Toggle navigation
Toggle navigation
This project
Loading...
Sign in
2020-1-capstone-design1
/
LSR_Project1
Go to a project
Toggle navigation
Toggle navigation pinning
Projects
Groups
Snippets
Help
Project
Activity
Repository
Pipelines
Graphs
Issues
0
Merge Requests
0
Wiki
Snippets
Network
Create a new issue
Builds
Commits
Issue Boards
Authored by
awebow
2020-05-22 17:58:20 +0900
Browse Files
Options
Browse Files
Download
Email Patches
Plain Diff
Committed by
Ma Suhyeon
2020-05-22 18:52:09 +0900
Commit
63d5e757fd972599977d3ec805475c9af64e37f9
63d5e757
1 parent
d18c0c91
Key points detection 구현
Show whitespace changes
Inline
Side-by-side
Showing
6 changed files
with
509 additions
and
3 deletions
source/android/app/build.gradle
source/android/app/src/main/assets/posenet_model.tflite
source/android/app/src/main/java/com/khuhacker/pocketgym/ExerciseActivity.java
source/android/app/src/main/java/com/khuhacker/pocketgym/ImageUtils.kt
source/android/app/src/main/java/com/khuhacker/pocketgym/Posenet.kt
source/android/build.gradle
source/android/app/build.gradle
View file @
63d5e75
apply
plugin:
'com.android.application'
apply
plugin:
'kotlin-android-extensions'
apply
plugin:
'kotlin-android'
android
{
compileSdkVersion
29
...
...
@@ -17,6 +19,9 @@ android {
proguardFiles
getDefaultProguardFile
(
'proguard-android-optimize.txt'
),
'proguard-rules.pro'
}
}
aaptOptions
{
noCompress
"tflite"
}
}
dependencies
{
...
...
@@ -26,4 +31,11 @@ dependencies {
testImplementation
'junit:junit:4.12'
androidTestImplementation
'androidx.test.ext:junit:1.1.0'
androidTestImplementation
'androidx.test.espresso:espresso-core:3.1.1'
compile
"androidx.core:core-ktx:+"
implementation
'org.tensorflow:tensorflow-lite:2.2.0'
implementation
'org.tensorflow:tensorflow-lite-gpu:2.2.0'
implementation
"org.jetbrains.kotlin:kotlin-stdlib-jdk7:$kotlin_version"
}
repositories
{
mavenCentral
()
}
...
...
source/android/app/src/main/assets/posenet_model.tflite
0 → 100644
View file @
63d5e75
This file is too large to display.
source/android/app/src/main/java/com/khuhacker/pocketgym/ExerciseActivity.java
View file @
63d5e75
...
...
@@ -7,25 +7,39 @@ import androidx.core.app.ActivityCompat;
import
android.Manifest
;
import
android.content.Context
;
import
android.content.pm.PackageManager
;
import
android.graphics.Bitmap
;
import
android.graphics.Canvas
;
import
android.graphics.Color
;
import
android.graphics.ImageFormat
;
import
android.graphics.Matrix
;
import
android.graphics.Paint
;
import
android.graphics.Rect
;
import
android.hardware.camera2.CameraAccessException
;
import
android.hardware.camera2.CameraCaptureSession
;
import
android.hardware.camera2.CameraDevice
;
import
android.hardware.camera2.CameraManager
;
import
android.hardware.camera2.CaptureRequest
;
import
android.media.Image
;
import
android.media.ImageReader
;
import
android.os.Bundle
;
import
android.util.Log
;
import
android.view.SurfaceHolder
;
import
android.view.SurfaceView
;
import
android.widget.Toast
;
import
java.nio.ByteBuffer
;
import
java.util.Arrays
;
public
class
ExerciseActivity
extends
AppCompatActivity
implements
SurfaceHolder
.
Callback
{
public
class
ExerciseActivity
extends
AppCompatActivity
implements
SurfaceHolder
.
Callback
,
ImageReader
.
OnImageAvailableListener
{
private
static
final
int
REQUEST_CAMERA
=
1000
;
private
SurfaceView
surfaceView
;
private
CameraDevice
camera
;
private
CaptureRequest
.
Builder
previewBuilder
;
private
Posenet
posenet
;
private
ImageReader
imageReader
;
private
byte
[][]
yuvBytes
=
new
byte
[
3
][];
@Override
protected
void
onCreate
(
Bundle
savedInstanceState
)
{
...
...
@@ -36,6 +50,18 @@ public class ExerciseActivity extends AppCompatActivity implements SurfaceHolder
surfaceView
.
getHolder
().
addCallback
(
this
);
}
@Override
protected
void
onStart
()
{
super
.
onStart
();
posenet
=
new
Posenet
(
this
,
"posenet_model.tflite"
,
Device
.
GPU
);
}
@Override
protected
void
onDestroy
()
{
super
.
onDestroy
();
posenet
.
close
();
}
// 카메라 활성화
private
void
openCamera
()
{
if
(
ActivityCompat
.
checkSelfPermission
(
this
,
Manifest
.
permission
.
CAMERA
)
!=
PackageManager
.
PERMISSION_GRANTED
)
{
...
...
@@ -99,10 +125,13 @@ public class ExerciseActivity extends AppCompatActivity implements SurfaceHolder
// 카메라 Capture 시작
private
void
startCapture
()
{
try
{
imageReader
=
ImageReader
.
newInstance
(
640
,
480
,
ImageFormat
.
YUV_420_888
,
2
);
imageReader
.
setOnImageAvailableListener
(
this
,
null
);
previewBuilder
=
camera
.
createCaptureRequest
(
CameraDevice
.
TEMPLATE_PREVIEW
);
previewBuilder
.
addTarget
(
surfaceView
.
getHolder
()
.
getSurface
());
previewBuilder
.
addTarget
(
imageReader
.
getSurface
());
camera
.
createCaptureSession
(
Arrays
.
asList
(
surfaceView
.
getHolder
()
.
getSurface
()),
new
CameraCaptureSession
.
StateCallback
()
{
camera
.
createCaptureSession
(
Arrays
.
asList
(
imageReader
.
getSurface
()),
new
CameraCaptureSession
.
StateCallback
()
{
@Override
public
void
onConfigured
(
@NonNull
CameraCaptureSession
session
)
{
try
{
...
...
@@ -125,4 +154,110 @@ public class ExerciseActivity extends AppCompatActivity implements SurfaceHolder
e
.
printStackTrace
();
}
}
@Override
public
void
onImageAvailable
(
ImageReader
reader
)
{
Image
image
=
reader
.
acquireLatestImage
();
if
(
image
==
null
)
return
;
fillBytes
(
image
.
getPlanes
(),
yuvBytes
);
int
[]
rgbBytes
=
new
int
[
640
*
480
];
ImageUtils
.
INSTANCE
.
convertYUV420ToARGB8888
(
yuvBytes
[
0
],
yuvBytes
[
1
],
yuvBytes
[
2
],
640
,
480
,
image
.
getPlanes
()[
0
].
getRowStride
(),
image
.
getPlanes
()[
1
].
getRowStride
(),
image
.
getPlanes
()[
1
].
getPixelStride
(),
rgbBytes
);
Bitmap
imageBitmap
=
Bitmap
.
createBitmap
(
rgbBytes
,
640
,
480
,
Bitmap
.
Config
.
ARGB_8888
);
Matrix
rotateMatrix
=
new
Matrix
();
rotateMatrix
.
postRotate
(
90
);
Bitmap
rotatedBitmap
=
Bitmap
.
createBitmap
(
imageBitmap
,
0
,
0
,
640
,
480
,
rotateMatrix
,
true
);
image
.
close
();
processImage
(
rotatedBitmap
);
}
private
void
fillBytes
(
Image
.
Plane
[]
planes
,
byte
[][]
yuvBytes
)
{
// Row stride is the total number of bytes occupied in memory by a row of an image.
// Because of the variable row stride it's not possible to know in
// advance the actual necessary dimensions of the yuv planes.
for
(
int
i
=
0
;
i
<
planes
.
length
;
i
++)
{
ByteBuffer
buffer
=
planes
[
i
].
getBuffer
();
if
(
yuvBytes
[
i
]
==
null
)
{
yuvBytes
[
i
]
=
new
byte
[
buffer
.
capacity
()];
}
buffer
.
get
(
yuvBytes
[
i
]);
}
}
private
Bitmap
cropBitmap
(
Bitmap
bitmap
)
{
float
bitmapRatio
=
(
float
)
bitmap
.
getHeight
()
/
bitmap
.
getWidth
();
float
modelInputRatio
=
257.0f
/
257.0f
;
Bitmap
croppedBitmap
=
bitmap
;
// Acceptable difference between the modelInputRatio and bitmapRatio to skip cropping.
double
maxDifference
=
1
e
-
5
;
// Checks if the bitmap has similar aspect ratio as the required model input.
if
(
Math
.
abs
(
modelInputRatio
-
bitmapRatio
)
<
maxDifference
)
return
croppedBitmap
;
if
(
modelInputRatio
<
bitmapRatio
)
{
// New image is taller so we are height constrained.
float
cropHeight
=
bitmap
.
getHeight
()
-
bitmap
.
getWidth
()
/
modelInputRatio
;
croppedBitmap
=
Bitmap
.
createBitmap
(
bitmap
,
0
,
(
int
)
cropHeight
/
2
,
bitmap
.
getWidth
(),
(
int
)
(
bitmap
.
getHeight
()
-
cropHeight
)
);
}
else
{
float
cropWidth
=
bitmap
.
getWidth
()
-
bitmap
.
getHeight
()
*
modelInputRatio
;
croppedBitmap
=
Bitmap
.
createBitmap
(
bitmap
,
(
int
)
(
cropWidth
/
2
),
0
,
(
int
)
(
bitmap
.
getWidth
()
-
cropWidth
),
bitmap
.
getHeight
()
);
}
return
croppedBitmap
;
}
private
void
processImage
(
Bitmap
bitmap
)
{
Log
.
d
(
"Capture"
,
"Process"
);
// Crop bitmap.
Bitmap
croppedBitmap
=
cropBitmap
(
bitmap
);
// Created scaled version of bitmap for model input.
Bitmap
scaledBitmap
=
Bitmap
.
createScaledBitmap
(
croppedBitmap
,
257
,
257
,
true
);
// Perform inference.
Person
person
=
posenet
.
estimateSinglePose
(
scaledBitmap
);
Paint
paint
=
new
Paint
();
Canvas
canvas
=
surfaceView
.
getHolder
().
lockCanvas
();
// 이미지 그리기
canvas
.
drawBitmap
(
croppedBitmap
,
new
Rect
(
0
,
0
,
croppedBitmap
.
getWidth
(),
croppedBitmap
.
getHeight
()),
new
Rect
(
0
,
0
,
canvas
.
getWidth
(),
canvas
.
getWidth
()),
paint
);
// Key points 그리기
paint
.
setColor
(
Color
.
RED
);
for
(
KeyPoint
keyPoint
:
person
.
getKeyPoints
())
{
if
(
keyPoint
.
getScore
()
<
0.7
)
continue
;
canvas
.
drawCircle
((
float
)
keyPoint
.
getPosition
().
getX
()
/
scaledBitmap
.
getWidth
()
*
canvas
.
getWidth
(),
(
float
)
keyPoint
.
getPosition
().
getY
()
/
scaledBitmap
.
getWidth
()
*
canvas
.
getWidth
(),
5
,
paint
);
}
surfaceView
.
getHolder
().
unlockCanvasAndPost
(
canvas
);
}
}
...
...
source/android/app/src/main/java/com/khuhacker/pocketgym/ImageUtils.kt
0 → 100644
View file @
63d5e75
/* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/
package
com.khuhacker.pocketgym
/** Utility class for manipulating images. */
object
ImageUtils
{
// This value is 2 ^ 18 - 1, and is used to hold the RGB values together before their ranges
// are normalized to eight bits.
private
const
val
MAX_CHANNEL_VALUE
=
262143
/** Helper function to convert y,u,v integer values to RGB format */
private
fun
convertYUVToRGB
(
y
:
Int
,
u
:
Int
,
v
:
Int
):
Int
{
// Adjust and check YUV values
val
yNew
=
if
(
y
-
16
<
0
)
0
else
y
-
16
val
uNew
=
u
-
128
val
vNew
=
v
-
128
val
expandY
=
1192
*
yNew
var
r
=
expandY
+
1634
*
vNew
var
g
=
expandY
-
833
*
vNew
-
400
*
uNew
var
b
=
expandY
+
2066
*
uNew
// Clipping RGB values to be inside boundaries [ 0 , MAX_CHANNEL_VALUE ]
val
checkBoundaries
=
{
x
:
Int
->
when
{
x
>
MAX_CHANNEL_VALUE
->
MAX_CHANNEL_VALUE
x
<
0
->
0
else
->
x
}
}
r
=
checkBoundaries
(
r
)
g
=
checkBoundaries
(
g
)
b
=
checkBoundaries
(
b
)
return
-
0
x1000000
or
(
r
shl
6
and
0
xff0000
)
or
(
g
shr
2
and
0
xff00
)
or
(
b
shr
10
and
0
xff
)
}
/** Converts YUV420 format image data (ByteArray) into ARGB8888 format with IntArray as output. */
fun
convertYUV420ToARGB8888
(
yData
:
ByteArray
,
uData
:
ByteArray
,
vData
:
ByteArray
,
width
:
Int
,
height
:
Int
,
yRowStride
:
Int
,
uvRowStride
:
Int
,
uvPixelStride
:
Int
,
out
:
IntArray
)
{
var
outputIndex
=
0
for
(
j
in
0
until
height
)
{
val
positionY
=
yRowStride
*
j
val
positionUV
=
uvRowStride
*
(
j
shr
1
)
for
(
i
in
0
until
width
)
{
val
uvOffset
=
positionUV
+
(
i
shr
1
)
*
uvPixelStride
// "0xff and" is used to cut off bits from following value that are higher than
// the low 8 bits
out
[
outputIndex
]
=
convertYUVToRGB
(
0
xff
and
yData
[
positionY
+
i
].
toInt
(),
0
xff
and
uData
[
uvOffset
].
toInt
(),
0
xff
and
vData
[
uvOffset
].
toInt
()
)
outputIndex
+=
1
}
}
}
}
source/android/app/src/main/java/com/khuhacker/pocketgym/Posenet.kt
0 → 100644
View file @
63d5e75
/*
* Copyright 2019 The TensorFlow Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package
com.khuhacker.pocketgym
import
android.content.Context
import
android.graphics.Bitmap
import
android.os.SystemClock
import
android.util.Log
import
java.io.FileInputStream
import
java.nio.ByteBuffer
import
java.nio.ByteOrder
import
java.nio.MappedByteBuffer
import
java.nio.channels.FileChannel
import
kotlin.math.exp
import
org.tensorflow.lite.Interpreter
import
org.tensorflow.lite.gpu.GpuDelegate
enum
class
BodyPart
{
NOSE
,
LEFT_EYE
,
RIGHT_EYE
,
LEFT_EAR
,
RIGHT_EAR
,
LEFT_SHOULDER
,
RIGHT_SHOULDER
,
LEFT_ELBOW
,
RIGHT_ELBOW
,
LEFT_WRIST
,
RIGHT_WRIST
,
LEFT_HIP
,
RIGHT_HIP
,
LEFT_KNEE
,
RIGHT_KNEE
,
LEFT_ANKLE
,
RIGHT_ANKLE
}
class
Position
{
var
x
:
Int
=
0
var
y
:
Int
=
0
}
class
KeyPoint
{
var
bodyPart
:
BodyPart
=
BodyPart
.
NOSE
var
position
:
Position
=
Position
()
var
score
:
Float
=
0.0f
}
class
Person
{
var
keyPoints
=
listOf
<
KeyPoint
>()
var
score
:
Float
=
0.0f
}
enum
class
Device
{
CPU
,
NNAPI
,
GPU
}
class
Posenet
(
val
context
:
Context
,
val
filename
:
String
=
"posenet_model.tflite"
,
val
device
:
Device
=
Device
.
GPU
)
:
AutoCloseable
{
var
lastInferenceTimeNanos
:
Long
=
-
1
private
set
/** An Interpreter for the TFLite model. */
private
var
interpreter
:
Interpreter
?
=
null
private
var
gpuDelegate
:
GpuDelegate
?
=
null
private
val
NUM_LITE_THREADS
=
4
private
fun
getInterpreter
():
Interpreter
{
if
(
interpreter
!=
null
)
{
return
interpreter
!!
}
val
options
=
Interpreter
.
Options
()
options
.
setNumThreads
(
NUM_LITE_THREADS
)
when
(
device
)
{
Device
.
CPU
->
{
}
Device
.
GPU
->
{
gpuDelegate
=
GpuDelegate
()
options
.
addDelegate
(
gpuDelegate
)
}
Device
.
NNAPI
->
options
.
setUseNNAPI
(
true
)
}
interpreter
=
Interpreter
(
loadModelFile
(
filename
,
context
),
options
)
return
interpreter
!!
}
override
fun
close
()
{
interpreter
?.
close
()
interpreter
=
null
gpuDelegate
?.
close
()
gpuDelegate
=
null
}
/** Returns value within [0,1]. */
private
fun
sigmoid
(
x
:
Float
):
Float
{
return
(
1.0f
/
(
1.0f
+
exp
(-
x
)))
}
/**
* Scale the image to a byteBuffer of [-1,1] values.
*/
private
fun
initInputArray
(
bitmap
:
Bitmap
):
ByteBuffer
{
val
bytesPerChannel
=
4
val
inputChannels
=
3
val
batchSize
=
1
val
inputBuffer
=
ByteBuffer
.
allocateDirect
(
batchSize
*
bytesPerChannel
*
bitmap
.
height
*
bitmap
.
width
*
inputChannels
)
inputBuffer
.
order
(
ByteOrder
.
nativeOrder
())
inputBuffer
.
rewind
()
val
mean
=
128.0f
val
std
=
128.0f
for
(
row
in
0
until
bitmap
.
height
)
{
for
(
col
in
0
until
bitmap
.
width
)
{
val
pixelValue
=
bitmap
.
getPixel
(
col
,
row
)
inputBuffer
.
putFloat
(((
pixelValue
shr
16
and
0
xFF
)
-
mean
)
/
std
)
inputBuffer
.
putFloat
(((
pixelValue
shr
8
and
0
xFF
)
-
mean
)
/
std
)
inputBuffer
.
putFloat
(((
pixelValue
and
0
xFF
)
-
mean
)
/
std
)
}
}
return
inputBuffer
}
/** Preload and memory map the model file, returning a MappedByteBuffer containing the model. */
private
fun
loadModelFile
(
path
:
String
,
context
:
Context
):
MappedByteBuffer
{
val
fileDescriptor
=
context
.
assets
.
openFd
(
path
)
val
inputStream
=
FileInputStream
(
fileDescriptor
.
fileDescriptor
)
return
inputStream
.
channel
.
map
(
FileChannel
.
MapMode
.
READ_ONLY
,
fileDescriptor
.
startOffset
,
fileDescriptor
.
declaredLength
)
}
/**
* Initializes an outputMap of 1 * x * y * z FloatArrays for the model processing to populate.
*/
private
fun
initOutputMap
(
interpreter
:
Interpreter
):
HashMap
<
Int
,
Any
>
{
val
outputMap
=
HashMap
<
Int
,
Any
>()
// 1 * 9 * 9 * 17 contains heatmaps
val
heatmapsShape
=
interpreter
.
getOutputTensor
(
0
).
shape
()
outputMap
[
0
]
=
Array
(
heatmapsShape
[
0
])
{
Array
(
heatmapsShape
[
1
])
{
Array
(
heatmapsShape
[
2
])
{
FloatArray
(
heatmapsShape
[
3
])
}
}
}
// 1 * 9 * 9 * 34 contains offsets
val
offsetsShape
=
interpreter
.
getOutputTensor
(
1
).
shape
()
outputMap
[
1
]
=
Array
(
offsetsShape
[
0
])
{
Array
(
offsetsShape
[
1
])
{
Array
(
offsetsShape
[
2
])
{
FloatArray
(
offsetsShape
[
3
])
}
}
}
// 1 * 9 * 9 * 32 contains forward displacements
val
displacementsFwdShape
=
interpreter
.
getOutputTensor
(
2
).
shape
()
outputMap
[
2
]
=
Array
(
offsetsShape
[
0
])
{
Array
(
displacementsFwdShape
[
1
])
{
Array
(
displacementsFwdShape
[
2
])
{
FloatArray
(
displacementsFwdShape
[
3
])
}
}
}
// 1 * 9 * 9 * 32 contains backward displacements
val
displacementsBwdShape
=
interpreter
.
getOutputTensor
(
3
).
shape
()
outputMap
[
3
]
=
Array
(
displacementsBwdShape
[
0
])
{
Array
(
displacementsBwdShape
[
1
])
{
Array
(
displacementsBwdShape
[
2
])
{
FloatArray
(
displacementsBwdShape
[
3
])
}
}
}
return
outputMap
}
/**
* Estimates the pose for a single person.
* args:
* bitmap: image bitmap of frame that should be processed
* returns:
* person: a Person object containing data about keypoint locations and confidence scores
*/
fun
estimateSinglePose
(
bitmap
:
Bitmap
):
Person
{
val
estimationStartTimeNanos
=
SystemClock
.
elapsedRealtimeNanos
()
val
inputArray
=
arrayOf
(
initInputArray
(
bitmap
))
Log
.
i
(
"posenet"
,
String
.
format
(
"Scaling to [-1,1] took %.2f ms"
,
1.0f
*
(
SystemClock
.
elapsedRealtimeNanos
()
-
estimationStartTimeNanos
)
/
1
_000_000
)
)
val
outputMap
=
initOutputMap
(
getInterpreter
())
val
inferenceStartTimeNanos
=
SystemClock
.
elapsedRealtimeNanos
()
getInterpreter
().
runForMultipleInputsOutputs
(
inputArray
,
outputMap
)
lastInferenceTimeNanos
=
SystemClock
.
elapsedRealtimeNanos
()
-
inferenceStartTimeNanos
Log
.
i
(
"posenet"
,
String
.
format
(
"Interpreter took %.2f ms"
,
1.0f
*
lastInferenceTimeNanos
/
1
_000_000
)
)
val
heatmaps
=
outputMap
[
0
]
as
Array
<
Array
<
Array
<
FloatArray
>>>
val
offsets
=
outputMap
[
1
]
as
Array
<
Array
<
Array
<
FloatArray
>>>
val
height
=
heatmaps
[
0
].
size
val
width
=
heatmaps
[
0
][
0
].
size
val
numKeypoints
=
heatmaps
[
0
][
0
][
0
].
size
// Finds the (row, col) locations of where the keypoints are most likely to be.
val
keypointPositions
=
Array
(
numKeypoints
)
{
Pair
(
0
,
0
)
}
for
(
keypoint
in
0
until
numKeypoints
)
{
var
maxVal
=
heatmaps
[
0
][
0
][
0
][
keypoint
]
var
maxRow
=
0
var
maxCol
=
0
for
(
row
in
0
until
height
)
{
for
(
col
in
0
until
width
)
{
if
(
heatmaps
[
0
][
row
][
col
][
keypoint
]
>
maxVal
)
{
maxVal
=
heatmaps
[
0
][
row
][
col
][
keypoint
]
maxRow
=
row
maxCol
=
col
}
}
}
keypointPositions
[
keypoint
]
=
Pair
(
maxRow
,
maxCol
)
}
// Calculating the x and y coordinates of the keypoints with offset adjustment.
val
xCoords
=
IntArray
(
numKeypoints
)
val
yCoords
=
IntArray
(
numKeypoints
)
val
confidenceScores
=
FloatArray
(
numKeypoints
)
keypointPositions
.
forEachIndexed
{
idx
,
position
->
val
positionY
=
keypointPositions
[
idx
].
first
val
positionX
=
keypointPositions
[
idx
].
second
yCoords
[
idx
]
=
(
position
.
first
/
(
height
-
1
).
toFloat
()
*
bitmap
.
height
+
offsets
[
0
][
positionY
][
positionX
][
idx
]
).
toInt
()
xCoords
[
idx
]
=
(
position
.
second
/
(
width
-
1
).
toFloat
()
*
bitmap
.
width
+
offsets
[
0
][
positionY
]
[positionX]
[
idx
+
numKeypoints
]
).
toInt
()
confidenceScores
[
idx
]
=
sigmoid
(
heatmaps
[
0
][
positionY
][
positionX
][
idx
])
}
val
person
=
Person
()
val
keypointList
=
Array
(
numKeypoints
)
{
KeyPoint
()
}
var
totalScore
=
0.0f
enumValues
<
BodyPart
>().
forEachIndexed
{
idx
,
it
->
keypointList
[
idx
].
bodyPart
=
it
keypointList
[
idx
].
position
.
x
=
xCoords
[
idx
]
keypointList
[
idx
].
position
.
y
=
yCoords
[
idx
]
keypointList
[
idx
].
score
=
confidenceScores
[
idx
]
totalScore
+=
confidenceScores
[
idx
]
}
person
.
keyPoints
=
keypointList
.
toList
()
person
.
score
=
totalScore
/
numKeypoints
return
person
}
}
source/android/build.gradle
View file @
63d5e75
// Top-level build file where you can add configuration options common to all sub-projects/modules.
buildscript
{
ext
.
kotlin_version
=
'1.3.72'
repositories
{
google
()
jcenter
()
...
...
@@ -8,6 +9,7 @@ buildscript {
}
dependencies
{
classpath
'com.android.tools.build:gradle:3.5.1'
classpath
"org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"
// NOTE: Do not place your application dependencies here; they belong
// in the individual module build.gradle files
...
...
Please
register
or
login
to post a comment