ToolRunner.cpp 31.1 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865
//===-- ToolRunner.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the interfaces described in the ToolRunner.h file.
//
//===----------------------------------------------------------------------===//

#include "ToolRunner.h"
#include "llvm/Config/config.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/FileUtilities.h"
#include "llvm/Support/Program.h"
#include "llvm/Support/raw_ostream.h"
#include <fstream>
#include <sstream>
#include <utility>
using namespace llvm;

#define DEBUG_TYPE "toolrunner"

namespace llvm {
cl::opt<bool> SaveTemps("save-temps", cl::init(false),
                        cl::desc("Save temporary files"));
}

namespace {
cl::opt<std::string>
    RemoteClient("remote-client",
                 cl::desc("Remote execution client (rsh/ssh)"));

cl::opt<std::string> RemoteHost("remote-host",
                                cl::desc("Remote execution (rsh/ssh) host"));

cl::opt<std::string> RemotePort("remote-port",
                                cl::desc("Remote execution (rsh/ssh) port"));

cl::opt<std::string> RemoteUser("remote-user",
                                cl::desc("Remote execution (rsh/ssh) user id"));

cl::opt<std::string>
    RemoteExtra("remote-extra-options",
                cl::desc("Remote execution (rsh/ssh) extra options"));
}

/// RunProgramWithTimeout - This function provides an alternate interface
/// to the sys::Program::ExecuteAndWait interface.
/// @see sys::Program::ExecuteAndWait
static int RunProgramWithTimeout(StringRef ProgramPath,
                                 ArrayRef<StringRef> Args, StringRef StdInFile,
                                 StringRef StdOutFile, StringRef StdErrFile,
                                 unsigned NumSeconds = 0,
                                 unsigned MemoryLimit = 0,
                                 std::string *ErrMsg = nullptr) {
  Optional<StringRef> Redirects[3] = {StdInFile, StdOutFile, StdErrFile};
  return sys::ExecuteAndWait(ProgramPath, Args, None, Redirects, NumSeconds,
                             MemoryLimit, ErrMsg);
}

/// RunProgramRemotelyWithTimeout - This function runs the given program
/// remotely using the given remote client and the sys::Program::ExecuteAndWait.
/// Returns the remote program exit code or reports a remote client error if it
/// fails. Remote client is required to return 255 if it failed or program exit
/// code otherwise.
/// @see sys::Program::ExecuteAndWait
static int RunProgramRemotelyWithTimeout(
    StringRef RemoteClientPath, ArrayRef<StringRef> Args, StringRef StdInFile,
    StringRef StdOutFile, StringRef StdErrFile, unsigned NumSeconds = 0,
    unsigned MemoryLimit = 0) {
  Optional<StringRef> Redirects[3] = {StdInFile, StdOutFile, StdErrFile};

  // Run the program remotely with the remote client
  int ReturnCode = sys::ExecuteAndWait(RemoteClientPath, Args, None, Redirects,
                                       NumSeconds, MemoryLimit);

  // Has the remote client fail?
  if (255 == ReturnCode) {
    std::ostringstream OS;
    OS << "\nError running remote client:\n ";
    for (StringRef Arg : Args)
      OS << " " << Arg.str();
    OS << "\n";

    // The error message is in the output file, let's print it out from there.
    std::string StdOutFileName = StdOutFile.str();
    std::ifstream ErrorFile(StdOutFileName.c_str());
    if (ErrorFile) {
      std::copy(std::istreambuf_iterator<char>(ErrorFile),
                std::istreambuf_iterator<char>(),
                std::ostreambuf_iterator<char>(OS));
      ErrorFile.close();
    }

    errs() << OS.str();
  }

  return ReturnCode;
}

static Error ProcessFailure(StringRef ProgPath, ArrayRef<StringRef> Args,
                            unsigned Timeout = 0, unsigned MemoryLimit = 0) {
  std::ostringstream OS;
  OS << "\nError running tool:\n ";
  for (StringRef Arg : Args)
    OS << " " << Arg.str();
  OS << "\n";

  // Rerun the compiler, capturing any error messages to print them.
  SmallString<128> ErrorFilename;
  std::error_code EC = sys::fs::createTemporaryFile(
      "bugpoint.program_error_messages", "", ErrorFilename);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }

  RunProgramWithTimeout(ProgPath, Args, "", ErrorFilename.str(),
                        ErrorFilename.str(), Timeout, MemoryLimit);
  // FIXME: check return code ?

  // Print out the error messages generated by CC if possible...
  std::ifstream ErrorFile(ErrorFilename.c_str());
  if (ErrorFile) {
    std::copy(std::istreambuf_iterator<char>(ErrorFile),
              std::istreambuf_iterator<char>(),
              std::ostreambuf_iterator<char>(OS));
    ErrorFile.close();
  }

  sys::fs::remove(ErrorFilename.c_str());
  return make_error<StringError>(OS.str(), inconvertibleErrorCode());
}

//===---------------------------------------------------------------------===//
// LLI Implementation of AbstractIntepreter interface
//
namespace {
class LLI : public AbstractInterpreter {
  std::string LLIPath;               // The path to the LLI executable
  std::vector<std::string> ToolArgs; // Args to pass to LLI
public:
  LLI(const std::string &Path, const std::vector<std::string> *Args)
      : LLIPath(Path) {
    ToolArgs.clear();
    if (Args) {
      ToolArgs = *Args;
    }
  }

  Expected<int> ExecuteProgram(
      const std::string &Bitcode, const std::vector<std::string> &Args,
      const std::string &InputFile, const std::string &OutputFile,
      const std::vector<std::string> &CCArgs,
      const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
      unsigned Timeout = 0, unsigned MemoryLimit = 0) override;
};
}

Expected<int> LLI::ExecuteProgram(const std::string &Bitcode,
                                  const std::vector<std::string> &Args,
                                  const std::string &InputFile,
                                  const std::string &OutputFile,
                                  const std::vector<std::string> &CCArgs,
                                  const std::vector<std::string> &SharedLibs,
                                  unsigned Timeout, unsigned MemoryLimit) {
  std::vector<StringRef> LLIArgs;
  LLIArgs.push_back(LLIPath);
  LLIArgs.push_back("-force-interpreter=true");

  for (std::vector<std::string>::const_iterator i = SharedLibs.begin(),
                                                e = SharedLibs.end();
       i != e; ++i) {
    LLIArgs.push_back("-load");
    LLIArgs.push_back(*i);
  }

  // Add any extra LLI args.
  for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
    LLIArgs.push_back(ToolArgs[i]);

  LLIArgs.push_back(Bitcode);
  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    LLIArgs.push_back(Args[i]);

  outs() << "<lli>";
  outs().flush();
  LLVM_DEBUG(errs() << "\nAbout to run:\t";
             for (unsigned i = 0, e = LLIArgs.size() - 1; i != e; ++i) errs()
             << " " << LLIArgs[i];
             errs() << "\n";);
  return RunProgramWithTimeout(LLIPath, LLIArgs, InputFile, OutputFile,
                               OutputFile, Timeout, MemoryLimit);
}

void AbstractInterpreter::anchor() {}

ErrorOr<std::string> llvm::FindProgramByName(const std::string &ExeName,
                                             const char *Argv0,
                                             void *MainAddr) {
  // Check the directory that the calling program is in.  We can do
  // this if ProgramPath contains at least one / character, indicating that it
  // is a relative path to the executable itself.
  std::string Main = sys::fs::getMainExecutable(Argv0, MainAddr);
  StringRef Result = sys::path::parent_path(Main);
  if (ErrorOr<std::string> Path = sys::findProgramByName(ExeName, Result))
    return *Path;

  // Check the user PATH.
  return sys::findProgramByName(ExeName);
}

// LLI create method - Try to find the LLI executable
AbstractInterpreter *
AbstractInterpreter::createLLI(const char *Argv0, std::string &Message,
                               const std::vector<std::string> *ToolArgs) {
  if (ErrorOr<std::string> LLIPath =
      FindProgramByName("lli", Argv0, (void *)(intptr_t)&createLLI)) {
    Message = "Found lli: " + *LLIPath + "\n";
    return new LLI(*LLIPath, ToolArgs);
  } else {
    Message = LLIPath.getError().message() + "\n";
    return nullptr;
  }
}

//===---------------------------------------------------------------------===//
// Custom compiler command implementation of AbstractIntepreter interface
//
// Allows using a custom command for compiling the bitcode, thus allows, for
// example, to compile a bitcode fragment without linking or executing, then
// using a custom wrapper script to check for compiler errors.
namespace {
class CustomCompiler : public AbstractInterpreter {
  std::string CompilerCommand;
  std::vector<std::string> CompilerArgs;

public:
  CustomCompiler(const std::string &CompilerCmd,
                 std::vector<std::string> CompArgs)
      : CompilerCommand(CompilerCmd), CompilerArgs(std::move(CompArgs)) {}

  Error compileProgram(const std::string &Bitcode, unsigned Timeout = 0,
                       unsigned MemoryLimit = 0) override;

  Expected<int> ExecuteProgram(
      const std::string &Bitcode, const std::vector<std::string> &Args,
      const std::string &InputFile, const std::string &OutputFile,
      const std::vector<std::string> &CCArgs = std::vector<std::string>(),
      const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
      unsigned Timeout = 0, unsigned MemoryLimit = 0) override {
    return make_error<StringError>(
        "Execution not supported with -compile-custom",
        inconvertibleErrorCode());
  }
};
}

Error CustomCompiler::compileProgram(const std::string &Bitcode,
                                     unsigned Timeout, unsigned MemoryLimit) {

  std::vector<StringRef> ProgramArgs;
  ProgramArgs.push_back(CompilerCommand);

  for (const auto &Arg : CompilerArgs)
    ProgramArgs.push_back(Arg);
  ProgramArgs.push_back(Bitcode);

  // Add optional parameters to the running program from Argv
  for (const auto &Arg : CompilerArgs)
    ProgramArgs.push_back(Arg);

  if (RunProgramWithTimeout(CompilerCommand, ProgramArgs, "", "", "", Timeout,
                            MemoryLimit))
    return ProcessFailure(CompilerCommand, ProgramArgs, Timeout, MemoryLimit);
  return Error::success();
}

//===---------------------------------------------------------------------===//
// Custom execution command implementation of AbstractIntepreter interface
//
// Allows using a custom command for executing the bitcode, thus allows,
// for example, to invoke a cross compiler for code generation followed by
// a simulator that executes the generated binary.
namespace {
class CustomExecutor : public AbstractInterpreter {
  std::string ExecutionCommand;
  std::vector<std::string> ExecutorArgs;

public:
  CustomExecutor(const std::string &ExecutionCmd,
                 std::vector<std::string> ExecArgs)
      : ExecutionCommand(ExecutionCmd), ExecutorArgs(std::move(ExecArgs)) {}

  Expected<int> ExecuteProgram(
      const std::string &Bitcode, const std::vector<std::string> &Args,
      const std::string &InputFile, const std::string &OutputFile,
      const std::vector<std::string> &CCArgs,
      const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
      unsigned Timeout = 0, unsigned MemoryLimit = 0) override;
};
}

Expected<int> CustomExecutor::ExecuteProgram(
    const std::string &Bitcode, const std::vector<std::string> &Args,
    const std::string &InputFile, const std::string &OutputFile,
    const std::vector<std::string> &CCArgs,
    const std::vector<std::string> &SharedLibs, unsigned Timeout,
    unsigned MemoryLimit) {

  std::vector<StringRef> ProgramArgs;
  ProgramArgs.push_back(ExecutionCommand);

  for (std::size_t i = 0; i < ExecutorArgs.size(); ++i)
    ProgramArgs.push_back(ExecutorArgs[i]);
  ProgramArgs.push_back(Bitcode);

  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    ProgramArgs.push_back(Args[i]);

  return RunProgramWithTimeout(ExecutionCommand, ProgramArgs, InputFile,
                               OutputFile, OutputFile, Timeout, MemoryLimit);
}

// Tokenize the CommandLine to the command and the args to allow
// defining a full command line as the command instead of just the
// executed program. We cannot just pass the whole string after the command
// as a single argument because then the program sees only a single
// command line argument (with spaces in it: "foo bar" instead
// of "foo" and "bar").
//
// Spaces are used as a delimiter; however repeated, leading, and trailing
// whitespace are ignored. Simple escaping is allowed via the '\'
// character, as seen below:
//
// Two consecutive '\' evaluate to a single '\'.
// A space after a '\' evaluates to a space that is not interpreted as a
// delimiter.
// Any other instances of the '\' character are removed.
//
// Example:
// '\\' -> '\'
// '\ ' -> ' '
// 'exa\mple' -> 'example'
//
static void lexCommand(const char *Argv0, std::string &Message,
                       const std::string &CommandLine, std::string &CmdPath,
                       std::vector<std::string> &Args) {

  std::string Token;
  std::string Command;
  bool FoundPath = false;

  // first argument is the PATH.
  // Skip repeated whitespace, leading whitespace and trailing whitespace.
  for (std::size_t Pos = 0u; Pos <= CommandLine.size(); ++Pos) {
    if ('\\' == CommandLine[Pos]) {
      if (Pos + 1 < CommandLine.size())
        Token.push_back(CommandLine[++Pos]);

      continue;
    }
    if (' ' == CommandLine[Pos] || CommandLine.size() == Pos) {
      if (Token.empty())
        continue;

      if (!FoundPath) {
        Command = Token;
        FoundPath = true;
        Token.clear();
        continue;
      }

      Args.push_back(Token);
      Token.clear();
      continue;
    }
    Token.push_back(CommandLine[Pos]);
  }

  auto Path = FindProgramByName(Command, Argv0, (void *)(intptr_t)&lexCommand);
  if (!Path) {
    Message = std::string("Cannot find '") + Command +
              "' in PATH: " + Path.getError().message() + "\n";
    return;
  }
  CmdPath = *Path;

  Message = "Found command in: " + CmdPath + "\n";
}

// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *AbstractInterpreter::createCustomCompiler(
    const char *Argv0, std::string &Message,
    const std::string &CompileCommandLine) {

  std::string CmdPath;
  std::vector<std::string> Args;
  lexCommand(Argv0, Message, CompileCommandLine, CmdPath, Args);
  if (CmdPath.empty())
    return nullptr;

  return new CustomCompiler(CmdPath, Args);
}

// Custom execution environment create method, takes the execution command
// as arguments
AbstractInterpreter *
AbstractInterpreter::createCustomExecutor(const char *Argv0,
                                          std::string &Message,
                                          const std::string &ExecCommandLine) {

  std::string CmdPath;
  std::vector<std::string> Args;
  lexCommand(Argv0, Message, ExecCommandLine, CmdPath, Args);
  if (CmdPath.empty())
    return nullptr;

  return new CustomExecutor(CmdPath, Args);
}

//===----------------------------------------------------------------------===//
// LLC Implementation of AbstractIntepreter interface
//
Expected<CC::FileType> LLC::OutputCode(const std::string &Bitcode,
                                       std::string &OutputAsmFile,
                                       unsigned Timeout, unsigned MemoryLimit) {
  const char *Suffix = (UseIntegratedAssembler ? ".llc.o" : ".llc.s");

  SmallString<128> UniqueFile;
  std::error_code EC =
      sys::fs::createUniqueFile(Bitcode + "-%%%%%%%" + Suffix, UniqueFile);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  OutputAsmFile = UniqueFile.str();
  std::vector<StringRef> LLCArgs;
  LLCArgs.push_back(LLCPath);

  // Add any extra LLC args.
  for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
    LLCArgs.push_back(ToolArgs[i]);

  LLCArgs.push_back("-o");
  LLCArgs.push_back(OutputAsmFile); // Output to the Asm file
  LLCArgs.push_back(Bitcode);       // This is the input bitcode

  if (UseIntegratedAssembler)
    LLCArgs.push_back("-filetype=obj");

  outs() << (UseIntegratedAssembler ? "<llc-ia>" : "<llc>");
  outs().flush();
  LLVM_DEBUG(errs() << "\nAbout to run:\t";
             for (unsigned i = 0, e = LLCArgs.size() - 1; i != e; ++i) errs()
             << " " << LLCArgs[i];
             errs() << "\n";);
  if (RunProgramWithTimeout(LLCPath, LLCArgs, "", "", "", Timeout, MemoryLimit))
    return ProcessFailure(LLCPath, LLCArgs, Timeout, MemoryLimit);
  return UseIntegratedAssembler ? CC::ObjectFile : CC::AsmFile;
}

Error LLC::compileProgram(const std::string &Bitcode, unsigned Timeout,
                          unsigned MemoryLimit) {
  std::string OutputAsmFile;
  Expected<CC::FileType> Result =
      OutputCode(Bitcode, OutputAsmFile, Timeout, MemoryLimit);
  sys::fs::remove(OutputAsmFile);
  if (Error E = Result.takeError())
    return E;
  return Error::success();
}

Expected<int> LLC::ExecuteProgram(const std::string &Bitcode,
                                  const std::vector<std::string> &Args,
                                  const std::string &InputFile,
                                  const std::string &OutputFile,
                                  const std::vector<std::string> &ArgsForCC,
                                  const std::vector<std::string> &SharedLibs,
                                  unsigned Timeout, unsigned MemoryLimit) {

  std::string OutputAsmFile;
  Expected<CC::FileType> FileKind =
      OutputCode(Bitcode, OutputAsmFile, Timeout, MemoryLimit);
  FileRemover OutFileRemover(OutputAsmFile, !SaveTemps);
  if (Error E = FileKind.takeError())
    return std::move(E);

  std::vector<std::string> CCArgs(ArgsForCC);
  CCArgs.insert(CCArgs.end(), SharedLibs.begin(), SharedLibs.end());

  // Assuming LLC worked, compile the result with CC and run it.
  return cc->ExecuteProgram(OutputAsmFile, Args, *FileKind, InputFile,
                            OutputFile, CCArgs, Timeout, MemoryLimit);
}

/// createLLC - Try to find the LLC executable
///
LLC *AbstractInterpreter::createLLC(const char *Argv0, std::string &Message,
                                    const std::string &CCBinary,
                                    const std::vector<std::string> *Args,
                                    const std::vector<std::string> *CCArgs,
                                    bool UseIntegratedAssembler) {
  ErrorOr<std::string> LLCPath =
      FindProgramByName("llc", Argv0, (void *)(intptr_t)&createLLC);
  if (!LLCPath) {
    Message = LLCPath.getError().message() + "\n";
    return nullptr;
  }

  CC *cc = CC::create(Argv0, Message, CCBinary, CCArgs);
  if (!cc) {
    errs() << Message << "\n";
    exit(1);
  }
  Message = "Found llc: " + *LLCPath + "\n";
  return new LLC(*LLCPath, cc, Args, UseIntegratedAssembler);
}

//===---------------------------------------------------------------------===//
// JIT Implementation of AbstractIntepreter interface
//
namespace {
class JIT : public AbstractInterpreter {
  std::string LLIPath;               // The path to the LLI executable
  std::vector<std::string> ToolArgs; // Args to pass to LLI
public:
  JIT(const std::string &Path, const std::vector<std::string> *Args)
      : LLIPath(Path) {
    ToolArgs.clear();
    if (Args) {
      ToolArgs = *Args;
    }
  }

  Expected<int> ExecuteProgram(
      const std::string &Bitcode, const std::vector<std::string> &Args,
      const std::string &InputFile, const std::string &OutputFile,
      const std::vector<std::string> &CCArgs = std::vector<std::string>(),
      const std::vector<std::string> &SharedLibs = std::vector<std::string>(),
      unsigned Timeout = 0, unsigned MemoryLimit = 0) override;
};
}

Expected<int> JIT::ExecuteProgram(const std::string &Bitcode,
                                  const std::vector<std::string> &Args,
                                  const std::string &InputFile,
                                  const std::string &OutputFile,
                                  const std::vector<std::string> &CCArgs,
                                  const std::vector<std::string> &SharedLibs,
                                  unsigned Timeout, unsigned MemoryLimit) {
  // Construct a vector of parameters, incorporating those from the command-line
  std::vector<StringRef> JITArgs;
  JITArgs.push_back(LLIPath);
  JITArgs.push_back("-force-interpreter=false");

  // Add any extra LLI args.
  for (unsigned i = 0, e = ToolArgs.size(); i != e; ++i)
    JITArgs.push_back(ToolArgs[i]);

  for (unsigned i = 0, e = SharedLibs.size(); i != e; ++i) {
    JITArgs.push_back("-load");
    JITArgs.push_back(SharedLibs[i]);
  }
  JITArgs.push_back(Bitcode);
  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    JITArgs.push_back(Args[i]);

  outs() << "<jit>";
  outs().flush();
  LLVM_DEBUG(errs() << "\nAbout to run:\t";
             for (unsigned i = 0, e = JITArgs.size() - 1; i != e; ++i) errs()
             << " " << JITArgs[i];
             errs() << "\n";);
  LLVM_DEBUG(errs() << "\nSending output to " << OutputFile << "\n");
  return RunProgramWithTimeout(LLIPath, JITArgs, InputFile, OutputFile,
                               OutputFile, Timeout, MemoryLimit);
}

/// createJIT - Try to find the LLI executable
///
AbstractInterpreter *
AbstractInterpreter::createJIT(const char *Argv0, std::string &Message,
                               const std::vector<std::string> *Args) {
  if (ErrorOr<std::string> LLIPath =
          FindProgramByName("lli", Argv0, (void *)(intptr_t)&createJIT)) {
    Message = "Found lli: " + *LLIPath + "\n";
    return new JIT(*LLIPath, Args);
  } else {
    Message = LLIPath.getError().message() + "\n";
    return nullptr;
  }
}

//===---------------------------------------------------------------------===//
// CC abstraction
//

static bool IsARMArchitecture(std::vector<StringRef> Args) {
  for (size_t I = 0; I < Args.size(); ++I) {
    if (!Args[I].equals_lower("-arch"))
      continue;
    ++I;
    if (I == Args.size())
      break;
    if (Args[I].startswith_lower("arm"))
      return true;
  }

  return false;
}

Expected<int> CC::ExecuteProgram(const std::string &ProgramFile,
                                 const std::vector<std::string> &Args,
                                 FileType fileType,
                                 const std::string &InputFile,
                                 const std::string &OutputFile,
                                 const std::vector<std::string> &ArgsForCC,
                                 unsigned Timeout, unsigned MemoryLimit) {
  std::vector<StringRef> CCArgs;

  CCArgs.push_back(CCPath);

  if (TargetTriple.getArch() == Triple::x86)
    CCArgs.push_back("-m32");

  for (std::vector<std::string>::const_iterator I = ccArgs.begin(),
                                                E = ccArgs.end();
       I != E; ++I)
    CCArgs.push_back(*I);

  // Specify -x explicitly in case the extension is wonky
  if (fileType != ObjectFile) {
    CCArgs.push_back("-x");
    if (fileType == CFile) {
      CCArgs.push_back("c");
      CCArgs.push_back("-fno-strict-aliasing");
    } else {
      CCArgs.push_back("assembler");

      // For ARM architectures we don't want this flag. bugpoint isn't
      // explicitly told what architecture it is working on, so we get
      // it from cc flags
      if (TargetTriple.isOSDarwin() && !IsARMArchitecture(CCArgs))
        CCArgs.push_back("-force_cpusubtype_ALL");
    }
  }

  CCArgs.push_back(ProgramFile); // Specify the input filename.

  CCArgs.push_back("-x");
  CCArgs.push_back("none");
  CCArgs.push_back("-o");

  SmallString<128> OutputBinary;
  std::error_code EC =
      sys::fs::createUniqueFile(ProgramFile + "-%%%%%%%.cc.exe", OutputBinary);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  CCArgs.push_back(OutputBinary); // Output to the right file...

  // Add any arguments intended for CC. We locate them here because this is
  // most likely -L and -l options that need to come before other libraries but
  // after the source. Other options won't be sensitive to placement on the
  // command line, so this should be safe.
  for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i)
    CCArgs.push_back(ArgsForCC[i]);

  CCArgs.push_back("-lm"); // Hard-code the math library...
  CCArgs.push_back("-O2"); // Optimize the program a bit...
  if (TargetTriple.getArch() == Triple::sparc)
    CCArgs.push_back("-mcpu=v9");

  outs() << "<CC>";
  outs().flush();
  LLVM_DEBUG(errs() << "\nAbout to run:\t";
             for (unsigned i = 0, e = CCArgs.size() - 1; i != e; ++i) errs()
             << " " << CCArgs[i];
             errs() << "\n";);
  if (RunProgramWithTimeout(CCPath, CCArgs, "", "", ""))
    return ProcessFailure(CCPath, CCArgs);

  std::vector<StringRef> ProgramArgs;

  // Declared here so that the destructor only runs after
  // ProgramArgs is used.
  std::string Exec;

  if (RemoteClientPath.empty())
    ProgramArgs.push_back(OutputBinary);
  else {
    ProgramArgs.push_back(RemoteClientPath);
    ProgramArgs.push_back(RemoteHost);
    if (!RemoteUser.empty()) {
      ProgramArgs.push_back("-l");
      ProgramArgs.push_back(RemoteUser);
    }
    if (!RemotePort.empty()) {
      ProgramArgs.push_back("-p");
      ProgramArgs.push_back(RemotePort);
    }
    if (!RemoteExtra.empty()) {
      ProgramArgs.push_back(RemoteExtra);
    }

    // Full path to the binary. We need to cd to the exec directory because
    // there is a dylib there that the exec expects to find in the CWD
    char *env_pwd = getenv("PWD");
    Exec = "cd ";
    Exec += env_pwd;
    Exec += "; ./";
    Exec += OutputBinary.c_str();
    ProgramArgs.push_back(Exec);
  }

  // Add optional parameters to the running program from Argv
  for (unsigned i = 0, e = Args.size(); i != e; ++i)
    ProgramArgs.push_back(Args[i]);

  // Now that we have a binary, run it!
  outs() << "<program>";
  outs().flush();
  LLVM_DEBUG(
      errs() << "\nAbout to run:\t";
      for (unsigned i = 0, e = ProgramArgs.size() - 1; i != e; ++i) errs()
      << " " << ProgramArgs[i];
      errs() << "\n";);

  FileRemover OutputBinaryRemover(OutputBinary.str(), !SaveTemps);

  if (RemoteClientPath.empty()) {
    LLVM_DEBUG(errs() << "<run locally>");
    std::string Error;
    int ExitCode = RunProgramWithTimeout(OutputBinary.str(), ProgramArgs,
                                         InputFile, OutputFile, OutputFile,
                                         Timeout, MemoryLimit, &Error);
    // Treat a signal (usually SIGSEGV) or timeout as part of the program output
    // so that crash-causing miscompilation is handled seamlessly.
    if (ExitCode < -1) {
      std::ofstream outFile(OutputFile.c_str(), std::ios_base::app);
      outFile << Error << '\n';
      outFile.close();
    }
    return ExitCode;
  } else {
    outs() << "<run remotely>";
    outs().flush();
    return RunProgramRemotelyWithTimeout(RemoteClientPath, ProgramArgs,
                                         InputFile, OutputFile, OutputFile,
                                         Timeout, MemoryLimit);
  }
}

Error CC::MakeSharedObject(const std::string &InputFile, FileType fileType,
                           std::string &OutputFile,
                           const std::vector<std::string> &ArgsForCC) {
  SmallString<128> UniqueFilename;
  std::error_code EC = sys::fs::createUniqueFile(
      InputFile + "-%%%%%%%" + LTDL_SHLIB_EXT, UniqueFilename);
  if (EC) {
    errs() << "Error making unique filename: " << EC.message() << "\n";
    exit(1);
  }
  OutputFile = UniqueFilename.str();

  std::vector<StringRef> CCArgs;

  CCArgs.push_back(CCPath);

  if (TargetTriple.getArch() == Triple::x86)
    CCArgs.push_back("-m32");

  for (std::vector<std::string>::const_iterator I = ccArgs.begin(),
                                                E = ccArgs.end();
       I != E; ++I)
    CCArgs.push_back(*I);

  // Compile the C/asm file into a shared object
  if (fileType != ObjectFile) {
    CCArgs.push_back("-x");
    CCArgs.push_back(fileType == AsmFile ? "assembler" : "c");
  }
  CCArgs.push_back("-fno-strict-aliasing");
  CCArgs.push_back(InputFile); // Specify the input filename.
  CCArgs.push_back("-x");
  CCArgs.push_back("none");
  if (TargetTriple.getArch() == Triple::sparc)
    CCArgs.push_back("-G"); // Compile a shared library, `-G' for Sparc
  else if (TargetTriple.isOSDarwin()) {
    // link all source files into a single module in data segment, rather than
    // generating blocks. dynamic_lookup requires that you set
    // MACOSX_DEPLOYMENT_TARGET=10.3 in your env.  FIXME: it would be better for
    // bugpoint to just pass that in the environment of CC.
    CCArgs.push_back("-single_module");
    CCArgs.push_back("-dynamiclib"); // `-dynamiclib' for MacOS X/PowerPC
    CCArgs.push_back("-undefined");
    CCArgs.push_back("dynamic_lookup");
  } else
    CCArgs.push_back("-shared"); // `-shared' for Linux/X86, maybe others

  if (TargetTriple.getArch() == Triple::x86_64)
    CCArgs.push_back("-fPIC"); // Requires shared objs to contain PIC

  if (TargetTriple.getArch() == Triple::sparc)
    CCArgs.push_back("-mcpu=v9");

  CCArgs.push_back("-o");
  CCArgs.push_back(OutputFile);         // Output to the right filename.
  CCArgs.push_back("-O2");              // Optimize the program a bit.

  // Add any arguments intended for CC. We locate them here because this is
  // most likely -L and -l options that need to come before other libraries but
  // after the source. Other options won't be sensitive to placement on the
  // command line, so this should be safe.
  for (unsigned i = 0, e = ArgsForCC.size(); i != e; ++i)
    CCArgs.push_back(ArgsForCC[i]);

  outs() << "<CC>";
  outs().flush();
  LLVM_DEBUG(errs() << "\nAbout to run:\t";
             for (unsigned i = 0, e = CCArgs.size() - 1; i != e; ++i) errs()
             << " " << CCArgs[i];
             errs() << "\n";);
  if (RunProgramWithTimeout(CCPath, CCArgs, "", "", ""))
    return ProcessFailure(CCPath, CCArgs);
  return Error::success();
}

/// create - Try to find the CC executable
///
CC *CC::create(const char *Argv0, std::string &Message,
               const std::string &CCBinary,
               const std::vector<std::string> *Args) {
  auto CCPath = FindProgramByName(CCBinary, Argv0, (void *)(intptr_t)&create);
  if (!CCPath) {
    Message = "Cannot find `" + CCBinary + "' in PATH: " +
              CCPath.getError().message() + "\n";
    return nullptr;
  }

  std::string RemoteClientPath;
  if (!RemoteClient.empty()) {
    auto Path = sys::findProgramByName(RemoteClient);
    if (!Path) {
      Message = "Cannot find `" + RemoteClient + "' in PATH: " +
                Path.getError().message() + "\n";
      return nullptr;
    }
    RemoteClientPath = *Path;
  }

  Message = "Found CC: " + *CCPath + "\n";
  return new CC(*CCPath, RemoteClientPath, Args);
}