +from=-3
367 +activation=linear
368 +
369 +
370 +[convolutional]
371 +batch_normalize=1
372 +filters=256
373 +size=1
374 +stride=1
375 +pad=1
376 +activation=leaky
377 +
378 +[convolutional]
379 +batch_normalize=1
380 +filters=512
381 +size=3
382 +stride=1
383 +pad=1
384 +activation=leaky
385 +
386 +[shortcut]
387 +from=-3
388 +activation=linear
389 +
390 +[convolutional]
391 +batch_normalize=1
392 +filters=256
393 +size=1
394 +stride=1
395 +pad=1
396 +activation=leaky
397 +
398 +[convolutional]
399 +batch_normalize=1
400 +filters=512
401 +size=3
402 +stride=1
403 +pad=1
404 +activation=leaky
405 +
406 +[shortcut]
407 +from=-3
408 +activation=linear
409 +
410 +
411 +[convolutional]
412 +batch_normalize=1
413 +filters=256
414 +size=1
415 +stride=1
416 +pad=1
417 +activation=leaky
418 +
419 +[convolutional]
420 +batch_normalize=1
421 +filters=512
422 +size=3
423 +stride=1
424 +pad=1
425 +activation=leaky
426 +
427 +[shortcut]
428 +from=-3
429 +activation=linear
430 +
431 +
432 +[convolutional]
433 +batch_normalize=1
434 +filters=256
435 +size=1
436 +stride=1
437 +pad=1
438 +activation=leaky
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=512
443 +size=3
444 +stride=1
445 +pad=1
446 +activation=leaky
447 +
448 +[shortcut]
449 +from=-3
450 +activation=linear
451 +
452 +[convolutional]
453 +batch_normalize=1
454 +filters=256
455 +size=1
456 +stride=1
457 +pad=1
458 +activation=leaky
459 +
460 +[convolutional]
461 +batch_normalize=1
462 +filters=512
463 +size=3
464 +stride=1
465 +pad=1
466 +activation=leaky
467 +
468 +[shortcut]
469 +from=-3
470 +activation=linear
471 +
472 +# Downsample
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=1024
477 +size=3
478 +stride=2
479 +pad=1
480 +activation=leaky
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=512
485 +size=1
486 +stride=1
487 +pad=1
488 +activation=leaky
489 +
490 +[convolutional]
491 +batch_normalize=1
492 +filters=1024
493 +size=3
494 +stride=1
495 +pad=1
496 +activation=leaky
497 +
498 +[shortcut]
499 +from=-3
500 +activation=linear
501 +
502 +[convolutional]
503 +batch_normalize=1
504 +filters=512
505 +size=1
506 +stride=1
507 +pad=1
508 +activation=leaky
509 +
510 +[convolutional]
511 +batch_normalize=1
512 +filters=1024
513 +size=3
514 +stride=1
515 +pad=1
516 +activation=leaky
517 +
518 +[shortcut]
519 +from=-3
520 +activation=linear
521 +
522 +[convolutional]
523 +batch_normalize=1
524 +filters=512
525 +size=1
526 +stride=1
527 +pad=1
528 +activation=leaky
529 +
530 +[convolutional]
531 +batch_normalize=1
532 +filters=1024
533 +size=3
534 +stride=1
535 +pad=1
536 +activation=leaky
537 +
538 +[shortcut]
539 +from=-3
540 +activation=linear
541 +
542 +[convolutional]
543 +batch_normalize=1
544 +filters=512
545 +size=1
546 +stride=1
547 +pad=1
548 +activation=leaky
549 +
550 +[convolutional]
551 +batch_normalize=1
552 +filters=1024
553 +size=3
554 +stride=1
555 +pad=1
556 +activation=leaky
557 +
558 +[shortcut]
559 +from=-3
560 +activation=linear
561 +
562 +######################
563 +
564 +[convolutional]
565 +batch_normalize=1
566 +filters=512
567 +size=1
568 +stride=1
569 +pad=1
570 +activation=leaky
571 +
572 +[convolutional]
573 +batch_normalize=1
574 +size=3
575 +stride=1
576 +pad=1
577 +filters=1024
578 +activation=leaky
579 +
580 +[convolutional]
581 +batch_normalize=1
582 +filters=512
583 +size=1
584 +stride=1
585 +pad=1
586 +activation=leaky
587 +
588 +[convolutional]
589 +batch_normalize=1
590 +size=3
591 +stride=1
592 +pad=1
593 +filters=1024
594 +activation=leaky
595 +
596 +[convolutional]
597 +batch_normalize=1
598 +filters=512
599 +size=1
600 +stride=1
601 +pad=1
602 +activation=leaky
603 +
604 +[convolutional]
605 +batch_normalize=1
606 +size=3
607 +stride=1
608 +pad=1
609 +filters=1024
610 +activation=leaky
611 +
612 +[convolutional]
613 +size=1
614 +stride=1
615 +pad=1
616 +filters=255
617 +activation=linear
618 +
619 +
620 +[yolo]
621 +mask = 6,7,8
622 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
623 +classes=80
624 +num=9
625 +jitter=.3
626 +ignore_thresh = .7
627 +truth_thresh = 1
628 +random=1
629 +iou_normalizer=0.5
630 +iou_loss=giou
631 +
632 +[route]
633 +layers = -4
634 +
635 +[convolutional]
636 +batch_normalize=1
637 +filters=256
638 +size=1
639 +stride=1
640 +pad=1
641 +activation=leaky
642 +
643 +[upsample]
644 +stride=2
645 +
646 +[route]
647 +layers = -1, 61
648 +
649 +
650 +
651 +[convolutional]
652 +batch_normalize=1
653 +filters=256
654 +size=1
655 +stride=1
656 +pad=1
657 +activation=leaky
658 +
659 +[convolutional]
660 +batch_normalize=1
661 +size=3
662 +stride=1
663 +pad=1
664 +filters=512
665 +activation=leaky
666 +
667 +[convolutional]
668 +batch_normalize=1
669 +filters=256
670 +size=1
671 +stride=1
672 +pad=1
673 +activation=leaky
674 +
675 +[convolutional]
676 +batch_normalize=1
677 +size=3
678 +stride=1
679 +pad=1
680 +filters=512
681 +activation=leaky
682 +
683 +[convolutional]
684 +batch_normalize=1
685 +filters=256
686 +size=1
687 +stride=1
688 +pad=1
689 +activation=leaky
690 +
691 +[convolutional]
692 +batch_normalize=1
693 +size=3
694 +stride=1
695 +pad=1
696 +filters=512
697 +activation=leaky
698 +
699 +[convolutional]
700 +size=1
701 +stride=1
702 +pad=1
703 +filters=255
704 +activation=linear
705 +
706 +
707 +[yolo]
708 +mask = 3,4,5
709 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
710 +classes=80
711 +num=9
712 +jitter=.3
713 +ignore_thresh = .7
714 +truth_thresh = 1
715 +random=1
716 +iou_normalizer=0.5
717 +iou_loss=giou
718 +
719 +
720 +
721 +[route]
722 +layers = -4
723 +
724 +[convolutional]
725 +batch_normalize=1
726 +filters=128
727 +size=1
728 +stride=1
729 +pad=1
730 +activation=leaky
731 +
732 +[upsample]
733 +stride=2
734 +
735 +[route]
736 +layers = -1, 36
737 +
738 +
739 +
740 +[convolutional]
741 +batch_normalize=1
742 +filters=128
743 +size=1
744 +stride=1
745 +pad=1
746 +activation=leaky
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +size=3
751 +stride=1
752 +pad=1
753 +filters=256
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +filters=128
759 +size=1
760 +stride=1
761 +pad=1
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +size=3
767 +stride=1
768 +pad=1
769 +filters=256
770 +activation=leaky
771 +
772 +[convolutional]
773 +batch_normalize=1
774 +filters=128
775 +size=1
776 +stride=1
777 +pad=1
778 +activation=leaky
779 +
780 +[convolutional]
781 +batch_normalize=1
782 +size=3
783 +stride=1
784 +pad=1
785 +filters=256
786 +activation=leaky
787 +
788 +[convolutional]
789 +size=1
790 +stride=1
791 +pad=1
792 +filters=255
793 +activation=linear
794 +
795 +
796 +[yolo]
797 +mask = 0,1,2
798 +anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
799 +classes=80
800 +num=9
801 +jitter=.3
802 +ignore_thresh = .7
803 +truth_thresh = 1
804 +random=1
805 +iou_normalizer=0.5
806 +iou_loss=giou
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=1
30 +pad=1
31 +activation=leaky
32 +
33 +# Downsample
34 +
35 +[convolutional]
36 +batch_normalize=1
37 +filters=64
38 +size=3
39 +stride=2
40 +pad=1
41 +activation=leaky
42 +
43 +[convolutional]
44 +batch_normalize=1
45 +filters=32
46 +size=1
47 +stride=1
48 +pad=1
49 +activation=leaky
50 +
51 +[convolutional]
52 +batch_normalize=1
53 +filters=64
54 +size=3
55 +stride=1
56 +pad=1
57 +activation=leaky
58 +
59 +[shortcut]
60 +from=-3
61 +activation=linear
62 +
63 +# Downsample
64 +
65 +[convolutional]
66 +batch_normalize=1
67 +filters=128
68 +size=3
69 +stride=2
70 +pad=1
71 +activation=leaky
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[convolutional]
82 +batch_normalize=1
83 +filters=128
84 +size=3
85 +stride=1
86 +pad=1
87 +activation=leaky
88 +
89 +[shortcut]
90 +from=-3
91 +activation=linear
92 +
93 +[convolutional]
94 +batch_normalize=1
95 +filters=64
96 +size=1
97 +stride=1
98 +pad=1
99 +activation=leaky
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=128
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[shortcut]
110 +from=-3
111 +activation=linear
112 +
113 +# Downsample
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=256
118 +size=3
119 +stride=2
120 +pad=1
121 +activation=leaky
122 +
123 +[convolutional]
124 +batch_normalize=1
125 +filters=128
126 +size=1
127 +stride=1
128 +pad=1
129 +activation=leaky
130 +
131 +[convolutional]
132 +batch_normalize=1
133 +filters=256
134 +size=3
135 +stride=1
136 +pad=1
137 +activation=leaky
138 +
139 +[shortcut]
140 +from=-3
141 +activation=linear
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=128
146 +size=1
147 +stride=1
148 +pad=1
149 +activation=leaky
150 +
151 +[convolutional]
152 +batch_normalize=1
153 +filters=256
154 +size=3
155 +stride=1
156 +pad=1
157 +activation=leaky
158 +
159 +[shortcut]
160 +from=-3
161 +activation=linear
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=128
166 +size=1
167 +stride=1
168 +pad=1
169 +activation=leaky
170 +
171 +[convolutional]
172 +batch_normalize=1
173 +filters=256
174 +size=3
175 +stride=1
176 +pad=1
177 +activation=leaky
178 +
179 +[shortcut]
180 +from=-3
181 +activation=linear
182 +
183 +[convolutional]
184 +batch_normalize=1
185 +filters=128
186 +size=1
187 +stride=1
188 +pad=1
189 +activation=leaky
190 +
191 +[convolutional]
192 +batch_normalize=1
193 +filters=256
194 +size=3
195 +stride=1
196 +pad=1
197 +activation=leaky
198 +
199 +[shortcut]
200 +from=-3
201 +activation=linear
202 +
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=leaky
211 +
212 +[convolutional]
213 +batch_normalize=1
214 +filters=256
215 +size=3
216 +stride=1
217 +pad=1
218 +activation=leaky
219 +
220 +[shortcut]
221 +from=-3
222 +activation=linear
223 +
224 +[convolutional]
225 +batch_normalize=1
226 +filters=128
227 +size=1
228 +stride=1
229 +pad=1
230 +activation=leaky
231 +
232 +[convolutional]
233 +batch_normalize=1
234 +filters=256
235 +size=3
236 +stride=1
237 +pad=1
238 +activation=leaky
239 +
240 +[shortcut]
241 +from=-3
242 +activation=linear
243 +
244 +[convolutional]
245 +batch_normalize=1
246 +filters=128
247 +size=1
248 +stride=1
249 +pad=1
250 +activation=leaky
251 +
252 +[convolutional]
253 +batch_normalize=1
254 +filters=256
255 +size=3
256 +stride=1
257 +pad=1
258 +activation=leaky
259 +
260 +[shortcut]
261 +from=-3
262 +activation=linear
263 +
264 +[convolutional]
265 +batch_normalize=1
266 +filters=128
267 +size=1
268 +stride=1
269 +pad=1
270 +activation=leaky
271 +
272 +[convolutional]
273 +batch_normalize=1
274 +filters=256
275 +size=3
276 +stride=1
277 +pad=1
278 +activation=leaky
279 +
280 +[shortcut]
281 +from=-3
282 +activation=linear
283 +
284 +# Downsample
285 +
286 +[convolutional]
287 +batch_normalize=1
288 +filters=512
289 +size=3
290 +stride=2
291 +pad=1
292 +activation=leaky
293 +
294 +[convolutional]
295 +batch_normalize=1
296 +filters=256
297 +size=1
298 +stride=1
299 +pad=1
300 +activation=leaky
301 +
302 +[convolutional]
303 +batch_normalize=1
304 +filters=512
305 +size=3
306 +stride=1
307 +pad=1
308 +activation=leaky
309 +
310 +[shortcut]
311 +from=-3
312 +activation=linear
313 +
314 +
315 +[convolutional]
316 +batch_normalize=1
317 +filters=256
318 +size=1
319 +stride=1
320 +pad=1
321 +activation=leaky
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=512
326 +size=3
327 +stride=1
328 +pad=1
329 +activation=leaky
330 +
331 +[shortcut]
332 +from=-3
333 +activation=linear
334 +
335 +
336 +[convolutional]
337 +batch_normalize=1
338 +filters=256
339 +size=1
340 +stride=1
341 +pad=1
342 +activation=leaky
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=512
347 +size=3
348 +stride=1
349 +pad=1
350 +activation=leaky
351 +
352 +[shortcut]
353 +from=-3
354 +activation=linear
355 +
356 +
357 +[convolutional]
358 +batch_normalize=1
359 +filters=256
360 +size=1
361 +stride=1
362 +pad=1
363 +activation=leaky
364 +
365 +[convolutional]
366 +batch_normalize=1
367 +filters=512
368 +size=3
369 +stride=1
370 +pad=1
371 +activation=leaky
372 +
373 +[shortcut]
374 +from=-3
375 +activation=linear
376 +
377 +[convolutional]
378 +batch_normalize=1
379 +filters=256
380 +size=1
381 +stride=1
382 +pad=1
383 +activation=leaky
384 +
385 +[convolutional]
386 +batch_normalize=1
387 +filters=512
388 +size=3
389 +stride=1
390 +pad=1
391 +activation=leaky
392 +
393 +[shortcut]
394 +from=-3
395 +activation=linear
396 +
397 +
398 +[convolutional]
399 +batch_normalize=1
400 +filters=256
401 +size=1
402 +stride=1
403 +pad=1
404 +activation=leaky
405 +
406 +[convolutional]
407 +batch_normalize=1
408 +filters=512
409 +size=3
410 +stride=1
411 +pad=1
412 +activation=leaky
413 +
414 +[shortcut]
415 +from=-3
416 +activation=linear
417 +
418 +
419 +[convolutional]
420 +batch_normalize=1
421 +filters=256
422 +size=1
423 +stride=1
424 +pad=1
425 +activation=leaky
426 +
427 +[convolutional]
428 +batch_normalize=1
429 +filters=512
430 +size=3
431 +stride=1
432 +pad=1
433 +activation=leaky
434 +
435 +[shortcut]
436 +from=-3
437 +activation=linear
438 +
439 +[convolutional]
440 +batch_normalize=1
441 +filters=256
442 +size=1
443 +stride=1
444 +pad=1
445 +activation=leaky
446 +
447 +[convolutional]
448 +batch_normalize=1
449 +filters=512
450 +size=3
451 +stride=1
452 +pad=1
453 +activation=leaky
454 +
455 +[shortcut]
456 +from=-3
457 +activation=linear
458 +
459 +# Downsample
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=1024
464 +size=3
465 +stride=2
466 +pad=1
467 +activation=leaky
468 +
469 +[convolutional]
470 +batch_normalize=1
471 +filters=512
472 +size=1
473 +stride=1
474 +pad=1
475 +activation=leaky
476 +
477 +[convolutional]
478 +batch_normalize=1
479 +filters=1024
480 +size=3
481 +stride=1
482 +pad=1
483 +activation=leaky
484 +
485 +[shortcut]
486 +from=-3
487 +activation=linear
488 +
489 +[convolutional]
490 +batch_normalize=1
491 +filters=512
492 +size=1
493 +stride=1
494 +pad=1
495 +activation=leaky
496 +
497 +[convolutional]
498 +batch_normalize=1
499 +filters=1024
500 +size=3
501 +stride=1
502 +pad=1
503 +activation=leaky
504 +
505 +[shortcut]
506 +from=-3
507 +activation=linear
508 +
509 +[convolutional]
510 +batch_normalize=1
511 +filters=512
512 +size=1
513 +stride=1
514 +pad=1
515 +activation=leaky
516 +
517 +[convolutional]
518 +batch_normalize=1
519 +filters=1024
520 +size=3
521 +stride=1
522 +pad=1
523 +activation=leaky
524 +
525 +[shortcut]
526 +from=-3
527 +activation=linear
528 +
529 +[convolutional]
530 +batch_normalize=1
531 +filters=512
532 +size=1
533 +stride=1
534 +pad=1
535 +activation=leaky
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=1024
540 +size=3
541 +stride=1
542 +pad=1
543 +activation=leaky
544 +
545 +[shortcut]
546 +from=-3
547 +activation=linear
548 +
549 +######################
550 +
551 +[convolutional]
552 +batch_normalize=1
553 +filters=512
554 +size=1
555 +stride=1
556 +pad=1
557 +activation=leaky
558 +
559 +[convolutional]
560 +batch_normalize=1
561 +size=3
562 +stride=1
563 +pad=1
564 +filters=1024
565 +activation=leaky
566 +
567 +[convolutional]
568 +batch_normalize=1
569 +filters=512
570 +size=1
571 +stride=1
572 +pad=1
573 +activation=leaky
574 +
575 +[convolutional]
576 +batch_normalize=1
577 +size=3
578 +stride=1
579 +pad=1
580 +filters=1024
581 +activation=leaky
582 +
583 +[convolutional]
584 +batch_normalize=1
585 +filters=512
586 +size=1
587 +stride=1
588 +pad=1
589 +activation=leaky
590 +
591 +[convolutional]
592 +batch_normalize=1
593 +size=3
594 +stride=1
595 +pad=1
596 +filters=1024
597 +activation=leaky
598 +
599 +[convolutional]
600 +size=1
601 +stride=1
602 +pad=1
603 +filters=255
604 +activation=linear
605 +
606 +
607 +[yolo]
608 +mask = 12,13,14
609 +anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
610 +classes=80
611 +num=15
612 +jitter=.3
613 +ignore_thresh = .7
614 +truth_thresh = 1
615 +random=1
616 +
617 +
618 +[route]
619 +layers = -4
620 +
621 +[convolutional]
622 +batch_normalize=1
623 +filters=256
624 +size=1
625 +stride=1
626 +pad=1
627 +activation=leaky
628 +
629 +[upsample]
630 +stride=2
631 +
632 +[route]
633 +layers = -1, 61
634 +
635 +
636 +
637 +[convolutional]
638 +batch_normalize=1
639 +filters=256
640 +size=1
641 +stride=1
642 +pad=1
643 +activation=leaky
644 +
645 +[convolutional]
646 +batch_normalize=1
647 +size=3
648 +stride=1
649 +pad=1
650 +filters=512
651 +activation=leaky
652 +
653 +[convolutional]
654 +batch_normalize=1
655 +filters=256
656 +size=1
657 +stride=1
658 +pad=1
659 +activation=leaky
660 +
661 +[convolutional]
662 +batch_normalize=1
663 +size=3
664 +stride=1
665 +pad=1
666 +filters=512
667 +activation=leaky
668 +
669 +[convolutional]
670 +batch_normalize=1
671 +filters=256
672 +size=1
673 +stride=1
674 +pad=1
675 +activation=leaky
676 +
677 +[convolutional]
678 +batch_normalize=1
679 +size=3
680 +stride=1
681 +pad=1
682 +filters=512
683 +activation=leaky
684 +
685 +[convolutional]
686 +size=1
687 +stride=1
688 +pad=1
689 +filters=255
690 +activation=linear
691 +
692 +
693 +[yolo]
694 +mask = 9,10,11
695 +anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
696 +classes=80
697 +num=15
698 +jitter=.3
699 +ignore_thresh = .7
700 +truth_thresh = 1
701 +random=1
702 +
703 +
704 +
705 +[route]
706 +layers = -4
707 +
708 +[convolutional]
709 +batch_normalize=1
710 +filters=128
711 +size=1
712 +stride=1
713 +pad=1
714 +activation=leaky
715 +
716 +[upsample]
717 +stride=2
718 +
719 +[route]
720 +layers = -1, 36
721 +
722 +
723 +
724 +[convolutional]
725 +batch_normalize=1
726 +filters=128
727 +size=1
728 +stride=1
729 +pad=1
730 +activation=leaky
731 +
732 +[convolutional]
733 +batch_normalize=1
734 +size=3
735 +stride=1
736 +pad=1
737 +filters=256
738 +activation=leaky
739 +
740 +[convolutional]
741 +batch_normalize=1
742 +filters=128
743 +size=1
744 +stride=1
745 +pad=1
746 +activation=leaky
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +size=3
751 +stride=1
752 +pad=1
753 +filters=256
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +filters=128
759 +size=1
760 +stride=1
761 +pad=1
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +size=3
767 +stride=1
768 +pad=1
769 +filters=256
770 +activation=leaky
771 +
772 +[convolutional]
773 +size=1
774 +stride=1
775 +pad=1
776 +filters=255
777 +activation=linear
778 +
779 +
780 +[yolo]
781 +mask = 6,7,8
782 +anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
783 +classes=80
784 +num=15
785 +jitter=.3
786 +ignore_thresh = .7
787 +truth_thresh = 1
788 +random=1
789 +
790 +
791 +
792 +###############
793 +
794 +
795 +[route]
796 +layers = -4
797 +
798 +[convolutional]
799 +batch_normalize=1
800 +filters=128
801 +size=1
802 +stride=1
803 +pad=1
804 +activation=leaky
805 +
806 +[upsample]
807 +stride=2
808 +
809 +[route]
810 +layers = -1, 11
811 +
812 +
813 +
814 +[convolutional]
815 +batch_normalize=1
816 +filters=64
817 +size=1
818 +stride=1
819 +pad=1
820 +activation=leaky
821 +
822 +[convolutional]
823 +batch_normalize=1
824 +size=3
825 +stride=1
826 +pad=1
827 +filters=128
828 +activation=leaky
829 +
830 +[convolutional]
831 +batch_normalize=1
832 +filters=64
833 +size=1
834 +stride=1
835 +pad=1
836 +activation=leaky
837 +
838 +[convolutional]
839 +batch_normalize=1
840 +size=3
841 +stride=1
842 +pad=1
843 +filters=128
844 +activation=leaky
845 +
846 +[convolutional]
847 +batch_normalize=1
848 +filters=64
849 +size=1
850 +stride=1
851 +pad=1
852 +activation=leaky
853 +
854 +[convolutional]
855 +batch_normalize=1
856 +size=3
857 +stride=1
858 +pad=1
859 +filters=128
860 +activation=leaky
861 +
862 +[convolutional]
863 +size=1
864 +stride=1
865 +pad=1
866 +filters=255
867 +activation=linear
868 +
869 +
870 +[yolo]
871 +mask = 3,4,5
872 +anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
873 +classes=80
874 +num=15
875 +jitter=.3
876 +ignore_thresh = .7
877 +truth_thresh = 1
878 +random=1
879 +
880 +
881 +
882 +
883 +
884 +[route]
885 +layers = -4
886 +
887 +[convolutional]
888 +batch_normalize=1
889 +filters=128
890 +size=1
891 +stride=1
892 +pad=1
893 +activation=leaky
894 +
895 +[upsample]
896 +stride=2
897 +
898 +[route]
899 +layers = -1, 4
900 +
901 +
902 +
903 +[convolutional]
904 +batch_normalize=1
905 +filters=32
906 +size=1
907 +stride=1
908 +pad=1
909 +activation=leaky
910 +
911 +[convolutional]
912 +batch_normalize=1
913 +size=3
914 +stride=1
915 +pad=1
916 +filters=64
917 +activation=leaky
918 +
919 +[convolutional]
920 +batch_normalize=1
921 +filters=32
922 +size=1
923 +stride=1
924 +pad=1
925 +activation=leaky
926 +
927 +[convolutional]
928 +batch_normalize=1
929 +size=3
930 +stride=1
931 +pad=1
932 +filters=64
933 +activation=leaky
934 +
935 +[convolutional]
936 +batch_normalize=1
937 +filters=32
938 +size=1
939 +stride=1
940 +pad=1
941 +activation=leaky
942 +
943 +[convolutional]
944 +batch_normalize=1
945 +size=3
946 +stride=1
947 +pad=1
948 +filters=64
949 +activation=leaky
950 +
951 +[convolutional]
952 +size=1
953 +stride=1
954 +pad=1
955 +filters=255
956 +activation=linear
957 +
958 +
959 +[yolo]
960 +mask = 0,1,2
961 +anchors = 4,4, 5,5, 6,6, 7,7, 8,8, 9,9, 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326
962 +classes=80
963 +num=15
964 +jitter=.3
965 +ignore_thresh = .7
966 +truth_thresh = 1
967 +random=1
968 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.949
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 15000
21 +policy=steps
22 +steps=12000,13500
23 +scales=.1,.1
24 +
25 +#cutmix=1
26 +mosaic=1
27 +
28 +#:104x104 54:52x52 85:26x26 104:13x13 for 416
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=32
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=mish
37 +
38 +# Downsample
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=64
43 +size=3
44 +stride=2
45 +pad=1
46 +activation=mish
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=1
52 +stride=1
53 +pad=1
54 +activation=mish
55 +
56 +[route]
57 +layers = -2
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=64
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=mish
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=32
70 +size=1
71 +stride=1
72 +pad=1
73 +activation=mish
74 +
75 +[convolutional]
76 +batch_normalize=1
77 +filters=64
78 +size=3
79 +stride=1
80 +pad=1
81 +activation=mish
82 +
83 +[shortcut]
84 +from=-3
85 +activation=linear
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=64
90 +size=1
91 +stride=1
92 +pad=1
93 +activation=mish
94 +
95 +[route]
96 +layers = -1,-7
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=64
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=mish
105 +
106 +# Downsample
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=128
111 +size=3
112 +stride=2
113 +pad=1
114 +activation=mish
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=64
119 +size=1
120 +stride=1
121 +pad=1
122 +activation=mish
123 +
124 +[route]
125 +layers = -2
126 +
127 +[convolutional]
128 +batch_normalize=1
129 +filters=64
130 +size=1
131 +stride=1
132 +pad=1
133 +activation=mish
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=64
138 +size=1
139 +stride=1
140 +pad=1
141 +activation=mish
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=64
146 +size=3
147 +stride=1
148 +pad=1
149 +activation=mish
150 +
151 +[shortcut]
152 +from=-3
153 +activation=linear
154 +
155 +[convolutional]
156 +batch_normalize=1
157 +filters=64
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=mish
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=64
166 +size=3
167 +stride=1
168 +pad=1
169 +activation=mish
170 +
171 +[shortcut]
172 +from=-3
173 +activation=linear
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=64
178 +size=1
179 +stride=1
180 +pad=1
181 +activation=mish
182 +
183 +[route]
184 +layers = -1,-10
185 +
186 +[convolutional]
187 +batch_normalize=1
188 +filters=128
189 +size=1
190 +stride=1
191 +pad=1
192 +activation=mish
193 +
194 +# Downsample
195 +
196 +[convolutional]
197 +batch_normalize=1
198 +filters=256
199 +size=3
200 +stride=2
201 +pad=1
202 +activation=mish
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=mish
211 +
212 +[route]
213 +layers = -2
214 +
215 +[convolutional]
216 +batch_normalize=1
217 +filters=128
218 +size=1
219 +stride=1
220 +pad=1
221 +activation=mish
222 +
223 +[convolutional]
224 +batch_normalize=1
225 +filters=128
226 +size=1
227 +stride=1
228 +pad=1
229 +activation=mish
230 +
231 +[convolutional]
232 +batch_normalize=1
233 +filters=128
234 +size=3
235 +stride=1
236 +pad=1
237 +activation=mish
238 +
239 +[shortcut]
240 +from=-3
241 +activation=linear
242 +
243 +[convolutional]
244 +batch_normalize=1
245 +filters=128
246 +size=1
247 +stride=1
248 +pad=1
249 +activation=mish
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=128
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=mish
258 +
259 +[shortcut]
260 +from=-3
261 +activation=linear
262 +
263 +[convolutional]
264 +batch_normalize=1
265 +filters=128
266 +size=1
267 +stride=1
268 +pad=1
269 +activation=mish
270 +
271 +[convolutional]
272 +batch_normalize=1
273 +filters=128
274 +size=3
275 +stride=1
276 +pad=1
277 +activation=mish
278 +
279 +[shortcut]
280 +from=-3
281 +activation=linear
282 +
283 +[convolutional]
284 +batch_normalize=1
285 +filters=128
286 +size=1
287 +stride=1
288 +pad=1
289 +activation=mish
290 +
291 +[convolutional]
292 +batch_normalize=1
293 +filters=128
294 +size=3
295 +stride=1
296 +pad=1
297 +activation=mish
298 +
299 +[shortcut]
300 +from=-3
301 +activation=linear
302 +
303 +
304 +[convolutional]
305 +batch_normalize=1
306 +filters=128
307 +size=1
308 +stride=1
309 +pad=1
310 +activation=mish
311 +
312 +[convolutional]
313 +batch_normalize=1
314 +filters=128
315 +size=3
316 +stride=1
317 +pad=1
318 +activation=mish
319 +
320 +[shortcut]
321 +from=-3
322 +activation=linear
323 +
324 +[convolutional]
325 +batch_normalize=1
326 +filters=128
327 +size=1
328 +stride=1
329 +pad=1
330 +activation=mish
331 +
332 +[convolutional]
333 +batch_normalize=1
334 +filters=128
335 +size=3
336 +stride=1
337 +pad=1
338 +activation=mish
339 +
340 +[shortcut]
341 +from=-3
342 +activation=linear
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=128
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=mish
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=128
355 +size=3
356 +stride=1
357 +pad=1
358 +activation=mish
359 +
360 +[shortcut]
361 +from=-3
362 +activation=linear
363 +
364 +[convolutional]
365 +batch_normalize=1
366 +filters=128
367 +size=1
368 +stride=1
369 +pad=1
370 +activation=mish
371 +
372 +[convolutional]
373 +batch_normalize=1
374 +filters=128
375 +size=3
376 +stride=1
377 +pad=1
378 +activation=mish
379 +
380 +[shortcut]
381 +from=-3
382 +activation=linear
383 +
384 +[convolutional]
385 +batch_normalize=1
386 +filters=128
387 +size=1
388 +stride=1
389 +pad=1
390 +activation=mish
391 +
392 +[route]
393 +layers = -1,-28
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=256
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=mish
402 +
403 +# Downsample
404 +
405 +[convolutional]
406 +batch_normalize=1
407 +filters=512
408 +size=3
409 +stride=2
410 +pad=1
411 +activation=mish
412 +
413 +[convolutional]
414 +batch_normalize=1
415 +filters=256
416 +size=1
417 +stride=1
418 +pad=1
419 +activation=mish
420 +
421 +[route]
422 +layers = -2
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=256
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=mish
431 +
432 +[convolutional]
433 +batch_normalize=1
434 +filters=256
435 +size=1
436 +stride=1
437 +pad=1
438 +activation=mish
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=256
443 +size=3
444 +stride=1
445 +pad=1
446 +activation=mish
447 +
448 +[shortcut]
449 +from=-3
450 +activation=linear
451 +
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=256
456 +size=1
457 +stride=1
458 +pad=1
459 +activation=mish
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=256
464 +size=3
465 +stride=1
466 +pad=1
467 +activation=mish
468 +
469 +[shortcut]
470 +from=-3
471 +activation=linear
472 +
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=256
477 +size=1
478 +stride=1
479 +pad=1
480 +activation=mish
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=256
485 +size=3
486 +stride=1
487 +pad=1
488 +activation=mish
489 +
490 +[shortcut]
491 +from=-3
492 +activation=linear
493 +
494 +
495 +[convolutional]
496 +batch_normalize=1
497 +filters=256
498 +size=1
499 +stride=1
500 +pad=1
501 +activation=mish
502 +
503 +[convolutional]
504 +batch_normalize=1
505 +filters=256
506 +size=3
507 +stride=1
508 +pad=1
509 +activation=mish
510 +
511 +[shortcut]
512 +from=-3
513 +activation=linear
514 +
515 +
516 +[convolutional]
517 +batch_normalize=1
518 +filters=256
519 +size=1
520 +stride=1
521 +pad=1
522 +activation=mish
523 +
524 +[convolutional]
525 +batch_normalize=1
526 +filters=256
527 +size=3
528 +stride=1
529 +pad=1
530 +activation=mish
531 +
532 +[shortcut]
533 +from=-3
534 +activation=linear
535 +
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=256
540 +size=1
541 +stride=1
542 +pad=1
543 +activation=mish
544 +
545 +[convolutional]
546 +batch_normalize=1
547 +filters=256
548 +size=3
549 +stride=1
550 +pad=1
551 +activation=mish
552 +
553 +[shortcut]
554 +from=-3
555 +activation=linear
556 +
557 +
558 +[convolutional]
559 +batch_normalize=1
560 +filters=256
561 +size=1
562 +stride=1
563 +pad=1
564 +activation=mish
565 +
566 +[convolutional]
567 +batch_normalize=1
568 +filters=256
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=mish
573 +
574 +[shortcut]
575 +from=-3
576 +activation=linear
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=256
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=mish
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=256
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=mish
593 +
594 +[shortcut]
595 +from=-3
596 +activation=linear
597 +
598 +[convolutional]
599 +batch_normalize=1
600 +filters=256
601 +size=1
602 +stride=1
603 +pad=1
604 +activation=mish
605 +
606 +[route]
607 +layers = -1,-28
608 +
609 +[convolutional]
610 +batch_normalize=1
611 +filters=512
612 +size=1
613 +stride=1
614 +pad=1
615 +activation=mish
616 +
617 +# Downsample
618 +
619 +[convolutional]
620 +batch_normalize=1
621 +filters=1024
622 +size=3
623 +stride=2
624 +pad=1
625 +activation=mish
626 +
627 +[convolutional]
628 +batch_normalize=1
629 +filters=512
630 +size=1
631 +stride=1
632 +pad=1
633 +activation=mish
634 +
635 +[route]
636 +layers = -2
637 +
638 +[convolutional]
639 +batch_normalize=1
640 +filters=512
641 +size=1
642 +stride=1
643 +pad=1
644 +activation=mish
645 +
646 +[convolutional]
647 +batch_normalize=1
648 +filters=512
649 +size=1
650 +stride=1
651 +pad=1
652 +activation=mish
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=512
657 +size=3
658 +stride=1
659 +pad=1
660 +activation=mish
661 +
662 +[shortcut]
663 +from=-3
664 +activation=linear
665 +
666 +[convolutional]
667 +batch_normalize=1
668 +filters=512
669 +size=1
670 +stride=1
671 +pad=1
672 +activation=mish
673 +
674 +[convolutional]
675 +batch_normalize=1
676 +filters=512
677 +size=3
678 +stride=1
679 +pad=1
680 +activation=mish
681 +
682 +[shortcut]
683 +from=-3
684 +activation=linear
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=512
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=mish
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=512
697 +size=3
698 +stride=1
699 +pad=1
700 +activation=mish
701 +
702 +[shortcut]
703 +from=-3
704 +activation=linear
705 +
706 +[convolutional]
707 +batch_normalize=1
708 +filters=512
709 +size=1
710 +stride=1
711 +pad=1
712 +activation=mish
713 +
714 +[convolutional]
715 +batch_normalize=1
716 +filters=512
717 +size=3
718 +stride=1
719 +pad=1
720 +activation=mish
721 +
722 +[shortcut]
723 +from=-3
724 +activation=linear
725 +
726 +[convolutional]
727 +batch_normalize=1
728 +filters=512
729 +size=1
730 +stride=1
731 +pad=1
732 +activation=mish
733 +
734 +[route]
735 +layers = -1,-16
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=1024
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=mish
744 +stopbackward=800
745 +
746 +##########################
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +filters=512
751 +size=1
752 +stride=1
753 +pad=1
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +size=3
759 +stride=1
760 +pad=1
761 +filters=1024
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +filters=512
767 +size=1
768 +stride=1
769 +pad=1
770 +activation=leaky
771 +
772 +### SPP ###
773 +[maxpool]
774 +stride=1
775 +size=5
776 +
777 +[route]
778 +layers=-2
779 +
780 +[maxpool]
781 +stride=1
782 +size=9
783 +
784 +[route]
785 +layers=-4
786 +
787 +[maxpool]
788 +stride=1
789 +size=13
790 +
791 +[route]
792 +layers=-1,-3,-5,-6
793 +### End SPP ###
794 +
795 +[convolutional]
796 +batch_normalize=1
797 +filters=512
798 +size=1
799 +stride=1
800 +pad=1
801 +activation=leaky
802 +
803 +[convolutional]
804 +batch_normalize=1
805 +size=3
806 +stride=1
807 +pad=1
808 +filters=1024
809 +activation=leaky
810 +
811 +[convolutional]
812 +batch_normalize=1
813 +filters=512
814 +size=1
815 +stride=1
816 +pad=1
817 +activation=leaky
818 +
819 +[convolutional]
820 +batch_normalize=1
821 +filters=256
822 +size=1
823 +stride=1
824 +pad=1
825 +activation=leaky
826 +
827 +[upsample]
828 +stride=2
829 +
830 +[route]
831 +layers = 85
832 +
833 +[convolutional]
834 +batch_normalize=1
835 +filters=256
836 +size=1
837 +stride=1
838 +pad=1
839 +activation=leaky
840 +
841 +[route]
842 +layers = -1, -3
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=256
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=leaky
851 +
852 +[convolutional]
853 +batch_normalize=1
854 +size=3
855 +stride=1
856 +pad=1
857 +filters=512
858 +activation=leaky
859 +
860 +[convolutional]
861 +batch_normalize=1
862 +filters=256
863 +size=1
864 +stride=1
865 +pad=1
866 +activation=leaky
867 +
868 +[convolutional]
869 +batch_normalize=1
870 +size=3
871 +stride=1
872 +pad=1
873 +filters=512
874 +activation=leaky
875 +
876 +[convolutional]
877 +batch_normalize=1
878 +filters=256
879 +size=1
880 +stride=1
881 +pad=1
882 +activation=leaky
883 +
884 +[convolutional]
885 +batch_normalize=1
886 +filters=128
887 +size=1
888 +stride=1
889 +pad=1
890 +activation=leaky
891 +
892 +[upsample]
893 +stride=2
894 +
895 +[route]
896 +layers = 54
897 +
898 +[convolutional]
899 +batch_normalize=1
900 +filters=128
901 +size=1
902 +stride=1
903 +pad=1
904 +activation=leaky
905 +
906 +[route]
907 +layers = -1, -3
908 +
909 +[convolutional]
910 +batch_normalize=1
911 +filters=128
912 +size=1
913 +stride=1
914 +pad=1
915 +activation=leaky
916 +
917 +[convolutional]
918 +batch_normalize=1
919 +size=3
920 +stride=1
921 +pad=1
922 +filters=256
923 +activation=leaky
924 +
925 +[convolutional]
926 +batch_normalize=1
927 +filters=128
928 +size=1
929 +stride=1
930 +pad=1
931 +activation=leaky
932 +
933 +[convolutional]
934 +batch_normalize=1
935 +size=3
936 +stride=1
937 +pad=1
938 +filters=256
939 +activation=leaky
940 +
941 +[convolutional]
942 +batch_normalize=1
943 +filters=128
944 +size=1
945 +stride=1
946 +pad=1
947 +activation=leaky
948 +
949 +##########################
950 +
951 +[convolutional]
952 +batch_normalize=1
953 +size=3
954 +stride=1
955 +pad=1
956 +filters=256
957 +activation=leaky
958 +
959 +[convolutional]
960 +size=1
961 +stride=1
962 +pad=1
963 +filters=21
964 +activation=linear
965 +
966 +
967 +[yolo]
968 +mask = 0,1,2
969 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
970 +classes=2
971 +num=9
972 +jitter=.3
973 +ignore_thresh = .7
974 +truth_thresh = 1
975 +scale_x_y = 1.2
976 +iou_thresh=0.213
977 +cls_normalizer=1.0
978 +iou_normalizer=0.07
979 +iou_loss=ciou
980 +nms_kind=greedynms
981 +beta_nms=0.6
982 +max_delta=5
983 +
984 +
985 +[route]
986 +layers = -4
987 +
988 +[convolutional]
989 +batch_normalize=1
990 +size=3
991 +stride=2
992 +pad=1
993 +filters=256
994 +activation=leaky
995 +
996 +[route]
997 +layers = -1, -16
998 +
999 +[convolutional]
1000 +batch_normalize=1
1001 +filters=256
1002 +size=1
1003 +stride=1
1004 +pad=1
1005 +activation=leaky
1006 +
1007 +[convolutional]
1008 +batch_normalize=1
1009 +size=3
1010 +stride=1
1011 +pad=1
1012 +filters=512
1013 +activation=leaky
1014 +
1015 +[convolutional]
1016 +batch_normalize=1
1017 +filters=256
1018 +size=1
1019 +stride=1
1020 +pad=1
1021 +activation=leaky
1022 +
1023 +[convolutional]
1024 +batch_normalize=1
1025 +size=3
1026 +stride=1
1027 +pad=1
1028 +filters=512
1029 +activation=leaky
1030 +
1031 +[convolutional]
1032 +batch_normalize=1
1033 +filters=256
1034 +size=1
1035 +stride=1
1036 +pad=1
1037 +activation=leaky
1038 +
1039 +[convolutional]
1040 +batch_normalize=1
1041 +size=3
1042 +stride=1
1043 +pad=1
1044 +filters=512
1045 +activation=leaky
1046 +
1047 +[convolutional]
1048 +size=1
1049 +stride=1
1050 +pad=1
1051 +filters=21
1052 +activation=linear
1053 +
1054 +
1055 +[yolo]
1056 +mask = 3,4,5
1057 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1058 +classes=2
1059 +num=9
1060 +jitter=.3
1061 +ignore_thresh = .7
1062 +truth_thresh = 1
1063 +scale_x_y = 1.1
1064 +iou_thresh=0.213
1065 +cls_normalizer=1.0
1066 +iou_normalizer=0.07
1067 +iou_loss=ciou
1068 +nms_kind=greedynms
1069 +beta_nms=0.6
1070 +max_delta=5
1071 +
1072 +
1073 +[route]
1074 +layers = -4
1075 +
1076 +[convolutional]
1077 +batch_normalize=1
1078 +size=3
1079 +stride=2
1080 +pad=1
1081 +filters=512
1082 +activation=leaky
1083 +
1084 +[route]
1085 +layers = -1, -37
1086 +
1087 +[convolutional]
1088 +batch_normalize=1
1089 +filters=512
1090 +size=1
1091 +stride=1
1092 +pad=1
1093 +activation=leaky
1094 +
1095 +[convolutional]
1096 +batch_normalize=1
1097 +size=3
1098 +stride=1
1099 +pad=1
1100 +filters=1024
1101 +activation=leaky
1102 +
1103 +[convolutional]
1104 +batch_normalize=1
1105 +filters=512
1106 +size=1
1107 +stride=1
1108 +pad=1
1109 +activation=leaky
1110 +
1111 +[convolutional]
1112 +batch_normalize=1
1113 +size=3
1114 +stride=1
1115 +pad=1
1116 +filters=1024
1117 +activation=leaky
1118 +
1119 +[convolutional]
1120 +batch_normalize=1
1121 +filters=512
1122 +size=1
1123 +stride=1
1124 +pad=1
1125 +activation=leaky
1126 +
1127 +[convolutional]
1128 +batch_normalize=1
1129 +size=3
1130 +stride=1
1131 +pad=1
1132 +filters=1024
1133 +activation=leaky
1134 +
1135 +[convolutional]
1136 +size=1
1137 +stride=1
1138 +pad=1
1139 +filters=21
1140 +activation=linear
1141 +
1142 +
1143 +[yolo]
1144 +mask = 6,7,8
1145 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1146 +classes=2
1147 +num=9
1148 +jitter=.3
1149 +ignore_thresh = .7
1150 +truth_thresh = 1
1151 +random=1
1152 +scale_x_y = 1.05
1153 +iou_thresh=0.213
1154 +cls_normalizer=1.0
1155 +iou_normalizer=0.07
1156 +iou_loss=ciou
1157 +nms_kind=greedynms
1158 +beta_nms=0.6
1159 +max_delta=5
1160 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=16
7 +subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.949
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 50000
21 +policy=steps
22 +steps=40000,45000
23 +scales=.1,.1
24 +
25 +#cutmix=1
26 +mosaic=1
27 +
28 +#:104x104 54:52x52 85:26x26 104:13x13 for 416
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=32
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=mish
37 +
38 +# Downsample
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=64
43 +size=3
44 +stride=2
45 +pad=1
46 +activation=mish
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=1
52 +stride=1
53 +pad=1
54 +activation=mish
55 +
56 +[route]
57 +layers = -2
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=64
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=mish
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=32
70 +size=1
71 +stride=1
72 +pad=1
73 +activation=mish
74 +
75 +[convolutional]
76 +batch_normalize=1
77 +filters=64
78 +size=3
79 +stride=1
80 +pad=1
81 +activation=mish
82 +
83 +[shortcut]
84 +from=-3
85 +activation=linear
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=64
90 +size=1
91 +stride=1
92 +pad=1
93 +activation=mish
94 +
95 +[route]
96 +layers = -1,-7
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=64
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=mish
105 +
106 +# Downsample
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=128
111 +size=3
112 +stride=2
113 +pad=1
114 +activation=mish
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=64
119 +size=1
120 +stride=1
121 +pad=1
122 +activation=mish
123 +
124 +[route]
125 +layers = -2
126 +
127 +[convolutional]
128 +batch_normalize=1
129 +filters=64
130 +size=1
131 +stride=1
132 +pad=1
133 +activation=mish
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=64
138 +size=1
139 +stride=1
140 +pad=1
141 +activation=mish
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=64
146 +size=3
147 +stride=1
148 +pad=1
149 +activation=mish
150 +
151 +[shortcut]
152 +from=-3
153 +activation=linear
154 +
155 +[convolutional]
156 +batch_normalize=1
157 +filters=64
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=mish
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=64
166 +size=3
167 +stride=1
168 +pad=1
169 +activation=mish
170 +
171 +[shortcut]
172 +from=-3
173 +activation=linear
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=64
178 +size=1
179 +stride=1
180 +pad=1
181 +activation=mish
182 +
183 +[route]
184 +layers = -1,-10
185 +
186 +[convolutional]
187 +batch_normalize=1
188 +filters=128
189 +size=1
190 +stride=1
191 +pad=1
192 +activation=mish
193 +
194 +# Downsample
195 +
196 +[convolutional]
197 +batch_normalize=1
198 +filters=256
199 +size=3
200 +stride=2
201 +pad=1
202 +activation=mish
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=mish
211 +
212 +[route]
213 +layers = -2
214 +
215 +[convolutional]
216 +batch_normalize=1
217 +filters=128
218 +size=1
219 +stride=1
220 +pad=1
221 +activation=mish
222 +
223 +[convolutional]
224 +batch_normalize=1
225 +filters=128
226 +size=1
227 +stride=1
228 +pad=1
229 +activation=mish
230 +
231 +[convolutional]
232 +batch_normalize=1
233 +filters=128
234 +size=3
235 +stride=1
236 +pad=1
237 +activation=mish
238 +
239 +[shortcut]
240 +from=-3
241 +activation=linear
242 +
243 +[convolutional]
244 +batch_normalize=1
245 +filters=128
246 +size=1
247 +stride=1
248 +pad=1
249 +activation=mish
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=128
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=mish
258 +
259 +[shortcut]
260 +from=-3
261 +activation=linear
262 +
263 +[convolutional]
264 +batch_normalize=1
265 +filters=128
266 +size=1
267 +stride=1
268 +pad=1
269 +activation=mish
270 +
271 +[convolutional]
272 +batch_normalize=1
273 +filters=128
274 +size=3
275 +stride=1
276 +pad=1
277 +activation=mish
278 +
279 +[shortcut]
280 +from=-3
281 +activation=linear
282 +
283 +[convolutional]
284 +batch_normalize=1
285 +filters=128
286 +size=1
287 +stride=1
288 +pad=1
289 +activation=mish
290 +
291 +[convolutional]
292 +batch_normalize=1
293 +filters=128
294 +size=3
295 +stride=1
296 +pad=1
297 +activation=mish
298 +
299 +[shortcut]
300 +from=-3
301 +activation=linear
302 +
303 +
304 +[convolutional]
305 +batch_normalize=1
306 +filters=128
307 +size=1
308 +stride=1
309 +pad=1
310 +activation=mish
311 +
312 +[convolutional]
313 +batch_normalize=1
314 +filters=128
315 +size=3
316 +stride=1
317 +pad=1
318 +activation=mish
319 +
320 +[shortcut]
321 +from=-3
322 +activation=linear
323 +
324 +[convolutional]
325 +batch_normalize=1
326 +filters=128
327 +size=1
328 +stride=1
329 +pad=1
330 +activation=mish
331 +
332 +[convolutional]
333 +batch_normalize=1
334 +filters=128
335 +size=3
336 +stride=1
337 +pad=1
338 +activation=mish
339 +
340 +[shortcut]
341 +from=-3
342 +activation=linear
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=128
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=mish
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=128
355 +size=3
356 +stride=1
357 +pad=1
358 +activation=mish
359 +
360 +[shortcut]
361 +from=-3
362 +activation=linear
363 +
364 +[convolutional]
365 +batch_normalize=1
366 +filters=128
367 +size=1
368 +stride=1
369 +pad=1
370 +activation=mish
371 +
372 +[convolutional]
373 +batch_normalize=1
374 +filters=128
375 +size=3
376 +stride=1
377 +pad=1
378 +activation=mish
379 +
380 +[shortcut]
381 +from=-3
382 +activation=linear
383 +
384 +[convolutional]
385 +batch_normalize=1
386 +filters=128
387 +size=1
388 +stride=1
389 +pad=1
390 +activation=mish
391 +
392 +[route]
393 +layers = -1,-28
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=256
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=mish
402 +
403 +# Downsample
404 +
405 +[convolutional]
406 +batch_normalize=1
407 +filters=512
408 +size=3
409 +stride=2
410 +pad=1
411 +activation=mish
412 +
413 +[convolutional]
414 +batch_normalize=1
415 +filters=256
416 +size=1
417 +stride=1
418 +pad=1
419 +activation=mish
420 +
421 +[route]
422 +layers = -2
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=256
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=mish
431 +
432 +[convolutional]
433 +batch_normalize=1
434 +filters=256
435 +size=1
436 +stride=1
437 +pad=1
438 +activation=mish
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=256
443 +size=3
444 +stride=1
445 +pad=1
446 +activation=mish
447 +
448 +[shortcut]
449 +from=-3
450 +activation=linear
451 +
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=256
456 +size=1
457 +stride=1
458 +pad=1
459 +activation=mish
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=256
464 +size=3
465 +stride=1
466 +pad=1
467 +activation=mish
468 +
469 +[shortcut]
470 +from=-3
471 +activation=linear
472 +
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=256
477 +size=1
478 +stride=1
479 +pad=1
480 +activation=mish
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=256
485 +size=3
486 +stride=1
487 +pad=1
488 +activation=mish
489 +
490 +[shortcut]
491 +from=-3
492 +activation=linear
493 +
494 +
495 +[convolutional]
496 +batch_normalize=1
497 +filters=256
498 +size=1
499 +stride=1
500 +pad=1
501 +activation=mish
502 +
503 +[convolutional]
504 +batch_normalize=1
505 +filters=256
506 +size=3
507 +stride=1
508 +pad=1
509 +activation=mish
510 +
511 +[shortcut]
512 +from=-3
513 +activation=linear
514 +
515 +
516 +[convolutional]
517 +batch_normalize=1
518 +filters=256
519 +size=1
520 +stride=1
521 +pad=1
522 +activation=mish
523 +
524 +[convolutional]
525 +batch_normalize=1
526 +filters=256
527 +size=3
528 +stride=1
529 +pad=1
530 +activation=mish
531 +
532 +[shortcut]
533 +from=-3
534 +activation=linear
535 +
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=256
540 +size=1
541 +stride=1
542 +pad=1
543 +activation=mish
544 +
545 +[convolutional]
546 +batch_normalize=1
547 +filters=256
548 +size=3
549 +stride=1
550 +pad=1
551 +activation=mish
552 +
553 +[shortcut]
554 +from=-3
555 +activation=linear
556 +
557 +
558 +[convolutional]
559 +batch_normalize=1
560 +filters=256
561 +size=1
562 +stride=1
563 +pad=1
564 +activation=mish
565 +
566 +[convolutional]
567 +batch_normalize=1
568 +filters=256
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=mish
573 +
574 +[shortcut]
575 +from=-3
576 +activation=linear
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=256
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=mish
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=256
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=mish
593 +
594 +[shortcut]
595 +from=-3
596 +activation=linear
597 +
598 +[convolutional]
599 +batch_normalize=1
600 +filters=256
601 +size=1
602 +stride=1
603 +pad=1
604 +activation=mish
605 +
606 +[route]
607 +layers = -1,-28
608 +
609 +[convolutional]
610 +batch_normalize=1
611 +filters=512
612 +size=1
613 +stride=1
614 +pad=1
615 +activation=mish
616 +
617 +# Downsample
618 +
619 +[convolutional]
620 +batch_normalize=1
621 +filters=1024
622 +size=3
623 +stride=2
624 +pad=1
625 +activation=mish
626 +
627 +[convolutional]
628 +batch_normalize=1
629 +filters=512
630 +size=1
631 +stride=1
632 +pad=1
633 +activation=mish
634 +
635 +[route]
636 +layers = -2
637 +
638 +[convolutional]
639 +batch_normalize=1
640 +filters=512
641 +size=1
642 +stride=1
643 +pad=1
644 +activation=mish
645 +
646 +[convolutional]
647 +batch_normalize=1
648 +filters=512
649 +size=1
650 +stride=1
651 +pad=1
652 +activation=mish
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=512
657 +size=3
658 +stride=1
659 +pad=1
660 +activation=mish
661 +
662 +[shortcut]
663 +from=-3
664 +activation=linear
665 +
666 +[convolutional]
667 +batch_normalize=1
668 +filters=512
669 +size=1
670 +stride=1
671 +pad=1
672 +activation=mish
673 +
674 +[convolutional]
675 +batch_normalize=1
676 +filters=512
677 +size=3
678 +stride=1
679 +pad=1
680 +activation=mish
681 +
682 +[shortcut]
683 +from=-3
684 +activation=linear
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=512
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=mish
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=512
697 +size=3
698 +stride=1
699 +pad=1
700 +activation=mish
701 +
702 +[shortcut]
703 +from=-3
704 +activation=linear
705 +
706 +[convolutional]
707 +batch_normalize=1
708 +filters=512
709 +size=1
710 +stride=1
711 +pad=1
712 +activation=mish
713 +
714 +[convolutional]
715 +batch_normalize=1
716 +filters=512
717 +size=3
718 +stride=1
719 +pad=1
720 +activation=mish
721 +
722 +[shortcut]
723 +from=-3
724 +activation=linear
725 +
726 +[convolutional]
727 +batch_normalize=1
728 +filters=512
729 +size=1
730 +stride=1
731 +pad=1
732 +activation=mish
733 +
734 +[route]
735 +layers = -1,-16
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=1024
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=mish
744 +stopbackward=800
745 +
746 +##########################
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +filters=512
751 +size=1
752 +stride=1
753 +pad=1
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +size=3
759 +stride=1
760 +pad=1
761 +filters=1024
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +filters=512
767 +size=1
768 +stride=1
769 +pad=1
770 +activation=leaky
771 +
772 +### SPP ###
773 +[maxpool]
774 +stride=1
775 +size=5
776 +
777 +[route]
778 +layers=-2
779 +
780 +[maxpool]
781 +stride=1
782 +size=9
783 +
784 +[route]
785 +layers=-4
786 +
787 +[maxpool]
788 +stride=1
789 +size=13
790 +
791 +[route]
792 +layers=-1,-3,-5,-6
793 +### End SPP ###
794 +
795 +[convolutional]
796 +batch_normalize=1
797 +filters=512
798 +size=1
799 +stride=1
800 +pad=1
801 +activation=leaky
802 +
803 +[convolutional]
804 +batch_normalize=1
805 +size=3
806 +stride=1
807 +pad=1
808 +filters=1024
809 +activation=leaky
810 +
811 +[convolutional]
812 +batch_normalize=1
813 +filters=512
814 +size=1
815 +stride=1
816 +pad=1
817 +activation=leaky
818 +
819 +[convolutional]
820 +batch_normalize=1
821 +filters=256
822 +size=1
823 +stride=1
824 +pad=1
825 +activation=leaky
826 +
827 +[upsample]
828 +stride=2
829 +
830 +[route]
831 +layers = 85
832 +
833 +[convolutional]
834 +batch_normalize=1
835 +filters=256
836 +size=1
837 +stride=1
838 +pad=1
839 +activation=leaky
840 +
841 +[route]
842 +layers = -1, -3
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=256
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=leaky
851 +
852 +[convolutional]
853 +batch_normalize=1
854 +size=3
855 +stride=1
856 +pad=1
857 +filters=512
858 +activation=leaky
859 +
860 +[convolutional]
861 +batch_normalize=1
862 +filters=256
863 +size=1
864 +stride=1
865 +pad=1
866 +activation=leaky
867 +
868 +[convolutional]
869 +batch_normalize=1
870 +size=3
871 +stride=1
872 +pad=1
873 +filters=512
874 +activation=leaky
875 +
876 +[convolutional]
877 +batch_normalize=1
878 +filters=256
879 +size=1
880 +stride=1
881 +pad=1
882 +activation=leaky
883 +
884 +[convolutional]
885 +batch_normalize=1
886 +filters=128
887 +size=1
888 +stride=1
889 +pad=1
890 +activation=leaky
891 +
892 +[upsample]
893 +stride=2
894 +
895 +[route]
896 +layers = 54
897 +
898 +[convolutional]
899 +batch_normalize=1
900 +filters=128
901 +size=1
902 +stride=1
903 +pad=1
904 +activation=leaky
905 +
906 +[route]
907 +layers = -1, -3
908 +
909 +[convolutional]
910 +batch_normalize=1
911 +filters=128
912 +size=1
913 +stride=1
914 +pad=1
915 +activation=leaky
916 +
917 +[convolutional]
918 +batch_normalize=1
919 +size=3
920 +stride=1
921 +pad=1
922 +filters=256
923 +activation=leaky
924 +
925 +[convolutional]
926 +batch_normalize=1
927 +filters=128
928 +size=1
929 +stride=1
930 +pad=1
931 +activation=leaky
932 +
933 +[convolutional]
934 +batch_normalize=1
935 +size=3
936 +stride=1
937 +pad=1
938 +filters=256
939 +activation=leaky
940 +
941 +[convolutional]
942 +batch_normalize=1
943 +filters=128
944 +size=1
945 +stride=1
946 +pad=1
947 +activation=leaky
948 +
949 +##########################
950 +
951 +[convolutional]
952 +batch_normalize=1
953 +size=3
954 +stride=1
955 +pad=1
956 +filters=256
957 +activation=leaky
958 +
959 +[convolutional]
960 +size=1
961 +stride=1
962 +pad=1
963 +filters=27
964 +activation=linear
965 +
966 +
967 +[yolo]
968 +mask = 0,1,2
969 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
970 +classes=4
971 +num=9
972 +jitter=.3
973 +ignore_thresh = .7
974 +truth_thresh = 1
975 +scale_x_y = 1.2
976 +iou_thresh=0.213
977 +cls_normalizer=1.0
978 +iou_normalizer=0.07
979 +iou_loss=ciou
980 +nms_kind=greedynms
981 +beta_nms=0.6
982 +max_delta=5
983 +
984 +
985 +[route]
986 +layers = -4
987 +
988 +[convolutional]
989 +batch_normalize=1
990 +size=3
991 +stride=2
992 +pad=1
993 +filters=256
994 +activation=leaky
995 +
996 +[route]
997 +layers = -1, -16
998 +
999 +[convolutional]
1000 +batch_normalize=1
1001 +filters=256
1002 +size=1
1003 +stride=1
1004 +pad=1
1005 +activation=leaky
1006 +
1007 +[convolutional]
1008 +batch_normalize=1
1009 +size=3
1010 +stride=1
1011 +pad=1
1012 +filters=512
1013 +activation=leaky
1014 +
1015 +[convolutional]
1016 +batch_normalize=1
1017 +filters=256
1018 +size=1
1019 +stride=1
1020 +pad=1
1021 +activation=leaky
1022 +
1023 +[convolutional]
1024 +batch_normalize=1
1025 +size=3
1026 +stride=1
1027 +pad=1
1028 +filters=512
1029 +activation=leaky
1030 +
1031 +[convolutional]
1032 +batch_normalize=1
1033 +filters=256
1034 +size=1
1035 +stride=1
1036 +pad=1
1037 +activation=leaky
1038 +
1039 +[convolutional]
1040 +batch_normalize=1
1041 +size=3
1042 +stride=1
1043 +pad=1
1044 +filters=512
1045 +activation=leaky
1046 +
1047 +[convolutional]
1048 +size=1
1049 +stride=1
1050 +pad=1
1051 +filters=27
1052 +activation=linear
1053 +
1054 +
1055 +[yolo]
1056 +mask = 3,4,5
1057 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1058 +classes=4
1059 +num=9
1060 +jitter=.3
1061 +ignore_thresh = .7
1062 +truth_thresh = 1
1063 +scale_x_y = 1.1
1064 +iou_thresh=0.213
1065 +cls_normalizer=1.0
1066 +iou_normalizer=0.07
1067 +iou_loss=ciou
1068 +nms_kind=greedynms
1069 +beta_nms=0.6
1070 +max_delta=5
1071 +
1072 +
1073 +[route]
1074 +layers = -4
1075 +
1076 +[convolutional]
1077 +batch_normalize=1
1078 +size=3
1079 +stride=2
1080 +pad=1
1081 +filters=512
1082 +activation=leaky
1083 +
1084 +[route]
1085 +layers = -1, -37
1086 +
1087 +[convolutional]
1088 +batch_normalize=1
1089 +filters=512
1090 +size=1
1091 +stride=1
1092 +pad=1
1093 +activation=leaky
1094 +
1095 +[convolutional]
1096 +batch_normalize=1
1097 +size=3
1098 +stride=1
1099 +pad=1
1100 +filters=1024
1101 +activation=leaky
1102 +
1103 +[convolutional]
1104 +batch_normalize=1
1105 +filters=512
1106 +size=1
1107 +stride=1
1108 +pad=1
1109 +activation=leaky
1110 +
1111 +[convolutional]
1112 +batch_normalize=1
1113 +size=3
1114 +stride=1
1115 +pad=1
1116 +filters=1024
1117 +activation=leaky
1118 +
1119 +[convolutional]
1120 +batch_normalize=1
1121 +filters=512
1122 +size=1
1123 +stride=1
1124 +pad=1
1125 +activation=leaky
1126 +
1127 +[convolutional]
1128 +batch_normalize=1
1129 +size=3
1130 +stride=1
1131 +pad=1
1132 +filters=1024
1133 +activation=leaky
1134 +
1135 +[convolutional]
1136 +size=1
1137 +stride=1
1138 +pad=1
1139 +filters=27
1140 +activation=linear
1141 +
1142 +
1143 +[yolo]
1144 +mask = 6,7,8
1145 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1146 +classes=4
1147 +num=9
1148 +jitter=.3
1149 +ignore_thresh = .7
1150 +truth_thresh = 1
1151 +random=1
1152 +scale_x_y = 1.05
1153 +iou_thresh=0.213
1154 +cls_normalizer=1.0
1155 +iou_normalizer=0.07
1156 +iou_loss=ciou
1157 +nms_kind=greedynms
1158 +beta_nms=0.6
1159 +max_delta=5
1160 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.949
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 30000
21 +policy=steps
22 +steps=8000,9000
23 +scales=.1,.1
24 +
25 +#cutmix=1
26 +mosaic=1
27 +
28 +#:104x104 54:52x52 85:26x26 104:13x13 for 416
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=32
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=mish
37 +
38 +# Downsample
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=64
43 +size=3
44 +stride=2
45 +pad=1
46 +activation=mish
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=1
52 +stride=1
53 +pad=1
54 +activation=mish
55 +
56 +[route]
57 +layers = -2
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=64
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=mish
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=32
70 +size=1
71 +stride=1
72 +pad=1
73 +activation=mish
74 +
75 +[convolutional]
76 +batch_normalize=1
77 +filters=64
78 +size=3
79 +stride=1
80 +pad=1
81 +activation=mish
82 +
83 +[shortcut]
84 +from=-3
85 +activation=linear
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=64
90 +size=1
91 +stride=1
92 +pad=1
93 +activation=mish
94 +
95 +[route]
96 +layers = -1,-7
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=64
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=mish
105 +
106 +# Downsample
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=128
111 +size=3
112 +stride=2
113 +pad=1
114 +activation=mish
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=64
119 +size=1
120 +stride=1
121 +pad=1
122 +activation=mish
123 +
124 +[route]
125 +layers = -2
126 +
127 +[convolutional]
128 +batch_normalize=1
129 +filters=64
130 +size=1
131 +stride=1
132 +pad=1
133 +activation=mish
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=64
138 +size=1
139 +stride=1
140 +pad=1
141 +activation=mish
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=64
146 +size=3
147 +stride=1
148 +pad=1
149 +activation=mish
150 +
151 +[shortcut]
152 +from=-3
153 +activation=linear
154 +
155 +[convolutional]
156 +batch_normalize=1
157 +filters=64
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=mish
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=64
166 +size=3
167 +stride=1
168 +pad=1
169 +activation=mish
170 +
171 +[shortcut]
172 +from=-3
173 +activation=linear
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=64
178 +size=1
179 +stride=1
180 +pad=1
181 +activation=mish
182 +
183 +[route]
184 +layers = -1,-10
185 +
186 +[convolutional]
187 +batch_normalize=1
188 +filters=128
189 +size=1
190 +stride=1
191 +pad=1
192 +activation=mish
193 +
194 +# Downsample
195 +
196 +[convolutional]
197 +batch_normalize=1
198 +filters=256
199 +size=3
200 +stride=2
201 +pad=1
202 +activation=mish
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=mish
211 +
212 +[route]
213 +layers = -2
214 +
215 +[convolutional]
216 +batch_normalize=1
217 +filters=128
218 +size=1
219 +stride=1
220 +pad=1
221 +activation=mish
222 +
223 +[convolutional]
224 +batch_normalize=1
225 +filters=128
226 +size=1
227 +stride=1
228 +pad=1
229 +activation=mish
230 +
231 +[convolutional]
232 +batch_normalize=1
233 +filters=128
234 +size=3
235 +stride=1
236 +pad=1
237 +activation=mish
238 +
239 +[shortcut]
240 +from=-3
241 +activation=linear
242 +
243 +[convolutional]
244 +batch_normalize=1
245 +filters=128
246 +size=1
247 +stride=1
248 +pad=1
249 +activation=mish
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=128
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=mish
258 +
259 +[shortcut]
260 +from=-3
261 +activation=linear
262 +
263 +[convolutional]
264 +batch_normalize=1
265 +filters=128
266 +size=1
267 +stride=1
268 +pad=1
269 +activation=mish
270 +
271 +[convolutional]
272 +batch_normalize=1
273 +filters=128
274 +size=3
275 +stride=1
276 +pad=1
277 +activation=mish
278 +
279 +[shortcut]
280 +from=-3
281 +activation=linear
282 +
283 +[convolutional]
284 +batch_normalize=1
285 +filters=128
286 +size=1
287 +stride=1
288 +pad=1
289 +activation=mish
290 +
291 +[convolutional]
292 +batch_normalize=1
293 +filters=128
294 +size=3
295 +stride=1
296 +pad=1
297 +activation=mish
298 +
299 +[shortcut]
300 +from=-3
301 +activation=linear
302 +
303 +
304 +[convolutional]
305 +batch_normalize=1
306 +filters=128
307 +size=1
308 +stride=1
309 +pad=1
310 +activation=mish
311 +
312 +[convolutional]
313 +batch_normalize=1
314 +filters=128
315 +size=3
316 +stride=1
317 +pad=1
318 +activation=mish
319 +
320 +[shortcut]
321 +from=-3
322 +activation=linear
323 +
324 +[convolutional]
325 +batch_normalize=1
326 +filters=128
327 +size=1
328 +stride=1
329 +pad=1
330 +activation=mish
331 +
332 +[convolutional]
333 +batch_normalize=1
334 +filters=128
335 +size=3
336 +stride=1
337 +pad=1
338 +activation=mish
339 +
340 +[shortcut]
341 +from=-3
342 +activation=linear
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=128
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=mish
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=128
355 +size=3
356 +stride=1
357 +pad=1
358 +activation=mish
359 +
360 +[shortcut]
361 +from=-3
362 +activation=linear
363 +
364 +[convolutional]
365 +batch_normalize=1
366 +filters=128
367 +size=1
368 +stride=1
369 +pad=1
370 +activation=mish
371 +
372 +[convolutional]
373 +batch_normalize=1
374 +filters=128
375 +size=3
376 +stride=1
377 +pad=1
378 +activation=mish
379 +
380 +[shortcut]
381 +from=-3
382 +activation=linear
383 +
384 +[convolutional]
385 +batch_normalize=1
386 +filters=128
387 +size=1
388 +stride=1
389 +pad=1
390 +activation=mish
391 +
392 +[route]
393 +layers = -1,-28
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=256
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=mish
402 +
403 +# Downsample
404 +
405 +[convolutional]
406 +batch_normalize=1
407 +filters=512
408 +size=3
409 +stride=2
410 +pad=1
411 +activation=mish
412 +
413 +[convolutional]
414 +batch_normalize=1
415 +filters=256
416 +size=1
417 +stride=1
418 +pad=1
419 +activation=mish
420 +
421 +[route]
422 +layers = -2
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=256
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=mish
431 +
432 +[convolutional]
433 +batch_normalize=1
434 +filters=256
435 +size=1
436 +stride=1
437 +pad=1
438 +activation=mish
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=256
443 +size=3
444 +stride=1
445 +pad=1
446 +activation=mish
447 +
448 +[shortcut]
449 +from=-3
450 +activation=linear
451 +
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=256
456 +size=1
457 +stride=1
458 +pad=1
459 +activation=mish
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=256
464 +size=3
465 +stride=1
466 +pad=1
467 +activation=mish
468 +
469 +[shortcut]
470 +from=-3
471 +activation=linear
472 +
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=256
477 +size=1
478 +stride=1
479 +pad=1
480 +activation=mish
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=256
485 +size=3
486 +stride=1
487 +pad=1
488 +activation=mish
489 +
490 +[shortcut]
491 +from=-3
492 +activation=linear
493 +
494 +
495 +[convolutional]
496 +batch_normalize=1
497 +filters=256
498 +size=1
499 +stride=1
500 +pad=1
501 +activation=mish
502 +
503 +[convolutional]
504 +batch_normalize=1
505 +filters=256
506 +size=3
507 +stride=1
508 +pad=1
509 +activation=mish
510 +
511 +[shortcut]
512 +from=-3
513 +activation=linear
514 +
515 +
516 +[convolutional]
517 +batch_normalize=1
518 +filters=256
519 +size=1
520 +stride=1
521 +pad=1
522 +activation=mish
523 +
524 +[convolutional]
525 +batch_normalize=1
526 +filters=256
527 +size=3
528 +stride=1
529 +pad=1
530 +activation=mish
531 +
532 +[shortcut]
533 +from=-3
534 +activation=linear
535 +
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=256
540 +size=1
541 +stride=1
542 +pad=1
543 +activation=mish
544 +
545 +[convolutional]
546 +batch_normalize=1
547 +filters=256
548 +size=3
549 +stride=1
550 +pad=1
551 +activation=mish
552 +
553 +[shortcut]
554 +from=-3
555 +activation=linear
556 +
557 +
558 +[convolutional]
559 +batch_normalize=1
560 +filters=256
561 +size=1
562 +stride=1
563 +pad=1
564 +activation=mish
565 +
566 +[convolutional]
567 +batch_normalize=1
568 +filters=256
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=mish
573 +
574 +[shortcut]
575 +from=-3
576 +activation=linear
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=256
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=mish
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=256
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=mish
593 +
594 +[shortcut]
595 +from=-3
596 +activation=linear
597 +
598 +[convolutional]
599 +batch_normalize=1
600 +filters=256
601 +size=1
602 +stride=1
603 +pad=1
604 +activation=mish
605 +
606 +[route]
607 +layers = -1,-28
608 +
609 +[convolutional]
610 +batch_normalize=1
611 +filters=512
612 +size=1
613 +stride=1
614 +pad=1
615 +activation=mish
616 +
617 +# Downsample
618 +
619 +[convolutional]
620 +batch_normalize=1
621 +filters=1024
622 +size=3
623 +stride=2
624 +pad=1
625 +activation=mish
626 +
627 +[convolutional]
628 +batch_normalize=1
629 +filters=512
630 +size=1
631 +stride=1
632 +pad=1
633 +activation=mish
634 +
635 +[route]
636 +layers = -2
637 +
638 +[convolutional]
639 +batch_normalize=1
640 +filters=512
641 +size=1
642 +stride=1
643 +pad=1
644 +activation=mish
645 +
646 +[convolutional]
647 +batch_normalize=1
648 +filters=512
649 +size=1
650 +stride=1
651 +pad=1
652 +activation=mish
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=512
657 +size=3
658 +stride=1
659 +pad=1
660 +activation=mish
661 +
662 +[shortcut]
663 +from=-3
664 +activation=linear
665 +
666 +[convolutional]
667 +batch_normalize=1
668 +filters=512
669 +size=1
670 +stride=1
671 +pad=1
672 +activation=mish
673 +
674 +[convolutional]
675 +batch_normalize=1
676 +filters=512
677 +size=3
678 +stride=1
679 +pad=1
680 +activation=mish
681 +
682 +[shortcut]
683 +from=-3
684 +activation=linear
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=512
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=mish
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=512
697 +size=3
698 +stride=1
699 +pad=1
700 +activation=mish
701 +
702 +[shortcut]
703 +from=-3
704 +activation=linear
705 +
706 +[convolutional]
707 +batch_normalize=1
708 +filters=512
709 +size=1
710 +stride=1
711 +pad=1
712 +activation=mish
713 +
714 +[convolutional]
715 +batch_normalize=1
716 +filters=512
717 +size=3
718 +stride=1
719 +pad=1
720 +activation=mish
721 +
722 +[shortcut]
723 +from=-3
724 +activation=linear
725 +
726 +[convolutional]
727 +batch_normalize=1
728 +filters=512
729 +size=1
730 +stride=1
731 +pad=1
732 +activation=mish
733 +
734 +[route]
735 +layers = -1,-16
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=1024
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=mish
744 +stopbackward=800
745 +
746 +##########################
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +filters=512
751 +size=1
752 +stride=1
753 +pad=1
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +size=3
759 +stride=1
760 +pad=1
761 +filters=1024
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +filters=512
767 +size=1
768 +stride=1
769 +pad=1
770 +activation=leaky
771 +
772 +### SPP ###
773 +[maxpool]
774 +stride=1
775 +size=5
776 +
777 +[route]
778 +layers=-2
779 +
780 +[maxpool]
781 +stride=1
782 +size=9
783 +
784 +[route]
785 +layers=-4
786 +
787 +[maxpool]
788 +stride=1
789 +size=13
790 +
791 +[route]
792 +layers=-1,-3,-5,-6
793 +### End SPP ###
794 +
795 +[convolutional]
796 +batch_normalize=1
797 +filters=512
798 +size=1
799 +stride=1
800 +pad=1
801 +activation=leaky
802 +
803 +[convolutional]
804 +batch_normalize=1
805 +size=3
806 +stride=1
807 +pad=1
808 +filters=1024
809 +activation=leaky
810 +
811 +[convolutional]
812 +batch_normalize=1
813 +filters=512
814 +size=1
815 +stride=1
816 +pad=1
817 +activation=leaky
818 +
819 +[convolutional]
820 +batch_normalize=1
821 +filters=256
822 +size=1
823 +stride=1
824 +pad=1
825 +activation=leaky
826 +
827 +[upsample]
828 +stride=2
829 +
830 +[route]
831 +layers = 85
832 +
833 +[convolutional]
834 +batch_normalize=1
835 +filters=256
836 +size=1
837 +stride=1
838 +pad=1
839 +activation=leaky
840 +
841 +[route]
842 +layers = -1, -3
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=256
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=leaky
851 +
852 +[convolutional]
853 +batch_normalize=1
854 +size=3
855 +stride=1
856 +pad=1
857 +filters=512
858 +activation=leaky
859 +
860 +[convolutional]
861 +batch_normalize=1
862 +filters=256
863 +size=1
864 +stride=1
865 +pad=1
866 +activation=leaky
867 +
868 +[convolutional]
869 +batch_normalize=1
870 +size=3
871 +stride=1
872 +pad=1
873 +filters=512
874 +activation=leaky
875 +
876 +[convolutional]
877 +batch_normalize=1
878 +filters=256
879 +size=1
880 +stride=1
881 +pad=1
882 +activation=leaky
883 +
884 +[convolutional]
885 +batch_normalize=1
886 +filters=128
887 +size=1
888 +stride=1
889 +pad=1
890 +activation=leaky
891 +
892 +[upsample]
893 +stride=2
894 +
895 +[route]
896 +layers = 54
897 +
898 +[convolutional]
899 +batch_normalize=1
900 +filters=128
901 +size=1
902 +stride=1
903 +pad=1
904 +activation=leaky
905 +
906 +[route]
907 +layers = -1, -3
908 +
909 +[convolutional]
910 +batch_normalize=1
911 +filters=128
912 +size=1
913 +stride=1
914 +pad=1
915 +activation=leaky
916 +
917 +[convolutional]
918 +batch_normalize=1
919 +size=3
920 +stride=1
921 +pad=1
922 +filters=256
923 +activation=leaky
924 +
925 +[convolutional]
926 +batch_normalize=1
927 +filters=128
928 +size=1
929 +stride=1
930 +pad=1
931 +activation=leaky
932 +
933 +[convolutional]
934 +batch_normalize=1
935 +size=3
936 +stride=1
937 +pad=1
938 +filters=256
939 +activation=leaky
940 +
941 +[convolutional]
942 +batch_normalize=1
943 +filters=128
944 +size=1
945 +stride=1
946 +pad=1
947 +activation=leaky
948 +
949 +##########################
950 +
951 +[convolutional]
952 +batch_normalize=1
953 +size=3
954 +stride=1
955 +pad=1
956 +filters=256
957 +activation=leaky
958 +
959 +[convolutional]
960 +size=1
961 +stride=1
962 +pad=1
963 +filters=30
964 +activation=linear
965 +
966 +
967 +[yolo]
968 +mask = 0,1,2
969 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
970 +classes=5
971 +num=9
972 +jitter=.3
973 +ignore_thresh = .7
974 +truth_thresh = 1
975 +scale_x_y = 1.2
976 +iou_thresh=0.213
977 +cls_normalizer=1.0
978 +iou_normalizer=0.07
979 +iou_loss=ciou
980 +nms_kind=greedynms
981 +beta_nms=0.6
982 +max_delta=5
983 +
984 +
985 +[route]
986 +layers = -4
987 +
988 +[convolutional]
989 +batch_normalize=1
990 +size=3
991 +stride=2
992 +pad=1
993 +filters=256
994 +activation=leaky
995 +
996 +[route]
997 +layers = -1, -16
998 +
999 +[convolutional]
1000 +batch_normalize=1
1001 +filters=256
1002 +size=1
1003 +stride=1
1004 +pad=1
1005 +activation=leaky
1006 +
1007 +[convolutional]
1008 +batch_normalize=1
1009 +size=3
1010 +stride=1
1011 +pad=1
1012 +filters=512
1013 +activation=leaky
1014 +
1015 +[convolutional]
1016 +batch_normalize=1
1017 +filters=256
1018 +size=1
1019 +stride=1
1020 +pad=1
1021 +activation=leaky
1022 +
1023 +[convolutional]
1024 +batch_normalize=1
1025 +size=3
1026 +stride=1
1027 +pad=1
1028 +filters=512
1029 +activation=leaky
1030 +
1031 +[convolutional]
1032 +batch_normalize=1
1033 +filters=256
1034 +size=1
1035 +stride=1
1036 +pad=1
1037 +activation=leaky
1038 +
1039 +[convolutional]
1040 +batch_normalize=1
1041 +size=3
1042 +stride=1
1043 +pad=1
1044 +filters=512
1045 +activation=leaky
1046 +
1047 +[convolutional]
1048 +size=1
1049 +stride=1
1050 +pad=1
1051 +filters=30
1052 +activation=linear
1053 +
1054 +
1055 +[yolo]
1056 +mask = 3,4,5
1057 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1058 +classes=5
1059 +num=9
1060 +jitter=.3
1061 +ignore_thresh = .7
1062 +truth_thresh = 1
1063 +scale_x_y = 1.1
1064 +iou_thresh=0.213
1065 +cls_normalizer=1.0
1066 +iou_normalizer=0.07
1067 +iou_loss=ciou
1068 +nms_kind=greedynms
1069 +beta_nms=0.6
1070 +max_delta=5
1071 +
1072 +
1073 +[route]
1074 +layers = -4
1075 +
1076 +[convolutional]
1077 +batch_normalize=1
1078 +size=3
1079 +stride=2
1080 +pad=1
1081 +filters=512
1082 +activation=leaky
1083 +
1084 +[route]
1085 +layers = -1, -37
1086 +
1087 +[convolutional]
1088 +batch_normalize=1
1089 +filters=512
1090 +size=1
1091 +stride=1
1092 +pad=1
1093 +activation=leaky
1094 +
1095 +[convolutional]
1096 +batch_normalize=1
1097 +size=3
1098 +stride=1
1099 +pad=1
1100 +filters=1024
1101 +activation=leaky
1102 +
1103 +[convolutional]
1104 +batch_normalize=1
1105 +filters=512
1106 +size=1
1107 +stride=1
1108 +pad=1
1109 +activation=leaky
1110 +
1111 +[convolutional]
1112 +batch_normalize=1
1113 +size=3
1114 +stride=1
1115 +pad=1
1116 +filters=1024
1117 +activation=leaky
1118 +
1119 +[convolutional]
1120 +batch_normalize=1
1121 +filters=512
1122 +size=1
1123 +stride=1
1124 +pad=1
1125 +activation=leaky
1126 +
1127 +[convolutional]
1128 +batch_normalize=1
1129 +size=3
1130 +stride=1
1131 +pad=1
1132 +filters=1024
1133 +activation=leaky
1134 +
1135 +[convolutional]
1136 +size=1
1137 +stride=1
1138 +pad=1
1139 +filters=30
1140 +activation=linear
1141 +
1142 +
1143 +[yolo]
1144 +mask = 6,7,8
1145 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1146 +classes=5
1147 +num=9
1148 +jitter=.3
1149 +ignore_thresh = .7
1150 +truth_thresh = 1
1151 +random=1
1152 +scale_x_y = 1.05
1153 +iou_thresh=0.213
1154 +cls_normalizer=1.0
1155 +iou_normalizer=0.07
1156 +iou_loss=ciou
1157 +nms_kind=greedynms
1158 +beta_nms=0.6
1159 +max_delta=5
1160 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=16
7 +subdivisions=16
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.949
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.001
19 +burn_in=1000
20 +max_batches = 50000r
21 +policy=steps
22 +steps=40000,45000
23 +scales=.1,.1
24 +
25 +#cutmix=1
26 +mosaic=1
27 +
28 +#:104x104 54:52x52 85:26x26 104:13x13 for 416
29 +
30 +[convolutional]
31 +batch_normalize=1
32 +filters=32
33 +size=3
34 +stride=1
35 +pad=1
36 +activation=mish
37 +
38 +# Downsample
39 +
40 +[convolutional]
41 +batch_normalize=1
42 +filters=64
43 +size=3
44 +stride=2
45 +pad=1
46 +activation=mish
47 +
48 +[convolutional]
49 +batch_normalize=1
50 +filters=64
51 +size=1
52 +stride=1
53 +pad=1
54 +activation=mish
55 +
56 +[route]
57 +layers = -2
58 +
59 +[convolutional]
60 +batch_normalize=1
61 +filters=64
62 +size=1
63 +stride=1
64 +pad=1
65 +activation=mish
66 +
67 +[convolutional]
68 +batch_normalize=1
69 +filters=32
70 +size=1
71 +stride=1
72 +pad=1
73 +activation=mish
74 +
75 +[convolutional]
76 +batch_normalize=1
77 +filters=64
78 +size=3
79 +stride=1
80 +pad=1
81 +activation=mish
82 +
83 +[shortcut]
84 +from=-3
85 +activation=linear
86 +
87 +[convolutional]
88 +batch_normalize=1
89 +filters=64
90 +size=1
91 +stride=1
92 +pad=1
93 +activation=mish
94 +
95 +[route]
96 +layers = -1,-7
97 +
98 +[convolutional]
99 +batch_normalize=1
100 +filters=64
101 +size=1
102 +stride=1
103 +pad=1
104 +activation=mish
105 +
106 +# Downsample
107 +
108 +[convolutional]
109 +batch_normalize=1
110 +filters=128
111 +size=3
112 +stride=2
113 +pad=1
114 +activation=mish
115 +
116 +[convolutional]
117 +batch_normalize=1
118 +filters=64
119 +size=1
120 +stride=1
121 +pad=1
122 +activation=mish
123 +
124 +[route]
125 +layers = -2
126 +
127 +[convolutional]
128 +batch_normalize=1
129 +filters=64
130 +size=1
131 +stride=1
132 +pad=1
133 +activation=mish
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=64
138 +size=1
139 +stride=1
140 +pad=1
141 +activation=mish
142 +
143 +[convolutional]
144 +batch_normalize=1
145 +filters=64
146 +size=3
147 +stride=1
148 +pad=1
149 +activation=mish
150 +
151 +[shortcut]
152 +from=-3
153 +activation=linear
154 +
155 +[convolutional]
156 +batch_normalize=1
157 +filters=64
158 +size=1
159 +stride=1
160 +pad=1
161 +activation=mish
162 +
163 +[convolutional]
164 +batch_normalize=1
165 +filters=64
166 +size=3
167 +stride=1
168 +pad=1
169 +activation=mish
170 +
171 +[shortcut]
172 +from=-3
173 +activation=linear
174 +
175 +[convolutional]
176 +batch_normalize=1
177 +filters=64
178 +size=1
179 +stride=1
180 +pad=1
181 +activation=mish
182 +
183 +[route]
184 +layers = -1,-10
185 +
186 +[convolutional]
187 +batch_normalize=1
188 +filters=128
189 +size=1
190 +stride=1
191 +pad=1
192 +activation=mish
193 +
194 +# Downsample
195 +
196 +[convolutional]
197 +batch_normalize=1
198 +filters=256
199 +size=3
200 +stride=2
201 +pad=1
202 +activation=mish
203 +
204 +[convolutional]
205 +batch_normalize=1
206 +filters=128
207 +size=1
208 +stride=1
209 +pad=1
210 +activation=mish
211 +
212 +[route]
213 +layers = -2
214 +
215 +[convolutional]
216 +batch_normalize=1
217 +filters=128
218 +size=1
219 +stride=1
220 +pad=1
221 +activation=mish
222 +
223 +[convolutional]
224 +batch_normalize=1
225 +filters=128
226 +size=1
227 +stride=1
228 +pad=1
229 +activation=mish
230 +
231 +[convolutional]
232 +batch_normalize=1
233 +filters=128
234 +size=3
235 +stride=1
236 +pad=1
237 +activation=mish
238 +
239 +[shortcut]
240 +from=-3
241 +activation=linear
242 +
243 +[convolutional]
244 +batch_normalize=1
245 +filters=128
246 +size=1
247 +stride=1
248 +pad=1
249 +activation=mish
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=128
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=mish
258 +
259 +[shortcut]
260 +from=-3
261 +activation=linear
262 +
263 +[convolutional]
264 +batch_normalize=1
265 +filters=128
266 +size=1
267 +stride=1
268 +pad=1
269 +activation=mish
270 +
271 +[convolutional]
272 +batch_normalize=1
273 +filters=128
274 +size=3
275 +stride=1
276 +pad=1
277 +activation=mish
278 +
279 +[shortcut]
280 +from=-3
281 +activation=linear
282 +
283 +[convolutional]
284 +batch_normalize=1
285 +filters=128
286 +size=1
287 +stride=1
288 +pad=1
289 +activation=mish
290 +
291 +[convolutional]
292 +batch_normalize=1
293 +filters=128
294 +size=3
295 +stride=1
296 +pad=1
297 +activation=mish
298 +
299 +[shortcut]
300 +from=-3
301 +activation=linear
302 +
303 +
304 +[convolutional]
305 +batch_normalize=1
306 +filters=128
307 +size=1
308 +stride=1
309 +pad=1
310 +activation=mish
311 +
312 +[convolutional]
313 +batch_normalize=1
314 +filters=128
315 +size=3
316 +stride=1
317 +pad=1
318 +activation=mish
319 +
320 +[shortcut]
321 +from=-3
322 +activation=linear
323 +
324 +[convolutional]
325 +batch_normalize=1
326 +filters=128
327 +size=1
328 +stride=1
329 +pad=1
330 +activation=mish
331 +
332 +[convolutional]
333 +batch_normalize=1
334 +filters=128
335 +size=3
336 +stride=1
337 +pad=1
338 +activation=mish
339 +
340 +[shortcut]
341 +from=-3
342 +activation=linear
343 +
344 +[convolutional]
345 +batch_normalize=1
346 +filters=128
347 +size=1
348 +stride=1
349 +pad=1
350 +activation=mish
351 +
352 +[convolutional]
353 +batch_normalize=1
354 +filters=128
355 +size=3
356 +stride=1
357 +pad=1
358 +activation=mish
359 +
360 +[shortcut]
361 +from=-3
362 +activation=linear
363 +
364 +[convolutional]
365 +batch_normalize=1
366 +filters=128
367 +size=1
368 +stride=1
369 +pad=1
370 +activation=mish
371 +
372 +[convolutional]
373 +batch_normalize=1
374 +filters=128
375 +size=3
376 +stride=1
377 +pad=1
378 +activation=mish
379 +
380 +[shortcut]
381 +from=-3
382 +activation=linear
383 +
384 +[convolutional]
385 +batch_normalize=1
386 +filters=128
387 +size=1
388 +stride=1
389 +pad=1
390 +activation=mish
391 +
392 +[route]
393 +layers = -1,-28
394 +
395 +[convolutional]
396 +batch_normalize=1
397 +filters=256
398 +size=1
399 +stride=1
400 +pad=1
401 +activation=mish
402 +
403 +# Downsample
404 +
405 +[convolutional]
406 +batch_normalize=1
407 +filters=512
408 +size=3
409 +stride=2
410 +pad=1
411 +activation=mish
412 +
413 +[convolutional]
414 +batch_normalize=1
415 +filters=256
416 +size=1
417 +stride=1
418 +pad=1
419 +activation=mish
420 +
421 +[route]
422 +layers = -2
423 +
424 +[convolutional]
425 +batch_normalize=1
426 +filters=256
427 +size=1
428 +stride=1
429 +pad=1
430 +activation=mish
431 +
432 +[convolutional]
433 +batch_normalize=1
434 +filters=256
435 +size=1
436 +stride=1
437 +pad=1
438 +activation=mish
439 +
440 +[convolutional]
441 +batch_normalize=1
442 +filters=256
443 +size=3
444 +stride=1
445 +pad=1
446 +activation=mish
447 +
448 +[shortcut]
449 +from=-3
450 +activation=linear
451 +
452 +
453 +[convolutional]
454 +batch_normalize=1
455 +filters=256
456 +size=1
457 +stride=1
458 +pad=1
459 +activation=mish
460 +
461 +[convolutional]
462 +batch_normalize=1
463 +filters=256
464 +size=3
465 +stride=1
466 +pad=1
467 +activation=mish
468 +
469 +[shortcut]
470 +from=-3
471 +activation=linear
472 +
473 +
474 +[convolutional]
475 +batch_normalize=1
476 +filters=256
477 +size=1
478 +stride=1
479 +pad=1
480 +activation=mish
481 +
482 +[convolutional]
483 +batch_normalize=1
484 +filters=256
485 +size=3
486 +stride=1
487 +pad=1
488 +activation=mish
489 +
490 +[shortcut]
491 +from=-3
492 +activation=linear
493 +
494 +
495 +[convolutional]
496 +batch_normalize=1
497 +filters=256
498 +size=1
499 +stride=1
500 +pad=1
501 +activation=mish
502 +
503 +[convolutional]
504 +batch_normalize=1
505 +filters=256
506 +size=3
507 +stride=1
508 +pad=1
509 +activation=mish
510 +
511 +[shortcut]
512 +from=-3
513 +activation=linear
514 +
515 +
516 +[convolutional]
517 +batch_normalize=1
518 +filters=256
519 +size=1
520 +stride=1
521 +pad=1
522 +activation=mish
523 +
524 +[convolutional]
525 +batch_normalize=1
526 +filters=256
527 +size=3
528 +stride=1
529 +pad=1
530 +activation=mish
531 +
532 +[shortcut]
533 +from=-3
534 +activation=linear
535 +
536 +
537 +[convolutional]
538 +batch_normalize=1
539 +filters=256
540 +size=1
541 +stride=1
542 +pad=1
543 +activation=mish
544 +
545 +[convolutional]
546 +batch_normalize=1
547 +filters=256
548 +size=3
549 +stride=1
550 +pad=1
551 +activation=mish
552 +
553 +[shortcut]
554 +from=-3
555 +activation=linear
556 +
557 +
558 +[convolutional]
559 +batch_normalize=1
560 +filters=256
561 +size=1
562 +stride=1
563 +pad=1
564 +activation=mish
565 +
566 +[convolutional]
567 +batch_normalize=1
568 +filters=256
569 +size=3
570 +stride=1
571 +pad=1
572 +activation=mish
573 +
574 +[shortcut]
575 +from=-3
576 +activation=linear
577 +
578 +[convolutional]
579 +batch_normalize=1
580 +filters=256
581 +size=1
582 +stride=1
583 +pad=1
584 +activation=mish
585 +
586 +[convolutional]
587 +batch_normalize=1
588 +filters=256
589 +size=3
590 +stride=1
591 +pad=1
592 +activation=mish
593 +
594 +[shortcut]
595 +from=-3
596 +activation=linear
597 +
598 +[convolutional]
599 +batch_normalize=1
600 +filters=256
601 +size=1
602 +stride=1
603 +pad=1
604 +activation=mish
605 +
606 +[route]
607 +layers = -1,-28
608 +
609 +[convolutional]
610 +batch_normalize=1
611 +filters=512
612 +size=1
613 +stride=1
614 +pad=1
615 +activation=mish
616 +
617 +# Downsample
618 +
619 +[convolutional]
620 +batch_normalize=1
621 +filters=1024
622 +size=3
623 +stride=2
624 +pad=1
625 +activation=mish
626 +
627 +[convolutional]
628 +batch_normalize=1
629 +filters=512
630 +size=1
631 +stride=1
632 +pad=1
633 +activation=mish
634 +
635 +[route]
636 +layers = -2
637 +
638 +[convolutional]
639 +batch_normalize=1
640 +filters=512
641 +size=1
642 +stride=1
643 +pad=1
644 +activation=mish
645 +
646 +[convolutional]
647 +batch_normalize=1
648 +filters=512
649 +size=1
650 +stride=1
651 +pad=1
652 +activation=mish
653 +
654 +[convolutional]
655 +batch_normalize=1
656 +filters=512
657 +size=3
658 +stride=1
659 +pad=1
660 +activation=mish
661 +
662 +[shortcut]
663 +from=-3
664 +activation=linear
665 +
666 +[convolutional]
667 +batch_normalize=1
668 +filters=512
669 +size=1
670 +stride=1
671 +pad=1
672 +activation=mish
673 +
674 +[convolutional]
675 +batch_normalize=1
676 +filters=512
677 +size=3
678 +stride=1
679 +pad=1
680 +activation=mish
681 +
682 +[shortcut]
683 +from=-3
684 +activation=linear
685 +
686 +[convolutional]
687 +batch_normalize=1
688 +filters=512
689 +size=1
690 +stride=1
691 +pad=1
692 +activation=mish
693 +
694 +[convolutional]
695 +batch_normalize=1
696 +filters=512
697 +size=3
698 +stride=1
699 +pad=1
700 +activation=mish
701 +
702 +[shortcut]
703 +from=-3
704 +activation=linear
705 +
706 +[convolutional]
707 +batch_normalize=1
708 +filters=512
709 +size=1
710 +stride=1
711 +pad=1
712 +activation=mish
713 +
714 +[convolutional]
715 +batch_normalize=1
716 +filters=512
717 +size=3
718 +stride=1
719 +pad=1
720 +activation=mish
721 +
722 +[shortcut]
723 +from=-3
724 +activation=linear
725 +
726 +[convolutional]
727 +batch_normalize=1
728 +filters=512
729 +size=1
730 +stride=1
731 +pad=1
732 +activation=mish
733 +
734 +[route]
735 +layers = -1,-16
736 +
737 +[convolutional]
738 +batch_normalize=1
739 +filters=1024
740 +size=1
741 +stride=1
742 +pad=1
743 +activation=mish
744 +stopbackward=800
745 +
746 +##########################
747 +
748 +[convolutional]
749 +batch_normalize=1
750 +filters=512
751 +size=1
752 +stride=1
753 +pad=1
754 +activation=leaky
755 +
756 +[convolutional]
757 +batch_normalize=1
758 +size=3
759 +stride=1
760 +pad=1
761 +filters=1024
762 +activation=leaky
763 +
764 +[convolutional]
765 +batch_normalize=1
766 +filters=512
767 +size=1
768 +stride=1
769 +pad=1
770 +activation=leaky
771 +
772 +### SPP ###
773 +[maxpool]
774 +stride=1
775 +size=5
776 +
777 +[route]
778 +layers=-2
779 +
780 +[maxpool]
781 +stride=1
782 +size=9
783 +
784 +[route]
785 +layers=-4
786 +
787 +[maxpool]
788 +stride=1
789 +size=13
790 +
791 +[route]
792 +layers=-1,-3,-5,-6
793 +### End SPP ###
794 +
795 +[convolutional]
796 +batch_normalize=1
797 +filters=512
798 +size=1
799 +stride=1
800 +pad=1
801 +activation=leaky
802 +
803 +[convolutional]
804 +batch_normalize=1
805 +size=3
806 +stride=1
807 +pad=1
808 +filters=1024
809 +activation=leaky
810 +
811 +[convolutional]
812 +batch_normalize=1
813 +filters=512
814 +size=1
815 +stride=1
816 +pad=1
817 +activation=leaky
818 +
819 +[convolutional]
820 +batch_normalize=1
821 +filters=256
822 +size=1
823 +stride=1
824 +pad=1
825 +activation=leaky
826 +
827 +[upsample]
828 +stride=2
829 +
830 +[route]
831 +layers = 85
832 +
833 +[convolutional]
834 +batch_normalize=1
835 +filters=256
836 +size=1
837 +stride=1
838 +pad=1
839 +activation=leaky
840 +
841 +[route]
842 +layers = -1, -3
843 +
844 +[convolutional]
845 +batch_normalize=1
846 +filters=256
847 +size=1
848 +stride=1
849 +pad=1
850 +activation=leaky
851 +
852 +[convolutional]
853 +batch_normalize=1
854 +size=3
855 +stride=1
856 +pad=1
857 +filters=512
858 +activation=leaky
859 +
860 +[convolutional]
861 +batch_normalize=1
862 +filters=256
863 +size=1
864 +stride=1
865 +pad=1
866 +activation=leaky
867 +
868 +[convolutional]
869 +batch_normalize=1
870 +size=3
871 +stride=1
872 +pad=1
873 +filters=512
874 +activation=leaky
875 +
876 +[convolutional]
877 +batch_normalize=1
878 +filters=256
879 +size=1
880 +stride=1
881 +pad=1
882 +activation=leaky
883 +
884 +[convolutional]
885 +batch_normalize=1
886 +filters=128
887 +size=1
888 +stride=1
889 +pad=1
890 +activation=leaky
891 +
892 +[upsample]
893 +stride=2
894 +
895 +[route]
896 +layers = 54
897 +
898 +[convolutional]
899 +batch_normalize=1
900 +filters=128
901 +size=1
902 +stride=1
903 +pad=1
904 +activation=leaky
905 +
906 +[route]
907 +layers = -1, -3
908 +
909 +[convolutional]
910 +batch_normalize=1
911 +filters=128
912 +size=1
913 +stride=1
914 +pad=1
915 +activation=leaky
916 +
917 +[convolutional]
918 +batch_normalize=1
919 +size=3
920 +stride=1
921 +pad=1
922 +filters=256
923 +activation=leaky
924 +
925 +[convolutional]
926 +batch_normalize=1
927 +filters=128
928 +size=1
929 +stride=1
930 +pad=1
931 +activation=leaky
932 +
933 +[convolutional]
934 +batch_normalize=1
935 +size=3
936 +stride=1
937 +pad=1
938 +filters=256
939 +activation=leaky
940 +
941 +[convolutional]
942 +batch_normalize=1
943 +filters=128
944 +size=1
945 +stride=1
946 +pad=1
947 +activation=leaky
948 +
949 +##########################
950 +
951 +[convolutional]
952 +batch_normalize=1
953 +size=3
954 +stride=1
955 +pad=1
956 +filters=256
957 +activation=leaky
958 +
959 +[convolutional]
960 +size=1
961 +stride=1
962 +pad=1
963 +filters=30
964 +activation=linear
965 +
966 +
967 +[yolo]
968 +mask = 0,1,2
969 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
970 +classes=5
971 +num=9
972 +jitter=.3
973 +ignore_thresh = .7
974 +truth_thresh = 1
975 +scale_x_y = 1.2
976 +iou_thresh=0.213
977 +cls_normalizer=1.0
978 +iou_normalizer=0.07
979 +iou_loss=ciou
980 +nms_kind=greedynms
981 +beta_nms=0.6
982 +max_delta=5
983 +
984 +
985 +[route]
986 +layers = -4
987 +
988 +[convolutional]
989 +batch_normalize=1
990 +size=3
991 +stride=2
992 +pad=1
993 +filters=256
994 +activation=leaky
995 +
996 +[route]
997 +layers = -1, -16
998 +
999 +[convolutional]
1000 +batch_normalize=1
1001 +filters=256
1002 +size=1
1003 +stride=1
1004 +pad=1
1005 +activation=leaky
1006 +
1007 +[convolutional]
1008 +batch_normalize=1
1009 +size=3
1010 +stride=1
1011 +pad=1
1012 +filters=512
1013 +activation=leaky
1014 +
1015 +[convolutional]
1016 +batch_normalize=1
1017 +filters=256
1018 +size=1
1019 +stride=1
1020 +pad=1
1021 +activation=leaky
1022 +
1023 +[convolutional]
1024 +batch_normalize=1
1025 +size=3
1026 +stride=1
1027 +pad=1
1028 +filters=512
1029 +activation=leaky
1030 +
1031 +[convolutional]
1032 +batch_normalize=1
1033 +filters=256
1034 +size=1
1035 +stride=1
1036 +pad=1
1037 +activation=leaky
1038 +
1039 +[convolutional]
1040 +batch_normalize=1
1041 +size=3
1042 +stride=1
1043 +pad=1
1044 +filters=512
1045 +activation=leaky
1046 +
1047 +[convolutional]
1048 +size=1
1049 +stride=1
1050 +pad=1
1051 +filters=30
1052 +activation=linear
1053 +
1054 +
1055 +[yolo]
1056 +mask = 3,4,5
1057 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1058 +classes=5
1059 +num=9
1060 +jitter=.3
1061 +ignore_thresh = .7
1062 +truth_thresh = 1
1063 +scale_x_y = 1.1
1064 +iou_thresh=0.213
1065 +cls_normalizer=1.0
1066 +iou_normalizer=0.07
1067 +iou_loss=ciou
1068 +nms_kind=greedynms
1069 +beta_nms=0.6
1070 +max_delta=5
1071 +
1072 +
1073 +[route]
1074 +layers = -4
1075 +
1076 +[convolutional]
1077 +batch_normalize=1
1078 +size=3
1079 +stride=2
1080 +pad=1
1081 +filters=512
1082 +activation=leaky
1083 +
1084 +[route]
1085 +layers = -1, -37
1086 +
1087 +[convolutional]
1088 +batch_normalize=1
1089 +filters=512
1090 +size=1
1091 +stride=1
1092 +pad=1
1093 +activation=leaky
1094 +
1095 +[convolutional]
1096 +batch_normalize=1
1097 +size=3
1098 +stride=1
1099 +pad=1
1100 +filters=1024
1101 +activation=leaky
1102 +
1103 +[convolutional]
1104 +batch_normalize=1
1105 +filters=512
1106 +size=1
1107 +stride=1
1108 +pad=1
1109 +activation=leaky
1110 +
1111 +[convolutional]
1112 +batch_normalize=1
1113 +size=3
1114 +stride=1
1115 +pad=1
1116 +filters=1024
1117 +activation=leaky
1118 +
1119 +[convolutional]
1120 +batch_normalize=1
1121 +filters=512
1122 +size=1
1123 +stride=1
1124 +pad=1
1125 +activation=leaky
1126 +
1127 +[convolutional]
1128 +batch_normalize=1
1129 +size=3
1130 +stride=1
1131 +pad=1
1132 +filters=1024
1133 +activation=leaky
1134 +
1135 +[convolutional]
1136 +size=1
1137 +stride=1
1138 +pad=1
1139 +filters=30
1140 +activation=linear
1141 +
1142 +
1143 +[yolo]
1144 +mask = 6,7,8
1145 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1146 +classes=5
1147 +num=9
1148 +jitter=.3
1149 +ignore_thresh = .7
1150 +truth_thresh = 1
1151 +random=1
1152 +scale_x_y = 1.05
1153 +iou_thresh=0.213
1154 +cls_normalizer=1.0
1155 +iou_normalizer=0.07
1156 +iou_loss=ciou
1157 +nms_kind=greedynms
1158 +beta_nms=0.6
1159 +max_delta=5
1160 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=1
8 +width=608
9 +height=608
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.00261
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=2
30 +pad=1
31 +activation=leaky
32 +
33 +[convolutional]
34 +batch_normalize=1
35 +filters=64
36 +size=3
37 +stride=2
38 +pad=1
39 +activation=leaky
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=64
44 +size=3
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[route]
50 +layers=-1
51 +groups=2
52 +group_id=1
53 +
54 +[convolutional]
55 +batch_normalize=1
56 +filters=32
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=leaky
61 +
62 +[convolutional]
63 +batch_normalize=1
64 +filters=32
65 +size=3
66 +stride=1
67 +pad=1
68 +activation=leaky
69 +
70 +[route]
71 +layers = -1,-2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[route]
82 +layers = -6,-1
83 +
84 +[maxpool]
85 +size=2
86 +stride=2
87 +
88 +[convolutional]
89 +batch_normalize=1
90 +filters=128
91 +size=3
92 +stride=1
93 +pad=1
94 +activation=leaky
95 +
96 +[route]
97 +layers=-1
98 +groups=2
99 +group_id=1
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=64
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[convolutional]
110 +batch_normalize=1
111 +filters=64
112 +size=3
113 +stride=1
114 +pad=1
115 +activation=leaky
116 +
117 +[route]
118 +layers = -1,-2
119 +
120 +[convolutional]
121 +batch_normalize=1
122 +filters=128
123 +size=1
124 +stride=1
125 +pad=1
126 +activation=leaky
127 +
128 +[route]
129 +layers = -6,-1
130 +
131 +[maxpool]
132 +size=2
133 +stride=2
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=256
138 +size=3
139 +stride=1
140 +pad=1
141 +activation=leaky
142 +
143 +[route]
144 +layers=-1
145 +groups=2
146 +group_id=1
147 +
148 +[convolutional]
149 +batch_normalize=1
150 +filters=128
151 +size=3
152 +stride=1
153 +pad=1
154 +activation=leaky
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=128
159 +size=3
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[route]
165 +layers = -1,-2
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=256
170 +size=1
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[route]
176 +layers = -6,-1
177 +
178 +[maxpool]
179 +size=2
180 +stride=2
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=512
185 +size=3
186 +stride=1
187 +pad=1
188 +activation=leaky
189 +
190 +##################################
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +filters=256
195 +size=1
196 +stride=1
197 +pad=1
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +filters=512
203 +size=3
204 +stride=1
205 +pad=1
206 +activation=leaky
207 +
208 +[convolutional]
209 +size=1
210 +stride=1
211 +pad=1
212 +filters=255
213 +activation=linear
214 +
215 +
216 +
217 +[yolo]
218 +mask = 6,7,8
219 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
220 +classes=80
221 +num=9
222 +jitter=.3
223 +scale_x_y = 1.05
224 +cls_normalizer=1.0
225 +iou_normalizer=0.07
226 +iou_loss=ciou
227 +ignore_thresh = .7
228 +truth_thresh = 1
229 +random=0
230 +resize=1.5
231 +nms_kind=greedynms
232 +beta_nms=0.6
233 +
234 +[route]
235 +layers = -4
236 +
237 +[convolutional]
238 +batch_normalize=1
239 +filters=128
240 +size=1
241 +stride=1
242 +pad=1
243 +activation=leaky
244 +
245 +[upsample]
246 +stride=2
247 +
248 +[route]
249 +layers = -1, 23
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=256
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=leaky
258 +
259 +[convolutional]
260 +size=1
261 +stride=1
262 +pad=1
263 +filters=255
264 +activation=linear
265 +
266 +[yolo]
267 +mask = 3,4,5
268 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
269 +classes=80
270 +num=9
271 +jitter=.3
272 +scale_x_y = 1.05
273 +cls_normalizer=1.0
274 +iou_normalizer=0.07
275 +iou_loss=ciou
276 +ignore_thresh = .7
277 +truth_thresh = 1
278 +random=0
279 +resize=1.5
280 +nms_kind=greedynms
281 +beta_nms=0.6
282 +
283 +
284 +[route]
285 +layers = -3
286 +
287 +[convolutional]
288 +batch_normalize=1
289 +filters=64
290 +size=1
291 +stride=1
292 +pad=1
293 +activation=leaky
294 +
295 +[upsample]
296 +stride=2
297 +
298 +[route]
299 +layers = -1, 15
300 +
301 +[convolutional]
302 +batch_normalize=1
303 +filters=128
304 +size=3
305 +stride=1
306 +pad=1
307 +activation=leaky
308 +
309 +[convolutional]
310 +size=1
311 +stride=1
312 +pad=1
313 +filters=255
314 +activation=linear
315 +
316 +[yolo]
317 +mask = 0,1,2
318 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
319 +classes=80
320 +num=9
321 +jitter=.3
322 +scale_x_y = 1.05
323 +cls_normalizer=1.0
324 +iou_normalizer=0.07
325 +iou_loss=ciou
326 +ignore_thresh = .7
327 +truth_thresh = 1
328 +random=0
329 +resize=1.5
330 +nms_kind=greedynms
331 +beta_nms=0.6
332 +
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=1
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.00261
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=2
30 +pad=1
31 +activation=leaky
32 +
33 +[convolutional]
34 +batch_normalize=1
35 +filters=64
36 +size=3
37 +stride=2
38 +pad=1
39 +activation=leaky
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=64
44 +size=3
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[route]
50 +layers=-1
51 +groups=2
52 +group_id=1
53 +
54 +[convolutional]
55 +batch_normalize=1
56 +filters=32
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=leaky
61 +
62 +[convolutional]
63 +batch_normalize=1
64 +filters=32
65 +size=3
66 +stride=1
67 +pad=1
68 +activation=leaky
69 +
70 +[route]
71 +layers = -1,-2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[route]
82 +layers = -6,-1
83 +
84 +[maxpool]
85 +size=2
86 +stride=2
87 +
88 +[convolutional]
89 +batch_normalize=1
90 +filters=128
91 +size=3
92 +stride=1
93 +pad=1
94 +activation=leaky
95 +
96 +[route]
97 +layers=-1
98 +groups=2
99 +group_id=1
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=64
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[convolutional]
110 +batch_normalize=1
111 +filters=64
112 +size=3
113 +stride=1
114 +pad=1
115 +activation=leaky
116 +
117 +[route]
118 +layers = -1,-2
119 +
120 +[convolutional]
121 +batch_normalize=1
122 +filters=128
123 +size=1
124 +stride=1
125 +pad=1
126 +activation=leaky
127 +
128 +[route]
129 +layers = -6,-1
130 +
131 +[maxpool]
132 +size=2
133 +stride=2
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=256
138 +size=3
139 +stride=1
140 +pad=1
141 +activation=leaky
142 +
143 +[route]
144 +layers=-1
145 +groups=2
146 +group_id=1
147 +
148 +[convolutional]
149 +batch_normalize=1
150 +filters=128
151 +size=3
152 +stride=1
153 +pad=1
154 +activation=leaky
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=128
159 +size=3
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[route]
165 +layers = -1,-2
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=256
170 +size=1
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[route]
176 +layers = -6,-1
177 +
178 +[maxpool]
179 +size=2
180 +stride=2
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=512
185 +size=3
186 +stride=1
187 +pad=1
188 +activation=leaky
189 +
190 +##################################
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +filters=256
195 +size=1
196 +stride=1
197 +pad=1
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +filters=512
203 +size=3
204 +stride=1
205 +pad=1
206 +activation=leaky
207 +
208 +[convolutional]
209 +size=1
210 +stride=1
211 +pad=1
212 +filters=255
213 +activation=linear
214 +
215 +
216 +
217 +[yolo]
218 +mask = 3,4,5
219 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
220 +classes=80
221 +num=6
222 +jitter=.3
223 +scale_x_y = 1.05
224 +cls_normalizer=1.0
225 +iou_normalizer=0.07
226 +iou_loss=ciou
227 +ignore_thresh = .7
228 +truth_thresh = 1
229 +random=0
230 +resize=1.5
231 +nms_kind=greedynms
232 +beta_nms=0.6
233 +
234 +[route]
235 +layers = -4
236 +
237 +[convolutional]
238 +batch_normalize=1
239 +filters=128
240 +size=1
241 +stride=1
242 +pad=1
243 +activation=leaky
244 +
245 +[upsample]
246 +stride=2
247 +
248 +[route]
249 +layers = -1, 23
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=256
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=leaky
258 +
259 +[convolutional]
260 +size=1
261 +stride=1
262 +pad=1
263 +filters=255
264 +activation=linear
265 +
266 +[yolo]
267 +mask = 0,1,2
268 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
269 +classes=80
270 +num=6
271 +jitter=.3
272 +scale_x_y = 1.05
273 +cls_normalizer=1.0
274 +iou_normalizer=0.07
275 +iou_loss=ciou
276 +ignore_thresh = .7
277 +truth_thresh = 1
278 +random=0
279 +resize=1.5
280 +nms_kind=greedynms
281 +beta_nms=0.6
1 +[net]
2 +# Testing
3 +#batch=1
4 +#subdivisions=1
5 +# Training
6 +batch=64
7 +subdivisions=1
8 +width=416
9 +height=416
10 +channels=3
11 +momentum=0.9
12 +decay=0.0005
13 +angle=0
14 +saturation = 1.5
15 +exposure = 1.5
16 +hue=.1
17 +
18 +learning_rate=0.00261
19 +burn_in=1000
20 +max_batches = 500200
21 +policy=steps
22 +steps=400000,450000
23 +scales=.1,.1
24 +
25 +[convolutional]
26 +batch_normalize=1
27 +filters=32
28 +size=3
29 +stride=2
30 +pad=1
31 +activation=leaky
32 +
33 +[convolutional]
34 +batch_normalize=1
35 +filters=64
36 +size=3
37 +stride=2
38 +pad=1
39 +activation=leaky
40 +
41 +[convolutional]
42 +batch_normalize=1
43 +filters=64
44 +size=3
45 +stride=1
46 +pad=1
47 +activation=leaky
48 +
49 +[route]
50 +layers=-1
51 +groups=2
52 +group_id=1
53 +
54 +[convolutional]
55 +batch_normalize=1
56 +filters=32
57 +size=3
58 +stride=1
59 +pad=1
60 +activation=leaky
61 +
62 +[convolutional]
63 +batch_normalize=1
64 +filters=32
65 +size=3
66 +stride=1
67 +pad=1
68 +activation=leaky
69 +
70 +[route]
71 +layers = -1,-2
72 +
73 +[convolutional]
74 +batch_normalize=1
75 +filters=64
76 +size=1
77 +stride=1
78 +pad=1
79 +activation=leaky
80 +
81 +[route]
82 +layers = -6,-1
83 +
84 +[maxpool]
85 +size=2
86 +stride=2
87 +
88 +[convolutional]
89 +batch_normalize=1
90 +filters=128
91 +size=3
92 +stride=1
93 +pad=1
94 +activation=leaky
95 +
96 +[route]
97 +layers=-1
98 +groups=2
99 +group_id=1
100 +
101 +[convolutional]
102 +batch_normalize=1
103 +filters=64
104 +size=3
105 +stride=1
106 +pad=1
107 +activation=leaky
108 +
109 +[convolutional]
110 +batch_normalize=1
111 +filters=64
112 +size=3
113 +stride=1
114 +pad=1
115 +activation=leaky
116 +
117 +[route]
118 +layers = -1,-2
119 +
120 +[convolutional]
121 +batch_normalize=1
122 +filters=128
123 +size=1
124 +stride=1
125 +pad=1
126 +activation=leaky
127 +
128 +[route]
129 +layers = -6,-1
130 +
131 +[maxpool]
132 +size=2
133 +stride=2
134 +
135 +[convolutional]
136 +batch_normalize=1
137 +filters=256
138 +size=3
139 +stride=1
140 +pad=1
141 +activation=leaky
142 +
143 +[route]
144 +layers=-1
145 +groups=2
146 +group_id=1
147 +
148 +[convolutional]
149 +batch_normalize=1
150 +filters=128
151 +size=3
152 +stride=1
153 +pad=1
154 +activation=leaky
155 +
156 +[convolutional]
157 +batch_normalize=1
158 +filters=128
159 +size=3
160 +stride=1
161 +pad=1
162 +activation=leaky
163 +
164 +[route]
165 +layers = -1,-2
166 +
167 +[convolutional]
168 +batch_normalize=1
169 +filters=256
170 +size=1
171 +stride=1
172 +pad=1
173 +activation=leaky
174 +
175 +[route]
176 +layers = -6,-1
177 +
178 +[maxpool]
179 +size=2
180 +stride=2
181 +
182 +[convolutional]
183 +batch_normalize=1
184 +filters=512
185 +size=3
186 +stride=1
187 +pad=1
188 +activation=leaky
189 +
190 +##################################
191 +
192 +[convolutional]
193 +batch_normalize=1
194 +filters=256
195 +size=1
196 +stride=1
197 +pad=1
198 +activation=leaky
199 +
200 +[convolutional]
201 +batch_normalize=1
202 +filters=512
203 +size=3
204 +stride=1
205 +pad=1
206 +activation=leaky
207 +
208 +[convolutional]
209 +size=1
210 +stride=1
211 +pad=1
212 +filters=255
213 +activation=linear
214 +
215 +
216 +
217 +[yolo]
218 +mask = 3,4,5
219 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
220 +classes=80
221 +num=6
222 +jitter=.3
223 +scale_x_y = 1.05
224 +cls_normalizer=1.0
225 +iou_normalizer=0.07
226 +iou_loss=ciou
227 +ignore_thresh = .7
228 +truth_thresh = 1
229 +random=0
230 +resize=1.5
231 +nms_kind=greedynms
232 +beta_nms=0.6
233 +
234 +[route]
235 +layers = -4
236 +
237 +[convolutional]
238 +batch_normalize=1
239 +filters=128
240 +size=1
241 +stride=1
242 +pad=1
243 +activation=leaky
244 +
245 +[upsample]
246 +stride=2
247 +
248 +[route]
249 +layers = -1, 23
250 +
251 +[convolutional]
252 +batch_normalize=1
253 +filters=256
254 +size=3
255 +stride=1
256 +pad=1
257 +activation=leaky
258 +
259 +[convolutional]
260 +size=1
261 +stride=1
262 +pad=1
263 +filters=255
264 +activation=linear
265 +
266 +[yolo]
267 +mask = 1,2,3
268 +anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319
269 +classes=80
270 +num=6
271 +jitter=.3
272 +scale_x_y = 1.05
273 +cls_normalizer=1.0
274 +iou_normalizer=0.07
275 +iou_loss=ciou
276 +ignore_thresh = .7
277 +truth_thresh = 1
278 +random=0
279 +resize=1.5
280 +nms_kind=greedynms
281 +beta_nms=0.6
1 +[net]
2 +batch=64
3 +subdivisions=8
4 +# Training
5 +#width=512
6 +#height=512
7 +width=608
8 +height=608
9 +channels=3
10 +momentum=0.949
11 +decay=0.0005
12 +angle=0
13 +saturation = 1.5
14 +exposure = 1.5
15 +hue=.1
16 +
17 +learning_rate=0.0013
18 +burn_in=1000
19 +max_batches = 500500
20 +policy=steps
21 +steps=400000,450000
22 +scales=.1,.1
23 +
24 +#cutmix=1
25 +mosaic=1
26 +
27 +#:104x104 54:52x52 85:26x26 104:13x13 for 416
28 +
29 +[convolutional]
30 +batch_normalize=1
31 +filters=32
32 +size=3
33 +stride=1
34 +pad=1
35 +activation=mish
36 +
37 +# Downsample
38 +
39 +[convolutional]
40 +batch_normalize=1
41 +filters=64
42 +size=3
43 +stride=2
44 +pad=1
45 +activation=mish
46 +
47 +[convolutional]
48 +batch_normalize=1
49 +filters=64
50 +size=1
51 +stride=1
52 +pad=1
53 +activation=mish
54 +
55 +[route]
56 +layers = -2
57 +
58 +[convolutional]
59 +batch_normalize=1
60 +filters=64
61 +size=1
62 +stride=1
63 +pad=1
64 +activation=mish
65 +
66 +[convolutional]
67 +batch_normalize=1
68 +filters=32
69 +size=1
70 +stride=1
71 +pad=1
72 +activation=mish
73 +
74 +[convolutional]
75 +batch_normalize=1
76 +filters=64
77 +size=3
78 +stride=1
79 +pad=1
80 +activation=mish
81 +
82 +[shortcut]
83 +from=-3
84 +activation=linear
85 +
86 +[convolutional]
87 +batch_normalize=1
88 +filters=64
89 +size=1
90 +stride=1
91 +pad=1
92 +activation=mish
93 +
94 +[route]
95 +layers = -1,-7
96 +
97 +[convolutional]
98 +batch_normalize=1
99 +filters=64
100 +size=1
101 +stride=1
102 +pad=1
103 +activation=mish
104 +
105 +# Downsample
106 +
107 +[convolutional]
108 +batch_normalize=1
109 +filters=128
110 +size=3
111 +stride=2
112 +pad=1
113 +activation=mish
114 +
115 +[convolutional]
116 +batch_normalize=1
117 +filters=64
118 +size=1
119 +stride=1
120 +pad=1
121 +activation=mish
122 +
123 +[route]
124 +layers = -2
125 +
126 +[convolutional]
127 +batch_normalize=1
128 +filters=64
129 +size=1
130 +stride=1
131 +pad=1
132 +activation=mish
133 +
134 +[convolutional]
135 +batch_normalize=1
136 +filters=64
137 +size=1
138 +stride=1
139 +pad=1
140 +activation=mish
141 +
142 +[convolutional]
143 +batch_normalize=1
144 +filters=64
145 +size=3
146 +stride=1
147 +pad=1
148 +activation=mish
149 +
150 +[shortcut]
151 +from=-3
152 +activation=linear
153 +
154 +[convolutional]
155 +batch_normalize=1
156 +filters=64
157 +size=1
158 +stride=1
159 +pad=1
160 +activation=mish
161 +
162 +[convolutional]
163 +batch_normalize=1
164 +filters=64
165 +size=3
166 +stride=1
167 +pad=1
168 +activation=mish
169 +
170 +[shortcut]
171 +from=-3
172 +activation=linear
173 +
174 +[convolutional]
175 +batch_normalize=1
176 +filters=64
177 +size=1
178 +stride=1
179 +pad=1
180 +activation=mish
181 +
182 +[route]
183 +layers = -1,-10
184 +
185 +[convolutional]
186 +batch_normalize=1
187 +filters=128
188 +size=1
189 +stride=1
190 +pad=1
191 +activation=mish
192 +
193 +# Downsample
194 +
195 +[convolutional]
196 +batch_normalize=1
197 +filters=256
198 +size=3
199 +stride=2
200 +pad=1
201 +activation=mish
202 +
203 +[convolutional]
204 +batch_normalize=1
205 +filters=128
206 +size=1
207 +stride=1
208 +pad=1
209 +activation=mish
210 +
211 +[route]
212 +layers = -2
213 +
214 +[convolutional]
215 +batch_normalize=1
216 +filters=128
217 +size=1
218 +stride=1
219 +pad=1
220 +activation=mish
221 +
222 +[convolutional]
223 +batch_normalize=1
224 +filters=128
225 +size=1
226 +stride=1
227 +pad=1
228 +activation=mish
229 +
230 +[convolutional]
231 +batch_normalize=1
232 +filters=128
233 +size=3
234 +stride=1
235 +pad=1
236 +activation=mish
237 +
238 +[shortcut]
239 +from=-3
240 +activation=linear
241 +
242 +[convolutional]
243 +batch_normalize=1
244 +filters=128
245 +size=1
246 +stride=1
247 +pad=1
248 +activation=mish
249 +
250 +[convolutional]
251 +batch_normalize=1
252 +filters=128
253 +size=3
254 +stride=1
255 +pad=1
256 +activation=mish
257 +
258 +[shortcut]
259 +from=-3
260 +activation=linear
261 +
262 +[convolutional]
263 +batch_normalize=1
264 +filters=128
265 +size=1
266 +stride=1
267 +pad=1
268 +activation=mish
269 +
270 +[convolutional]
271 +batch_normalize=1
272 +filters=128
273 +size=3
274 +stride=1
275 +pad=1
276 +activation=mish
277 +
278 +[shortcut]
279 +from=-3
280 +activation=linear
281 +
282 +[convolutional]
283 +batch_normalize=1
284 +filters=128
285 +size=1
286 +stride=1
287 +pad=1
288 +activation=mish
289 +
290 +[convolutional]
291 +batch_normalize=1
292 +filters=128
293 +size=3
294 +stride=1
295 +pad=1
296 +activation=mish
297 +
298 +[shortcut]
299 +from=-3
300 +activation=linear
301 +
302 +
303 +[convolutional]
304 +batch_normalize=1
305 +filters=128
306 +size=1
307 +stride=1
308 +pad=1
309 +activation=mish
310 +
311 +[convolutional]
312 +batch_normalize=1
313 +filters=128
314 +size=3
315 +stride=1
316 +pad=1
317 +activation=mish
318 +
319 +[shortcut]
320 +from=-3
321 +activation=linear
322 +
323 +[convolutional]
324 +batch_normalize=1
325 +filters=128
326 +size=1
327 +stride=1
328 +pad=1
329 +activation=mish
330 +
331 +[convolutional]
332 +batch_normalize=1
333 +filters=128
334 +size=3
335 +stride=1
336 +pad=1
337 +activation=mish
338 +
339 +[shortcut]
340 +from=-3
341 +activation=linear
342 +
343 +[convolutional]
344 +batch_normalize=1
345 +filters=128
346 +size=1
347 +stride=1
348 +pad=1
349 +activation=mish
350 +
351 +[convolutional]
352 +batch_normalize=1
353 +filters=128
354 +size=3
355 +stride=1
356 +pad=1
357 +activation=mish
358 +
359 +[shortcut]
360 +from=-3
361 +activation=linear
362 +
363 +[convolutional]
364 +batch_normalize=1
365 +filters=128
366 +size=1
367 +stride=1
368 +pad=1
369 +activation=mish
370 +
371 +[convolutional]
372 +batch_normalize=1
373 +filters=128
374 +size=3
375 +stride=1
376 +pad=1
377 +activation=mish
378 +
379 +[shortcut]
380 +from=-3
381 +activation=linear
382 +
383 +[convolutional]
384 +batch_normalize=1
385 +filters=128
386 +size=1
387 +stride=1
388 +pad=1
389 +activation=mish
390 +
391 +[route]
392 +layers = -1,-28
393 +
394 +[convolutional]
395 +batch_normalize=1
396 +filters=256
397 +size=1
398 +stride=1
399 +pad=1
400 +activation=mish
401 +
402 +# Downsample
403 +
404 +[convolutional]
405 +batch_normalize=1
406 +filters=512
407 +size=3
408 +stride=2
409 +pad=1
410 +activation=mish
411 +
412 +[convolutional]
413 +batch_normalize=1
414 +filters=256
415 +size=1
416 +stride=1
417 +pad=1
418 +activation=mish
419 +
420 +[route]
421 +layers = -2
422 +
423 +[convolutional]
424 +batch_normalize=1
425 +filters=256
426 +size=1
427 +stride=1
428 +pad=1
429 +activation=mish
430 +
431 +[convolutional]
432 +batch_normalize=1
433 +filters=256
434 +size=1
435 +stride=1
436 +pad=1
437 +activation=mish
438 +
439 +[convolutional]
440 +batch_normalize=1
441 +filters=256
442 +size=3
443 +stride=1
444 +pad=1
445 +activation=mish
446 +
447 +[shortcut]
448 +from=-3
449 +activation=linear
450 +
451 +
452 +[convolutional]
453 +batch_normalize=1
454 +filters=256
455 +size=1
456 +stride=1
457 +pad=1
458 +activation=mish
459 +
460 +[convolutional]
461 +batch_normalize=1
462 +filters=256
463 +size=3
464 +stride=1
465 +pad=1
466 +activation=mish
467 +
468 +[shortcut]
469 +from=-3
470 +activation=linear
471 +
472 +
473 +[convolutional]
474 +batch_normalize=1
475 +filters=256
476 +size=1
477 +stride=1
478 +pad=1
479 +activation=mish
480 +
481 +[convolutional]
482 +batch_normalize=1
483 +filters=256
484 +size=3
485 +stride=1
486 +pad=1
487 +activation=mish
488 +
489 +[shortcut]
490 +from=-3
491 +activation=linear
492 +
493 +
494 +[convolutional]
495 +batch_normalize=1
496 +filters=256
497 +size=1
498 +stride=1
499 +pad=1
500 +activation=mish
501 +
502 +[convolutional]
503 +batch_normalize=1
504 +filters=256
505 +size=3
506 +stride=1
507 +pad=1
508 +activation=mish
509 +
510 +[shortcut]
511 +from=-3
512 +activation=linear
513 +
514 +
515 +[convolutional]
516 +batch_normalize=1
517 +filters=256
518 +size=1
519 +stride=1
520 +pad=1
521 +activation=mish
522 +
523 +[convolutional]
524 +batch_normalize=1
525 +filters=256
526 +size=3
527 +stride=1
528 +pad=1
529 +activation=mish
530 +
531 +[shortcut]
532 +from=-3
533 +activation=linear
534 +
535 +
536 +[convolutional]
537 +batch_normalize=1
538 +filters=256
539 +size=1
540 +stride=1
541 +pad=1
542 +activation=mish
543 +
544 +[convolutional]
545 +batch_normalize=1
546 +filters=256
547 +size=3
548 +stride=1
549 +pad=1
550 +activation=mish
551 +
552 +[shortcut]
553 +from=-3
554 +activation=linear
555 +
556 +
557 +[convolutional]
558 +batch_normalize=1
559 +filters=256
560 +size=1
561 +stride=1
562 +pad=1
563 +activation=mish
564 +
565 +[convolutional]
566 +batch_normalize=1
567 +filters=256
568 +size=3
569 +stride=1
570 +pad=1
571 +activation=mish
572 +
573 +[shortcut]
574 +from=-3
575 +activation=linear
576 +
577 +[convolutional]
578 +batch_normalize=1
579 +filters=256
580 +size=1
581 +stride=1
582 +pad=1
583 +activation=mish
584 +
585 +[convolutional]
586 +batch_normalize=1
587 +filters=256
588 +size=3
589 +stride=1
590 +pad=1
591 +activation=mish
592 +
593 +[shortcut]
594 +from=-3
595 +activation=linear
596 +
597 +[convolutional]
598 +batch_normalize=1
599 +filters=256
600 +size=1
601 +stride=1
602 +pad=1
603 +activation=mish
604 +
605 +[route]
606 +layers = -1,-28
607 +
608 +[convolutional]
609 +batch_normalize=1
610 +filters=512
611 +size=1
612 +stride=1
613 +pad=1
614 +activation=mish
615 +
616 +# Downsample
617 +
618 +[convolutional]
619 +batch_normalize=1
620 +filters=1024
621 +size=3
622 +stride=2
623 +pad=1
624 +activation=mish
625 +
626 +[convolutional]
627 +batch_normalize=1
628 +filters=512
629 +size=1
630 +stride=1
631 +pad=1
632 +activation=mish
633 +
634 +[route]
635 +layers = -2
636 +
637 +[convolutional]
638 +batch_normalize=1
639 +filters=512
640 +size=1
641 +stride=1
642 +pad=1
643 +activation=mish
644 +
645 +[convolutional]
646 +batch_normalize=1
647 +filters=512
648 +size=1
649 +stride=1
650 +pad=1
651 +activation=mish
652 +
653 +[convolutional]
654 +batch_normalize=1
655 +filters=512
656 +size=3
657 +stride=1
658 +pad=1
659 +activation=mish
660 +
661 +[shortcut]
662 +from=-3
663 +activation=linear
664 +
665 +[convolutional]
666 +batch_normalize=1
667 +filters=512
668 +size=1
669 +stride=1
670 +pad=1
671 +activation=mish
672 +
673 +[convolutional]
674 +batch_normalize=1
675 +filters=512
676 +size=3
677 +stride=1
678 +pad=1
679 +activation=mish
680 +
681 +[shortcut]
682 +from=-3
683 +activation=linear
684 +
685 +[convolutional]
686 +batch_normalize=1
687 +filters=512
688 +size=1
689 +stride=1
690 +pad=1
691 +activation=mish
692 +
693 +[convolutional]
694 +batch_normalize=1
695 +filters=512
696 +size=3
697 +stride=1
698 +pad=1
699 +activation=mish
700 +
701 +[shortcut]
702 +from=-3
703 +activation=linear
704 +
705 +[convolutional]
706 +batch_normalize=1
707 +filters=512
708 +size=1
709 +stride=1
710 +pad=1
711 +activation=mish
712 +
713 +[convolutional]
714 +batch_normalize=1
715 +filters=512
716 +size=3
717 +stride=1
718 +pad=1
719 +activation=mish
720 +
721 +[shortcut]
722 +from=-3
723 +activation=linear
724 +
725 +[convolutional]
726 +batch_normalize=1
727 +filters=512
728 +size=1
729 +stride=1
730 +pad=1
731 +activation=mish
732 +
733 +[route]
734 +layers = -1,-16
735 +
736 +[convolutional]
737 +batch_normalize=1
738 +filters=1024
739 +size=1
740 +stride=1
741 +pad=1
742 +activation=mish
743 +
744 +##########################
745 +
746 +[convolutional]
747 +batch_normalize=1
748 +filters=512
749 +size=1
750 +stride=1
751 +pad=1
752 +activation=leaky
753 +
754 +[convolutional]
755 +batch_normalize=1
756 +size=3
757 +stride=1
758 +pad=1
759 +filters=1024
760 +activation=leaky
761 +
762 +[convolutional]
763 +batch_normalize=1
764 +filters=512
765 +size=1
766 +stride=1
767 +pad=1
768 +activation=leaky
769 +
770 +### SPP ###
771 +[maxpool]
772 +stride=1
773 +size=5
774 +
775 +[route]
776 +layers=-2
777 +
778 +[maxpool]
779 +stride=1
780 +size=9
781 +
782 +[route]
783 +layers=-4
784 +
785 +[maxpool]
786 +stride=1
787 +size=13
788 +
789 +[route]
790 +layers=-1,-3,-5,-6
791 +### End SPP ###
792 +
793 +[convolutional]
794 +batch_normalize=1
795 +filters=512
796 +size=1
797 +stride=1
798 +pad=1
799 +activation=leaky
800 +
801 +[convolutional]
802 +batch_normalize=1
803 +size=3
804 +stride=1
805 +pad=1
806 +filters=1024
807 +activation=leaky
808 +
809 +[convolutional]
810 +batch_normalize=1
811 +filters=512
812 +size=1
813 +stride=1
814 +pad=1
815 +activation=leaky
816 +
817 +[convolutional]
818 +batch_normalize=1
819 +filters=256
820 +size=1
821 +stride=1
822 +pad=1
823 +activation=leaky
824 +
825 +[upsample]
826 +stride=2
827 +
828 +[route]
829 +layers = 85
830 +
831 +[convolutional]
832 +batch_normalize=1
833 +filters=256
834 +size=1
835 +stride=1
836 +pad=1
837 +activation=leaky
838 +
839 +[route]
840 +layers = -1, -3
841 +
842 +[convolutional]
843 +batch_normalize=1
844 +filters=256
845 +size=1
846 +stride=1
847 +pad=1
848 +activation=leaky
849 +
850 +[convolutional]
851 +batch_normalize=1
852 +size=3
853 +stride=1
854 +pad=1
855 +filters=512
856 +activation=leaky
857 +
858 +[convolutional]
859 +batch_normalize=1
860 +filters=256
861 +size=1
862 +stride=1
863 +pad=1
864 +activation=leaky
865 +
866 +[convolutional]
867 +batch_normalize=1
868 +size=3
869 +stride=1
870 +pad=1
871 +filters=512
872 +activation=leaky
873 +
874 +[convolutional]
875 +batch_normalize=1
876 +filters=256
877 +size=1
878 +stride=1
879 +pad=1
880 +activation=leaky
881 +
882 +[convolutional]
883 +batch_normalize=1
884 +filters=128
885 +size=1
886 +stride=1
887 +pad=1
888 +activation=leaky
889 +
890 +[upsample]
891 +stride=2
892 +
893 +[route]
894 +layers = 54
895 +
896 +[convolutional]
897 +batch_normalize=1
898 +filters=128
899 +size=1
900 +stride=1
901 +pad=1
902 +activation=leaky
903 +
904 +[route]
905 +layers = -1, -3
906 +
907 +[convolutional]
908 +batch_normalize=1
909 +filters=128
910 +size=1
911 +stride=1
912 +pad=1
913 +activation=leaky
914 +
915 +[convolutional]
916 +batch_normalize=1
917 +size=3
918 +stride=1
919 +pad=1
920 +filters=256
921 +activation=leaky
922 +
923 +[convolutional]
924 +batch_normalize=1
925 +filters=128
926 +size=1
927 +stride=1
928 +pad=1
929 +activation=leaky
930 +
931 +[convolutional]
932 +batch_normalize=1
933 +size=3
934 +stride=1
935 +pad=1
936 +filters=256
937 +activation=leaky
938 +
939 +[convolutional]
940 +batch_normalize=1
941 +filters=128
942 +size=1
943 +stride=1
944 +pad=1
945 +activation=leaky
946 +
947 +##########################
948 +
949 +[convolutional]
950 +batch_normalize=1
951 +size=3
952 +stride=1
953 +pad=1
954 +filters=256
955 +activation=leaky
956 +
957 +[convolutional]
958 +size=1
959 +stride=1
960 +pad=1
961 +filters=255
962 +activation=linear
963 +
964 +
965 +[yolo]
966 +mask = 0,1,2
967 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
968 +classes=80
969 +num=9
970 +jitter=.3
971 +ignore_thresh = .7
972 +truth_thresh = 1
973 +scale_x_y = 1.2
974 +iou_thresh=0.213
975 +cls_normalizer=1.0
976 +iou_normalizer=0.07
977 +iou_loss=ciou
978 +nms_kind=greedynms
979 +beta_nms=0.6
980 +max_delta=5
981 +
982 +
983 +[route]
984 +layers = -4
985 +
986 +[convolutional]
987 +batch_normalize=1
988 +size=3
989 +stride=2
990 +pad=1
991 +filters=256
992 +activation=leaky
993 +
994 +[route]
995 +layers = -1, -16
996 +
997 +[convolutional]
998 +batch_normalize=1
999 +filters=256
1000 +size=1
1001 +stride=1
1002 +pad=1
1003 +activation=leaky
1004 +
1005 +[convolutional]
1006 +batch_normalize=1
1007 +size=3
1008 +stride=1
1009 +pad=1
1010 +filters=512
1011 +activation=leaky
1012 +
1013 +[convolutional]
1014 +batch_normalize=1
1015 +filters=256
1016 +size=1
1017 +stride=1
1018 +pad=1
1019 +activation=leaky
1020 +
1021 +[convolutional]
1022 +batch_normalize=1
1023 +size=3
1024 +stride=1
1025 +pad=1
1026 +filters=512
1027 +activation=leaky
1028 +
1029 +[convolutional]
1030 +batch_normalize=1
1031 +filters=256
1032 +size=1
1033 +stride=1
1034 +pad=1
1035 +activation=leaky
1036 +
1037 +[convolutional]
1038 +batch_normalize=1
1039 +size=3
1040 +stride=1
1041 +pad=1
1042 +filters=512
1043 +activation=leaky
1044 +
1045 +[convolutional]
1046 +size=1
1047 +stride=1
1048 +pad=1
1049 +filters=255
1050 +activation=linear
1051 +
1052 +
1053 +[yolo]
1054 +mask = 3,4,5
1055 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1056 +classes=80
1057 +num=9
1058 +jitter=.3
1059 +ignore_thresh = .7
1060 +truth_thresh = 1
1061 +scale_x_y = 1.1
1062 +iou_thresh=0.213
1063 +cls_normalizer=1.0
1064 +iou_normalizer=0.07
1065 +iou_loss=ciou
1066 +nms_kind=greedynms
1067 +beta_nms=0.6
1068 +max_delta=5
1069 +
1070 +
1071 +[route]
1072 +layers = -4
1073 +
1074 +[convolutional]
1075 +batch_normalize=1
1076 +size=3
1077 +stride=2
1078 +pad=1
1079 +filters=512
1080 +activation=leaky
1081 +
1082 +[route]
1083 +layers = -1, -37
1084 +
1085 +[convolutional]
1086 +batch_normalize=1
1087 +filters=512
1088 +size=1
1089 +stride=1
1090 +pad=1
1091 +activation=leaky
1092 +
1093 +[convolutional]
1094 +batch_normalize=1
1095 +size=3
1096 +stride=1
1097 +pad=1
1098 +filters=1024
1099 +activation=leaky
1100 +
1101 +[convolutional]
1102 +batch_normalize=1
1103 +filters=512
1104 +size=1
1105 +stride=1
1106 +pad=1
1107 +activation=leaky
1108 +
1109 +[convolutional]
1110 +batch_normalize=1
1111 +size=3
1112 +stride=1
1113 +pad=1
1114 +filters=1024
1115 +activation=leaky
1116 +
1117 +[convolutional]
1118 +batch_normalize=1
1119 +filters=512
1120 +size=1
1121 +stride=1
1122 +pad=1
1123 +activation=leaky
1124 +
1125 +[convolutional]
1126 +batch_normalize=1
1127 +size=3
1128 +stride=1
1129 +pad=1
1130 +filters=1024
1131 +activation=leaky
1132 +
1133 +[convolutional]
1134 +size=1
1135 +stride=1
1136 +pad=1
1137 +filters=255
1138 +activation=linear
1139 +
1140 +
1141 +[yolo]
1142 +mask = 6,7,8
1143 +anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
1144 +classes=80
1145 +num=9
1146 +jitter=.3
1147 +ignore_thresh = .7
1148 +truth_thresh = 1
1149 +random=1
1150 +scale_x_y = 1.05
1151 +iou_thresh=0.213
1152 +cls_normalizer=1.0
1153 +iou_normalizer=0.07
1154 +iou_loss=ciou
1155 +nms_kind=greedynms
1156 +beta_nms=0.6
1157 +max_delta=5
1158 +
1 +#!python3
2 +"""
3 +Python 3 wrapper for identifying objects in images
4 +
5 +Requires DLL compilation
6 +
7 +Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll".
8 +
9 +On a GPU system, you can force CPU evaluation by any of:
10 +
11 +- Set global variable DARKNET_FORCE_CPU to True
12 +- Set environment variable CUDA_VISIBLE_DEVICES to -1
13 +- Set environment variable "FORCE_CPU" to "true"
14 +
15 +Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`)
16 +
17 +Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py
18 +Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py
19 +
20 +@author: Philip Kahn
21 +@date: 20180503
22 +"""
23 +from ctypes import *
24 +import math
25 +import random
26 +import os
27 +
28 +
29 +class BOX(Structure):
30 + _fields_ = [("x", c_float),
31 + ("y", c_float),
32 + ("w", c_float),
33 + ("h", c_float)]
34 +
35 +
36 +class DETECTION(Structure):
37 + _fields_ = [("bbox", BOX),
38 + ("classes", c_int),
39 + ("prob", POINTER(c_float)),
40 + ("mask", POINTER(c_float)),
41 + ("objectness", c_float),
42 + ("sort_class", c_int),
43 + ("uc", POINTER(c_float)),
44 + ("points", c_int),
45 + ("embeddings", POINTER(c_float)),
46 + ("embedding_size", c_int),
47 + ("sim", c_float),
48 + ("track_id", c_int)]
49 +
50 +class DETNUMPAIR(Structure):
51 + _fields_ = [("num", c_int),
52 + ("dets", POINTER(DETECTION))]
53 +
54 +
55 +class IMAGE(Structure):
56 + _fields_ = [("w", c_int),
57 + ("h", c_int),
58 + ("c", c_int),
59 + ("data", POINTER(c_float))]
60 +
61 +
62 +class METADATA(Structure):
63 + _fields_ = [("classes", c_int),
64 + ("names", POINTER(c_char_p))]
65 +
66 +
67 +def network_width(net):
68 + return lib.network_width(net)
69 +
70 +
71 +def network_height(net):
72 + return lib.network_height(net)
73 +
74 +
75 +def bbox2points(bbox):
76 + """
77 + From bounding box yolo format
78 + to corner points cv2 rectangle
79 + """
80 + x, y, w, h = bbox
81 + xmin = int(round(x - (w / 2)))
82 + xmax = int(round(x + (w / 2)))
83 + ymin = int(round(y - (h / 2)))
84 + ymax = int(round(y + (h / 2)))
85 + return xmin, ymin, xmax, ymax
86 +
87 +
88 +def class_colors(names):
89 + """
90 + Create a dict with one random BGR color for each
91 + class name
92 + """
93 + return {name: (
94 + random.randint(0, 255),
95 + random.randint(0, 255),
96 + random.randint(0, 255)) for name in names}
97 +
98 +
99 +def load_network(config_file, data_file, weights, batch_size=1):
100 + """
101 + load model description and weights from config files
102 + args:
103 + config_file (str): path to .cfg model file
104 + data_file (str): path to .data model file
105 + weights (str): path to weights
106 + returns:
107 + network: trained model
108 + class_names
109 + class_colors
110 + """
111 + network = load_net_custom(
112 + config_file.encode("ascii"),
113 + weights.encode("ascii"), 0, batch_size)
114 + metadata = load_meta(data_file.encode("ascii"))
115 + class_names = [metadata.names[i].decode("ascii") for i in range(metadata.classes)]
116 + colors = class_colors(class_names)
117 + return network, class_names, colors
118 +
119 +
120 +def print_detections(detections, coordinates=False):
121 + print("\nObjects:")
122 + for label, confidence, bbox in detections:
123 + x, y, w, h = bbox
124 + if coordinates:
125 + print("{}: {}% (left_x: {:.0f} top_y: {:.0f} width: {:.0f} height: {:.0f})".format(label, confidence, x, y, w, h))
126 + else:
127 + print("{}: {}%".format(label, confidence))
128 +
129 +
130 +def draw_boxes(detections, image, colors):
131 + import cv2
132 + for label, confidence, bbox in detections:
133 + left, top, right, bottom = bbox2points(bbox)
134 + cv2.rectangle(image, (left, top), (right, bottom), colors[label], 1)
135 + cv2.putText(image, "{} [{:.2f}]".format(label, float(confidence)),
136 + (left, top - 5), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
137 + colors[label], 2)
138 + return image
139 +
140 +
141 +def decode_detection(detections):
142 + decoded = []
143 + for label, confidence, bbox in detections:
144 + confidence = str(round(confidence * 100, 2))
145 + decoded.append((str(label), confidence, bbox))
146 + return decoded
147 +
148 +
149 +def remove_negatives(detections, class_names, num):
150 + """
151 + Remove all classes with 0% confidence within the detection
152 + """
153 + predictions = []
154 + for j in range(num):
155 + for idx, name in enumerate(class_names):
156 + if detections[j].prob[idx] > 0:
157 + bbox = detections[j].bbox
158 + bbox = (bbox.x, bbox.y, bbox.w, bbox.h)
159 + predictions.append((name, detections[j].prob[idx], (bbox)))
160 + return predictions
161 +
162 +
163 +def detect_image(network, class_names, image, thresh=.5, hier_thresh=.5, nms=.45):
164 + """
165 + Returns a list with highest confidence class and their bbox
166 + """
167 + pnum = pointer(c_int(0))
168 + predict_image(network, image)
169 + detections = get_network_boxes(network, image.w, image.h,
170 + thresh, hier_thresh, None, 0, pnum, 0)
171 + num = pnum[0]
172 + if nms:
173 + do_nms_sort(detections, num, len(class_names), nms)
174 + predictions = remove_negatives(detections, class_names, num)
175 + predictions = decode_detection(predictions)
176 + free_detections(detections, num)
177 + return sorted(predictions, key=lambda x: x[1])
178 +
179 +
180 +# lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
181 +# lib = CDLL("libdarknet.so", RTLD_GLOBAL)
182 +hasGPU = True
183 +if os.name == "nt":
184 + cwd = os.path.dirname(__file__)
185 + os.environ['PATH'] = cwd + ';' + os.environ['PATH']
186 +
187 + winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll")
188 + print(winGPUdll)
189 + winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll")
190 + envKeys = list()
191 + for k, v in os.environ.items():
192 + envKeys.append(k)
193 + try:
194 + try:
195 + tmp = os.environ["FORCE_CPU"].lower()
196 + if tmp in ["1", "true", "yes", "on"]:
197 + raise ValueError("ForceCPU")
198 + else:
199 + print("Flag value {} not forcing CPU mode".format(tmp))
200 + except KeyError:
201 + # We never set the flag
202 + if 'CUDA_VISIBLE_DEVICES' in envKeys:
203 + if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0:
204 + raise ValueError("ForceCPU")
205 + try:
206 + global DARKNET_FORCE_CPU
207 + if DARKNET_FORCE_CPU:
208 + raise ValueError("ForceCPU")
209 + except NameError as cpu_error:
210 + print(cpu_error)
211 + if not os.path.exists(winGPUdll):
212 + raise ValueError("NoDLL")
213 + lib = CDLL(winGPUdll, RTLD_GLOBAL)
214 + except (KeyError, ValueError):
215 + hasGPU = False
216 + if os.path.exists(winNoGPUdll):
217 + lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
218 + print("Notice: CPU-only mode")
219 + else:
220 + # Try the other way, in case no_gpu was compile but not renamed
221 + lib = CDLL(winGPUdll, RTLD_GLOBAL)
222 + print("Environment variables indicated a CPU run, but we didn't find {}. Trying a GPU run anyway.".format(winNoGPUdll))
223 +else:
224 + lib = CDLL("./libdarknet.so", RTLD_GLOBAL)
225 +lib.network_width.argtypes = [c_void_p]
226 +lib.network_width.restype = c_int
227 +lib.network_height.argtypes = [c_void_p]
228 +lib.network_height.restype = c_int
229 +
230 +copy_image_from_bytes = lib.copy_image_from_bytes
231 +copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
232 +
233 +predict = lib.network_predict_ptr
234 +predict.argtypes = [c_void_p, POINTER(c_float)]
235 +predict.restype = POINTER(c_float)
236 +
237 +if hasGPU:
238 + set_gpu = lib.cuda_set_device
239 + set_gpu.argtypes = [c_int]
240 +
241 +init_cpu = lib.init_cpu
242 +
243 +make_image = lib.make_image
244 +make_image.argtypes = [c_int, c_int, c_int]
245 +make_image.restype = IMAGE
246 +
247 +get_network_boxes = lib.get_network_boxes
248 +get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
249 +get_network_boxes.restype = POINTER(DETECTION)
250 +
251 +make_network_boxes = lib.make_network_boxes
252 +make_network_boxes.argtypes = [c_void_p]
253 +make_network_boxes.restype = POINTER(DETECTION)
254 +
255 +free_detections = lib.free_detections
256 +free_detections.argtypes = [POINTER(DETECTION), c_int]
257 +
258 +free_batch_detections = lib.free_batch_detections
259 +free_batch_detections.argtypes = [POINTER(DETNUMPAIR), c_int]
260 +
261 +free_ptrs = lib.free_ptrs
262 +free_ptrs.argtypes = [POINTER(c_void_p), c_int]
263 +
264 +network_predict = lib.network_predict_ptr
265 +network_predict.argtypes = [c_void_p, POINTER(c_float)]
266 +
267 +reset_rnn = lib.reset_rnn
268 +reset_rnn.argtypes = [c_void_p]
269 +
270 +load_net = lib.load_network
271 +load_net.argtypes = [c_char_p, c_char_p, c_int]
272 +load_net.restype = c_void_p
273 +
274 +load_net_custom = lib.load_network_custom
275 +load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
276 +load_net_custom.restype = c_void_p
277 +
278 +do_nms_obj = lib.do_nms_obj
279 +do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
280 +
281 +do_nms_sort = lib.do_nms_sort
282 +do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
283 +
284 +free_image = lib.free_image
285 +free_image.argtypes = [IMAGE]
286 +
287 +letterbox_image = lib.letterbox_image
288 +letterbox_image.argtypes = [IMAGE, c_int, c_int]
289 +letterbox_image.restype = IMAGE
290 +
291 +load_meta = lib.get_metadata
292 +lib.get_metadata.argtypes = [c_char_p]
293 +lib.get_metadata.restype = METADATA
294 +
295 +load_image = lib.load_image_color
296 +load_image.argtypes = [c_char_p, c_int, c_int]
297 +load_image.restype = IMAGE
298 +
299 +rgbgr_image = lib.rgbgr_image
300 +rgbgr_image.argtypes = [IMAGE]
301 +
302 +predict_image = lib.network_predict_image
303 +predict_image.argtypes = [c_void_p, IMAGE]
304 +predict_image.restype = POINTER(c_float)
305 +
306 +predict_image_letterbox = lib.network_predict_image_letterbox
307 +predict_image_letterbox.argtypes = [c_void_p, IMAGE]
308 +predict_image_letterbox.restype = POINTER(c_float)
309 +
310 +network_predict_batch = lib.network_predict_batch
311 +network_predict_batch.argtypes = [c_void_p, IMAGE, c_int, c_int, c_int,
312 + c_float, c_float, POINTER(c_int), c_int, c_int]
313 +network_predict_batch.restype = POINTER(DETNUMPAIR)
This diff could not be displayed because it is too large.