test.py
4.81 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import cv2
import dlib
import numpy as np
from imutils import face_utils
from keras.models import load_model
import time
from eyecrop import crop_eye
import firebase_admin
from firebase_admin import credentials
from firebase_admin import db
#Firebase database 인증 및 앱 초기화
cred = credentials.Certificate('mykey.json')
firebase_admin.initialize_app(cred,{
'databaseURL' : 'https://finalproject-1404a.firebaseio.com/'
})
ref=db.reference()
#통신
IMG_SIZE = (34, 26)
#얼굴 detecting saucecode(opencvDNN)
model_path = 'sauce/opencv_face_detector_uint8.pb'
config_path = 'sauce/opencv_face_detector.pbtxt'
net = cv2.dnn.readNetFromTensorflow(model_path, config_path)
conf_threshold = 0.7
#얼굴 detecting saucecode(opencvDNN)
#눈깜빡임 detecting saucecode
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor('sauce/shape_predictor_68_face_landmarks.dat')
model = load_model('sauce/models.h5')
#눈깜빡임 detecting saucecode
face_count=0
eye_count=0
fps=0
face_control_sec=3
eye_control_sec=3
face_found=False
numb=1
numb_1=1
now = time.localtime()
cap = cv2.VideoCapture('sauce/my2.mp4')
frame_count, tt = 0, 0
while cap.isOpened():
#read()의 리턴값은 ret, frame.
# ret은 읽히면 true 아니면 false.
ret, img = cap.read()
if not ret:
break
frame_count += 1
start_time = time.time()
faces = detector(img)
#print(faces)
eye_found=False
for face in faces:
shapes = predictor(img, face)
shapes = face_utils.shape_to_np(shapes)
#face_util.shape_to_np는 얼굴은 포인트 숫자화 한 것
# left eye는 36~41
# right eye는 42~47
eye_img_l, eye_rect_l = crop_eye( img,eye_points=shapes[36:42])
eye_img_r, eye_rect_r = crop_eye( img,eye_points=shapes[42:48])
eye_img_l = cv2.resize(eye_img_l, dsize=IMG_SIZE)
eye_img_r = cv2.resize(eye_img_r, dsize=IMG_SIZE)
eye_img_r = cv2.flip(eye_img_r, flipCode=1)
eye_input_l = eye_img_l.copy().reshape((1, IMG_SIZE[1], IMG_SIZE[0], 1)).astype(np.float32) / 255.
eye_input_r = eye_img_r.copy().reshape((1, IMG_SIZE[1], IMG_SIZE[0], 1)).astype(np.float32) / 255.
pred_l = model.predict(eye_input_l)
pred_r = model.predict(eye_input_r)
# 시각화 0~1
state_l = 'O %.2f' if pred_l > 0.1 else '- %.2f'
state_r = 'O %.2f' if pred_r > 0.1 else '- %.2f'
state_l = state_l % pred_l
state_r = state_r % pred_r
# '%.1f' %pred_l
cv2.rectangle(img, (eye_rect_l[0],eye_rect_l[1]), (eye_rect_l[2],eye_rect_l[3]), (255,255,255), 2)
cv2.rectangle(img, (eye_rect_r[0],eye_rect_r[1]), (eye_rect_r[2],eye_rect_r[3]), (255,255,255), 2)
cv2.putText(img, state_l, tuple(eye_rect_l[0:2]), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,0,255), 2)
cv2.putText(img, state_r, tuple(eye_rect_r[0:2]), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255,0,255), 2)
#조건문
if (pred_r < 0.3 and pred_l < 0.3 and face_found):
a="Not 집중 or Sleep %d회"%(numb)
eye_count = eye_count + 1
if (eye_count > fps * eye_control_sec):
ref.update({'nob': a})
numb = numb + 1
#print("Not concentrate or Sleep")
eye_count = 0
else:
eye_count = 0
print("eye_count = ",eye_count)
# prepare input
result_img = img.copy()
h, w, _ = result_img.shape
blob = cv2.dnn.blobFromImage(result_img, 1.0, (300, 300), [104, 117, 123], False, False)
# blob은 전처리 등 영상 처리
net.setInput(blob)
# inference, find faces
detections = net.forward()
face_found = False
# postprocessing
for i in range(detections.shape[2]):
confidence = detections[0, 0, i, 2]
if confidence > conf_threshold:
face_found = True
x1 = int(detections[0, 0, i, 3] * w)
y1 = int(detections[0, 0, i, 4] * h)
x2 = int(detections[0, 0, i, 5] * w)
y2 = int(detections[0, 0, i, 6] * h)
rect_1 = dlib.rectangle(x1, y1, x2, y2)
# draw rects
cv2.rectangle(result_img, (x1, y1), (x2, y2), (255, 255, 255), int(round(h / 150)), cv2.LINE_AA)
cv2.putText(result_img, '%.2f%%' % (confidence * 100.), (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 1,
(255, 255, 255), 2, cv2.LINE_AA)
#조건문
if(face_found is False):
b = "Not Detected %d회"%(numb_1)
face_count=face_count+1
if(face_count>=fps*face_control_sec):
#print("not detected")
#print("not Detected ")
ref.update({'nob':b})
numb_1=numb_1+1
face_count=0
else:
face_count=0
print("face_count = ", face_count)
cv2.putText(result_img, 'FPS: %.2f' % (fps), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (100, 100, 100), 2, cv2.LINE_AA)
# visualize
tt += time.time() - start_time
fps = frame_count / tt
cv2.imshow('result', result_img)
if cv2.waitKey(1) == ord('x'):
break
cap.release()
cv2.destroyAllWindows()