조현아

update classifier

......@@ -33,11 +33,8 @@ def eval(model_path):
model.load_state_dict(torch.load(weight_path))
print('\n[+] Load dataset')
test_transform = get_valid_transform(args, model)
#print('\nTEST Transform\n', test_transform)
test_dataset = get_dataset(args, 'test')
test_loader = iter(get_dataloader(args, test_dataset)) ###
......
......@@ -16,6 +16,8 @@ class BaseNet(nn.Module):
x = self.after(f)
x = x.reshape(x.size(0), -1)
x = self.fc(x)
# output, first
return x, f
"""
......
......@@ -24,7 +24,7 @@ def train(**kwargs):
print('\n[+] Create log dir')
model_name = get_model_name(args)
log_dir = os.path.join('/content/drive/My Drive/CD2 Project/classify/', model_name)
log_dir = os.path.join('/content/drive/My Drive/CD2 Project/runs/classify/', model_name)
os.makedirs(os.path.join(log_dir, 'model'))
json.dump(kwargs, open(os.path.join(log_dir, 'kwargs.json'), 'w'))
writer = SummaryWriter(log_dir=log_dir)
......@@ -42,13 +42,11 @@ def train(**kwargs):
if args.use_cuda:
model = model.cuda()
criterion = criterion.cuda()
writer.add_graph(model)
#writer.add_graph(model)
print('\n[+] Load dataset')
transform = get_train_transform(args, model, log_dir)
val_transform = get_valid_transform(args, model)
train_dataset = get_dataset(args, transform, 'train')
valid_dataset = get_dataset(args, val_transform, 'val')
train_dataset = get_dataset(args, 'train')
valid_dataset = get_dataset(args, 'val')
train_loader = iter(get_inf_dataloader(args, train_dataset))
max_epoch = len(train_dataset) // args.batch_size
best_acc = -1
......@@ -82,6 +80,7 @@ def train(**kwargs):
print(' BW Time : {:.3f}ms'.format(_train_res[4]*1000))
if step % args.val_step == args.val_step-1:
# print("\nstep, args.val_step: ", step, args.val_step)
valid_loader = iter(get_dataloader(args, valid_dataset))
_valid_res = validate(args, model, criterion, valid_loader, step, writer)
print('\n[+] Valid results')
......
import os
import time
import importlib
import collections
import pickle as cp
import glob
import numpy as np
import pandas as pd
from natsort import natsorted
from PIL import Image
import torch
import torchvision
import torch.nn.functional as F
import torchvision.models as models
import torchvision.transforms as transforms
from torch.utils.data import Subset
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.model_selection import train_test_split
from sklearn.model_selection import KFold
from networks import basenet, grayResNet2
TRAIN_DATASET_PATH = '/content/drive/My Drive/CD2 Project/data/nonaug+Normal_train/'
TRAIN_TARGET_PATH = '/content/drive/My Drive/CD2 Project/data/train_nonaug_classify_target.csv'
VAL_DATASET_PATH = '/content/drive/My Drive/CD2 Project/data/nonaug+Normal_val/'
VAL_TARGET_PATH = '/content/drive/My Drive/CD2 Project/data/val_nonaug_classify_target.csv'
TEST_DATASET_PATH = '/content/drive/My Drive/CD2 Project/data/nonaug+Normal_test/'
TEST_TARGET_PATH = '/content/drive/My Drive/CD2 Project/data/test_nonaug_classify_target.csv'
current_epoch = 0
def concat_image_features(image, features, max_features=3):
_, h, w = image.shape
#print("\nfsize: ", features.size()) # (1, 240, 240)
# features.size(0) = 64
#print(features.size(0))
#max_features = min(features.size(0), max_features)
max_features = features.size(0)
image_feature = image.clone()
for i in range(max_features):
# features torch.Size([64, 16, 16])
feature = features[i:i+1]
#torch.Size([1, 16, 16])
_min, _max = torch.min(feature), torch.max(feature)
feature = (feature - _min) / (_max - _min + 1e-6)
# torch.Size([1, 16, 16])
feature = torch.cat([feature]*1, 0)
#feature = torch.cat([feature]*3, 0)
# torch.Size([3, 16, 16]) -> [1, 16, 16]
feature = feature.view(1, 1, feature.size(1), feature.size(2))
#feature = feature.view(1, 3, feature.size(1), feature.size(2))
# torch.Size([1, 3, 16, 16])-> [1, 1, 16, 16]
feature = F.upsample(feature, size=(h,w), mode="bilinear")
# torch.Size([1, 3, 32, 32])-> [1, 1, 32, 32]
feature = feature.view(1, h, w) #(3, h, w) input of size 3072
# torch.Size([3, 32, 32])->[1, 32, 32]
#print("img_feature & feature size:\n", image_feature.size(),"\n", feature.size())
# img_feature & feature size:
# torch.Size([1, 32, 32]) -> [1, 32, 64]
# torch.Size([3, 32, 32] ->[1, 32, 32]
image_feature = torch.cat((image_feature, feature), 2) ### dim = 2
#print("\nimg feature size: ", image_feature.size()) #[1, 240, 720]
return image_feature
def get_model_name(args):
from datetime import datetime, timedelta, timezone
now = datetime.now(timezone.utc)
tz = timezone(timedelta(hours=9))
now = now.astimezone(tz)
date_time = now.strftime("%B_%d_%H:%M:%S")
model_name = '__'.join([date_time, args.network, str(args.seed)])
return model_name
def dict_to_namedtuple(d):
Args = collections.namedtuple('Args', sorted(d.keys()))
for k,v in d.items():
if type(v) is dict:
d[k] = dict_to_namedtuple(v)
elif type(v) is str:
try:
d[k] = eval(v)
except:
d[k] = v
args = Args(**d)
return args
def parse_args(kwargs):
# combine with default args
kwargs['dataset'] = kwargs['dataset'] if 'dataset' in kwargs else 'BraTS'
kwargs['network'] = kwargs['network'] if 'network' in kwargs else 'resnet50'
kwargs['optimizer'] = kwargs['optimizer'] if 'optimizer' in kwargs else 'adam'
kwargs['learning_rate'] = kwargs['learning_rate'] if 'learning_rate' in kwargs else 0.001
kwargs['seed'] = kwargs['seed'] if 'seed' in kwargs else None
kwargs['use_cuda'] = kwargs['use_cuda'] if 'use_cuda' in kwargs else True
kwargs['use_cuda'] = kwargs['use_cuda'] and torch.cuda.is_available()
kwargs['num_workers'] = kwargs['num_workers'] if 'num_workers' in kwargs else 4
kwargs['print_step'] = kwargs['print_step'] if 'print_step' in kwargs else 100
kwargs['val_step'] = kwargs['val_step'] if 'val_step' in kwargs else 100
kwargs['scheduler'] = kwargs['scheduler'] if 'scheduler' in kwargs else 'exp'
kwargs['batch_size'] = kwargs['batch_size'] if 'batch_size' in kwargs else 32
kwargs['start_step'] = kwargs['start_step'] if 'start_step' in kwargs else 0
kwargs['max_step'] = kwargs['max_step'] if 'max_step' in kwargs else 2500
kwargs['augment_path'] = kwargs['augment_path'] if 'augment_path' in kwargs else None
# to named tuple
args = dict_to_namedtuple(kwargs)
return args, kwargs
def select_model(args):
# grayResNet2
resnet_dict = {'resnet18':grayResNet2.resnet18(), 'resnet34':grayResNet2.resnet34(),
'resnet50':grayResNet2.resnet50(), 'resnet101':grayResNet2.resnet101(), 'resnet152':grayResNet2.resnet152()}
if args.network in resnet_dict:
backbone = resnet_dict[args.network]
model = basenet.BaseNet(backbone, args)
else:
Net = getattr(importlib.import_module('networks.{}'.format(args.network)), 'Net')
model = Net(args)
#print(model) # print model architecture
return model
def select_optimizer(args, model):
if args.optimizer == 'sgd':
optimizer = torch.optim.SGD(model.parameters(), lr=args.learning_rate, momentum=0.9, weight_decay=0.0001)
elif args.optimizer == 'rms':
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.learning_rate)
elif args.optimizer == 'adam':
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
else:
raise Exception('Unknown Optimizer')
return optimizer
def select_scheduler(args, optimizer):
if not args.scheduler or args.scheduler == 'None':
return None
elif args.scheduler =='clr':
return torch.optim.lr_scheduler.CyclicLR(optimizer, 0.01, 0.015, mode='triangular2', step_size_up=250000, cycle_momentum=False)
elif args.scheduler =='exp':
return torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9999283, last_epoch=-1)
else:
raise Exception('Unknown Scheduler')
class CustomDataset(Dataset):
def __init__(self, data_path, csv_path):
self.path = data_path
self.imgs = natsorted(os.listdir(data_path))
self.len = len(self.imgs)
self.transform = transforms.Compose([
transforms.Resize([240, 240]),
transforms.ToTensor()
])
df = pd.read_csv(csv_path)
targets_list = []
for fname in self.imgs:
row = df.loc[df['filename'] == fname]
targets_list.append(row.iloc[0, 1])
self.targets = targets_list
def __len__(self):
return self.len
def __getitem__(self, idx):
img_loc = os.path.join(self.path, self.imgs[idx])
targets = self.targets[idx]
image = Image.open(img_loc)
image = self.transform(image)
return image, targets
def get_dataset(args, transform, split='train'):
assert split in ['train', 'val', 'test']
if split in ['train']:
dataset = CustomDataset(TRAIN_DATASET_PATH, TRAIN_TARGET_PATH)
elif split in ['val']:
dataset = CustomDataset(VAL_DATASET_PATH, VAL_TARGET_PATH)
else : # test
dataset = CustomDataset(TEST_DATASET_PATH, TEST_TARGET_PATH)
return dataset
def get_dataloader(args, dataset, shuffle=False, pin_memory=True):
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=args.num_workers,
pin_memory=pin_memory)
return data_loader
def get_aug_dataloader(args, dataset, shuffle=False, pin_memory=True):
data_loader = torch.utils.data.DataLoader(dataset,
batch_size=args.batch_size,
shuffle=shuffle,
num_workers=args.num_workers,
pin_memory=pin_memory)
return data_loader
def get_inf_dataloader(args, dataset):
global current_epoch
data_loader = iter(get_dataloader(args, dataset, shuffle=True))
while True:
try:
batch = next(data_loader)
except StopIteration:
current_epoch += 1
data_loader = iter(get_dataloader(args, dataset, shuffle=True))
batch = next(data_loader)
yield batch
def train_step(args, model, optimizer, scheduler, criterion, batch, step, writer, device=None):
model.train()
images, target = batch
if device:
images = images.to(device)
target = target.to(device)
elif args.use_cuda:
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
start_t = time.time()
output, first = model(images)
forward_t = time.time() - start_t
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
acc1 /= images.size(0)
acc5 /= images.size(0)
# compute gradient and do SGD step
optimizer.zero_grad()
start_t = time.time()
loss.backward()
backward_t = time.time() - start_t
optimizer.step()
if scheduler: scheduler.step()
# if writer and step % args.print_step == 0:
# n_imgs = min(images.size(0), 10)
# tag = 'train/' + str(step)
# for j in range(n_imgs):
# writer.add_image(tag,
# concat_image_features(images[j], first[j]), global_step=step)
return acc1, acc5, loss, forward_t, backward_t
#_acc1, _acc5 = accuracy(output, target, topk=(1, 5))
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k)
return res
def validate(args, model, criterion, valid_loader, step, writer, device=None):
# switch to evaluate mode
model.eval()
acc1, acc5 = 0, 0
samples = 0
infer_t = 0
with torch.no_grad():
for i, (images, target) in enumerate(valid_loader):
start_t = time.time()
if device:
images = images.to(device)
target = target.to(device)
elif args.use_cuda is not None:
images = images.cuda(non_blocking=True)
target = target.cuda(non_blocking=True)
# compute output
output, first = model(images)
loss = criterion(output, target)
infer_t += time.time() - start_t
# measure accuracy and record loss
_acc1, _acc5 = accuracy(output, target, topk=(1, 5))
acc1 += _acc1
acc5 += _acc5
samples += images.size(0)
acc1 /= samples
acc5 /= samples
# if writer:
# n_imgs = min(images.size(0), 10)
# for j in range(n_imgs):
# writer.add_image('valid/input_image',
# concat_image_features(images[j], first[j]), global_step=step)
return acc1, acc5, loss, infer_t