proc.c 84.2 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.

#include <limits.h>
#include <signal.h>
#include <stdlib.h>
#include <pthread.h>
#include <unistd.h>

#include "config.h"

#ifdef HAVE_DL_ITERATE_PHDR
#include <link.h>
#endif

#include "runtime.h"
#include "arch.h"
#include "defs.h"
#include "malloc.h"
#include "go-type.h"
#include "go-defer.h"

#ifdef USING_SPLIT_STACK

/* FIXME: These are not declared anywhere.  */

extern void __splitstack_getcontext(void *context[10]);

extern void __splitstack_setcontext(void *context[10]);

extern void *__splitstack_makecontext(size_t, void *context[10], size_t *);

extern void * __splitstack_resetcontext(void *context[10], size_t *);

extern void *__splitstack_find(void *, void *, size_t *, void **, void **,
			       void **);

extern void __splitstack_block_signals (int *, int *);

extern void __splitstack_block_signals_context (void *context[10], int *,
						int *);

#endif

#ifndef PTHREAD_STACK_MIN
# define PTHREAD_STACK_MIN 8192
#endif

#if defined(USING_SPLIT_STACK) && defined(LINKER_SUPPORTS_SPLIT_STACK)
# define StackMin PTHREAD_STACK_MIN
#else
# define StackMin ((sizeof(char *) < 8) ? 2 * 1024 * 1024 : 4 * 1024 * 1024)
#endif

uintptr runtime_stacks_sys;

static void gtraceback(G*);

#ifdef __rtems__
#define __thread
#endif

static __thread G *g;
static __thread M *m;

#ifndef SETCONTEXT_CLOBBERS_TLS

static inline void
initcontext(void)
{
}

static inline void
fixcontext(ucontext_t *c __attribute__ ((unused)))
{
}

#else

# if defined(__x86_64__) && defined(__sun__)

// x86_64 Solaris 10 and 11 have a bug: setcontext switches the %fs
// register to that of the thread which called getcontext.  The effect
// is that the address of all __thread variables changes.  This bug
// also affects pthread_self() and pthread_getspecific.  We work
// around it by clobbering the context field directly to keep %fs the
// same.

static __thread greg_t fs;

static inline void
initcontext(void)
{
	ucontext_t c;

	getcontext(&c);
	fs = c.uc_mcontext.gregs[REG_FSBASE];
}

static inline void
fixcontext(ucontext_t* c)
{
	c->uc_mcontext.gregs[REG_FSBASE] = fs;
}

# elif defined(__NetBSD__)

// NetBSD has a bug: setcontext clobbers tlsbase, we need to save
// and restore it ourselves.

static __thread __greg_t tlsbase;

static inline void
initcontext(void)
{
	ucontext_t c;

	getcontext(&c);
	tlsbase = c.uc_mcontext._mc_tlsbase;
}

static inline void
fixcontext(ucontext_t* c)
{
	c->uc_mcontext._mc_tlsbase = tlsbase;
}

# elif defined(__sparc__)

static inline void
initcontext(void)
{
}

static inline void
fixcontext(ucontext_t *c)
{
	/* ??? Using 
	     register unsigned long thread __asm__("%g7");
	     c->uc_mcontext.gregs[REG_G7] = thread;
	   results in
	     error: variable ‘thread’ might be clobbered by \
		‘longjmp’ or ‘vfork’ [-Werror=clobbered]
	   which ought to be false, as %g7 is a fixed register.  */

	if (sizeof (c->uc_mcontext.gregs[REG_G7]) == 8)
		asm ("stx %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
	else
		asm ("st %%g7, %0" : "=m"(c->uc_mcontext.gregs[REG_G7]));
}

# else

#  error unknown case for SETCONTEXT_CLOBBERS_TLS

# endif

#endif

// We can not always refer to the TLS variables directly.  The
// compiler will call tls_get_addr to get the address of the variable,
// and it may hold it in a register across a call to schedule.  When
// we get back from the call we may be running in a different thread,
// in which case the register now points to the TLS variable for a
// different thread.  We use non-inlinable functions to avoid this
// when necessary.

G* runtime_g(void) __attribute__ ((noinline, no_split_stack));

G*
runtime_g(void)
{
	return g;
}

M* runtime_m(void) __attribute__ ((noinline, no_split_stack));

M*
runtime_m(void)
{
	return m;
}

// Set m and g.
void
runtime_setmg(M* mp, G* gp)
{
	m = mp;
	g = gp;
}

// Start a new thread.
static void
runtime_newosproc(M *mp)
{
	pthread_attr_t attr;
	sigset_t clear, old;
	pthread_t tid;
	int ret;

	if(pthread_attr_init(&attr) != 0)
		runtime_throw("pthread_attr_init");
	if(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) != 0)
		runtime_throw("pthread_attr_setdetachstate");

	// Block signals during pthread_create so that the new thread
	// starts with signals disabled.  It will enable them in minit.
	sigfillset(&clear);

#ifdef SIGTRAP
	// Blocking SIGTRAP reportedly breaks gdb on Alpha GNU/Linux.
	sigdelset(&clear, SIGTRAP);
#endif

	sigemptyset(&old);
	pthread_sigmask(SIG_BLOCK, &clear, &old);
	ret = pthread_create(&tid, &attr, runtime_mstart, mp);
	pthread_sigmask(SIG_SETMASK, &old, nil);

	if (ret != 0)
		runtime_throw("pthread_create");
}

// First function run by a new goroutine.  This replaces gogocall.
static void
kickoff(void)
{
	void (*fn)(void*);

	if(g->traceback != nil)
		gtraceback(g);

	fn = (void (*)(void*))(g->entry);
	fn(g->param);
	runtime_goexit();
}

// Switch context to a different goroutine.  This is like longjmp.
void runtime_gogo(G*) __attribute__ ((noinline));
void
runtime_gogo(G* newg)
{
#ifdef USING_SPLIT_STACK
	__splitstack_setcontext(&newg->stack_context[0]);
#endif
	g = newg;
	newg->fromgogo = true;
	fixcontext(&newg->context);
	setcontext(&newg->context);
	runtime_throw("gogo setcontext returned");
}

// Save context and call fn passing g as a parameter.  This is like
// setjmp.  Because getcontext always returns 0, unlike setjmp, we use
// g->fromgogo as a code.  It will be true if we got here via
// setcontext.  g == nil the first time this is called in a new m.
void runtime_mcall(void (*)(G*)) __attribute__ ((noinline));
void
runtime_mcall(void (*pfn)(G*))
{
	M *mp;
	G *gp;

	// Ensure that all registers are on the stack for the garbage
	// collector.
	__builtin_unwind_init();

	mp = m;
	gp = g;
	if(gp == mp->g0)
		runtime_throw("runtime: mcall called on m->g0 stack");

	if(gp != nil) {

#ifdef USING_SPLIT_STACK
		__splitstack_getcontext(&g->stack_context[0]);
#else
		gp->gcnext_sp = &pfn;
#endif
		gp->fromgogo = false;
		getcontext(&gp->context);

		// When we return from getcontext, we may be running
		// in a new thread.  That means that m and g may have
		// changed.  They are global variables so we will
		// reload them, but the addresses of m and g may be
		// cached in our local stack frame, and those
		// addresses may be wrong.  Call functions to reload
		// the values for this thread.
		mp = runtime_m();
		gp = runtime_g();

		if(gp->traceback != nil)
			gtraceback(gp);
	}
	if (gp == nil || !gp->fromgogo) {
#ifdef USING_SPLIT_STACK
		__splitstack_setcontext(&mp->g0->stack_context[0]);
#endif
		mp->g0->entry = (byte*)pfn;
		mp->g0->param = gp;

		// It's OK to set g directly here because this case
		// can not occur if we got here via a setcontext to
		// the getcontext call just above.
		g = mp->g0;

		fixcontext(&mp->g0->context);
		setcontext(&mp->g0->context);
		runtime_throw("runtime: mcall function returned");
	}
}

// Goroutine scheduler
// The scheduler's job is to distribute ready-to-run goroutines over worker threads.
//
// The main concepts are:
// G - goroutine.
// M - worker thread, or machine.
// P - processor, a resource that is required to execute Go code.
//     M must have an associated P to execute Go code, however it can be
//     blocked or in a syscall w/o an associated P.
//
// Design doc at http://golang.org/s/go11sched.

typedef struct Sched Sched;
struct Sched {
	Lock	lock;

	uint64	goidgen;
	M*	midle;	 // idle m's waiting for work
	int32	nmidle;	 // number of idle m's waiting for work
	int32	nmidlelocked; // number of locked m's waiting for work
	int32	mcount;	 // number of m's that have been created
	int32	maxmcount;	// maximum number of m's allowed (or die)

	P*	pidle;  // idle P's
	uint32	npidle;
	uint32	nmspinning;

	// Global runnable queue.
	G*	runqhead;
	G*	runqtail;
	int32	runqsize;

	// Global cache of dead G's.
	Lock	gflock;
	G*	gfree;

	uint32	gcwaiting;	// gc is waiting to run
	int32	stopwait;
	Note	stopnote;
	uint32	sysmonwait;
	Note	sysmonnote;
	uint64	lastpoll;

	int32	profilehz;	// cpu profiling rate
};

enum
{
	// The max value of GOMAXPROCS.
	// There are no fundamental restrictions on the value.
	MaxGomaxprocs = 1<<8,

	// Number of goroutine ids to grab from runtime_sched.goidgen to local per-P cache at once.
	// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
	GoidCacheBatch = 16,
};

Sched	runtime_sched;
int32	runtime_gomaxprocs;
uint32	runtime_needextram = 1;
M	runtime_m0;
G	runtime_g0;	// idle goroutine for m0
G*	runtime_lastg;
M*	runtime_allm;
P**	runtime_allp;
M*	runtime_extram;
int8*	runtime_goos;
int32	runtime_ncpu;
bool	runtime_precisestack;
static int32	newprocs;

static	Lock allglock;	// the following vars are protected by this lock or by stoptheworld
G**	runtime_allg;
uintptr runtime_allglen;
static	uintptr allgcap;

bool	runtime_isarchive;

void* runtime_mstart(void*);
static void runqput(P*, G*);
static G* runqget(P*);
static bool runqputslow(P*, G*, uint32, uint32);
static G* runqsteal(P*, P*);
static void mput(M*);
static M* mget(void);
static void mcommoninit(M*);
static void schedule(void);
static void procresize(int32);
static void acquirep(P*);
static P* releasep(void);
static void newm(void(*)(void), P*);
static void stopm(void);
static void startm(P*, bool);
static void handoffp(P*);
static void wakep(void);
static void stoplockedm(void);
static void startlockedm(G*);
static void sysmon(void);
static uint32 retake(int64);
static void incidlelocked(int32);
static void checkdead(void);
static void exitsyscall0(G*);
static void park0(G*);
static void goexit0(G*);
static void gfput(P*, G*);
static G* gfget(P*);
static void gfpurge(P*);
static void globrunqput(G*);
static void globrunqputbatch(G*, G*, int32);
static G* globrunqget(P*, int32);
static P* pidleget(void);
static void pidleput(P*);
static void injectglist(G*);
static bool preemptall(void);
static bool exitsyscallfast(void);
static void allgadd(G*);

bool runtime_isstarted;

// The bootstrap sequence is:
//
//	call osinit
//	call schedinit
//	make & queue new G
//	call runtime_mstart
//
// The new G calls runtime_main.
void
runtime_schedinit(void)
{
	int32 n, procs;
	String s;
	const byte *p;
	Eface i;

	m = &runtime_m0;
	g = &runtime_g0;
	m->g0 = g;
	m->curg = g;
	g->m = m;

	initcontext();

	runtime_sched.maxmcount = 10000;
	runtime_precisestack = 0;

	// runtime_symtabinit();
	runtime_mallocinit();
	mcommoninit(m);
	
	// Initialize the itable value for newErrorCString,
	// so that the next time it gets called, possibly
	// in a fault during a garbage collection, it will not
	// need to allocated memory.
	runtime_newErrorCString(0, &i);
	
	// Initialize the cached gotraceback value, since
	// gotraceback calls getenv, which mallocs on Plan 9.
	runtime_gotraceback(nil);

	runtime_goargs();
	runtime_goenvs();
	runtime_parsedebugvars();

	runtime_sched.lastpoll = runtime_nanotime();
	procs = 1;
	s = runtime_getenv("GOMAXPROCS");
	p = s.str;
	if(p != nil && (n = runtime_atoi(p, s.len)) > 0) {
		if(n > MaxGomaxprocs)
			n = MaxGomaxprocs;
		procs = n;
	}
	runtime_allp = runtime_malloc((MaxGomaxprocs+1)*sizeof(runtime_allp[0]));
	procresize(procs);

	// Can not enable GC until all roots are registered.
	// mstats.enablegc = 1;
}

extern void main_init(void) __asm__ (GOSYM_PREFIX "__go_init_main");
extern void main_main(void) __asm__ (GOSYM_PREFIX "main.main");

// Used to determine the field alignment.

struct field_align
{
  char c;
  Hchan *p;
};

// main_init_done is a signal used by cgocallbackg that initialization
// has been completed.  It is made before _cgo_notify_runtime_init_done,
// so all cgo calls can rely on it existing.  When main_init is
// complete, it is closed, meaning cgocallbackg can reliably receive
// from it.
Hchan *runtime_main_init_done;

// The chan bool type, for runtime_main_init_done.

extern const struct __go_type_descriptor bool_type_descriptor
  __asm__ (GOSYM_PREFIX "__go_tdn_bool");

static struct __go_channel_type chan_bool_type_descriptor =
  {
    /* __common */
    {
      /* __code */
      GO_CHAN,
      /* __align */
      __alignof (Hchan *),
      /* __field_align */
      offsetof (struct field_align, p) - 1,
      /* __size */
      sizeof (Hchan *),
      /* __hash */
      0, /* This value doesn't matter.  */
      /* __hashfn */
      &__go_type_hash_error_descriptor,
      /* __equalfn */
      &__go_type_equal_error_descriptor,
      /* __gc */
      NULL, /* This value doesn't matter */
      /* __reflection */
      NULL, /* This value doesn't matter */
      /* __uncommon */
      NULL,
      /* __pointer_to_this */
      NULL
    },
    /* __element_type */
    &bool_type_descriptor,
    /* __dir */
    CHANNEL_BOTH_DIR
  };

extern Hchan *__go_new_channel (ChanType *, uintptr);
extern void closechan(Hchan *) __asm__ (GOSYM_PREFIX "runtime.closechan");

static void
initDone(void *arg __attribute__ ((unused))) {
	runtime_unlockOSThread();
};

// The main goroutine.
// Note: C frames in general are not copyable during stack growth, for two reasons:
//   1) We don't know where in a frame to find pointers to other stack locations.
//   2) There's no guarantee that globals or heap values do not point into the frame.
//
// The C frame for runtime.main is copyable, because:
//   1) There are no pointers to other stack locations in the frame
//      (d.fn points at a global, d.link is nil, d.argp is -1).
//   2) The only pointer into this frame is from the defer chain,
//      which is explicitly handled during stack copying.
void
runtime_main(void* dummy __attribute__((unused)))
{
	Defer d;
	_Bool frame;
	
	newm(sysmon, nil);

	// Lock the main goroutine onto this, the main OS thread,
	// during initialization.  Most programs won't care, but a few
	// do require certain calls to be made by the main thread.
	// Those can arrange for main.main to run in the main thread
	// by calling runtime.LockOSThread during initialization
	// to preserve the lock.
	runtime_lockOSThread();
	
	// Defer unlock so that runtime.Goexit during init does the unlock too.
	d.__pfn = initDone;
	d.__next = g->defer;
	d.__arg = (void*)-1;
	d.__panic = g->panic;
	d.__retaddr = nil;
	d.__makefunc_can_recover = 0;
	d.__frame = &frame;
	d.__special = true;
	g->defer = &d;

	if(m != &runtime_m0)
		runtime_throw("runtime_main not on m0");
	__go_go(runtime_MHeap_Scavenger, nil);

	runtime_main_init_done = __go_new_channel(&chan_bool_type_descriptor, 0);

	_cgo_notify_runtime_init_done();

	main_init();

	closechan(runtime_main_init_done);

	if(g->defer != &d || d.__pfn != initDone)
		runtime_throw("runtime: bad defer entry after init");
	g->defer = d.__next;
	runtime_unlockOSThread();

	// For gccgo we have to wait until after main is initialized
	// to enable GC, because initializing main registers the GC
	// roots.
	mstats.enablegc = 1;

	if(runtime_isarchive) {
		// This is not a complete program, but is instead a
		// library built using -buildmode=c-archive or
		// c-shared.  Now that we are initialized, there is
		// nothing further to do.
		return;
	}

	main_main();

	// Make racy client program work: if panicking on
	// another goroutine at the same time as main returns,
	// let the other goroutine finish printing the panic trace.
	// Once it does, it will exit. See issue 3934.
	if(runtime_panicking)
		runtime_park(nil, nil, "panicwait");

	runtime_exit(0);
	for(;;)
		*(int32*)0 = 0;
}

void
runtime_goroutineheader(G *gp)
{
	const char *status;
	int64 waitfor;

	switch(gp->status) {
	case Gidle:
		status = "idle";
		break;
	case Grunnable:
		status = "runnable";
		break;
	case Grunning:
		status = "running";
		break;
	case Gsyscall:
		status = "syscall";
		break;
	case Gwaiting:
		if(gp->waitreason)
			status = gp->waitreason;
		else
			status = "waiting";
		break;
	default:
		status = "???";
		break;
	}

	// approx time the G is blocked, in minutes
	waitfor = 0;
	if((gp->status == Gwaiting || gp->status == Gsyscall) && gp->waitsince != 0)
		waitfor = (runtime_nanotime() - gp->waitsince) / (60LL*1000*1000*1000);

	if(waitfor < 1)
		runtime_printf("goroutine %D [%s]:\n", gp->goid, status);
	else
		runtime_printf("goroutine %D [%s, %D minutes]:\n", gp->goid, status, waitfor);
}

void
runtime_printcreatedby(G *g)
{
	if(g != nil && g->gopc != 0 && g->goid != 1) {
		String fn;
		String file;
		intgo line;

		if(__go_file_line(g->gopc - 1, &fn, &file, &line)) {
			runtime_printf("created by %S\n", fn);
			runtime_printf("\t%S:%D\n", file, (int64) line);
		}
	}
}

struct Traceback
{
	G* gp;
	Location locbuf[TracebackMaxFrames];
	int32 c;
};

void
runtime_tracebackothers(G * volatile me)
{
	G * volatile gp;
	Traceback tb;
	int32 traceback;
	volatile uintptr i;

	tb.gp = me;
	traceback = runtime_gotraceback(nil);
	
	// Show the current goroutine first, if we haven't already.
	if((gp = m->curg) != nil && gp != me) {
		runtime_printf("\n");
		runtime_goroutineheader(gp);
		gp->traceback = &tb;

#ifdef USING_SPLIT_STACK
		__splitstack_getcontext(&me->stack_context[0]);
#endif
		getcontext(&me->context);

		if(gp->traceback != nil) {
		  runtime_gogo(gp);
		}

		runtime_printtrace(tb.locbuf, tb.c, false);
		runtime_printcreatedby(gp);
	}

	runtime_lock(&allglock);
	for(i = 0; i < runtime_allglen; i++) {
		gp = runtime_allg[i];
		if(gp == me || gp == m->curg || gp->status == Gdead)
			continue;
		if(gp->issystem && traceback < 2)
			continue;
		runtime_printf("\n");
		runtime_goroutineheader(gp);

		// Our only mechanism for doing a stack trace is
		// _Unwind_Backtrace.  And that only works for the
		// current thread, not for other random goroutines.
		// So we need to switch context to the goroutine, get
		// the backtrace, and then switch back.

		// This means that if g is running or in a syscall, we
		// can't reliably print a stack trace.  FIXME.

		if(gp->status == Grunning) {
			runtime_printf("\tgoroutine running on other thread; stack unavailable\n");
			runtime_printcreatedby(gp);
		} else if(gp->status == Gsyscall) {
			runtime_printf("\tgoroutine in C code; stack unavailable\n");
			runtime_printcreatedby(gp);
		} else {
			gp->traceback = &tb;

#ifdef USING_SPLIT_STACK
			__splitstack_getcontext(&me->stack_context[0]);
#endif
			getcontext(&me->context);

			if(gp->traceback != nil) {
				runtime_gogo(gp);
			}

			runtime_printtrace(tb.locbuf, tb.c, false);
			runtime_printcreatedby(gp);
		}
	}
	runtime_unlock(&allglock);
}

static void
checkmcount(void)
{
	// sched lock is held
	if(runtime_sched.mcount > runtime_sched.maxmcount) {
		runtime_printf("runtime: program exceeds %d-thread limit\n", runtime_sched.maxmcount);
		runtime_throw("thread exhaustion");
	}
}

// Do a stack trace of gp, and then restore the context to
// gp->dotraceback.

static void
gtraceback(G* gp)
{
	Traceback* traceback;

	traceback = gp->traceback;
	gp->traceback = nil;
	traceback->c = runtime_callers(1, traceback->locbuf,
		sizeof traceback->locbuf / sizeof traceback->locbuf[0], false);
	runtime_gogo(traceback->gp);
}

static void
mcommoninit(M *mp)
{
	// If there is no mcache runtime_callers() will crash,
	// and we are most likely in sysmon thread so the stack is senseless anyway.
	if(m->mcache)
		runtime_callers(1, mp->createstack, nelem(mp->createstack), false);

	mp->fastrand = 0x49f6428aUL + mp->id + runtime_cputicks();

	runtime_lock(&runtime_sched.lock);
	mp->id = runtime_sched.mcount++;
	checkmcount();
	runtime_mpreinit(mp);

	// Add to runtime_allm so garbage collector doesn't free m
	// when it is just in a register or thread-local storage.
	mp->alllink = runtime_allm;
	// runtime_NumCgoCall() iterates over allm w/o schedlock,
	// so we need to publish it safely.
	runtime_atomicstorep(&runtime_allm, mp);
	runtime_unlock(&runtime_sched.lock);
}

// Mark gp ready to run.
void
runtime_ready(G *gp)
{
	// Mark runnable.
	m->locks++;  // disable preemption because it can be holding p in a local var
	if(gp->status != Gwaiting) {
		runtime_printf("goroutine %D has status %d\n", gp->goid, gp->status);
		runtime_throw("bad g->status in ready");
	}
	gp->status = Grunnable;
	runqput(m->p, gp);
	if(runtime_atomicload(&runtime_sched.npidle) != 0 && runtime_atomicload(&runtime_sched.nmspinning) == 0)  // TODO: fast atomic
		wakep();
	m->locks--;
}

int32
runtime_gcprocs(void)
{
	int32 n;

	// Figure out how many CPUs to use during GC.
	// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
	runtime_lock(&runtime_sched.lock);
	n = runtime_gomaxprocs;
	if(n > runtime_ncpu)
		n = runtime_ncpu > 0 ? runtime_ncpu : 1;
	if(n > MaxGcproc)
		n = MaxGcproc;
	if(n > runtime_sched.nmidle+1) // one M is currently running
		n = runtime_sched.nmidle+1;
	runtime_unlock(&runtime_sched.lock);
	return n;
}

static bool
needaddgcproc(void)
{
	int32 n;

	runtime_lock(&runtime_sched.lock);
	n = runtime_gomaxprocs;
	if(n > runtime_ncpu)
		n = runtime_ncpu;
	if(n > MaxGcproc)
		n = MaxGcproc;
	n -= runtime_sched.nmidle+1; // one M is currently running
	runtime_unlock(&runtime_sched.lock);
	return n > 0;
}

void
runtime_helpgc(int32 nproc)
{
	M *mp;
	int32 n, pos;

	runtime_lock(&runtime_sched.lock);
	pos = 0;
	for(n = 1; n < nproc; n++) {  // one M is currently running
		if(runtime_allp[pos]->mcache == m->mcache)
			pos++;
		mp = mget();
		if(mp == nil)
			runtime_throw("runtime_gcprocs inconsistency");
		mp->helpgc = n;
		mp->mcache = runtime_allp[pos]->mcache;
		pos++;
		runtime_notewakeup(&mp->park);
	}
	runtime_unlock(&runtime_sched.lock);
}

// Similar to stoptheworld but best-effort and can be called several times.
// There is no reverse operation, used during crashing.
// This function must not lock any mutexes.
void
runtime_freezetheworld(void)
{
	int32 i;

	if(runtime_gomaxprocs == 1)
		return;
	// stopwait and preemption requests can be lost
	// due to races with concurrently executing threads,
	// so try several times
	for(i = 0; i < 5; i++) {
		// this should tell the scheduler to not start any new goroutines
		runtime_sched.stopwait = 0x7fffffff;
		runtime_atomicstore((uint32*)&runtime_sched.gcwaiting, 1);
		// this should stop running goroutines
		if(!preemptall())
			break;  // no running goroutines
		runtime_usleep(1000);
	}
	// to be sure
	runtime_usleep(1000);
	preemptall();
	runtime_usleep(1000);
}

void
runtime_stoptheworld(void)
{
	int32 i;
	uint32 s;
	P *p;
	bool wait;

	runtime_lock(&runtime_sched.lock);
	runtime_sched.stopwait = runtime_gomaxprocs;
	runtime_atomicstore((uint32*)&runtime_sched.gcwaiting, 1);
	preemptall();
	// stop current P
	m->p->status = Pgcstop;
	runtime_sched.stopwait--;
	// try to retake all P's in Psyscall status
	for(i = 0; i < runtime_gomaxprocs; i++) {
		p = runtime_allp[i];
		s = p->status;
		if(s == Psyscall && runtime_cas(&p->status, s, Pgcstop))
			runtime_sched.stopwait--;
	}
	// stop idle P's
	while((p = pidleget()) != nil) {
		p->status = Pgcstop;
		runtime_sched.stopwait--;
	}
	wait = runtime_sched.stopwait > 0;
	runtime_unlock(&runtime_sched.lock);

	// wait for remaining P's to stop voluntarily
	if(wait) {
		runtime_notesleep(&runtime_sched.stopnote);
		runtime_noteclear(&runtime_sched.stopnote);
	}
	if(runtime_sched.stopwait)
		runtime_throw("stoptheworld: not stopped");
	for(i = 0; i < runtime_gomaxprocs; i++) {
		p = runtime_allp[i];
		if(p->status != Pgcstop)
			runtime_throw("stoptheworld: not stopped");
	}
}

static void
mhelpgc(void)
{
	m->helpgc = -1;
}

void
runtime_starttheworld(void)
{
	P *p, *p1;
	M *mp;
	G *gp;
	bool add;

	m->locks++;  // disable preemption because it can be holding p in a local var
	gp = runtime_netpoll(false);  // non-blocking
	injectglist(gp);
	add = needaddgcproc();
	runtime_lock(&runtime_sched.lock);
	if(newprocs) {
		procresize(newprocs);
		newprocs = 0;
	} else
		procresize(runtime_gomaxprocs);
	runtime_sched.gcwaiting = 0;

	p1 = nil;
	while((p = pidleget()) != nil) {
		// procresize() puts p's with work at the beginning of the list.
		// Once we reach a p without a run queue, the rest don't have one either.
		if(p->runqhead == p->runqtail) {
			pidleput(p);
			break;
		}
		p->m = mget();
		p->link = p1;
		p1 = p;
	}
	if(runtime_sched.sysmonwait) {
		runtime_sched.sysmonwait = false;
		runtime_notewakeup(&runtime_sched.sysmonnote);
	}
	runtime_unlock(&runtime_sched.lock);

	while(p1) {
		p = p1;
		p1 = p1->link;
		if(p->m) {
			mp = p->m;
			p->m = nil;
			if(mp->nextp)
				runtime_throw("starttheworld: inconsistent mp->nextp");
			mp->nextp = p;
			runtime_notewakeup(&mp->park);
		} else {
			// Start M to run P.  Do not start another M below.
			newm(nil, p);
			add = false;
		}
	}

	if(add) {
		// If GC could have used another helper proc, start one now,
		// in the hope that it will be available next time.
		// It would have been even better to start it before the collection,
		// but doing so requires allocating memory, so it's tricky to
		// coordinate.  This lazy approach works out in practice:
		// we don't mind if the first couple gc rounds don't have quite
		// the maximum number of procs.
		newm(mhelpgc, nil);
	}
	m->locks--;
}

// Called to start an M.
void*
runtime_mstart(void* mp)
{
	m = (M*)mp;
	g = m->g0;

	initcontext();

	g->entry = nil;
	g->param = nil;

	// Record top of stack for use by mcall.
	// Once we call schedule we're never coming back,
	// so other calls can reuse this stack space.
#ifdef USING_SPLIT_STACK
	__splitstack_getcontext(&g->stack_context[0]);
#else
	g->gcinitial_sp = &mp;
	// Setting gcstack_size to 0 is a marker meaning that gcinitial_sp
	// is the top of the stack, not the bottom.
	g->gcstack_size = 0;
	g->gcnext_sp = &mp;
#endif
	getcontext(&g->context);

	if(g->entry != nil) {
		// Got here from mcall.
		void (*pfn)(G*) = (void (*)(G*))g->entry;
		G* gp = (G*)g->param;
		pfn(gp);
		*(int*)0x21 = 0x21;
	}
	runtime_minit();

#ifdef USING_SPLIT_STACK
	{
		int dont_block_signals = 0;
		__splitstack_block_signals(&dont_block_signals, nil);
	}
#endif

	// Install signal handlers; after minit so that minit can
	// prepare the thread to be able to handle the signals.
	if(m == &runtime_m0) {
		if(runtime_iscgo && !runtime_cgoHasExtraM) {
			runtime_cgoHasExtraM = true;
			runtime_newextram();
			runtime_needextram = 0;
		}
		runtime_initsig();
	}
	
	if(m->mstartfn)
		m->mstartfn();

	if(m->helpgc) {
		m->helpgc = 0;
		stopm();
	} else if(m != &runtime_m0) {
		acquirep(m->nextp);
		m->nextp = nil;
	}
	schedule();

	// TODO(brainman): This point is never reached, because scheduler
	// does not release os threads at the moment. But once this path
	// is enabled, we must remove our seh here.

	return nil;
}

typedef struct CgoThreadStart CgoThreadStart;
struct CgoThreadStart
{
	M *m;
	G *g;
	uintptr *tls;
	void (*fn)(void);
};

// Allocate a new m unassociated with any thread.
// Can use p for allocation context if needed.
M*
runtime_allocm(P *p, int32 stacksize, byte** ret_g0_stack, size_t* ret_g0_stacksize)
{
	M *mp;

	m->locks++;  // disable GC because it can be called from sysmon
	if(m->p == nil)
		acquirep(p);  // temporarily borrow p for mallocs in this function
#if 0
	if(mtype == nil) {
		Eface e;
		runtime_gc_m_ptr(&e);
		mtype = ((const PtrType*)e.__type_descriptor)->__element_type;
	}
#endif

	mp = runtime_mal(sizeof *mp);
	mcommoninit(mp);
	mp->g0 = runtime_malg(stacksize, ret_g0_stack, ret_g0_stacksize);

	if(p == m->p)
		releasep();
	m->locks--;

	return mp;
}

static G*
allocg(void)
{
	G *gp;
	// static Type *gtype;
	
	// if(gtype == nil) {
	// 	Eface e;
	// 	runtime_gc_g_ptr(&e);
	// 	gtype = ((PtrType*)e.__type_descriptor)->__element_type;
	// }
	// gp = runtime_cnew(gtype);
	gp = runtime_malloc(sizeof(G));
	return gp;
}

static M* lockextra(bool nilokay);
static void unlockextra(M*);

// needm is called when a cgo callback happens on a
// thread without an m (a thread not created by Go).
// In this case, needm is expected to find an m to use
// and return with m, g initialized correctly.
// Since m and g are not set now (likely nil, but see below)
// needm is limited in what routines it can call. In particular
// it can only call nosplit functions (textflag 7) and cannot
// do any scheduling that requires an m.
//
// In order to avoid needing heavy lifting here, we adopt
// the following strategy: there is a stack of available m's
// that can be stolen. Using compare-and-swap
// to pop from the stack has ABA races, so we simulate
// a lock by doing an exchange (via casp) to steal the stack
// head and replace the top pointer with MLOCKED (1).
// This serves as a simple spin lock that we can use even
// without an m. The thread that locks the stack in this way
// unlocks the stack by storing a valid stack head pointer.
//
// In order to make sure that there is always an m structure
// available to be stolen, we maintain the invariant that there
// is always one more than needed. At the beginning of the
// program (if cgo is in use) the list is seeded with a single m.
// If needm finds that it has taken the last m off the list, its job
// is - once it has installed its own m so that it can do things like
// allocate memory - to create a spare m and put it on the list.
//
// Each of these extra m's also has a g0 and a curg that are
// pressed into service as the scheduling stack and current
// goroutine for the duration of the cgo callback.
//
// When the callback is done with the m, it calls dropm to
// put the m back on the list.
//
// Unlike the gc toolchain, we start running on curg, since we are
// just going to return and let the caller continue.
void
runtime_needm(void)
{
	M *mp;

	if(runtime_needextram) {
		// Can happen if C/C++ code calls Go from a global ctor.
		// Can not throw, because scheduler is not initialized yet.
		int rv __attribute__((unused));
		rv = runtime_write(2, "fatal error: cgo callback before cgo call\n",
			sizeof("fatal error: cgo callback before cgo call\n")-1);
		runtime_exit(1);
	}

	// Lock extra list, take head, unlock popped list.
	// nilokay=false is safe here because of the invariant above,
	// that the extra list always contains or will soon contain
	// at least one m.
	mp = lockextra(false);

	// Set needextram when we've just emptied the list,
	// so that the eventual call into cgocallbackg will
	// allocate a new m for the extra list. We delay the
	// allocation until then so that it can be done
	// after exitsyscall makes sure it is okay to be
	// running at all (that is, there's no garbage collection
	// running right now).
	mp->needextram = mp->schedlink == nil;
	unlockextra(mp->schedlink);

	// Install m and g (= m->curg).
	runtime_setmg(mp, mp->curg);

	// Initialize g's context as in mstart.
	initcontext();
	g->status = Gsyscall;
	g->entry = nil;
	g->param = nil;
#ifdef USING_SPLIT_STACK
	__splitstack_getcontext(&g->stack_context[0]);
#else
	g->gcinitial_sp = &mp;
	g->gcstack = nil;
	g->gcstack_size = 0;
	g->gcnext_sp = &mp;
#endif
	getcontext(&g->context);

	if(g->entry != nil) {
		// Got here from mcall.
		void (*pfn)(G*) = (void (*)(G*))g->entry;
		G* gp = (G*)g->param;
		pfn(gp);
		*(int*)0x22 = 0x22;
	}

	// Initialize this thread to use the m.
	runtime_minit();

#ifdef USING_SPLIT_STACK
	{
		int dont_block_signals = 0;
		__splitstack_block_signals(&dont_block_signals, nil);
	}
#endif
}

// newextram allocates an m and puts it on the extra list.
// It is called with a working local m, so that it can do things
// like call schedlock and allocate.
void
runtime_newextram(void)
{
	M *mp, *mnext;
	G *gp;
	byte *g0_sp, *sp;
	size_t g0_spsize, spsize;

	// Create extra goroutine locked to extra m.
	// The goroutine is the context in which the cgo callback will run.
	// The sched.pc will never be returned to, but setting it to
	// runtime.goexit makes clear to the traceback routines where
	// the goroutine stack ends.
	mp = runtime_allocm(nil, StackMin, &g0_sp, &g0_spsize);
	gp = runtime_malg(StackMin, &sp, &spsize);
	gp->status = Gdead;
	mp->curg = gp;
	mp->locked = LockInternal;
	mp->lockedg = gp;
	gp->lockedm = mp;
	gp->goid = runtime_xadd64(&runtime_sched.goidgen, 1);
	// put on allg for garbage collector
	allgadd(gp);

	// The context for gp will be set up in runtime_needm.  But
	// here we need to set up the context for g0.
	getcontext(&mp->g0->context);
	mp->g0->context.uc_stack.ss_sp = g0_sp;
	mp->g0->context.uc_stack.ss_size = g0_spsize;
	makecontext(&mp->g0->context, kickoff, 0);

	// Add m to the extra list.
	mnext = lockextra(true);
	mp->schedlink = mnext;
	unlockextra(mp);
}

// dropm is called when a cgo callback has called needm but is now
// done with the callback and returning back into the non-Go thread.
// It puts the current m back onto the extra list.
//
// The main expense here is the call to signalstack to release the
// m's signal stack, and then the call to needm on the next callback
// from this thread. It is tempting to try to save the m for next time,
// which would eliminate both these costs, but there might not be
// a next time: the current thread (which Go does not control) might exit.
// If we saved the m for that thread, there would be an m leak each time
// such a thread exited. Instead, we acquire and release an m on each
// call. These should typically not be scheduling operations, just a few
// atomics, so the cost should be small.
//
// TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
// variable using pthread_key_create. Unlike the pthread keys we already use
// on OS X, this dummy key would never be read by Go code. It would exist
// only so that we could register at thread-exit-time destructor.
// That destructor would put the m back onto the extra list.
// This is purely a performance optimization. The current version,
// in which dropm happens on each cgo call, is still correct too.
// We may have to keep the current version on systems with cgo
// but without pthreads, like Windows.
void
runtime_dropm(void)
{
	M *mp, *mnext;

	// Undo whatever initialization minit did during needm.
	runtime_unminit();

	// Clear m and g, and return m to the extra list.
	// After the call to setmg we can only call nosplit functions.
	mp = m;
	runtime_setmg(nil, nil);

	mp->curg->status = Gdead;
	mp->curg->gcstack = nil;
	mp->curg->gcnext_sp = nil;

	mnext = lockextra(true);
	mp->schedlink = mnext;
	unlockextra(mp);
}

#define MLOCKED ((M*)1)

// lockextra locks the extra list and returns the list head.
// The caller must unlock the list by storing a new list head
// to runtime.extram. If nilokay is true, then lockextra will
// return a nil list head if that's what it finds. If nilokay is false,
// lockextra will keep waiting until the list head is no longer nil.
static M*
lockextra(bool nilokay)
{
	M *mp;
	void (*yield)(void);

	for(;;) {
		mp = runtime_atomicloadp(&runtime_extram);
		if(mp == MLOCKED) {
			yield = runtime_osyield;
			yield();
			continue;
		}
		if(mp == nil && !nilokay) {
			runtime_usleep(1);
			continue;
		}
		if(!runtime_casp(&runtime_extram, mp, MLOCKED)) {
			yield = runtime_osyield;
			yield();
			continue;
		}
		break;
	}
	return mp;
}

static void
unlockextra(M *mp)
{
	runtime_atomicstorep(&runtime_extram, mp);
}

static int32
countextra()
{
	M *mp, *mc;
	int32 c;

	for(;;) {
		mp = runtime_atomicloadp(&runtime_extram);
		if(mp == MLOCKED) {
			runtime_osyield();
			continue;
		}
		if(!runtime_casp(&runtime_extram, mp, MLOCKED)) {
			runtime_osyield();
			continue;
		}
		c = 0;
		for(mc = mp; mc != nil; mc = mc->schedlink)
			c++;
		runtime_atomicstorep(&runtime_extram, mp);
		return c;
	}
}

// Create a new m.  It will start off with a call to fn, or else the scheduler.
static void
newm(void(*fn)(void), P *p)
{
	M *mp;

	mp = runtime_allocm(p, -1, nil, nil);
	mp->nextp = p;
	mp->mstartfn = fn;

	runtime_newosproc(mp);
}

// Stops execution of the current m until new work is available.
// Returns with acquired P.
static void
stopm(void)
{
	if(m->locks)
		runtime_throw("stopm holding locks");
	if(m->p)
		runtime_throw("stopm holding p");
	if(m->spinning) {
		m->spinning = false;
		runtime_xadd(&runtime_sched.nmspinning, -1);
	}

retry:
	runtime_lock(&runtime_sched.lock);
	mput(m);
	runtime_unlock(&runtime_sched.lock);
	runtime_notesleep(&m->park);
	runtime_noteclear(&m->park);
	if(m->helpgc) {
		runtime_gchelper();
		m->helpgc = 0;
		m->mcache = nil;
		goto retry;
	}
	acquirep(m->nextp);
	m->nextp = nil;
}

static void
mspinning(void)
{
	m->spinning = true;
}

// Schedules some M to run the p (creates an M if necessary).
// If p==nil, tries to get an idle P, if no idle P's does nothing.
static void
startm(P *p, bool spinning)
{
	M *mp;
	void (*fn)(void);

	runtime_lock(&runtime_sched.lock);
	if(p == nil) {
		p = pidleget();
		if(p == nil) {
			runtime_unlock(&runtime_sched.lock);
			if(spinning)
				runtime_xadd(&runtime_sched.nmspinning, -1);
			return;
		}
	}
	mp = mget();
	runtime_unlock(&runtime_sched.lock);
	if(mp == nil) {
		fn = nil;
		if(spinning)
			fn = mspinning;
		newm(fn, p);
		return;
	}
	if(mp->spinning)
		runtime_throw("startm: m is spinning");
	if(mp->nextp)
		runtime_throw("startm: m has p");
	mp->spinning = spinning;
	mp->nextp = p;
	runtime_notewakeup(&mp->park);
}

// Hands off P from syscall or locked M.
static void
handoffp(P *p)
{
	// if it has local work, start it straight away
	if(p->runqhead != p->runqtail || runtime_sched.runqsize) {
		startm(p, false);
		return;
	}
	// no local work, check that there are no spinning/idle M's,
	// otherwise our help is not required
	if(runtime_atomicload(&runtime_sched.nmspinning) + runtime_atomicload(&runtime_sched.npidle) == 0 &&  // TODO: fast atomic
		runtime_cas(&runtime_sched.nmspinning, 0, 1)) {
		startm(p, true);
		return;
	}
	runtime_lock(&runtime_sched.lock);
	if(runtime_sched.gcwaiting) {
		p->status = Pgcstop;
		if(--runtime_sched.stopwait == 0)
			runtime_notewakeup(&runtime_sched.stopnote);
		runtime_unlock(&runtime_sched.lock);
		return;
	}
	if(runtime_sched.runqsize) {
		runtime_unlock(&runtime_sched.lock);
		startm(p, false);
		return;
	}
	// If this is the last running P and nobody is polling network,
	// need to wakeup another M to poll network.
	if(runtime_sched.npidle == (uint32)runtime_gomaxprocs-1 && runtime_atomicload64(&runtime_sched.lastpoll) != 0) {
		runtime_unlock(&runtime_sched.lock);
		startm(p, false);
		return;
	}
	pidleput(p);
	runtime_unlock(&runtime_sched.lock);
}

// Tries to add one more P to execute G's.
// Called when a G is made runnable (newproc, ready).
static void
wakep(void)
{
	// be conservative about spinning threads
	if(!runtime_cas(&runtime_sched.nmspinning, 0, 1))
		return;
	startm(nil, true);
}

// Stops execution of the current m that is locked to a g until the g is runnable again.
// Returns with acquired P.
static void
stoplockedm(void)
{
	P *p;

	if(m->lockedg == nil || m->lockedg->lockedm != m)
		runtime_throw("stoplockedm: inconsistent locking");
	if(m->p) {
		// Schedule another M to run this p.
		p = releasep();
		handoffp(p);
	}
	incidlelocked(1);
	// Wait until another thread schedules lockedg again.
	runtime_notesleep(&m->park);
	runtime_noteclear(&m->park);
	if(m->lockedg->status != Grunnable)
		runtime_throw("stoplockedm: not runnable");
	acquirep(m->nextp);
	m->nextp = nil;
}

// Schedules the locked m to run the locked gp.
static void
startlockedm(G *gp)
{
	M *mp;
	P *p;

	mp = gp->lockedm;
	if(mp == m)
		runtime_throw("startlockedm: locked to me");
	if(mp->nextp)
		runtime_throw("startlockedm: m has p");
	// directly handoff current P to the locked m
	incidlelocked(-1);
	p = releasep();
	mp->nextp = p;
	runtime_notewakeup(&mp->park);
	stopm();
}

// Stops the current m for stoptheworld.
// Returns when the world is restarted.
static void
gcstopm(void)
{
	P *p;

	if(!runtime_sched.gcwaiting)
		runtime_throw("gcstopm: not waiting for gc");
	if(m->spinning) {
		m->spinning = false;
		runtime_xadd(&runtime_sched.nmspinning, -1);
	}
	p = releasep();
	runtime_lock(&runtime_sched.lock);
	p->status = Pgcstop;
	if(--runtime_sched.stopwait == 0)
		runtime_notewakeup(&runtime_sched.stopnote);
	runtime_unlock(&runtime_sched.lock);
	stopm();
}

// Schedules gp to run on the current M.
// Never returns.
static void
execute(G *gp)
{
	int32 hz;

	if(gp->status != Grunnable) {
		runtime_printf("execute: bad g status %d\n", gp->status);
		runtime_throw("execute: bad g status");
	}
	gp->status = Grunning;
	gp->waitsince = 0;
	m->p->schedtick++;
	m->curg = gp;
	gp->m = m;

	// Check whether the profiler needs to be turned on or off.
	hz = runtime_sched.profilehz;
	if(m->profilehz != hz)
		runtime_resetcpuprofiler(hz);

	runtime_gogo(gp);
}

// Finds a runnable goroutine to execute.
// Tries to steal from other P's, get g from global queue, poll network.
static G*
findrunnable(void)
{
	G *gp;
	P *p;
	int32 i;

top:
	if(runtime_sched.gcwaiting) {
		gcstopm();
		goto top;
	}
	if(runtime_fingwait && runtime_fingwake && (gp = runtime_wakefing()) != nil)
		runtime_ready(gp);
	// local runq
	gp = runqget(m->p);
	if(gp)
		return gp;
	// global runq
	if(runtime_sched.runqsize) {
		runtime_lock(&runtime_sched.lock);
		gp = globrunqget(m->p, 0);
		runtime_unlock(&runtime_sched.lock);
		if(gp)
			return gp;
	}
	// poll network
	gp = runtime_netpoll(false);  // non-blocking
	if(gp) {
		injectglist(gp->schedlink);
		gp->status = Grunnable;
		return gp;
	}
	// If number of spinning M's >= number of busy P's, block.
	// This is necessary to prevent excessive CPU consumption
	// when GOMAXPROCS>>1 but the program parallelism is low.
	if(!m->spinning && 2 * runtime_atomicload(&runtime_sched.nmspinning) >= runtime_gomaxprocs - runtime_atomicload(&runtime_sched.npidle))  // TODO: fast atomic
		goto stop;
	if(!m->spinning) {
		m->spinning = true;
		runtime_xadd(&runtime_sched.nmspinning, 1);
	}
	// random steal from other P's
	for(i = 0; i < 2*runtime_gomaxprocs; i++) {
		if(runtime_sched.gcwaiting)
			goto top;
		p = runtime_allp[runtime_fastrand1()%runtime_gomaxprocs];
		if(p == m->p)
			gp = runqget(p);
		else
			gp = runqsteal(m->p, p);
		if(gp)
			return gp;
	}
stop:
	// return P and block
	runtime_lock(&runtime_sched.lock);
	if(runtime_sched.gcwaiting) {
		runtime_unlock(&runtime_sched.lock);
		goto top;
	}
	if(runtime_sched.runqsize) {
		gp = globrunqget(m->p, 0);
		runtime_unlock(&runtime_sched.lock);
		return gp;
	}
	p = releasep();
	pidleput(p);
	runtime_unlock(&runtime_sched.lock);
	if(m->spinning) {
		m->spinning = false;
		runtime_xadd(&runtime_sched.nmspinning, -1);
	}
	// check all runqueues once again
	for(i = 0; i < runtime_gomaxprocs; i++) {
		p = runtime_allp[i];
		if(p && p->runqhead != p->runqtail) {
			runtime_lock(&runtime_sched.lock);
			p = pidleget();
			runtime_unlock(&runtime_sched.lock);
			if(p) {
				acquirep(p);
				goto top;
			}
			break;
		}
	}
	// poll network
	if(runtime_xchg64(&runtime_sched.lastpoll, 0) != 0) {
		if(m->p)
			runtime_throw("findrunnable: netpoll with p");
		if(m->spinning)
			runtime_throw("findrunnable: netpoll with spinning");
		gp = runtime_netpoll(true);  // block until new work is available
		runtime_atomicstore64(&runtime_sched.lastpoll, runtime_nanotime());
		if(gp) {
			runtime_lock(&runtime_sched.lock);
			p = pidleget();
			runtime_unlock(&runtime_sched.lock);
			if(p) {
				acquirep(p);
				injectglist(gp->schedlink);
				gp->status = Grunnable;
				return gp;
			}
			injectglist(gp);
		}
	}
	stopm();
	goto top;
}

static void
resetspinning(void)
{
	int32 nmspinning;

	if(m->spinning) {
		m->spinning = false;
		nmspinning = runtime_xadd(&runtime_sched.nmspinning, -1);
		if(nmspinning < 0)
			runtime_throw("findrunnable: negative nmspinning");
	} else
		nmspinning = runtime_atomicload(&runtime_sched.nmspinning);

	// M wakeup policy is deliberately somewhat conservative (see nmspinning handling),
	// so see if we need to wakeup another P here.
	if (nmspinning == 0 && runtime_atomicload(&runtime_sched.npidle) > 0)
		wakep();
}

// Injects the list of runnable G's into the scheduler.
// Can run concurrently with GC.
static void
injectglist(G *glist)
{
	int32 n;
	G *gp;

	if(glist == nil)
		return;
	runtime_lock(&runtime_sched.lock);
	for(n = 0; glist; n++) {
		gp = glist;
		glist = gp->schedlink;
		gp->status = Grunnable;
		globrunqput(gp);
	}
	runtime_unlock(&runtime_sched.lock);

	for(; n && runtime_sched.npidle; n--)
		startm(nil, false);
}

// One round of scheduler: find a runnable goroutine and execute it.
// Never returns.
static void
schedule(void)
{
	G *gp;
	uint32 tick;

	if(m->locks)
		runtime_throw("schedule: holding locks");

top:
	if(runtime_sched.gcwaiting) {
		gcstopm();
		goto top;
	}

	gp = nil;
	// Check the global runnable queue once in a while to ensure fairness.
	// Otherwise two goroutines can completely occupy the local runqueue
	// by constantly respawning each other.
	tick = m->p->schedtick;
	// This is a fancy way to say tick%61==0,
	// it uses 2 MUL instructions instead of a single DIV and so is faster on modern processors.
	if(tick - (((uint64)tick*0x4325c53fu)>>36)*61 == 0 && runtime_sched.runqsize > 0) {
		runtime_lock(&runtime_sched.lock);
		gp = globrunqget(m->p, 1);
		runtime_unlock(&runtime_sched.lock);
		if(gp)
			resetspinning();
	}
	if(gp == nil) {
		gp = runqget(m->p);
		if(gp && m->spinning)
			runtime_throw("schedule: spinning with local work");
	}
	if(gp == nil) {
		gp = findrunnable();  // blocks until work is available
		resetspinning();
	}

	if(gp->lockedm) {
		// Hands off own p to the locked m,
		// then blocks waiting for a new p.
		startlockedm(gp);
		goto top;
	}

	execute(gp);
}

// Puts the current goroutine into a waiting state and calls unlockf.
// If unlockf returns false, the goroutine is resumed.
void
runtime_park(bool(*unlockf)(G*, void*), void *lock, const char *reason)
{
	if(g->status != Grunning)
		runtime_throw("bad g status");
	m->waitlock = lock;
	m->waitunlockf = unlockf;
	g->waitreason = reason;
	runtime_mcall(park0);
}

static bool
parkunlock(G *gp, void *lock)
{
	USED(gp);
	runtime_unlock(lock);
	return true;
}

// Puts the current goroutine into a waiting state and unlocks the lock.
// The goroutine can be made runnable again by calling runtime_ready(gp).
void
runtime_parkunlock(Lock *lock, const char *reason)
{
	runtime_park(parkunlock, lock, reason);
}

// runtime_park continuation on g0.
static void
park0(G *gp)
{
	bool ok;

	gp->status = Gwaiting;
	gp->m = nil;
	m->curg = nil;
	if(m->waitunlockf) {
		ok = m->waitunlockf(gp, m->waitlock);
		m->waitunlockf = nil;
		m->waitlock = nil;
		if(!ok) {
			gp->status = Grunnable;
			execute(gp);  // Schedule it back, never returns.
		}
	}
	if(m->lockedg) {
		stoplockedm();
		execute(gp);  // Never returns.
	}
	schedule();
}

// Scheduler yield.
void
runtime_gosched(void)
{
	if(g->status != Grunning)
		runtime_throw("bad g status");
	runtime_mcall(runtime_gosched0);
}

// runtime_gosched continuation on g0.
void
runtime_gosched0(G *gp)
{
	gp->status = Grunnable;
	gp->m = nil;
	m->curg = nil;
	runtime_lock(&runtime_sched.lock);
	globrunqput(gp);
	runtime_unlock(&runtime_sched.lock);
	if(m->lockedg) {
		stoplockedm();
		execute(gp);  // Never returns.
	}
	schedule();
}

// Finishes execution of the current goroutine.
// Need to mark it as nosplit, because it runs with sp > stackbase (as runtime_lessstack).
// Since it does not return it does not matter.  But if it is preempted
// at the split stack check, GC will complain about inconsistent sp.
void runtime_goexit(void) __attribute__ ((noinline));
void
runtime_goexit(void)
{
	if(g->status != Grunning)
		runtime_throw("bad g status");
	runtime_mcall(goexit0);
}

// runtime_goexit continuation on g0.
static void
goexit0(G *gp)
{
	gp->status = Gdead;
	gp->entry = nil;
	gp->m = nil;
	gp->lockedm = nil;
	gp->paniconfault = 0;
	gp->defer = nil; // should be true already but just in case.
	gp->panic = nil; // non-nil for Goexit during panic. points at stack-allocated data.
	gp->writenbuf = 0;
	gp->writebuf = nil;
	gp->waitreason = nil;
	gp->param = nil;
	m->curg = nil;
	m->lockedg = nil;
	if(m->locked & ~LockExternal) {
		runtime_printf("invalid m->locked = %d\n", m->locked);
		runtime_throw("internal lockOSThread error");
	}	
	m->locked = 0;
	gfput(m->p, gp);
	schedule();
}

// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library and cgocall,
// not from the low-level system calls used by the runtime.
//
// Entersyscall cannot split the stack: the runtime_gosave must
// make g->sched refer to the caller's stack segment, because
// entersyscall is going to return immediately after.

void runtime_entersyscall(void) __attribute__ ((no_split_stack));
static void doentersyscall(void) __attribute__ ((no_split_stack, noinline));

void
runtime_entersyscall()
{
	// Save the registers in the g structure so that any pointers
	// held in registers will be seen by the garbage collector.
	getcontext(&g->gcregs);

	// Do the work in a separate function, so that this function
	// doesn't save any registers on its own stack.  If this
	// function does save any registers, we might store the wrong
	// value in the call to getcontext.
	//
	// FIXME: This assumes that we do not need to save any
	// callee-saved registers to access the TLS variable g.  We
	// don't want to put the ucontext_t on the stack because it is
	// large and we can not split the stack here.
	doentersyscall();
}

static void
doentersyscall()
{
	// Disable preemption because during this function g is in Gsyscall status,
	// but can have inconsistent g->sched, do not let GC observe it.
	m->locks++;

	// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
	g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size,
				       &g->gcnext_segment, &g->gcnext_sp,
				       &g->gcinitial_sp);
#else
	{
		void *v;

		g->gcnext_sp = (byte *) &v;
	}
#endif

	g->status = Gsyscall;

	if(runtime_atomicload(&runtime_sched.sysmonwait)) {  // TODO: fast atomic
		runtime_lock(&runtime_sched.lock);
		if(runtime_atomicload(&runtime_sched.sysmonwait)) {
			runtime_atomicstore(&runtime_sched.sysmonwait, 0);
			runtime_notewakeup(&runtime_sched.sysmonnote);
		}
		runtime_unlock(&runtime_sched.lock);
	}

	m->mcache = nil;
	m->p->m = nil;
	runtime_atomicstore(&m->p->status, Psyscall);
	if(runtime_sched.gcwaiting) {
		runtime_lock(&runtime_sched.lock);
		if (runtime_sched.stopwait > 0 && runtime_cas(&m->p->status, Psyscall, Pgcstop)) {
			if(--runtime_sched.stopwait == 0)
				runtime_notewakeup(&runtime_sched.stopnote);
		}
		runtime_unlock(&runtime_sched.lock);
	}

	m->locks--;
}

// The same as runtime_entersyscall(), but with a hint that the syscall is blocking.
void
runtime_entersyscallblock(void)
{
	P *p;

	m->locks++;  // see comment in entersyscall

	// Leave SP around for GC and traceback.
#ifdef USING_SPLIT_STACK
	g->gcstack = __splitstack_find(nil, nil, &g->gcstack_size,
				       &g->gcnext_segment, &g->gcnext_sp,
				       &g->gcinitial_sp);
#else
	g->gcnext_sp = (byte *) &p;
#endif

	// Save the registers in the g structure so that any pointers
	// held in registers will be seen by the garbage collector.
	getcontext(&g->gcregs);

	g->status = Gsyscall;

	p = releasep();
	handoffp(p);
	if(g->isbackground)  // do not consider blocked scavenger for deadlock detection
		incidlelocked(1);

	m->locks--;
}

// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
void
runtime_exitsyscall(void)
{
	G *gp;

	m->locks++;  // see comment in entersyscall

	gp = g;
	if(gp->isbackground)  // do not consider blocked scavenger for deadlock detection
		incidlelocked(-1);

	g->waitsince = 0;
	if(exitsyscallfast()) {
		// There's a cpu for us, so we can run.
		m->p->syscalltick++;
		gp->status = Grunning;
		// Garbage collector isn't running (since we are),
		// so okay to clear gcstack and gcsp.
#ifdef USING_SPLIT_STACK
		gp->gcstack = nil;
#endif
		gp->gcnext_sp = nil;
		runtime_memclr(&gp->gcregs, sizeof gp->gcregs);
		m->locks--;
		return;
	}

	m->locks--;

	// Call the scheduler.
	runtime_mcall(exitsyscall0);

	// Scheduler returned, so we're allowed to run now.
	// Delete the gcstack information that we left for
	// the garbage collector during the system call.
	// Must wait until now because until gosched returns
	// we don't know for sure that the garbage collector
	// is not running.
#ifdef USING_SPLIT_STACK
	gp->gcstack = nil;
#endif
	gp->gcnext_sp = nil;
	runtime_memclr(&gp->gcregs, sizeof gp->gcregs);

	// Don't refer to m again, we might be running on a different
	// thread after returning from runtime_mcall.
	runtime_m()->p->syscalltick++;
}

static bool
exitsyscallfast(void)
{
	P *p;

	// Freezetheworld sets stopwait but does not retake P's.
	if(runtime_sched.stopwait) {
		m->p = nil;
		return false;
	}

	// Try to re-acquire the last P.
	if(m->p && m->p->status == Psyscall && runtime_cas(&m->p->status, Psyscall, Prunning)) {
		// There's a cpu for us, so we can run.
		m->mcache = m->p->mcache;
		m->p->m = m;
		return true;
	}
	// Try to get any other idle P.
	m->p = nil;
	if(runtime_sched.pidle) {
		runtime_lock(&runtime_sched.lock);
		p = pidleget();
		if(p && runtime_atomicload(&runtime_sched.sysmonwait)) {
			runtime_atomicstore(&runtime_sched.sysmonwait, 0);
			runtime_notewakeup(&runtime_sched.sysmonnote);
		}
		runtime_unlock(&runtime_sched.lock);
		if(p) {
			acquirep(p);
			return true;
		}
	}
	return false;
}

// runtime_exitsyscall slow path on g0.
// Failed to acquire P, enqueue gp as runnable.
static void
exitsyscall0(G *gp)
{
	P *p;

	gp->status = Grunnable;
	gp->m = nil;
	m->curg = nil;
	runtime_lock(&runtime_sched.lock);
	p = pidleget();
	if(p == nil)
		globrunqput(gp);
	else if(runtime_atomicload(&runtime_sched.sysmonwait)) {
		runtime_atomicstore(&runtime_sched.sysmonwait, 0);
		runtime_notewakeup(&runtime_sched.sysmonnote);
	}
	runtime_unlock(&runtime_sched.lock);
	if(p) {
		acquirep(p);
		execute(gp);  // Never returns.
	}
	if(m->lockedg) {
		// Wait until another thread schedules gp and so m again.
		stoplockedm();
		execute(gp);  // Never returns.
	}
	stopm();
	schedule();  // Never returns.
}

// Called from syscall package before fork.
void syscall_runtime_BeforeFork(void)
  __asm__(GOSYM_PREFIX "syscall.runtime_BeforeFork");
void
syscall_runtime_BeforeFork(void)
{
	// Fork can hang if preempted with signals frequently enough (see issue 5517).
	// Ensure that we stay on the same M where we disable profiling.
	runtime_m()->locks++;
	if(runtime_m()->profilehz != 0)
		runtime_resetcpuprofiler(0);
}

// Called from syscall package after fork in parent.
void syscall_runtime_AfterFork(void)
  __asm__(GOSYM_PREFIX "syscall.runtime_AfterFork");
void
syscall_runtime_AfterFork(void)
{
	int32 hz;

	hz = runtime_sched.profilehz;
	if(hz != 0)
		runtime_resetcpuprofiler(hz);
	runtime_m()->locks--;
}

// Allocate a new g, with a stack big enough for stacksize bytes.
G*
runtime_malg(int32 stacksize, byte** ret_stack, size_t* ret_stacksize)
{
	G *newg;

	newg = allocg();
	if(stacksize >= 0) {
#if USING_SPLIT_STACK
		int dont_block_signals = 0;

		*ret_stack = __splitstack_makecontext(stacksize,
						      &newg->stack_context[0],
						      ret_stacksize);
		__splitstack_block_signals_context(&newg->stack_context[0],
						   &dont_block_signals, nil);
#else
                // In 64-bit mode, the maximum Go allocation space is
                // 128G.  Our stack size is 4M, which only permits 32K
                // goroutines.  In order to not limit ourselves,
                // allocate the stacks out of separate memory.  In
                // 32-bit mode, the Go allocation space is all of
                // memory anyhow.
		if(sizeof(void*) == 8) {
			void *p = runtime_SysAlloc(stacksize, &mstats.other_sys);
			if(p == nil)
				runtime_throw("runtime: cannot allocate memory for goroutine stack");
			*ret_stack = (byte*)p;
		} else {
			*ret_stack = runtime_mallocgc(stacksize, 0, FlagNoProfiling|FlagNoGC);
			runtime_xadd(&runtime_stacks_sys, stacksize);
		}
		*ret_stacksize = stacksize;
		newg->gcinitial_sp = *ret_stack;
		newg->gcstack_size = stacksize;
#endif
	}
	return newg;
}

/* For runtime package testing.  */


// Create a new g running fn with siz bytes of arguments.
// Put it on the queue of g's waiting to run.
// The compiler turns a go statement into a call to this.
// Cannot split the stack because it assumes that the arguments
// are available sequentially after &fn; they would not be
// copied if a stack split occurred.  It's OK for this to call
// functions that split the stack.
void runtime_testing_entersyscall(int32)
  __asm__ (GOSYM_PREFIX "runtime.entersyscall");
void
runtime_testing_entersyscall(int32 dummy __attribute__ ((unused)))
{
	runtime_entersyscall();
}

void runtime_testing_exitsyscall(int32)
  __asm__ (GOSYM_PREFIX "runtime.exitsyscall");

void
runtime_testing_exitsyscall(int32 dummy __attribute__ ((unused)))
{
	runtime_exitsyscall();
}

G*
__go_go(void (*fn)(void*), void* arg)
{
	byte *sp;
	size_t spsize;
	G *newg;
	P *p;

//runtime_printf("newproc1 %p %p narg=%d nret=%d\n", fn->fn, argp, narg, nret);
	if(fn == nil) {
		m->throwing = -1;  // do not dump full stacks
		runtime_throw("go of nil func value");
	}
	m->locks++;  // disable preemption because it can be holding p in a local var

	p = m->p;
	if((newg = gfget(p)) != nil) {
#ifdef USING_SPLIT_STACK
		int dont_block_signals = 0;

		sp = __splitstack_resetcontext(&newg->stack_context[0],
					       &spsize);
		__splitstack_block_signals_context(&newg->stack_context[0],
						   &dont_block_signals, nil);
#else
		sp = newg->gcinitial_sp;
		spsize = newg->gcstack_size;
		if(spsize == 0)
			runtime_throw("bad spsize in __go_go");
		newg->gcnext_sp = sp;
#endif
	} else {
		newg = runtime_malg(StackMin, &sp, &spsize);
		allgadd(newg);
	}

	newg->entry = (byte*)fn;
	newg->param = arg;
	newg->gopc = (uintptr)__builtin_return_address(0);
	newg->status = Grunnable;
	if(p->goidcache == p->goidcacheend) {
		p->goidcache = runtime_xadd64(&runtime_sched.goidgen, GoidCacheBatch);
		p->goidcacheend = p->goidcache + GoidCacheBatch;
	}
	newg->goid = p->goidcache++;

	{
		// Avoid warnings about variables clobbered by
		// longjmp.
		byte * volatile vsp = sp;
		size_t volatile vspsize = spsize;
		G * volatile vnewg = newg;

		getcontext(&vnewg->context);
		vnewg->context.uc_stack.ss_sp = vsp;
#ifdef MAKECONTEXT_STACK_TOP
		vnewg->context.uc_stack.ss_sp += vspsize;
#endif
		vnewg->context.uc_stack.ss_size = vspsize;
		makecontext(&vnewg->context, kickoff, 0);

		runqput(p, vnewg);

		if(runtime_atomicload(&runtime_sched.npidle) != 0 && runtime_atomicload(&runtime_sched.nmspinning) == 0 && fn != runtime_main)  // TODO: fast atomic
			wakep();
		m->locks--;
		return vnewg;
	}
}

static void
allgadd(G *gp)
{
	G **new;
	uintptr cap;

	runtime_lock(&allglock);
	if(runtime_allglen >= allgcap) {
		cap = 4096/sizeof(new[0]);
		if(cap < 2*allgcap)
			cap = 2*allgcap;
		new = runtime_malloc(cap*sizeof(new[0]));
		if(new == nil)
			runtime_throw("runtime: cannot allocate memory");
		if(runtime_allg != nil) {
			runtime_memmove(new, runtime_allg, runtime_allglen*sizeof(new[0]));
			runtime_free(runtime_allg);
		}
		runtime_allg = new;
		allgcap = cap;
	}
	runtime_allg[runtime_allglen++] = gp;
	runtime_unlock(&allglock);
}

// Put on gfree list.
// If local list is too long, transfer a batch to the global list.
static void
gfput(P *p, G *gp)
{
	gp->schedlink = p->gfree;
	p->gfree = gp;
	p->gfreecnt++;
	if(p->gfreecnt >= 64) {
		runtime_lock(&runtime_sched.gflock);
		while(p->gfreecnt >= 32) {
			p->gfreecnt--;
			gp = p->gfree;
			p->gfree = gp->schedlink;
			gp->schedlink = runtime_sched.gfree;
			runtime_sched.gfree = gp;
		}
		runtime_unlock(&runtime_sched.gflock);
	}
}

// Get from gfree list.
// If local list is empty, grab a batch from global list.
static G*
gfget(P *p)
{
	G *gp;

retry:
	gp = p->gfree;
	if(gp == nil && runtime_sched.gfree) {
		runtime_lock(&runtime_sched.gflock);
		while(p->gfreecnt < 32 && runtime_sched.gfree) {
			p->gfreecnt++;
			gp = runtime_sched.gfree;
			runtime_sched.gfree = gp->schedlink;
			gp->schedlink = p->gfree;
			p->gfree = gp;
		}
		runtime_unlock(&runtime_sched.gflock);
		goto retry;
	}
	if(gp) {
		p->gfree = gp->schedlink;
		p->gfreecnt--;
	}
	return gp;
}

// Purge all cached G's from gfree list to the global list.
static void
gfpurge(P *p)
{
	G *gp;

	runtime_lock(&runtime_sched.gflock);
	while(p->gfreecnt) {
		p->gfreecnt--;
		gp = p->gfree;
		p->gfree = gp->schedlink;
		gp->schedlink = runtime_sched.gfree;
		runtime_sched.gfree = gp;
	}
	runtime_unlock(&runtime_sched.gflock);
}

void
runtime_Breakpoint(void)
{
	runtime_breakpoint();
}

void runtime_Gosched (void) __asm__ (GOSYM_PREFIX "runtime.Gosched");

void
runtime_Gosched(void)
{
	runtime_gosched();
}

// Implementation of runtime.GOMAXPROCS.
// delete when scheduler is even stronger
int32
runtime_gomaxprocsfunc(int32 n)
{
	int32 ret;

	if(n > MaxGomaxprocs)
		n = MaxGomaxprocs;
	runtime_lock(&runtime_sched.lock);
	ret = runtime_gomaxprocs;
	if(n <= 0 || n == ret) {
		runtime_unlock(&runtime_sched.lock);
		return ret;
	}
	runtime_unlock(&runtime_sched.lock);

	runtime_semacquire(&runtime_worldsema, false);
	m->gcing = 1;
	runtime_stoptheworld();
	newprocs = n;
	m->gcing = 0;
	runtime_semrelease(&runtime_worldsema);
	runtime_starttheworld();

	return ret;
}

// lockOSThread is called by runtime.LockOSThread and runtime.lockOSThread below
// after they modify m->locked. Do not allow preemption during this call,
// or else the m might be different in this function than in the caller.
static void
lockOSThread(void)
{
	m->lockedg = g;
	g->lockedm = m;
}

void	runtime_LockOSThread(void) __asm__ (GOSYM_PREFIX "runtime.LockOSThread");
void
runtime_LockOSThread(void)
{
	m->locked |= LockExternal;
	lockOSThread();
}

void
runtime_lockOSThread(void)
{
	m->locked += LockInternal;
	lockOSThread();
}


// unlockOSThread is called by runtime.UnlockOSThread and runtime.unlockOSThread below
// after they update m->locked. Do not allow preemption during this call,
// or else the m might be in different in this function than in the caller.
static void
unlockOSThread(void)
{
	if(m->locked != 0)
		return;
	m->lockedg = nil;
	g->lockedm = nil;
}

void	runtime_UnlockOSThread(void) __asm__ (GOSYM_PREFIX "runtime.UnlockOSThread");

void
runtime_UnlockOSThread(void)
{
	m->locked &= ~LockExternal;
	unlockOSThread();
}

void
runtime_unlockOSThread(void)
{
	if(m->locked < LockInternal)
		runtime_throw("runtime: internal error: misuse of lockOSThread/unlockOSThread");
	m->locked -= LockInternal;
	unlockOSThread();
}

bool
runtime_lockedOSThread(void)
{
	return g->lockedm != nil && m->lockedg != nil;
}

int32
runtime_gcount(void)
{
	G *gp;
	int32 n, s;
	uintptr i;

	n = 0;
	runtime_lock(&allglock);
	// TODO(dvyukov): runtime.NumGoroutine() is O(N).
	// We do not want to increment/decrement centralized counter in newproc/goexit,
	// just to make runtime.NumGoroutine() faster.
	// Compromise solution is to introduce per-P counters of active goroutines.
	for(i = 0; i < runtime_allglen; i++) {
		gp = runtime_allg[i];
		s = gp->status;
		if(s == Grunnable || s == Grunning || s == Gsyscall || s == Gwaiting)
			n++;
	}
	runtime_unlock(&allglock);
	return n;
}

int32
runtime_mcount(void)
{
	return runtime_sched.mcount;
}

static struct {
	Lock lock;
	void (*fn)(uintptr*, int32);
	int32 hz;
	uintptr pcbuf[TracebackMaxFrames];
	Location locbuf[TracebackMaxFrames];
} prof;

static void System(void) {}
static void GC(void) {}

// Called if we receive a SIGPROF signal.
void
runtime_sigprof()
{
	M *mp = m;
	int32 n, i;
	bool traceback;

	if(prof.fn == nil || prof.hz == 0)
		return;

	if(mp == nil)
		return;

	// Profiling runs concurrently with GC, so it must not allocate.
	mp->mallocing++;

	traceback = true;

	if(mp->mcache == nil)
		traceback = false;

	runtime_lock(&prof.lock);
	if(prof.fn == nil) {
		runtime_unlock(&prof.lock);
		mp->mallocing--;
		return;
	}
	n = 0;

	if(runtime_atomicload(&runtime_in_callers) > 0) {
		// If SIGPROF arrived while already fetching runtime
		// callers we can have trouble on older systems
		// because the unwind library calls dl_iterate_phdr
		// which was not recursive in the past.
		traceback = false;
	}

	if(traceback) {
		n = runtime_callers(0, prof.locbuf, nelem(prof.locbuf), false);
		for(i = 0; i < n; i++)
			prof.pcbuf[i] = prof.locbuf[i].pc;
	}
	if(!traceback || n <= 0) {
		n = 2;
		prof.pcbuf[0] = (uintptr)runtime_getcallerpc(&n);
		if(mp->gcing || mp->helpgc)
			prof.pcbuf[1] = (uintptr)GC;
		else
			prof.pcbuf[1] = (uintptr)System;
	}
	prof.fn(prof.pcbuf, n);
	runtime_unlock(&prof.lock);
	mp->mallocing--;
}

// Arrange to call fn with a traceback hz times a second.
void
runtime_setcpuprofilerate(void (*fn)(uintptr*, int32), int32 hz)
{
	// Force sane arguments.
	if(hz < 0)
		hz = 0;
	if(hz == 0)
		fn = nil;
	if(fn == nil)
		hz = 0;

	// Disable preemption, otherwise we can be rescheduled to another thread
	// that has profiling enabled.
	m->locks++;

	// Stop profiler on this thread so that it is safe to lock prof.
	// if a profiling signal came in while we had prof locked,
	// it would deadlock.
	runtime_resetcpuprofiler(0);

	runtime_lock(&prof.lock);
	prof.fn = fn;
	prof.hz = hz;
	runtime_unlock(&prof.lock);
	runtime_lock(&runtime_sched.lock);
	runtime_sched.profilehz = hz;
	runtime_unlock(&runtime_sched.lock);

	if(hz != 0)
		runtime_resetcpuprofiler(hz);

	m->locks--;
}

// Change number of processors.  The world is stopped, sched is locked.
static void
procresize(int32 new)
{
	int32 i, old;
	bool empty;
	G *gp;
	P *p;

	old = runtime_gomaxprocs;
	if(old < 0 || old > MaxGomaxprocs || new <= 0 || new >MaxGomaxprocs)
		runtime_throw("procresize: invalid arg");
	// initialize new P's
	for(i = 0; i < new; i++) {
		p = runtime_allp[i];
		if(p == nil) {
			p = (P*)runtime_mallocgc(sizeof(*p), 0, FlagNoInvokeGC);
			p->id = i;
			p->status = Pgcstop;
			runtime_atomicstorep(&runtime_allp[i], p);
		}
		if(p->mcache == nil) {
			if(old==0 && i==0)
				p->mcache = m->mcache;  // bootstrap
			else
				p->mcache = runtime_allocmcache();
		}
	}

	// redistribute runnable G's evenly
	// collect all runnable goroutines in global queue preserving FIFO order
	// FIFO order is required to ensure fairness even during frequent GCs
	// see http://golang.org/issue/7126
	empty = false;
	while(!empty) {
		empty = true;
		for(i = 0; i < old; i++) {
			p = runtime_allp[i];
			if(p->runqhead == p->runqtail)
				continue;
			empty = false;
			// pop from tail of local queue
			p->runqtail--;
			gp = p->runq[p->runqtail%nelem(p->runq)];
			// push onto head of global queue
			gp->schedlink = runtime_sched.runqhead;
			runtime_sched.runqhead = gp;
			if(runtime_sched.runqtail == nil)
				runtime_sched.runqtail = gp;
			runtime_sched.runqsize++;
		}
	}
	// fill local queues with at most nelem(p->runq)/2 goroutines
	// start at 1 because current M already executes some G and will acquire allp[0] below,
	// so if we have a spare G we want to put it into allp[1].
	for(i = 1; (uint32)i < (uint32)new * nelem(p->runq)/2 && runtime_sched.runqsize > 0; i++) {
		gp = runtime_sched.runqhead;
		runtime_sched.runqhead = gp->schedlink;
		if(runtime_sched.runqhead == nil)
			runtime_sched.runqtail = nil;
		runtime_sched.runqsize--;
		runqput(runtime_allp[i%new], gp);
	}

	// free unused P's
	for(i = new; i < old; i++) {
		p = runtime_allp[i];
		runtime_freemcache(p->mcache);
		p->mcache = nil;
		gfpurge(p);
		p->status = Pdead;
		// can't free P itself because it can be referenced by an M in syscall
	}

	if(m->p)
		m->p->m = nil;
	m->p = nil;
	m->mcache = nil;
	p = runtime_allp[0];
	p->m = nil;
	p->status = Pidle;
	acquirep(p);
	for(i = new-1; i > 0; i--) {
		p = runtime_allp[i];
		p->status = Pidle;
		pidleput(p);
	}
	runtime_atomicstore((uint32*)&runtime_gomaxprocs, new);
}

// Associate p and the current m.
static void
acquirep(P *p)
{
	if(m->p || m->mcache)
		runtime_throw("acquirep: already in go");
	if(p->m || p->status != Pidle) {
		runtime_printf("acquirep: p->m=%p(%d) p->status=%d\n", p->m, p->m ? p->m->id : 0, p->status);
		runtime_throw("acquirep: invalid p state");
	}
	m->mcache = p->mcache;
	m->p = p;
	p->m = m;
	p->status = Prunning;
}

// Disassociate p and the current m.
static P*
releasep(void)
{
	P *p;

	if(m->p == nil || m->mcache == nil)
		runtime_throw("releasep: invalid arg");
	p = m->p;
	if(p->m != m || p->mcache != m->mcache || p->status != Prunning) {
		runtime_printf("releasep: m=%p m->p=%p p->m=%p m->mcache=%p p->mcache=%p p->status=%d\n",
			m, m->p, p->m, m->mcache, p->mcache, p->status);
		runtime_throw("releasep: invalid p state");
	}
	m->p = nil;
	m->mcache = nil;
	p->m = nil;
	p->status = Pidle;
	return p;
}

static void
incidlelocked(int32 v)
{
	runtime_lock(&runtime_sched.lock);
	runtime_sched.nmidlelocked += v;
	if(v > 0)
		checkdead();
	runtime_unlock(&runtime_sched.lock);
}

// Check for deadlock situation.
// The check is based on number of running M's, if 0 -> deadlock.
static void
checkdead(void)
{
	G *gp;
	int32 run, grunning, s;
	uintptr i;

	// For -buildmode=c-shared or -buildmode=c-archive it's OK if
	// there are no running goroutines.  The calling program is
	// assumed to be running.
	if(runtime_isarchive) {
		return;
	}

	// -1 for sysmon
	run = runtime_sched.mcount - runtime_sched.nmidle - runtime_sched.nmidlelocked - 1 - countextra();
	if(run > 0)
		return;
	// If we are dying because of a signal caught on an already idle thread,
	// freezetheworld will cause all running threads to block.
	// And runtime will essentially enter into deadlock state,
	// except that there is a thread that will call runtime_exit soon.
	if(runtime_panicking > 0)
		return;
	if(run < 0) {
		runtime_printf("runtime: checkdead: nmidle=%d nmidlelocked=%d mcount=%d\n",
			runtime_sched.nmidle, runtime_sched.nmidlelocked, runtime_sched.mcount);
		runtime_throw("checkdead: inconsistent counts");
	}
	grunning = 0;
	runtime_lock(&allglock);
	for(i = 0; i < runtime_allglen; i++) {
		gp = runtime_allg[i];
		if(gp->isbackground)
			continue;
		s = gp->status;
		if(s == Gwaiting)
			grunning++;
		else if(s == Grunnable || s == Grunning || s == Gsyscall) {
			runtime_unlock(&allglock);
			runtime_printf("runtime: checkdead: find g %D in status %d\n", gp->goid, s);
			runtime_throw("checkdead: runnable g");
		}
	}
	runtime_unlock(&allglock);
	if(grunning == 0)  // possible if main goroutine calls runtime_Goexit()
		runtime_throw("no goroutines (main called runtime.Goexit) - deadlock!");
	m->throwing = -1;  // do not dump full stacks
	runtime_throw("all goroutines are asleep - deadlock!");
}

static void
sysmon(void)
{
	uint32 idle, delay;
	int64 now, lastpoll, lasttrace;
	G *gp;

	lasttrace = 0;
	idle = 0;  // how many cycles in succession we had not wokeup somebody
	delay = 0;
	for(;;) {
		if(idle == 0)  // start with 20us sleep...
			delay = 20;
		else if(idle > 50)  // start doubling the sleep after 1ms...
			delay *= 2;
		if(delay > 10*1000)  // up to 10ms
			delay = 10*1000;
		runtime_usleep(delay);
		if(runtime_debug.schedtrace <= 0 &&
			(runtime_sched.gcwaiting || runtime_atomicload(&runtime_sched.npidle) == (uint32)runtime_gomaxprocs)) {  // TODO: fast atomic
			runtime_lock(&runtime_sched.lock);
			if(runtime_atomicload(&runtime_sched.gcwaiting) || runtime_atomicload(&runtime_sched.npidle) == (uint32)runtime_gomaxprocs) {
				runtime_atomicstore(&runtime_sched.sysmonwait, 1);
				runtime_unlock(&runtime_sched.lock);
				runtime_notesleep(&runtime_sched.sysmonnote);
				runtime_noteclear(&runtime_sched.sysmonnote);
				idle = 0;
				delay = 20;
			} else
				runtime_unlock(&runtime_sched.lock);
		}
		// poll network if not polled for more than 10ms
		lastpoll = runtime_atomicload64(&runtime_sched.lastpoll);
		now = runtime_nanotime();
		if(lastpoll != 0 && lastpoll + 10*1000*1000 < now) {
			runtime_cas64(&runtime_sched.lastpoll, lastpoll, now);
			gp = runtime_netpoll(false);  // non-blocking
			if(gp) {
				// Need to decrement number of idle locked M's
				// (pretending that one more is running) before injectglist.
				// Otherwise it can lead to the following situation:
				// injectglist grabs all P's but before it starts M's to run the P's,
				// another M returns from syscall, finishes running its G,
				// observes that there is no work to do and no other running M's
				// and reports deadlock.
				incidlelocked(-1);
				injectglist(gp);
				incidlelocked(1);
			}
		}
		// retake P's blocked in syscalls
		// and preempt long running G's
		if(retake(now))
			idle = 0;
		else
			idle++;

		if(runtime_debug.schedtrace > 0 && lasttrace + runtime_debug.schedtrace*1000000ll <= now) {
			lasttrace = now;
			runtime_schedtrace(runtime_debug.scheddetail);
		}
	}
}

typedef struct Pdesc Pdesc;
struct Pdesc
{
	uint32	schedtick;
	int64	schedwhen;
	uint32	syscalltick;
	int64	syscallwhen;
};
static Pdesc pdesc[MaxGomaxprocs];

static uint32
retake(int64 now)
{
	uint32 i, s, n;
	int64 t;
	P *p;
	Pdesc *pd;

	n = 0;
	for(i = 0; i < (uint32)runtime_gomaxprocs; i++) {
		p = runtime_allp[i];
		if(p==nil)
			continue;
		pd = &pdesc[i];
		s = p->status;
		if(s == Psyscall) {
			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
			t = p->syscalltick;
			if(pd->syscalltick != t) {
				pd->syscalltick = t;
				pd->syscallwhen = now;
				continue;
			}
			// On the one hand we don't want to retake Ps if there is no other work to do,
			// but on the other hand we want to retake them eventually
			// because they can prevent the sysmon thread from deep sleep.
			if(p->runqhead == p->runqtail &&
				runtime_atomicload(&runtime_sched.nmspinning) + runtime_atomicload(&runtime_sched.npidle) > 0 &&
				pd->syscallwhen + 10*1000*1000 > now)
				continue;
			// Need to decrement number of idle locked M's
			// (pretending that one more is running) before the CAS.
			// Otherwise the M from which we retake can exit the syscall,
			// increment nmidle and report deadlock.
			incidlelocked(-1);
			if(runtime_cas(&p->status, s, Pidle)) {
				n++;
				handoffp(p);
			}
			incidlelocked(1);
		} else if(s == Prunning) {
			// Preempt G if it's running for more than 10ms.
			t = p->schedtick;
			if(pd->schedtick != t) {
				pd->schedtick = t;
				pd->schedwhen = now;
				continue;
			}
			if(pd->schedwhen + 10*1000*1000 > now)
				continue;
			// preemptone(p);
		}
	}
	return n;
}

// Tell all goroutines that they have been preempted and they should stop.
// This function is purely best-effort.  It can fail to inform a goroutine if a
// processor just started running it.
// No locks need to be held.
// Returns true if preemption request was issued to at least one goroutine.
static bool
preemptall(void)
{
	return false;
}

void
runtime_schedtrace(bool detailed)
{
	static int64 starttime;
	int64 now;
	int64 id1, id2, id3;
	int32 i, t, h;
	uintptr gi;
	const char *fmt;
	M *mp, *lockedm;
	G *gp, *lockedg;
	P *p;

	now = runtime_nanotime();
	if(starttime == 0)
		starttime = now;

	runtime_lock(&runtime_sched.lock);
	runtime_printf("SCHED %Dms: gomaxprocs=%d idleprocs=%d threads=%d idlethreads=%d runqueue=%d",
		(now-starttime)/1000000, runtime_gomaxprocs, runtime_sched.npidle, runtime_sched.mcount,
		runtime_sched.nmidle, runtime_sched.runqsize);
	if(detailed) {
		runtime_printf(" gcwaiting=%d nmidlelocked=%d nmspinning=%d stopwait=%d sysmonwait=%d\n",
			runtime_sched.gcwaiting, runtime_sched.nmidlelocked, runtime_sched.nmspinning,
			runtime_sched.stopwait, runtime_sched.sysmonwait);
	}
	// We must be careful while reading data from P's, M's and G's.
	// Even if we hold schedlock, most data can be changed concurrently.
	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
	for(i = 0; i < runtime_gomaxprocs; i++) {
		p = runtime_allp[i];
		if(p == nil)
			continue;
		mp = p->m;
		h = runtime_atomicload(&p->runqhead);
		t = runtime_atomicload(&p->runqtail);
		if(detailed)
			runtime_printf("  P%d: status=%d schedtick=%d syscalltick=%d m=%d runqsize=%d gfreecnt=%d\n",
				i, p->status, p->schedtick, p->syscalltick, mp ? mp->id : -1, t-h, p->gfreecnt);
		else {
			// In non-detailed mode format lengths of per-P run queues as:
			// [len1 len2 len3 len4]
			fmt = " %d";
			if(runtime_gomaxprocs == 1)
				fmt = " [%d]\n";
			else if(i == 0)
				fmt = " [%d";
			else if(i == runtime_gomaxprocs-1)
				fmt = " %d]\n";
			runtime_printf(fmt, t-h);
		}
	}
	if(!detailed) {
		runtime_unlock(&runtime_sched.lock);
		return;
	}
	for(mp = runtime_allm; mp; mp = mp->alllink) {
		p = mp->p;
		gp = mp->curg;
		lockedg = mp->lockedg;
		id1 = -1;
		if(p)
			id1 = p->id;
		id2 = -1;
		if(gp)
			id2 = gp->goid;
		id3 = -1;
		if(lockedg)
			id3 = lockedg->goid;
		runtime_printf("  M%d: p=%D curg=%D mallocing=%d throwing=%d gcing=%d"
			" locks=%d dying=%d helpgc=%d spinning=%d blocked=%d lockedg=%D\n",
			mp->id, id1, id2,
			mp->mallocing, mp->throwing, mp->gcing, mp->locks, mp->dying, mp->helpgc,
			mp->spinning, m->blocked, id3);
	}
	runtime_lock(&allglock);
	for(gi = 0; gi < runtime_allglen; gi++) {
		gp = runtime_allg[gi];
		mp = gp->m;
		lockedm = gp->lockedm;
		runtime_printf("  G%D: status=%d(%s) m=%d lockedm=%d\n",
			gp->goid, gp->status, gp->waitreason, mp ? mp->id : -1,
			lockedm ? lockedm->id : -1);
	}
	runtime_unlock(&allglock);
	runtime_unlock(&runtime_sched.lock);
}

// Put mp on midle list.
// Sched must be locked.
static void
mput(M *mp)
{
	mp->schedlink = runtime_sched.midle;
	runtime_sched.midle = mp;
	runtime_sched.nmidle++;
	checkdead();
}

// Try to get an m from midle list.
// Sched must be locked.
static M*
mget(void)
{
	M *mp;

	if((mp = runtime_sched.midle) != nil){
		runtime_sched.midle = mp->schedlink;
		runtime_sched.nmidle--;
	}
	return mp;
}

// Put gp on the global runnable queue.
// Sched must be locked.
static void
globrunqput(G *gp)
{
	gp->schedlink = nil;
	if(runtime_sched.runqtail)
		runtime_sched.runqtail->schedlink = gp;
	else
		runtime_sched.runqhead = gp;
	runtime_sched.runqtail = gp;
	runtime_sched.runqsize++;
}

// Put a batch of runnable goroutines on the global runnable queue.
// Sched must be locked.
static void
globrunqputbatch(G *ghead, G *gtail, int32 n)
{
	gtail->schedlink = nil;
	if(runtime_sched.runqtail)
		runtime_sched.runqtail->schedlink = ghead;
	else
		runtime_sched.runqhead = ghead;
	runtime_sched.runqtail = gtail;
	runtime_sched.runqsize += n;
}

// Try get a batch of G's from the global runnable queue.
// Sched must be locked.
static G*
globrunqget(P *p, int32 max)
{
	G *gp, *gp1;
	int32 n;

	if(runtime_sched.runqsize == 0)
		return nil;
	n = runtime_sched.runqsize/runtime_gomaxprocs+1;
	if(n > runtime_sched.runqsize)
		n = runtime_sched.runqsize;
	if(max > 0 && n > max)
		n = max;
	if((uint32)n > nelem(p->runq)/2)
		n = nelem(p->runq)/2;
	runtime_sched.runqsize -= n;
	if(runtime_sched.runqsize == 0)
		runtime_sched.runqtail = nil;
	gp = runtime_sched.runqhead;
	runtime_sched.runqhead = gp->schedlink;
	n--;
	while(n--) {
		gp1 = runtime_sched.runqhead;
		runtime_sched.runqhead = gp1->schedlink;
		runqput(p, gp1);
	}
	return gp;
}

// Put p to on pidle list.
// Sched must be locked.
static void
pidleput(P *p)
{
	p->link = runtime_sched.pidle;
	runtime_sched.pidle = p;
	runtime_xadd(&runtime_sched.npidle, 1);  // TODO: fast atomic
}

// Try get a p from pidle list.
// Sched must be locked.
static P*
pidleget(void)
{
	P *p;

	p = runtime_sched.pidle;
	if(p) {
		runtime_sched.pidle = p->link;
		runtime_xadd(&runtime_sched.npidle, -1);  // TODO: fast atomic
	}
	return p;
}

// Try to put g on local runnable queue.
// If it's full, put onto global queue.
// Executed only by the owner P.
static void
runqput(P *p, G *gp)
{
	uint32 h, t;

retry:
	h = runtime_atomicload(&p->runqhead);  // load-acquire, synchronize with consumers
	t = p->runqtail;
	if(t - h < nelem(p->runq)) {
		p->runq[t%nelem(p->runq)] = gp;
		runtime_atomicstore(&p->runqtail, t+1);  // store-release, makes the item available for consumption
		return;
	}
	if(runqputslow(p, gp, h, t))
		return;
	// the queue is not full, now the put above must suceed
	goto retry;
}

// Put g and a batch of work from local runnable queue on global queue.
// Executed only by the owner P.
static bool
runqputslow(P *p, G *gp, uint32 h, uint32 t)
{
	G *batch[nelem(p->runq)/2+1];
	uint32 n, i;

	// First, grab a batch from local queue.
	n = t-h;
	n = n/2;
	if(n != nelem(p->runq)/2)
		runtime_throw("runqputslow: queue is not full");
	for(i=0; i<n; i++)
		batch[i] = p->runq[(h+i)%nelem(p->runq)];
	if(!runtime_cas(&p->runqhead, h, h+n))  // cas-release, commits consume
		return false;
	batch[n] = gp;
	// Link the goroutines.
	for(i=0; i<n; i++)
		batch[i]->schedlink = batch[i+1];
	// Now put the batch on global queue.
	runtime_lock(&runtime_sched.lock);
	globrunqputbatch(batch[0], batch[n], n+1);
	runtime_unlock(&runtime_sched.lock);
	return true;
}

// Get g from local runnable queue.
// Executed only by the owner P.
static G*
runqget(P *p)
{
	G *gp;
	uint32 t, h;

	for(;;) {
		h = runtime_atomicload(&p->runqhead);  // load-acquire, synchronize with other consumers
		t = p->runqtail;
		if(t == h)
			return nil;
		gp = p->runq[h%nelem(p->runq)];
		if(runtime_cas(&p->runqhead, h, h+1))  // cas-release, commits consume
			return gp;
	}
}

// Grabs a batch of goroutines from local runnable queue.
// batch array must be of size nelem(p->runq)/2. Returns number of grabbed goroutines.
// Can be executed by any P.
static uint32
runqgrab(P *p, G **batch)
{
	uint32 t, h, n, i;

	for(;;) {
		h = runtime_atomicload(&p->runqhead);  // load-acquire, synchronize with other consumers
		t = runtime_atomicload(&p->runqtail);  // load-acquire, synchronize with the producer
		n = t-h;
		n = n - n/2;
		if(n == 0)
			break;
		if(n > nelem(p->runq)/2)  // read inconsistent h and t
			continue;
		for(i=0; i<n; i++)
			batch[i] = p->runq[(h+i)%nelem(p->runq)];
		if(runtime_cas(&p->runqhead, h, h+n))  // cas-release, commits consume
			break;
	}
	return n;
}

// Steal half of elements from local runnable queue of p2
// and put onto local runnable queue of p.
// Returns one of the stolen elements (or nil if failed).
static G*
runqsteal(P *p, P *p2)
{
	G *gp;
	G *batch[nelem(p->runq)/2];
	uint32 t, h, n, i;

	n = runqgrab(p2, batch);
	if(n == 0)
		return nil;
	n--;
	gp = batch[n];
	if(n == 0)
		return gp;
	h = runtime_atomicload(&p->runqhead);  // load-acquire, synchronize with consumers
	t = p->runqtail;
	if(t - h + n >= nelem(p->runq))
		runtime_throw("runqsteal: runq overflow");
	for(i=0; i<n; i++, t++)
		p->runq[t%nelem(p->runq)] = batch[i];
	runtime_atomicstore(&p->runqtail, t);  // store-release, makes the item available for consumption
	return gp;
}

void runtime_testSchedLocalQueue(void)
  __asm__("runtime.testSchedLocalQueue");

void
runtime_testSchedLocalQueue(void)
{
	P p;
	G gs[nelem(p.runq)];
	int32 i, j;

	runtime_memclr((byte*)&p, sizeof(p));

	for(i = 0; i < (int32)nelem(gs); i++) {
		if(runqget(&p) != nil)
			runtime_throw("runq is not empty initially");
		for(j = 0; j < i; j++)
			runqput(&p, &gs[i]);
		for(j = 0; j < i; j++) {
			if(runqget(&p) != &gs[i]) {
				runtime_printf("bad element at iter %d/%d\n", i, j);
				runtime_throw("bad element");
			}
		}
		if(runqget(&p) != nil)
			runtime_throw("runq is not empty afterwards");
	}
}

void runtime_testSchedLocalQueueSteal(void)
  __asm__("runtime.testSchedLocalQueueSteal");

void
runtime_testSchedLocalQueueSteal(void)
{
	P p1, p2;
	G gs[nelem(p1.runq)], *gp;
	int32 i, j, s;

	runtime_memclr((byte*)&p1, sizeof(p1));
	runtime_memclr((byte*)&p2, sizeof(p2));

	for(i = 0; i < (int32)nelem(gs); i++) {
		for(j = 0; j < i; j++) {
			gs[j].sig = 0;
			runqput(&p1, &gs[j]);
		}
		gp = runqsteal(&p2, &p1);
		s = 0;
		if(gp) {
			s++;
			gp->sig++;
		}
		while((gp = runqget(&p2)) != nil) {
			s++;
			gp->sig++;
		}
		while((gp = runqget(&p1)) != nil)
			gp->sig++;
		for(j = 0; j < i; j++) {
			if(gs[j].sig != 1) {
				runtime_printf("bad element %d(%d) at iter %d\n", j, gs[j].sig, i);
				runtime_throw("bad element");
			}
		}
		if(s != i/2 && s != i/2+1) {
			runtime_printf("bad steal %d, want %d or %d, iter %d\n",
				s, i/2, i/2+1, i);
			runtime_throw("bad steal");
		}
	}
}

int32
runtime_setmaxthreads(int32 in)
{
	int32 out;

	runtime_lock(&runtime_sched.lock);
	out = runtime_sched.maxmcount;
	runtime_sched.maxmcount = in;
	checkmcount();
	runtime_unlock(&runtime_sched.lock);
	return out;
}

void
runtime_proc_scan(struct Workbuf** wbufp, void (*enqueue1)(struct Workbuf**, Obj))
{
	enqueue1(wbufp, (Obj){(byte*)&runtime_sched, sizeof runtime_sched, 0});
	enqueue1(wbufp, (Obj){(byte*)&runtime_main_init_done, sizeof runtime_main_init_done, 0});
}

// Return whether we are waiting for a GC.  This gc toolchain uses
// preemption instead.
bool
runtime_gcwaiting(void)
{
	return runtime_sched.gcwaiting;
}

// os_beforeExit is called from os.Exit(0).
//go:linkname os_beforeExit os.runtime_beforeExit

extern void os_beforeExit() __asm__ (GOSYM_PREFIX "os.runtime_beforeExit");

void
os_beforeExit()
{
}

// Active spinning for sync.Mutex.
//go:linkname sync_runtime_canSpin sync.runtime_canSpin

enum
{
	ACTIVE_SPIN = 4,
	ACTIVE_SPIN_CNT = 30,
};

extern _Bool sync_runtime_canSpin(intgo i)
  __asm__ (GOSYM_PREFIX "sync.runtime_canSpin");

_Bool
sync_runtime_canSpin(intgo i)
{
	P *p;

	// sync.Mutex is cooperative, so we are conservative with spinning.
	// Spin only few times and only if running on a multicore machine and
	// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
	// As opposed to runtime mutex we don't do passive spinning here,
	// because there can be work on global runq on on other Ps.
	if (i >= ACTIVE_SPIN || runtime_ncpu <= 1 || runtime_gomaxprocs <= (int32)(runtime_sched.npidle+runtime_sched.nmspinning)+1) {
		return false;
	}
	p = m->p;
	return p != nil && p->runqhead == p->runqtail;
}

//go:linkname sync_runtime_doSpin sync.runtime_doSpin
//go:nosplit

extern void sync_runtime_doSpin(void)
  __asm__ (GOSYM_PREFIX "sync.runtime_doSpin");

void
sync_runtime_doSpin()
{
	runtime_procyield(ACTIVE_SPIN_CNT);
}