struct-codegen.toy
2.63 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
# RUN: toyc-ch7 %s -emit=mlir 2>&1
# RUN: toyc-ch7 %s -emit=mlir -opt 2>&1 | FileCheck %s --check-prefix=OPT
struct Struct {
var a;
var b;
}
# User defined generic function may operate on struct types as well.
def multiply_transpose(Struct value) {
# We can access the elements of a struct via the '.' operator.
return transpose(value.a) * transpose(value.b);
}
def main() {
# We initialize struct values using a composite initializer.
Struct value = {[[1, 2, 3], [4, 5, 6]], [[1, 2, 3], [4, 5, 6]]};
# We pass these arguments to functions like we do with variables.
var c = multiply_transpose(value);
print(c);
}
# CHECK-LABEL: func @multiply_transpose(
# CHECK-SAME: [[VAL_0:%.*]]: !toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
# CHECK-NEXT: [[VAL_1:%.*]] = "toy.struct_access"([[VAL_0]]) {index = 0 : i64} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
# CHECK-NEXT: [[VAL_2:%.*]] = "toy.transpose"([[VAL_1]]) : (tensor<*xf64>) -> tensor<*xf64>
# CHECK-NEXT: [[VAL_3:%.*]] = "toy.struct_access"([[VAL_0]]) {index = 1 : i64} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
# CHECK-NEXT: [[VAL_4:%.*]] = "toy.transpose"([[VAL_3]]) : (tensor<*xf64>) -> tensor<*xf64>
# CHECK-NEXT: [[VAL_5:%.*]] = "toy.mul"([[VAL_2]], [[VAL_4]]) : (tensor<*xf64>, tensor<*xf64>) -> tensor<*xf64>
# CHECK-NEXT: "toy.return"([[VAL_5]]) : (tensor<*xf64>) -> ()
# CHECK-LABEL: func @main()
# CHECK-NEXT: [[VAL_6:%.*]] = "toy.struct_constant"() {value = [dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>, dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>]} : () -> !toy.struct<tensor<*xf64>, tensor<*xf64>>
# CHECK-NEXT: [[VAL_7:%.*]] = "toy.generic_call"([[VAL_6]]) {callee = @multiply_transpose} : (!toy.struct<tensor<*xf64>, tensor<*xf64>>) -> tensor<*xf64>
# CHECK-NEXT: "toy.print"([[VAL_7]]) : (tensor<*xf64>) -> ()
# CHECK-NEXT: "toy.return"() : () -> ()
# OPT-LABEL: func @main()
# OPT-NEXT: [[VAL_0:%.*]] = "toy.constant"() {value = dense<{{\[\[}}1.000000e+00, 2.000000e+00, 3.000000e+00], [4.000000e+00, 5.000000e+00, 6.000000e+00]]> : tensor<2x3xf64>} : () -> tensor<2x3xf64>
# OPT-NEXT: [[VAL_1:%.*]] = "toy.transpose"([[VAL_0]]) : (tensor<2x3xf64>) -> tensor<3x2xf64>
# OPT-NEXT: [[VAL_2:%.*]] = "toy.mul"([[VAL_1]], [[VAL_1]]) : (tensor<3x2xf64>, tensor<3x2xf64>) -> tensor<3x2xf64>
# OPT-NEXT: "toy.print"([[VAL_2]]) : (tensor<3x2xf64>) -> ()
# OPT-NEXT: "toy.return"() : () -> ()