Showing
2 changed files
with
455 additions
and
6 deletions
code/FAA2/FAA2.ipynb
0 → 100644
| 1 | +{ | ||
| 2 | + "nbformat": 4, | ||
| 3 | + "nbformat_minor": 0, | ||
| 4 | + "metadata": { | ||
| 5 | + "colab": { | ||
| 6 | + "name": "FAA2.ipynb", | ||
| 7 | + "provenance": [], | ||
| 8 | + "collapsed_sections": [], | ||
| 9 | + "toc_visible": true | ||
| 10 | + }, | ||
| 11 | + "kernelspec": { | ||
| 12 | + "name": "python3", | ||
| 13 | + "display_name": "Python 3" | ||
| 14 | + }, | ||
| 15 | + "accelerator": "GPU" | ||
| 16 | + }, | ||
| 17 | + "cells": [ | ||
| 18 | + { | ||
| 19 | + "cell_type": "code", | ||
| 20 | + "metadata": { | ||
| 21 | + "id": "sWjZQ8LCWcZv", | ||
| 22 | + "colab_type": "code", | ||
| 23 | + "outputId": "3d4f5ec9-214c-4365-b43c-a3946f447631", | ||
| 24 | + "colab": { | ||
| 25 | + "base_uri": "https://localhost:8080/", | ||
| 26 | + "height": 35 | ||
| 27 | + } | ||
| 28 | + }, | ||
| 29 | + "source": [ | ||
| 30 | + "from google.colab import drive\n", | ||
| 31 | + "drive.mount('/content/drive')" | ||
| 32 | + ], | ||
| 33 | + "execution_count": 0, | ||
| 34 | + "outputs": [ | ||
| 35 | + { | ||
| 36 | + "output_type": "stream", | ||
| 37 | + "text": [ | ||
| 38 | + "Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n" | ||
| 39 | + ], | ||
| 40 | + "name": "stdout" | ||
| 41 | + } | ||
| 42 | + ] | ||
| 43 | + }, | ||
| 44 | + { | ||
| 45 | + "cell_type": "code", | ||
| 46 | + "metadata": { | ||
| 47 | + "id": "3arNqMB_Wgbx", | ||
| 48 | + "colab_type": "code", | ||
| 49 | + "outputId": "7f1de510-e87c-4a78-8f63-8349aeba3a8b", | ||
| 50 | + "colab": { | ||
| 51 | + "base_uri": "https://localhost:8080/", | ||
| 52 | + "height": 35 | ||
| 53 | + } | ||
| 54 | + }, | ||
| 55 | + "source": [ | ||
| 56 | + "!git clone http://khuhub.khu.ac.kr/2020-1-capstone-design2/2016104167.git" | ||
| 57 | + ], | ||
| 58 | + "execution_count": 0, | ||
| 59 | + "outputs": [ | ||
| 60 | + { | ||
| 61 | + "output_type": "stream", | ||
| 62 | + "text": [ | ||
| 63 | + "fatal: destination path '2016104167' already exists and is not an empty directory.\n" | ||
| 64 | + ], | ||
| 65 | + "name": "stdout" | ||
| 66 | + } | ||
| 67 | + ] | ||
| 68 | + }, | ||
| 69 | + { | ||
| 70 | + "cell_type": "code", | ||
| 71 | + "metadata": { | ||
| 72 | + "id": "ISXM-edL-lGF", | ||
| 73 | + "colab_type": "code", | ||
| 74 | + "outputId": "b3d9b459-bdbf-4bcf-8c23-3ae0dd99a913", | ||
| 75 | + "colab": { | ||
| 76 | + "base_uri": "https://localhost:8080/", | ||
| 77 | + "height": 35 | ||
| 78 | + } | ||
| 79 | + }, | ||
| 80 | + "source": [ | ||
| 81 | + "%cd '2016104167/code/FAA2/'" | ||
| 82 | + ], | ||
| 83 | + "execution_count": 0, | ||
| 84 | + "outputs": [ | ||
| 85 | + { | ||
| 86 | + "output_type": "stream", | ||
| 87 | + "text": [ | ||
| 88 | + "/content/2016104167/code/FAA2\n" | ||
| 89 | + ], | ||
| 90 | + "name": "stdout" | ||
| 91 | + } | ||
| 92 | + ] | ||
| 93 | + }, | ||
| 94 | + { | ||
| 95 | + "cell_type": "code", | ||
| 96 | + "metadata": { | ||
| 97 | + "id": "43zJwd05_Tst", | ||
| 98 | + "colab_type": "code", | ||
| 99 | + "outputId": "bb293b7c-5b79-4720-fff8-5bfe077b6694", | ||
| 100 | + "colab": { | ||
| 101 | + "base_uri": "https://localhost:8080/", | ||
| 102 | + "height": 718 | ||
| 103 | + } | ||
| 104 | + }, | ||
| 105 | + "source": [ | ||
| 106 | + "!python -m pip install -r \"requirements.txt\"" | ||
| 107 | + ], | ||
| 108 | + "execution_count": 0, | ||
| 109 | + "outputs": [ | ||
| 110 | + { | ||
| 111 | + "output_type": "stream", | ||
| 112 | + "text": [ | ||
| 113 | + "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 1)) (0.16.0)\n", | ||
| 114 | + "Requirement already satisfied: tb-nightly in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 2)) (2.3.0a20200331)\n", | ||
| 115 | + "Requirement already satisfied: torchvision in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 3)) (0.5.0)\n", | ||
| 116 | + "Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 4)) (1.4.0)\n", | ||
| 117 | + "Requirement already satisfied: hyperopt in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 5)) (0.1.2)\n", | ||
| 118 | + "Requirement already satisfied: pillow==6.2.1 in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 6)) (6.2.1)\n", | ||
| 119 | + "Requirement already satisfied: natsort in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 7)) (5.5.0)\n", | ||
| 120 | + "Requirement already satisfied: fire in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 8)) (0.3.0)\n", | ||
| 121 | + "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.0.0)\n", | ||
| 122 | + "Requirement already satisfied: numpy>=1.12.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.18.2)\n", | ||
| 123 | + "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (2.21.0)\n", | ||
| 124 | + "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (46.0.0)\n", | ||
| 125 | + "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (3.2.1)\n", | ||
| 126 | + "Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (3.10.0)\n", | ||
| 127 | + "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (0.4.1)\n", | ||
| 128 | + "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.7.2)\n", | ||
| 129 | + "Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.27.2)\n", | ||
| 130 | + "Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (0.34.2)\n", | ||
| 131 | + "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.12.0)\n", | ||
| 132 | + "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (1.6.0.post2)\n", | ||
| 133 | + "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 2)) (0.9.0)\n", | ||
| 134 | + "Requirement already satisfied: scipy in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (1.4.1)\n", | ||
| 135 | + "Requirement already satisfied: pymongo in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (3.10.1)\n", | ||
| 136 | + "Requirement already satisfied: networkx in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (2.4)\n", | ||
| 137 | + "Requirement already satisfied: tqdm in /usr/local/lib/python3.6/dist-packages (from hyperopt->-r requirements.txt (line 5)) (4.38.0)\n", | ||
| 138 | + "Requirement already satisfied: termcolor in /usr/local/lib/python3.6/dist-packages (from fire->-r requirements.txt (line 8)) (1.1.0)\n", | ||
| 139 | + "Requirement already satisfied: chardet<3.1.0,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (3.0.4)\n", | ||
| 140 | + "Requirement already satisfied: urllib3<1.25,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (1.24.3)\n", | ||
| 141 | + "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (2019.11.28)\n", | ||
| 142 | + "Requirement already satisfied: idna<2.9,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 2)) (2.8)\n", | ||
| 143 | + "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 2)) (1.3.0)\n", | ||
| 144 | + "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (0.2.8)\n", | ||
| 145 | + "Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (4.0)\n", | ||
| 146 | + "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (3.1.1)\n", | ||
| 147 | + "Requirement already satisfied: decorator>=4.3.0 in /usr/local/lib/python3.6/dist-packages (from networkx->hyperopt->-r requirements.txt (line 5)) (4.4.2)\n", | ||
| 148 | + "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 2)) (3.1.0)\n", | ||
| 149 | + "Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /usr/local/lib/python3.6/dist-packages (from pyasn1-modules>=0.2.1->google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 2)) (0.4.8)\n" | ||
| 150 | + ], | ||
| 151 | + "name": "stdout" | ||
| 152 | + } | ||
| 153 | + ] | ||
| 154 | + }, | ||
| 155 | + { | ||
| 156 | + "cell_type": "code", | ||
| 157 | + "metadata": { | ||
| 158 | + "id": "16kGbCYwfhYF", | ||
| 159 | + "colab_type": "code", | ||
| 160 | + "colab": {} | ||
| 161 | + }, | ||
| 162 | + "source": [ | ||
| 163 | + "# !pip3 install http://download.pytorch.org/whl/cu80/torch-0.3.0.post4-cp36-cp36m-linux_x86_64.whl\n", | ||
| 164 | + "# !pip3 install torchvision" | ||
| 165 | + ], | ||
| 166 | + "execution_count": 0, | ||
| 167 | + "outputs": [] | ||
| 168 | + }, | ||
| 169 | + { | ||
| 170 | + "cell_type": "code", | ||
| 171 | + "metadata": { | ||
| 172 | + "id": "hofwjBN3ZY_h", | ||
| 173 | + "colab_type": "code", | ||
| 174 | + "colab": {} | ||
| 175 | + }, | ||
| 176 | + "source": [ | ||
| 177 | + "use_cuda = True" | ||
| 178 | + ], | ||
| 179 | + "execution_count": 0, | ||
| 180 | + "outputs": [] | ||
| 181 | + }, | ||
| 182 | + { | ||
| 183 | + "cell_type": "code", | ||
| 184 | + "metadata": { | ||
| 185 | + "id": "0h78dEdg_Jsg", | ||
| 186 | + "colab_type": "code", | ||
| 187 | + "colab": {} | ||
| 188 | + }, | ||
| 189 | + "source": [ | ||
| 190 | + "# try CIFAR10\n", | ||
| 191 | + "#!python \"train.py\" --seed=24 --scale=3 --optimizer=sgd --fast_auto_augment=True --use_cuda=True --network=ResNet50" | ||
| 192 | + ], | ||
| 193 | + "execution_count": 0, | ||
| 194 | + "outputs": [] | ||
| 195 | + }, | ||
| 196 | + { | ||
| 197 | + "cell_type": "code", | ||
| 198 | + "metadata": { | ||
| 199 | + "id": "nz8P9CpzES4L", | ||
| 200 | + "colab_type": "code", | ||
| 201 | + "outputId": "913ec5c8-4a66-45fd-8f76-a8367376c270", | ||
| 202 | + "colab": { | ||
| 203 | + "base_uri": "https://localhost:8080/", | ||
| 204 | + "height": 1000 | ||
| 205 | + } | ||
| 206 | + }, | ||
| 207 | + "source": [ | ||
| 208 | + "# BraTS, grayResNet2\n", | ||
| 209 | + "!python \"train.py\" --use_cuda=True --network=resnet50 --dataset=BraTS --optimizer=adam --fast_auto_augment=True" | ||
| 210 | + ], | ||
| 211 | + "execution_count": 0, | ||
| 212 | + "outputs": [ | ||
| 213 | + { | ||
| 214 | + "output_type": "stream", | ||
| 215 | + "text": [ | ||
| 216 | + "\n", | ||
| 217 | + "[+] Parse arguments\n", | ||
| 218 | + "Args(augment_path=None, batch_size=128, dataset='BraTS', fast_auto_augment=True, learning_rate=0.0001, max_step=10000, network='resnet50', num_workers=4, optimizer='adam', print_step=500, scheduler='exp', seed=None, start_step=0, use_cuda=True, val_step=500)\n", | ||
| 219 | + "\n", | ||
| 220 | + "[+] Create log dir\n", | ||
| 221 | + "2020-04-01 05:45:32.118038: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1\n", | ||
| 222 | + "\n", | ||
| 223 | + "[+] Create network\n", | ||
| 224 | + "BaseNet(\n", | ||
| 225 | + " (first): Sequential(\n", | ||
| 226 | + " (0): Conv2d(1, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)\n", | ||
| 227 | + " )\n", | ||
| 228 | + " (after): Sequential(\n", | ||
| 229 | + " (0): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 230 | + " (1): ReLU(inplace=True)\n", | ||
| 231 | + " (2): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)\n", | ||
| 232 | + " (3): Sequential(\n", | ||
| 233 | + " (0): Bottleneck(\n", | ||
| 234 | + " (conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 235 | + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 236 | + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 237 | + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 238 | + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 239 | + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 240 | + " (relu): ReLU(inplace=True)\n", | ||
| 241 | + " (downsample): Sequential(\n", | ||
| 242 | + " (0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 243 | + " (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 244 | + " )\n", | ||
| 245 | + " )\n", | ||
| 246 | + " (1): Bottleneck(\n", | ||
| 247 | + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 248 | + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 249 | + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 250 | + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 251 | + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 252 | + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 253 | + " (relu): ReLU(inplace=True)\n", | ||
| 254 | + " )\n", | ||
| 255 | + " (2): Bottleneck(\n", | ||
| 256 | + " (conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 257 | + " (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 258 | + " (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 259 | + " (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 260 | + " (conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 261 | + " (bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 262 | + " (relu): ReLU(inplace=True)\n", | ||
| 263 | + " )\n", | ||
| 264 | + " )\n", | ||
| 265 | + " (4): Sequential(\n", | ||
| 266 | + " (0): Bottleneck(\n", | ||
| 267 | + " (conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 268 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 269 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | ||
| 270 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 271 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 272 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 273 | + " (relu): ReLU(inplace=True)\n", | ||
| 274 | + " (downsample): Sequential(\n", | ||
| 275 | + " (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", | ||
| 276 | + " (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 277 | + " )\n", | ||
| 278 | + " )\n", | ||
| 279 | + " (1): Bottleneck(\n", | ||
| 280 | + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 281 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 282 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 283 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 284 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 285 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 286 | + " (relu): ReLU(inplace=True)\n", | ||
| 287 | + " )\n", | ||
| 288 | + " (2): Bottleneck(\n", | ||
| 289 | + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 290 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 291 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 292 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 293 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 294 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 295 | + " (relu): ReLU(inplace=True)\n", | ||
| 296 | + " )\n", | ||
| 297 | + " (3): Bottleneck(\n", | ||
| 298 | + " (conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 299 | + " (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 300 | + " (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 301 | + " (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 302 | + " (conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 303 | + " (bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 304 | + " (relu): ReLU(inplace=True)\n", | ||
| 305 | + " )\n", | ||
| 306 | + " )\n", | ||
| 307 | + " (5): Sequential(\n", | ||
| 308 | + " (0): Bottleneck(\n", | ||
| 309 | + " (conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 310 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 311 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | ||
| 312 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 313 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 314 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 315 | + " (relu): ReLU(inplace=True)\n", | ||
| 316 | + " (downsample): Sequential(\n", | ||
| 317 | + " (0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", | ||
| 318 | + " (1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 319 | + " )\n", | ||
| 320 | + " )\n", | ||
| 321 | + " (1): Bottleneck(\n", | ||
| 322 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 323 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 324 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 325 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 326 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 327 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 328 | + " (relu): ReLU(inplace=True)\n", | ||
| 329 | + " )\n", | ||
| 330 | + " (2): Bottleneck(\n", | ||
| 331 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 332 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 333 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 334 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 335 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 336 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 337 | + " (relu): ReLU(inplace=True)\n", | ||
| 338 | + " )\n", | ||
| 339 | + " (3): Bottleneck(\n", | ||
| 340 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 341 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 342 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 343 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 344 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 345 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 346 | + " (relu): ReLU(inplace=True)\n", | ||
| 347 | + " )\n", | ||
| 348 | + " (4): Bottleneck(\n", | ||
| 349 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 350 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 351 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 352 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 353 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 354 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 355 | + " (relu): ReLU(inplace=True)\n", | ||
| 356 | + " )\n", | ||
| 357 | + " (5): Bottleneck(\n", | ||
| 358 | + " (conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 359 | + " (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 360 | + " (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 361 | + " (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 362 | + " (conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 363 | + " (bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 364 | + " (relu): ReLU(inplace=True)\n", | ||
| 365 | + " )\n", | ||
| 366 | + " )\n", | ||
| 367 | + " (6): Sequential(\n", | ||
| 368 | + " (0): Bottleneck(\n", | ||
| 369 | + " (conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 370 | + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 371 | + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)\n", | ||
| 372 | + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 373 | + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 374 | + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 375 | + " (relu): ReLU(inplace=True)\n", | ||
| 376 | + " (downsample): Sequential(\n", | ||
| 377 | + " (0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)\n", | ||
| 378 | + " (1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 379 | + " )\n", | ||
| 380 | + " )\n", | ||
| 381 | + " (1): Bottleneck(\n", | ||
| 382 | + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 383 | + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 384 | + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 385 | + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 386 | + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 387 | + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 388 | + " (relu): ReLU(inplace=True)\n", | ||
| 389 | + " )\n", | ||
| 390 | + " (2): Bottleneck(\n", | ||
| 391 | + " (conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 392 | + " (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 393 | + " (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)\n", | ||
| 394 | + " (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 395 | + " (conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)\n", | ||
| 396 | + " (bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n", | ||
| 397 | + " (relu): ReLU(inplace=True)\n", | ||
| 398 | + " )\n", | ||
| 399 | + " )\n", | ||
| 400 | + " (7): AdaptiveAvgPool2d(output_size=(1, 1))\n", | ||
| 401 | + " )\n", | ||
| 402 | + " (fc): Linear(in_features=2048, out_features=1000, bias=True)\n", | ||
| 403 | + ")\n", | ||
| 404 | + "\n", | ||
| 405 | + "[+] Load dataset\n", | ||
| 406 | + "[+] Child 0 training started (GPU: 0)\n", | ||
| 407 | + "\n", | ||
| 408 | + "[+] Training step: 0/10000\tElapsed time: 0.24min\tLearning rate: 9.999283e-05\tDevice name: Tesla P100-PCIE-16GB\n", | ||
| 409 | + " Acc@1 : 0.000%\n", | ||
| 410 | + " Acc@5 : 0.000%\n", | ||
| 411 | + " Loss : 7.242412567138672\n", | ||
| 412 | + "\n", | ||
| 413 | + "[+] Training step: 500/10000\tElapsed time: 9.44min\tLearning rate: 9.647145853624023e-05\tDevice name: Tesla P100-PCIE-16GB\n", | ||
| 414 | + " Acc@1 : 100.000%\n", | ||
| 415 | + " Acc@5 : 100.000%\n", | ||
| 416 | + " Loss : 0.00023103877902030945\n" | ||
| 417 | + ], | ||
| 418 | + "name": "stdout" | ||
| 419 | + } | ||
| 420 | + ] | ||
| 421 | + }, | ||
| 422 | + { | ||
| 423 | + "cell_type": "code", | ||
| 424 | + "metadata": { | ||
| 425 | + "id": "3iBnXLMsES7H", | ||
| 426 | + "colab_type": "code", | ||
| 427 | + "colab": {} | ||
| 428 | + }, | ||
| 429 | + "source": [ | ||
| 430 | + "" | ||
| 431 | + ], | ||
| 432 | + "execution_count": 0, | ||
| 433 | + "outputs": [] | ||
| 434 | + }, | ||
| 435 | + { | ||
| 436 | + "cell_type": "code", | ||
| 437 | + "metadata": { | ||
| 438 | + "id": "Wc8cguWUhp9l", | ||
| 439 | + "colab_type": "code", | ||
| 440 | + "colab": {} | ||
| 441 | + }, | ||
| 442 | + "source": [ | ||
| 443 | + "" | ||
| 444 | + ], | ||
| 445 | + "execution_count": 0, | ||
| 446 | + "outputs": [] | ||
| 447 | + } | ||
| 448 | + ] | ||
| 449 | +} | ||
| ... | \ No newline at end of file | ... | \ No newline at end of file |
| ... | @@ -104,20 +104,20 @@ def dict_to_namedtuple(d): | ... | @@ -104,20 +104,20 @@ def dict_to_namedtuple(d): |
| 104 | 104 | ||
| 105 | def parse_args(kwargs): | 105 | def parse_args(kwargs): |
| 106 | # combine with default args | 106 | # combine with default args |
| 107 | - kwargs['dataset'] = kwargs['dataset'] if 'dataset' in kwargs else 'cifar10' | 107 | + kwargs['dataset'] = kwargs['dataset'] if 'dataset' in kwargs else 'BraTS' |
| 108 | - kwargs['network'] = kwargs['network'] if 'network' in kwargs else 'resnet_cifar10' | 108 | + kwargs['network'] = kwargs['network'] if 'network' in kwargs else 'resnet50' |
| 109 | kwargs['optimizer'] = kwargs['optimizer'] if 'optimizer' in kwargs else 'adam' | 109 | kwargs['optimizer'] = kwargs['optimizer'] if 'optimizer' in kwargs else 'adam' |
| 110 | - kwargs['learning_rate'] = kwargs['learning_rate'] if 'learning_rate' in kwargs else 0.1 | 110 | + kwargs['learning_rate'] = kwargs['learning_rate'] if 'learning_rate' in kwargs else 0.0001 |
| 111 | kwargs['seed'] = kwargs['seed'] if 'seed' in kwargs else None | 111 | kwargs['seed'] = kwargs['seed'] if 'seed' in kwargs else None |
| 112 | kwargs['use_cuda'] = kwargs['use_cuda'] if 'use_cuda' in kwargs else True | 112 | kwargs['use_cuda'] = kwargs['use_cuda'] if 'use_cuda' in kwargs else True |
| 113 | kwargs['use_cuda'] = kwargs['use_cuda'] and torch.cuda.is_available() | 113 | kwargs['use_cuda'] = kwargs['use_cuda'] and torch.cuda.is_available() |
| 114 | kwargs['num_workers'] = kwargs['num_workers'] if 'num_workers' in kwargs else 4 | 114 | kwargs['num_workers'] = kwargs['num_workers'] if 'num_workers' in kwargs else 4 |
| 115 | - kwargs['print_step'] = kwargs['print_step'] if 'print_step' in kwargs else 2000 | 115 | + kwargs['print_step'] = kwargs['print_step'] if 'print_step' in kwargs else 500 |
| 116 | - kwargs['val_step'] = kwargs['val_step'] if 'val_step' in kwargs else 2000 | 116 | + kwargs['val_step'] = kwargs['val_step'] if 'val_step' in kwargs else 500 |
| 117 | kwargs['scheduler'] = kwargs['scheduler'] if 'scheduler' in kwargs else 'exp' | 117 | kwargs['scheduler'] = kwargs['scheduler'] if 'scheduler' in kwargs else 'exp' |
| 118 | kwargs['batch_size'] = kwargs['batch_size'] if 'batch_size' in kwargs else 128 | 118 | kwargs['batch_size'] = kwargs['batch_size'] if 'batch_size' in kwargs else 128 |
| 119 | kwargs['start_step'] = kwargs['start_step'] if 'start_step' in kwargs else 0 | 119 | kwargs['start_step'] = kwargs['start_step'] if 'start_step' in kwargs else 0 |
| 120 | - kwargs['max_step'] = kwargs['max_step'] if 'max_step' in kwargs else 64000 | 120 | + kwargs['max_step'] = kwargs['max_step'] if 'max_step' in kwargs else 6500 |
| 121 | kwargs['fast_auto_augment'] = kwargs['fast_auto_augment'] if 'fast_auto_augment' in kwargs else False | 121 | kwargs['fast_auto_augment'] = kwargs['fast_auto_augment'] if 'fast_auto_augment' in kwargs else False |
| 122 | kwargs['augment_path'] = kwargs['augment_path'] if 'augment_path' in kwargs else None | 122 | kwargs['augment_path'] = kwargs['augment_path'] if 'augment_path' in kwargs else None |
| 123 | 123 | ... | ... |
-
Please register or login to post a comment