PPExpressions.cpp
33.1 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
//===--- PPExpressions.cpp - Preprocessor Expression Evaluation -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the Preprocessor::EvaluateDirectiveExpression method,
// which parses and evaluates integer constant expressions for #if directives.
//
//===----------------------------------------------------------------------===//
//
// FIXME: implement testing for #assert's.
//
//===----------------------------------------------------------------------===//
#include "clang/Lex/Preprocessor.h"
#include "clang/Basic/IdentifierTable.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TokenKinds.h"
#include "clang/Lex/CodeCompletionHandler.h"
#include "clang/Lex/LexDiagnostic.h"
#include "clang/Lex/LiteralSupport.h"
#include "clang/Lex/MacroInfo.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Token.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SaveAndRestore.h"
#include <cassert>
using namespace clang;
namespace {
/// PPValue - Represents the value of a subexpression of a preprocessor
/// conditional and the source range covered by it.
class PPValue {
SourceRange Range;
IdentifierInfo *II;
public:
llvm::APSInt Val;
// Default ctor - Construct an 'invalid' PPValue.
PPValue(unsigned BitWidth) : Val(BitWidth) {}
// If this value was produced by directly evaluating an identifier, produce
// that identifier.
IdentifierInfo *getIdentifier() const { return II; }
void setIdentifier(IdentifierInfo *II) { this->II = II; }
unsigned getBitWidth() const { return Val.getBitWidth(); }
bool isUnsigned() const { return Val.isUnsigned(); }
SourceRange getRange() const { return Range; }
void setRange(SourceLocation L) { Range.setBegin(L); Range.setEnd(L); }
void setRange(SourceLocation B, SourceLocation E) {
Range.setBegin(B); Range.setEnd(E);
}
void setBegin(SourceLocation L) { Range.setBegin(L); }
void setEnd(SourceLocation L) { Range.setEnd(L); }
};
} // end anonymous namespace
static bool EvaluateDirectiveSubExpr(PPValue &LHS, unsigned MinPrec,
Token &PeekTok, bool ValueLive,
bool &IncludedUndefinedIds,
Preprocessor &PP);
/// DefinedTracker - This struct is used while parsing expressions to keep track
/// of whether !defined(X) has been seen.
///
/// With this simple scheme, we handle the basic forms:
/// !defined(X) and !defined X
/// but we also trivially handle (silly) stuff like:
/// !!!defined(X) and +!defined(X) and !+!+!defined(X) and !(defined(X)).
struct DefinedTracker {
/// Each time a Value is evaluated, it returns information about whether the
/// parsed value is of the form defined(X), !defined(X) or is something else.
enum TrackerState {
DefinedMacro, // defined(X)
NotDefinedMacro, // !defined(X)
Unknown // Something else.
} State;
/// TheMacro - When the state is DefinedMacro or NotDefinedMacro, this
/// indicates the macro that was checked.
IdentifierInfo *TheMacro;
bool IncludedUndefinedIds = false;
};
/// EvaluateDefined - Process a 'defined(sym)' expression.
static bool EvaluateDefined(PPValue &Result, Token &PeekTok, DefinedTracker &DT,
bool ValueLive, Preprocessor &PP) {
SourceLocation beginLoc(PeekTok.getLocation());
Result.setBegin(beginLoc);
// Get the next token, don't expand it.
PP.LexUnexpandedNonComment(PeekTok);
// Two options, it can either be a pp-identifier or a (.
SourceLocation LParenLoc;
if (PeekTok.is(tok::l_paren)) {
// Found a paren, remember we saw it and skip it.
LParenLoc = PeekTok.getLocation();
PP.LexUnexpandedNonComment(PeekTok);
}
if (PeekTok.is(tok::code_completion)) {
if (PP.getCodeCompletionHandler())
PP.getCodeCompletionHandler()->CodeCompleteMacroName(false);
PP.setCodeCompletionReached();
PP.LexUnexpandedNonComment(PeekTok);
}
// If we don't have a pp-identifier now, this is an error.
if (PP.CheckMacroName(PeekTok, MU_Other))
return true;
// Otherwise, we got an identifier, is it defined to something?
IdentifierInfo *II = PeekTok.getIdentifierInfo();
MacroDefinition Macro = PP.getMacroDefinition(II);
Result.Val = !!Macro;
Result.Val.setIsUnsigned(false); // Result is signed intmax_t.
DT.IncludedUndefinedIds = !Macro;
// If there is a macro, mark it used.
if (Result.Val != 0 && ValueLive)
PP.markMacroAsUsed(Macro.getMacroInfo());
// Save macro token for callback.
Token macroToken(PeekTok);
// If we are in parens, ensure we have a trailing ).
if (LParenLoc.isValid()) {
// Consume identifier.
Result.setEnd(PeekTok.getLocation());
PP.LexUnexpandedNonComment(PeekTok);
if (PeekTok.isNot(tok::r_paren)) {
PP.Diag(PeekTok.getLocation(), diag::err_pp_expected_after)
<< "'defined'" << tok::r_paren;
PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
return true;
}
// Consume the ).
PP.LexNonComment(PeekTok);
Result.setEnd(PeekTok.getLocation());
} else {
// Consume identifier.
Result.setEnd(PeekTok.getLocation());
PP.LexNonComment(PeekTok);
}
// [cpp.cond]p4:
// Prior to evaluation, macro invocations in the list of preprocessing
// tokens that will become the controlling constant expression are replaced
// (except for those macro names modified by the 'defined' unary operator),
// just as in normal text. If the token 'defined' is generated as a result
// of this replacement process or use of the 'defined' unary operator does
// not match one of the two specified forms prior to macro replacement, the
// behavior is undefined.
// This isn't an idle threat, consider this program:
// #define FOO
// #define BAR defined(FOO)
// #if BAR
// ...
// #else
// ...
// #endif
// clang and gcc will pick the #if branch while Visual Studio will take the
// #else branch. Emit a warning about this undefined behavior.
if (beginLoc.isMacroID()) {
bool IsFunctionTypeMacro =
PP.getSourceManager()
.getSLocEntry(PP.getSourceManager().getFileID(beginLoc))
.getExpansion()
.isFunctionMacroExpansion();
// For object-type macros, it's easy to replace
// #define FOO defined(BAR)
// with
// #if defined(BAR)
// #define FOO 1
// #else
// #define FOO 0
// #endif
// and doing so makes sense since compilers handle this differently in
// practice (see example further up). But for function-type macros,
// there is no good way to write
// # define FOO(x) (defined(M_ ## x) && M_ ## x)
// in a different way, and compilers seem to agree on how to behave here.
// So warn by default on object-type macros, but only warn in -pedantic
// mode on function-type macros.
if (IsFunctionTypeMacro)
PP.Diag(beginLoc, diag::warn_defined_in_function_type_macro);
else
PP.Diag(beginLoc, diag::warn_defined_in_object_type_macro);
}
// Invoke the 'defined' callback.
if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
Callbacks->Defined(macroToken, Macro,
SourceRange(beginLoc, PeekTok.getLocation()));
}
// Success, remember that we saw defined(X).
DT.State = DefinedTracker::DefinedMacro;
DT.TheMacro = II;
return false;
}
/// EvaluateValue - Evaluate the token PeekTok (and any others needed) and
/// return the computed value in Result. Return true if there was an error
/// parsing. This function also returns information about the form of the
/// expression in DT. See above for information on what DT means.
///
/// If ValueLive is false, then this value is being evaluated in a context where
/// the result is not used. As such, avoid diagnostics that relate to
/// evaluation.
static bool EvaluateValue(PPValue &Result, Token &PeekTok, DefinedTracker &DT,
bool ValueLive, Preprocessor &PP) {
DT.State = DefinedTracker::Unknown;
Result.setIdentifier(nullptr);
if (PeekTok.is(tok::code_completion)) {
if (PP.getCodeCompletionHandler())
PP.getCodeCompletionHandler()->CodeCompletePreprocessorExpression();
PP.setCodeCompletionReached();
PP.LexNonComment(PeekTok);
}
switch (PeekTok.getKind()) {
default:
// If this token's spelling is a pp-identifier, check to see if it is
// 'defined' or if it is a macro. Note that we check here because many
// keywords are pp-identifiers, so we can't check the kind.
if (IdentifierInfo *II = PeekTok.getIdentifierInfo()) {
// Handle "defined X" and "defined(X)".
if (II->isStr("defined"))
return EvaluateDefined(Result, PeekTok, DT, ValueLive, PP);
if (!II->isCPlusPlusOperatorKeyword()) {
// If this identifier isn't 'defined' or one of the special
// preprocessor keywords and it wasn't macro expanded, it turns
// into a simple 0
if (ValueLive)
PP.Diag(PeekTok, diag::warn_pp_undef_identifier) << II;
Result.Val = 0;
Result.Val.setIsUnsigned(false); // "0" is signed intmax_t 0.
Result.setIdentifier(II);
Result.setRange(PeekTok.getLocation());
DT.IncludedUndefinedIds = true;
PP.LexNonComment(PeekTok);
return false;
}
}
PP.Diag(PeekTok, diag::err_pp_expr_bad_token_start_expr);
return true;
case tok::eod:
case tok::r_paren:
// If there is no expression, report and exit.
PP.Diag(PeekTok, diag::err_pp_expected_value_in_expr);
return true;
case tok::numeric_constant: {
SmallString<64> IntegerBuffer;
bool NumberInvalid = false;
StringRef Spelling = PP.getSpelling(PeekTok, IntegerBuffer,
&NumberInvalid);
if (NumberInvalid)
return true; // a diagnostic was already reported
NumericLiteralParser Literal(Spelling, PeekTok.getLocation(), PP);
if (Literal.hadError)
return true; // a diagnostic was already reported.
if (Literal.isFloatingLiteral() || Literal.isImaginary) {
PP.Diag(PeekTok, diag::err_pp_illegal_floating_literal);
return true;
}
assert(Literal.isIntegerLiteral() && "Unknown ppnumber");
// Complain about, and drop, any ud-suffix.
if (Literal.hasUDSuffix())
PP.Diag(PeekTok, diag::err_pp_invalid_udl) << /*integer*/1;
// 'long long' is a C99 or C++11 feature.
if (!PP.getLangOpts().C99 && Literal.isLongLong) {
if (PP.getLangOpts().CPlusPlus)
PP.Diag(PeekTok,
PP.getLangOpts().CPlusPlus11 ?
diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
else
PP.Diag(PeekTok, diag::ext_c99_longlong);
}
// Parse the integer literal into Result.
if (Literal.GetIntegerValue(Result.Val)) {
// Overflow parsing integer literal.
if (ValueLive)
PP.Diag(PeekTok, diag::err_integer_literal_too_large)
<< /* Unsigned */ 1;
Result.Val.setIsUnsigned(true);
} else {
// Set the signedness of the result to match whether there was a U suffix
// or not.
Result.Val.setIsUnsigned(Literal.isUnsigned);
// Detect overflow based on whether the value is signed. If signed
// and if the value is too large, emit a warning "integer constant is so
// large that it is unsigned" e.g. on 12345678901234567890 where intmax_t
// is 64-bits.
if (!Literal.isUnsigned && Result.Val.isNegative()) {
// Octal, hexadecimal, and binary literals are implicitly unsigned if
// the value does not fit into a signed integer type.
if (ValueLive && Literal.getRadix() == 10)
PP.Diag(PeekTok, diag::ext_integer_literal_too_large_for_signed);
Result.Val.setIsUnsigned(true);
}
}
// Consume the token.
Result.setRange(PeekTok.getLocation());
PP.LexNonComment(PeekTok);
return false;
}
case tok::char_constant: // 'x'
case tok::wide_char_constant: // L'x'
case tok::utf8_char_constant: // u8'x'
case tok::utf16_char_constant: // u'x'
case tok::utf32_char_constant: { // U'x'
// Complain about, and drop, any ud-suffix.
if (PeekTok.hasUDSuffix())
PP.Diag(PeekTok, diag::err_pp_invalid_udl) << /*character*/0;
SmallString<32> CharBuffer;
bool CharInvalid = false;
StringRef ThisTok = PP.getSpelling(PeekTok, CharBuffer, &CharInvalid);
if (CharInvalid)
return true;
CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(),
PeekTok.getLocation(), PP, PeekTok.getKind());
if (Literal.hadError())
return true; // A diagnostic was already emitted.
// Character literals are always int or wchar_t, expand to intmax_t.
const TargetInfo &TI = PP.getTargetInfo();
unsigned NumBits;
if (Literal.isMultiChar())
NumBits = TI.getIntWidth();
else if (Literal.isWide())
NumBits = TI.getWCharWidth();
else if (Literal.isUTF16())
NumBits = TI.getChar16Width();
else if (Literal.isUTF32())
NumBits = TI.getChar32Width();
else // char or char8_t
NumBits = TI.getCharWidth();
// Set the width.
llvm::APSInt Val(NumBits);
// Set the value.
Val = Literal.getValue();
// Set the signedness. UTF-16 and UTF-32 are always unsigned
if (Literal.isWide())
Val.setIsUnsigned(!TargetInfo::isTypeSigned(TI.getWCharType()));
else if (!Literal.isUTF16() && !Literal.isUTF32())
Val.setIsUnsigned(!PP.getLangOpts().CharIsSigned);
if (Result.Val.getBitWidth() > Val.getBitWidth()) {
Result.Val = Val.extend(Result.Val.getBitWidth());
} else {
assert(Result.Val.getBitWidth() == Val.getBitWidth() &&
"intmax_t smaller than char/wchar_t?");
Result.Val = Val;
}
// Consume the token.
Result.setRange(PeekTok.getLocation());
PP.LexNonComment(PeekTok);
return false;
}
case tok::l_paren: {
SourceLocation Start = PeekTok.getLocation();
PP.LexNonComment(PeekTok); // Eat the (.
// Parse the value and if there are any binary operators involved, parse
// them.
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
// If this is a silly value like (X), which doesn't need parens, check for
// !(defined X).
if (PeekTok.is(tok::r_paren)) {
// Just use DT unmodified as our result.
} else {
// Otherwise, we have something like (x+y), and we consumed '(x'.
if (EvaluateDirectiveSubExpr(Result, 1, PeekTok, ValueLive,
DT.IncludedUndefinedIds, PP))
return true;
if (PeekTok.isNot(tok::r_paren)) {
PP.Diag(PeekTok.getLocation(), diag::err_pp_expected_rparen)
<< Result.getRange();
PP.Diag(Start, diag::note_matching) << tok::l_paren;
return true;
}
DT.State = DefinedTracker::Unknown;
}
Result.setRange(Start, PeekTok.getLocation());
Result.setIdentifier(nullptr);
PP.LexNonComment(PeekTok); // Eat the ).
return false;
}
case tok::plus: {
SourceLocation Start = PeekTok.getLocation();
// Unary plus doesn't modify the value.
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
Result.setBegin(Start);
Result.setIdentifier(nullptr);
return false;
}
case tok::minus: {
SourceLocation Loc = PeekTok.getLocation();
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
Result.setBegin(Loc);
Result.setIdentifier(nullptr);
// C99 6.5.3.3p3: The sign of the result matches the sign of the operand.
Result.Val = -Result.Val;
// -MININT is the only thing that overflows. Unsigned never overflows.
bool Overflow = !Result.isUnsigned() && Result.Val.isMinSignedValue();
// If this operator is live and overflowed, report the issue.
if (Overflow && ValueLive)
PP.Diag(Loc, diag::warn_pp_expr_overflow) << Result.getRange();
DT.State = DefinedTracker::Unknown;
return false;
}
case tok::tilde: {
SourceLocation Start = PeekTok.getLocation();
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
Result.setBegin(Start);
Result.setIdentifier(nullptr);
// C99 6.5.3.3p4: The sign of the result matches the sign of the operand.
Result.Val = ~Result.Val;
DT.State = DefinedTracker::Unknown;
return false;
}
case tok::exclaim: {
SourceLocation Start = PeekTok.getLocation();
PP.LexNonComment(PeekTok);
if (EvaluateValue(Result, PeekTok, DT, ValueLive, PP)) return true;
Result.setBegin(Start);
Result.Val = !Result.Val;
// C99 6.5.3.3p5: The sign of the result is 'int', aka it is signed.
Result.Val.setIsUnsigned(false);
Result.setIdentifier(nullptr);
if (DT.State == DefinedTracker::DefinedMacro)
DT.State = DefinedTracker::NotDefinedMacro;
else if (DT.State == DefinedTracker::NotDefinedMacro)
DT.State = DefinedTracker::DefinedMacro;
return false;
}
case tok::kw_true:
case tok::kw_false:
Result.Val = PeekTok.getKind() == tok::kw_true;
Result.Val.setIsUnsigned(false); // "0" is signed intmax_t 0.
Result.setIdentifier(PeekTok.getIdentifierInfo());
Result.setRange(PeekTok.getLocation());
PP.LexNonComment(PeekTok);
return false;
// FIXME: Handle #assert
}
}
/// getPrecedence - Return the precedence of the specified binary operator
/// token. This returns:
/// ~0 - Invalid token.
/// 14 -> 3 - various operators.
/// 0 - 'eod' or ')'
static unsigned getPrecedence(tok::TokenKind Kind) {
switch (Kind) {
default: return ~0U;
case tok::percent:
case tok::slash:
case tok::star: return 14;
case tok::plus:
case tok::minus: return 13;
case tok::lessless:
case tok::greatergreater: return 12;
case tok::lessequal:
case tok::less:
case tok::greaterequal:
case tok::greater: return 11;
case tok::exclaimequal:
case tok::equalequal: return 10;
case tok::amp: return 9;
case tok::caret: return 8;
case tok::pipe: return 7;
case tok::ampamp: return 6;
case tok::pipepipe: return 5;
case tok::question: return 4;
case tok::comma: return 3;
case tok::colon: return 2;
case tok::r_paren: return 0;// Lowest priority, end of expr.
case tok::eod: return 0;// Lowest priority, end of directive.
}
}
static void diagnoseUnexpectedOperator(Preprocessor &PP, PPValue &LHS,
Token &Tok) {
if (Tok.is(tok::l_paren) && LHS.getIdentifier())
PP.Diag(LHS.getRange().getBegin(), diag::err_pp_expr_bad_token_lparen)
<< LHS.getIdentifier();
else
PP.Diag(Tok.getLocation(), diag::err_pp_expr_bad_token_binop)
<< LHS.getRange();
}
/// EvaluateDirectiveSubExpr - Evaluate the subexpression whose first token is
/// PeekTok, and whose precedence is PeekPrec. This returns the result in LHS.
///
/// If ValueLive is false, then this value is being evaluated in a context where
/// the result is not used. As such, avoid diagnostics that relate to
/// evaluation, such as division by zero warnings.
static bool EvaluateDirectiveSubExpr(PPValue &LHS, unsigned MinPrec,
Token &PeekTok, bool ValueLive,
bool &IncludedUndefinedIds,
Preprocessor &PP) {
unsigned PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
diagnoseUnexpectedOperator(PP, LHS, PeekTok);
return true;
}
while (true) {
// If this token has a lower precedence than we are allowed to parse, return
// it so that higher levels of the recursion can parse it.
if (PeekPrec < MinPrec)
return false;
tok::TokenKind Operator = PeekTok.getKind();
// If this is a short-circuiting operator, see if the RHS of the operator is
// dead. Note that this cannot just clobber ValueLive. Consider
// "0 && 1 ? 4 : 1 / 0", which is parsed as "(0 && 1) ? 4 : (1 / 0)". In
// this example, the RHS of the && being dead does not make the rest of the
// expr dead.
bool RHSIsLive;
if (Operator == tok::ampamp && LHS.Val == 0)
RHSIsLive = false; // RHS of "0 && x" is dead.
else if (Operator == tok::pipepipe && LHS.Val != 0)
RHSIsLive = false; // RHS of "1 || x" is dead.
else if (Operator == tok::question && LHS.Val == 0)
RHSIsLive = false; // RHS (x) of "0 ? x : y" is dead.
else
RHSIsLive = ValueLive;
// Consume the operator, remembering the operator's location for reporting.
SourceLocation OpLoc = PeekTok.getLocation();
PP.LexNonComment(PeekTok);
PPValue RHS(LHS.getBitWidth());
// Parse the RHS of the operator.
DefinedTracker DT;
if (EvaluateValue(RHS, PeekTok, DT, RHSIsLive, PP)) return true;
IncludedUndefinedIds = DT.IncludedUndefinedIds;
// Remember the precedence of this operator and get the precedence of the
// operator immediately to the right of the RHS.
unsigned ThisPrec = PeekPrec;
PeekPrec = getPrecedence(PeekTok.getKind());
// If this token isn't valid, report the error.
if (PeekPrec == ~0U) {
diagnoseUnexpectedOperator(PP, RHS, PeekTok);
return true;
}
// Decide whether to include the next binop in this subexpression. For
// example, when parsing x+y*z and looking at '*', we want to recursively
// handle y*z as a single subexpression. We do this because the precedence
// of * is higher than that of +. The only strange case we have to handle
// here is for the ?: operator, where the precedence is actually lower than
// the LHS of the '?'. The grammar rule is:
//
// conditional-expression ::=
// logical-OR-expression ? expression : conditional-expression
// where 'expression' is actually comma-expression.
unsigned RHSPrec;
if (Operator == tok::question)
// The RHS of "?" should be maximally consumed as an expression.
RHSPrec = getPrecedence(tok::comma);
else // All others should munch while higher precedence.
RHSPrec = ThisPrec+1;
if (PeekPrec >= RHSPrec) {
if (EvaluateDirectiveSubExpr(RHS, RHSPrec, PeekTok, RHSIsLive,
IncludedUndefinedIds, PP))
return true;
PeekPrec = getPrecedence(PeekTok.getKind());
}
assert(PeekPrec <= ThisPrec && "Recursion didn't work!");
// Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if
// either operand is unsigned.
llvm::APSInt Res(LHS.getBitWidth());
switch (Operator) {
case tok::question: // No UAC for x and y in "x ? y : z".
case tok::lessless: // Shift amount doesn't UAC with shift value.
case tok::greatergreater: // Shift amount doesn't UAC with shift value.
case tok::comma: // Comma operands are not subject to UACs.
case tok::pipepipe: // Logical || does not do UACs.
case tok::ampamp: // Logical && does not do UACs.
break; // No UAC
default:
Res.setIsUnsigned(LHS.isUnsigned()|RHS.isUnsigned());
// If this just promoted something from signed to unsigned, and if the
// value was negative, warn about it.
if (ValueLive && Res.isUnsigned()) {
if (!LHS.isUnsigned() && LHS.Val.isNegative())
PP.Diag(OpLoc, diag::warn_pp_convert_to_positive) << 0
<< LHS.Val.toString(10, true) + " to " +
LHS.Val.toString(10, false)
<< LHS.getRange() << RHS.getRange();
if (!RHS.isUnsigned() && RHS.Val.isNegative())
PP.Diag(OpLoc, diag::warn_pp_convert_to_positive) << 1
<< RHS.Val.toString(10, true) + " to " +
RHS.Val.toString(10, false)
<< LHS.getRange() << RHS.getRange();
}
LHS.Val.setIsUnsigned(Res.isUnsigned());
RHS.Val.setIsUnsigned(Res.isUnsigned());
}
bool Overflow = false;
switch (Operator) {
default: llvm_unreachable("Unknown operator token!");
case tok::percent:
if (RHS.Val != 0)
Res = LHS.Val % RHS.Val;
else if (ValueLive) {
PP.Diag(OpLoc, diag::err_pp_remainder_by_zero)
<< LHS.getRange() << RHS.getRange();
return true;
}
break;
case tok::slash:
if (RHS.Val != 0) {
if (LHS.Val.isSigned())
Res = llvm::APSInt(LHS.Val.sdiv_ov(RHS.Val, Overflow), false);
else
Res = LHS.Val / RHS.Val;
} else if (ValueLive) {
PP.Diag(OpLoc, diag::err_pp_division_by_zero)
<< LHS.getRange() << RHS.getRange();
return true;
}
break;
case tok::star:
if (Res.isSigned())
Res = llvm::APSInt(LHS.Val.smul_ov(RHS.Val, Overflow), false);
else
Res = LHS.Val * RHS.Val;
break;
case tok::lessless: {
// Determine whether overflow is about to happen.
if (LHS.isUnsigned())
Res = LHS.Val.ushl_ov(RHS.Val, Overflow);
else
Res = llvm::APSInt(LHS.Val.sshl_ov(RHS.Val, Overflow), false);
break;
}
case tok::greatergreater: {
// Determine whether overflow is about to happen.
unsigned ShAmt = static_cast<unsigned>(RHS.Val.getLimitedValue());
if (ShAmt >= LHS.getBitWidth()) {
Overflow = true;
ShAmt = LHS.getBitWidth()-1;
}
Res = LHS.Val >> ShAmt;
break;
}
case tok::plus:
if (LHS.isUnsigned())
Res = LHS.Val + RHS.Val;
else
Res = llvm::APSInt(LHS.Val.sadd_ov(RHS.Val, Overflow), false);
break;
case tok::minus:
if (LHS.isUnsigned())
Res = LHS.Val - RHS.Val;
else
Res = llvm::APSInt(LHS.Val.ssub_ov(RHS.Val, Overflow), false);
break;
case tok::lessequal:
Res = LHS.Val <= RHS.Val;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::less:
Res = LHS.Val < RHS.Val;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::greaterequal:
Res = LHS.Val >= RHS.Val;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::greater:
Res = LHS.Val > RHS.Val;
Res.setIsUnsigned(false); // C99 6.5.8p6, result is always int (signed)
break;
case tok::exclaimequal:
Res = LHS.Val != RHS.Val;
Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed)
break;
case tok::equalequal:
Res = LHS.Val == RHS.Val;
Res.setIsUnsigned(false); // C99 6.5.9p3, result is always int (signed)
break;
case tok::amp:
Res = LHS.Val & RHS.Val;
break;
case tok::caret:
Res = LHS.Val ^ RHS.Val;
break;
case tok::pipe:
Res = LHS.Val | RHS.Val;
break;
case tok::ampamp:
Res = (LHS.Val != 0 && RHS.Val != 0);
Res.setIsUnsigned(false); // C99 6.5.13p3, result is always int (signed)
break;
case tok::pipepipe:
Res = (LHS.Val != 0 || RHS.Val != 0);
Res.setIsUnsigned(false); // C99 6.5.14p3, result is always int (signed)
break;
case tok::comma:
// Comma is invalid in pp expressions in c89/c++ mode, but is valid in C99
// if not being evaluated.
if (!PP.getLangOpts().C99 || ValueLive)
PP.Diag(OpLoc, diag::ext_pp_comma_expr)
<< LHS.getRange() << RHS.getRange();
Res = RHS.Val; // LHS = LHS,RHS -> RHS.
break;
case tok::question: {
// Parse the : part of the expression.
if (PeekTok.isNot(tok::colon)) {
PP.Diag(PeekTok.getLocation(), diag::err_expected)
<< tok::colon << LHS.getRange() << RHS.getRange();
PP.Diag(OpLoc, diag::note_matching) << tok::question;
return true;
}
// Consume the :.
PP.LexNonComment(PeekTok);
// Evaluate the value after the :.
bool AfterColonLive = ValueLive && LHS.Val == 0;
PPValue AfterColonVal(LHS.getBitWidth());
DefinedTracker DT;
if (EvaluateValue(AfterColonVal, PeekTok, DT, AfterColonLive, PP))
return true;
// Parse anything after the : with the same precedence as ?. We allow
// things of equal precedence because ?: is right associative.
if (EvaluateDirectiveSubExpr(AfterColonVal, ThisPrec,
PeekTok, AfterColonLive,
IncludedUndefinedIds, PP))
return true;
// Now that we have the condition, the LHS and the RHS of the :, evaluate.
Res = LHS.Val != 0 ? RHS.Val : AfterColonVal.Val;
RHS.setEnd(AfterColonVal.getRange().getEnd());
// Usual arithmetic conversions (C99 6.3.1.8p1): result is unsigned if
// either operand is unsigned.
Res.setIsUnsigned(RHS.isUnsigned() | AfterColonVal.isUnsigned());
// Figure out the precedence of the token after the : part.
PeekPrec = getPrecedence(PeekTok.getKind());
break;
}
case tok::colon:
// Don't allow :'s to float around without being part of ?: exprs.
PP.Diag(OpLoc, diag::err_pp_colon_without_question)
<< LHS.getRange() << RHS.getRange();
return true;
}
// If this operator is live and overflowed, report the issue.
if (Overflow && ValueLive)
PP.Diag(OpLoc, diag::warn_pp_expr_overflow)
<< LHS.getRange() << RHS.getRange();
// Put the result back into 'LHS' for our next iteration.
LHS.Val = Res;
LHS.setEnd(RHS.getRange().getEnd());
RHS.setIdentifier(nullptr);
}
}
/// EvaluateDirectiveExpression - Evaluate an integer constant expression that
/// may occur after a #if or #elif directive. If the expression is equivalent
/// to "!defined(X)" return X in IfNDefMacro.
Preprocessor::DirectiveEvalResult
Preprocessor::EvaluateDirectiveExpression(IdentifierInfo *&IfNDefMacro) {
SaveAndRestore<bool> PPDir(ParsingIfOrElifDirective, true);
// Save the current state of 'DisableMacroExpansion' and reset it to false. If
// 'DisableMacroExpansion' is true, then we must be in a macro argument list
// in which case a directive is undefined behavior. We want macros to be able
// to recursively expand in order to get more gcc-list behavior, so we force
// DisableMacroExpansion to false and restore it when we're done parsing the
// expression.
bool DisableMacroExpansionAtStartOfDirective = DisableMacroExpansion;
DisableMacroExpansion = false;
// Peek ahead one token.
Token Tok;
LexNonComment(Tok);
// C99 6.10.1p3 - All expressions are evaluated as intmax_t or uintmax_t.
unsigned BitWidth = getTargetInfo().getIntMaxTWidth();
PPValue ResVal(BitWidth);
DefinedTracker DT;
SourceLocation ExprStartLoc = SourceMgr.getExpansionLoc(Tok.getLocation());
if (EvaluateValue(ResVal, Tok, DT, true, *this)) {
// Parse error, skip the rest of the macro line.
SourceRange ConditionRange = ExprStartLoc;
if (Tok.isNot(tok::eod))
ConditionRange = DiscardUntilEndOfDirective();
// Restore 'DisableMacroExpansion'.
DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
// We cannot trust the source range from the value because there was a
// parse error. Track the range manually -- the end of the directive is the
// end of the condition range.
return {false,
DT.IncludedUndefinedIds,
{ExprStartLoc, ConditionRange.getEnd()}};
}
// If we are at the end of the expression after just parsing a value, there
// must be no (unparenthesized) binary operators involved, so we can exit
// directly.
if (Tok.is(tok::eod)) {
// If the expression we parsed was of the form !defined(macro), return the
// macro in IfNDefMacro.
if (DT.State == DefinedTracker::NotDefinedMacro)
IfNDefMacro = DT.TheMacro;
// Restore 'DisableMacroExpansion'.
DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
return {ResVal.Val != 0, DT.IncludedUndefinedIds, ResVal.getRange()};
}
// Otherwise, we must have a binary operator (e.g. "#if 1 < 2"), so parse the
// operator and the stuff after it.
if (EvaluateDirectiveSubExpr(ResVal, getPrecedence(tok::question),
Tok, true, DT.IncludedUndefinedIds, *this)) {
// Parse error, skip the rest of the macro line.
if (Tok.isNot(tok::eod))
DiscardUntilEndOfDirective();
// Restore 'DisableMacroExpansion'.
DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
return {false, DT.IncludedUndefinedIds, ResVal.getRange()};
}
// If we aren't at the tok::eod token, something bad happened, like an extra
// ')' token.
if (Tok.isNot(tok::eod)) {
Diag(Tok, diag::err_pp_expected_eol);
DiscardUntilEndOfDirective();
}
// Restore 'DisableMacroExpansion'.
DisableMacroExpansion = DisableMacroExpansionAtStartOfDirective;
return {ResVal.Val != 0, DT.IncludedUndefinedIds, ResVal.getRange()};
}