AArch64TargetMachine.cpp 25 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
//===-- AArch64TargetMachine.cpp - Define TargetMachine for AArch64 -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//

#include "AArch64TargetMachine.h"
#include "AArch64.h"
#include "AArch64MacroFusion.h"
#include "AArch64Subtarget.h"
#include "AArch64TargetObjectFile.h"
#include "AArch64TargetTransformInfo.h"
#include "MCTargetDesc/AArch64MCTargetDesc.h"
#include "TargetInfo/AArch64TargetInfo.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/CSEConfigBase.h"
#include "llvm/CodeGen/GlobalISel/IRTranslator.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/Localizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#include "llvm/CodeGen/MachineScheduler.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/InitializePasses.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/CFGuard.h"
#include "llvm/Transforms/Scalar.h"
#include <memory>
#include <string>

using namespace llvm;

static cl::opt<bool> EnableCCMP("aarch64-enable-ccmp",
                                cl::desc("Enable the CCMP formation pass"),
                                cl::init(true), cl::Hidden);

static cl::opt<bool>
    EnableCondBrTuning("aarch64-enable-cond-br-tune",
                       cl::desc("Enable the conditional branch tuning pass"),
                       cl::init(true), cl::Hidden);

static cl::opt<bool> EnableMCR("aarch64-enable-mcr",
                               cl::desc("Enable the machine combiner pass"),
                               cl::init(true), cl::Hidden);

static cl::opt<bool> EnableStPairSuppress("aarch64-enable-stp-suppress",
                                          cl::desc("Suppress STP for AArch64"),
                                          cl::init(true), cl::Hidden);

static cl::opt<bool> EnableAdvSIMDScalar(
    "aarch64-enable-simd-scalar",
    cl::desc("Enable use of AdvSIMD scalar integer instructions"),
    cl::init(false), cl::Hidden);

static cl::opt<bool>
    EnablePromoteConstant("aarch64-enable-promote-const",
                          cl::desc("Enable the promote constant pass"),
                          cl::init(true), cl::Hidden);

static cl::opt<bool> EnableCollectLOH(
    "aarch64-enable-collect-loh",
    cl::desc("Enable the pass that emits the linker optimization hints (LOH)"),
    cl::init(true), cl::Hidden);

static cl::opt<bool>
    EnableDeadRegisterElimination("aarch64-enable-dead-defs", cl::Hidden,
                                  cl::desc("Enable the pass that removes dead"
                                           " definitons and replaces stores to"
                                           " them with stores to the zero"
                                           " register"),
                                  cl::init(true));

static cl::opt<bool> EnableRedundantCopyElimination(
    "aarch64-enable-copyelim",
    cl::desc("Enable the redundant copy elimination pass"), cl::init(true),
    cl::Hidden);

static cl::opt<bool> EnableLoadStoreOpt("aarch64-enable-ldst-opt",
                                        cl::desc("Enable the load/store pair"
                                                 " optimization pass"),
                                        cl::init(true), cl::Hidden);

static cl::opt<bool> EnableAtomicTidy(
    "aarch64-enable-atomic-cfg-tidy", cl::Hidden,
    cl::desc("Run SimplifyCFG after expanding atomic operations"
             " to make use of cmpxchg flow-based information"),
    cl::init(true));

static cl::opt<bool>
EnableEarlyIfConversion("aarch64-enable-early-ifcvt", cl::Hidden,
                        cl::desc("Run early if-conversion"),
                        cl::init(true));

static cl::opt<bool>
    EnableCondOpt("aarch64-enable-condopt",
                  cl::desc("Enable the condition optimizer pass"),
                  cl::init(true), cl::Hidden);

static cl::opt<bool>
EnableA53Fix835769("aarch64-fix-cortex-a53-835769", cl::Hidden,
                cl::desc("Work around Cortex-A53 erratum 835769"),
                cl::init(false));

static cl::opt<bool>
    EnableGEPOpt("aarch64-enable-gep-opt", cl::Hidden,
                 cl::desc("Enable optimizations on complex GEPs"),
                 cl::init(false));

static cl::opt<bool>
    BranchRelaxation("aarch64-enable-branch-relax", cl::Hidden, cl::init(true),
                     cl::desc("Relax out of range conditional branches"));

static cl::opt<bool> EnableCompressJumpTables(
    "aarch64-enable-compress-jump-tables", cl::Hidden, cl::init(true),
    cl::desc("Use smallest entry possible for jump tables"));

// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
    EnableGlobalMerge("aarch64-enable-global-merge", cl::Hidden,
                      cl::desc("Enable the global merge pass"));

static cl::opt<bool>
    EnableLoopDataPrefetch("aarch64-enable-loop-data-prefetch", cl::Hidden,
                           cl::desc("Enable the loop data prefetch pass"),
                           cl::init(true));

static cl::opt<int> EnableGlobalISelAtO(
    "aarch64-enable-global-isel-at-O", cl::Hidden,
    cl::desc("Enable GlobalISel at or below an opt level (-1 to disable)"),
    cl::init(0));

static cl::opt<bool> EnableFalkorHWPFFix("aarch64-enable-falkor-hwpf-fix",
                                         cl::init(true), cl::Hidden);

static cl::opt<bool>
    EnableBranchTargets("aarch64-enable-branch-targets", cl::Hidden,
                        cl::desc("Enable the AAcrh64 branch target pass"),
                        cl::init(true));

extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeAArch64Target() {
  // Register the target.
  RegisterTargetMachine<AArch64leTargetMachine> X(getTheAArch64leTarget());
  RegisterTargetMachine<AArch64beTargetMachine> Y(getTheAArch64beTarget());
  RegisterTargetMachine<AArch64leTargetMachine> Z(getTheARM64Target());
  RegisterTargetMachine<AArch64leTargetMachine> W(getTheARM64_32Target());
  RegisterTargetMachine<AArch64leTargetMachine> V(getTheAArch64_32Target());
  auto PR = PassRegistry::getPassRegistry();
  initializeGlobalISel(*PR);
  initializeAArch64A53Fix835769Pass(*PR);
  initializeAArch64A57FPLoadBalancingPass(*PR);
  initializeAArch64AdvSIMDScalarPass(*PR);
  initializeAArch64BranchTargetsPass(*PR);
  initializeAArch64CollectLOHPass(*PR);
  initializeAArch64CompressJumpTablesPass(*PR);
  initializeAArch64ConditionalComparesPass(*PR);
  initializeAArch64ConditionOptimizerPass(*PR);
  initializeAArch64DeadRegisterDefinitionsPass(*PR);
  initializeAArch64ExpandPseudoPass(*PR);
  initializeAArch64LoadStoreOptPass(*PR);
  initializeAArch64SIMDInstrOptPass(*PR);
  initializeAArch64PreLegalizerCombinerPass(*PR);
  initializeAArch64PromoteConstantPass(*PR);
  initializeAArch64RedundantCopyEliminationPass(*PR);
  initializeAArch64StorePairSuppressPass(*PR);
  initializeFalkorHWPFFixPass(*PR);
  initializeFalkorMarkStridedAccessesLegacyPass(*PR);
  initializeLDTLSCleanupPass(*PR);
  initializeAArch64SpeculationHardeningPass(*PR);
  initializeAArch64StackTaggingPass(*PR);
  initializeAArch64StackTaggingPreRAPass(*PR);
}

//===----------------------------------------------------------------------===//
// AArch64 Lowering public interface.
//===----------------------------------------------------------------------===//
static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSBinFormatMachO())
    return std::make_unique<AArch64_MachoTargetObjectFile>();
  if (TT.isOSBinFormatCOFF())
    return std::make_unique<AArch64_COFFTargetObjectFile>();

  return std::make_unique<AArch64_ELFTargetObjectFile>();
}

// Helper function to build a DataLayout string
static std::string computeDataLayout(const Triple &TT,
                                     const MCTargetOptions &Options,
                                     bool LittleEndian) {
  if (Options.getABIName() == "ilp32")
    return "e-m:e-p:32:32-i8:8-i16:16-i64:64-S128";
  if (TT.isOSBinFormatMachO()) {
    if (TT.getArch() == Triple::aarch64_32)
      return "e-m:o-p:32:32-i64:64-i128:128-n32:64-S128";
    return "e-m:o-i64:64-i128:128-n32:64-S128";
  }
  if (TT.isOSBinFormatCOFF())
    return "e-m:w-p:64:64-i32:32-i64:64-i128:128-n32:64-S128";
  if (LittleEndian)
    return "e-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128";
  return "E-m:e-i8:8:32-i16:16:32-i64:64-i128:128-n32:64-S128";
}

static Reloc::Model getEffectiveRelocModel(const Triple &TT,
                                           Optional<Reloc::Model> RM) {
  // AArch64 Darwin and Windows are always PIC.
  if (TT.isOSDarwin() || TT.isOSWindows())
    return Reloc::PIC_;
  // On ELF platforms the default static relocation model has a smart enough
  // linker to cope with referencing external symbols defined in a shared
  // library. Hence DynamicNoPIC doesn't need to be promoted to PIC.
  if (!RM.hasValue() || *RM == Reloc::DynamicNoPIC)
    return Reloc::Static;
  return *RM;
}

static CodeModel::Model
getEffectiveAArch64CodeModel(const Triple &TT, Optional<CodeModel::Model> CM,
                             bool JIT) {
  if (CM) {
    if (*CM != CodeModel::Small && *CM != CodeModel::Tiny &&
        *CM != CodeModel::Large) {
      if (!TT.isOSFuchsia())
        report_fatal_error(
            "Only small, tiny and large code models are allowed on AArch64");
      else if (*CM != CodeModel::Kernel)
        report_fatal_error("Only small, tiny, kernel, and large code models "
                           "are allowed on AArch64");
    } else if (*CM == CodeModel::Tiny && !TT.isOSBinFormatELF())
      report_fatal_error("tiny code model is only supported on ELF");
    return *CM;
  }
  // The default MCJIT memory managers make no guarantees about where they can
  // find an executable page; JITed code needs to be able to refer to globals
  // no matter how far away they are.
  // We should set the CodeModel::Small for Windows ARM64 in JIT mode,
  // since with large code model LLVM generating 4 MOV instructions, and
  // Windows doesn't support relocating these long branch (4 MOVs).
  if (JIT && !TT.isOSWindows())
    return CodeModel::Large;
  return CodeModel::Small;
}

/// Create an AArch64 architecture model.
///
AArch64TargetMachine::AArch64TargetMachine(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Optional<Reloc::Model> RM,
                                           Optional<CodeModel::Model> CM,
                                           CodeGenOpt::Level OL, bool JIT,
                                           bool LittleEndian)
    : LLVMTargetMachine(T,
                        computeDataLayout(TT, Options.MCOptions, LittleEndian),
                        TT, CPU, FS, Options, getEffectiveRelocModel(TT, RM),
                        getEffectiveAArch64CodeModel(TT, CM, JIT), OL),
      TLOF(createTLOF(getTargetTriple())), isLittle(LittleEndian) {
  initAsmInfo();

  if (TT.isOSBinFormatMachO()) {
    this->Options.TrapUnreachable = true;
    this->Options.NoTrapAfterNoreturn = true;
  }

  if (getMCAsmInfo()->usesWindowsCFI()) {
    // Unwinding can get confused if the last instruction in an
    // exception-handling region (function, funclet, try block, etc.)
    // is a call.
    //
    // FIXME: We could elide the trap if the next instruction would be in
    // the same region anyway.
    this->Options.TrapUnreachable = true;
  }

  if (this->Options.TLSSize == 0) // default
    this->Options.TLSSize = 24;
  if ((getCodeModel() == CodeModel::Small ||
       getCodeModel() == CodeModel::Kernel) &&
      this->Options.TLSSize > 32)
    // for the small (and kernel) code model, the maximum TLS size is 4GiB
    this->Options.TLSSize = 32;
  else if (getCodeModel() == CodeModel::Tiny && this->Options.TLSSize > 24)
    // for the tiny code model, the maximum TLS size is 1MiB (< 16MiB)
    this->Options.TLSSize = 24;

  // Enable GlobalISel at or below EnableGlobalISelAt0, unless this is
  // MachO/CodeModel::Large, which GlobalISel does not support.
  if (getOptLevel() <= EnableGlobalISelAtO &&
      TT.getArch() != Triple::aarch64_32 &&
      !(getCodeModel() == CodeModel::Large && TT.isOSBinFormatMachO())) {
    setGlobalISel(true);
    setGlobalISelAbort(GlobalISelAbortMode::Disable);
  }

  // AArch64 supports the MachineOutliner.
  setMachineOutliner(true);

  // AArch64 supports default outlining behaviour.
  setSupportsDefaultOutlining(true);
}

AArch64TargetMachine::~AArch64TargetMachine() = default;

const AArch64Subtarget *
AArch64TargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
                        ? CPUAttr.getValueAsString().str()
                        : TargetCPU;
  std::string FS = !FSAttr.hasAttribute(Attribute::None)
                       ? FSAttr.getValueAsString().str()
                       : TargetFS;

  auto &I = SubtargetMap[CPU + FS];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = std::make_unique<AArch64Subtarget>(TargetTriple, CPU, FS, *this,
                                            isLittle);
  }
  return I.get();
}

void AArch64leTargetMachine::anchor() { }

AArch64leTargetMachine::AArch64leTargetMachine(
    const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
    const TargetOptions &Options, Optional<Reloc::Model> RM,
    Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
    : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, true) {}

void AArch64beTargetMachine::anchor() { }

AArch64beTargetMachine::AArch64beTargetMachine(
    const Target &T, const Triple &TT, StringRef CPU, StringRef FS,
    const TargetOptions &Options, Optional<Reloc::Model> RM,
    Optional<CodeModel::Model> CM, CodeGenOpt::Level OL, bool JIT)
    : AArch64TargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, JIT, false) {}

namespace {

/// AArch64 Code Generator Pass Configuration Options.
class AArch64PassConfig : public TargetPassConfig {
public:
  AArch64PassConfig(AArch64TargetMachine &TM, PassManagerBase &PM)
      : TargetPassConfig(TM, PM) {
    if (TM.getOptLevel() != CodeGenOpt::None)
      substitutePass(&PostRASchedulerID, &PostMachineSchedulerID);
  }

  AArch64TargetMachine &getAArch64TargetMachine() const {
    return getTM<AArch64TargetMachine>();
  }

  ScheduleDAGInstrs *
  createMachineScheduler(MachineSchedContext *C) const override {
    const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
    ScheduleDAGMILive *DAG = createGenericSchedLive(C);
    DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
    DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
    if (ST.hasFusion())
      DAG->addMutation(createAArch64MacroFusionDAGMutation());
    return DAG;
  }

  ScheduleDAGInstrs *
  createPostMachineScheduler(MachineSchedContext *C) const override {
    const AArch64Subtarget &ST = C->MF->getSubtarget<AArch64Subtarget>();
    if (ST.hasFusion()) {
      // Run the Macro Fusion after RA again since literals are expanded from
      // pseudos then (v. addPreSched2()).
      ScheduleDAGMI *DAG = createGenericSchedPostRA(C);
      DAG->addMutation(createAArch64MacroFusionDAGMutation());
      return DAG;
    }

    return nullptr;
  }

  void addIRPasses()  override;
  bool addPreISel() override;
  bool addInstSelector() override;
  bool addIRTranslator() override;
  void addPreLegalizeMachineIR() override;
  bool addLegalizeMachineIR() override;
  bool addRegBankSelect() override;
  void addPreGlobalInstructionSelect() override;
  bool addGlobalInstructionSelect() override;
  bool addILPOpts() override;
  void addPreRegAlloc() override;
  void addPostRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;

  std::unique_ptr<CSEConfigBase> getCSEConfig() const override;
};

} // end anonymous namespace

TargetTransformInfo
AArch64TargetMachine::getTargetTransformInfo(const Function &F) {
  return TargetTransformInfo(AArch64TTIImpl(this, F));
}

TargetPassConfig *AArch64TargetMachine::createPassConfig(PassManagerBase &PM) {
  return new AArch64PassConfig(*this, PM);
}

std::unique_ptr<CSEConfigBase> AArch64PassConfig::getCSEConfig() const {
  return getStandardCSEConfigForOpt(TM->getOptLevel());
}

void AArch64PassConfig::addIRPasses() {
  // Always expand atomic operations, we don't deal with atomicrmw or cmpxchg
  // ourselves.
  addPass(createAtomicExpandPass());

  // Cmpxchg instructions are often used with a subsequent comparison to
  // determine whether it succeeded. We can exploit existing control-flow in
  // ldrex/strex loops to simplify this, but it needs tidying up.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
    addPass(createCFGSimplificationPass(1, true, true, false, true));

  // Run LoopDataPrefetch
  //
  // Run this before LSR to remove the multiplies involved in computing the
  // pointer values N iterations ahead.
  if (TM->getOptLevel() != CodeGenOpt::None) {
    if (EnableLoopDataPrefetch)
      addPass(createLoopDataPrefetchPass());
    if (EnableFalkorHWPFFix)
      addPass(createFalkorMarkStridedAccessesPass());
  }

  TargetPassConfig::addIRPasses();

  // Match interleaved memory accesses to ldN/stN intrinsics.
  if (TM->getOptLevel() != CodeGenOpt::None) {
    addPass(createInterleavedLoadCombinePass());
    addPass(createInterleavedAccessPass());
  }

  if (TM->getOptLevel() == CodeGenOpt::Aggressive && EnableGEPOpt) {
    // Call SeparateConstOffsetFromGEP pass to extract constants within indices
    // and lower a GEP with multiple indices to either arithmetic operations or
    // multiple GEPs with single index.
    addPass(createSeparateConstOffsetFromGEPPass(true));
    // Call EarlyCSE pass to find and remove subexpressions in the lowered
    // result.
    addPass(createEarlyCSEPass());
    // Do loop invariant code motion in case part of the lowered result is
    // invariant.
    addPass(createLICMPass());
  }

  addPass(createAArch64StackTaggingPass(/* MergeInit = */ TM->getOptLevel() !=
                                        CodeGenOpt::None));

  // Add Control Flow Guard checks.
  if (TM->getTargetTriple().isOSWindows())
    addPass(createCFGuardCheckPass());
}

// Pass Pipeline Configuration
bool AArch64PassConfig::addPreISel() {
  // Run promote constant before global merge, so that the promoted constants
  // get a chance to be merged
  if (TM->getOptLevel() != CodeGenOpt::None && EnablePromoteConstant)
    addPass(createAArch64PromoteConstantPass());
  // FIXME: On AArch64, this depends on the type.
  // Basically, the addressable offsets are up to 4095 * Ty.getSizeInBytes().
  // and the offset has to be a multiple of the related size in bytes.
  if ((TM->getOptLevel() != CodeGenOpt::None &&
       EnableGlobalMerge == cl::BOU_UNSET) ||
      EnableGlobalMerge == cl::BOU_TRUE) {
    bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
                               (EnableGlobalMerge == cl::BOU_UNSET);

    // Merging of extern globals is enabled by default on non-Mach-O as we
    // expect it to be generally either beneficial or harmless. On Mach-O it
    // is disabled as we emit the .subsections_via_symbols directive which
    // means that merging extern globals is not safe.
    bool MergeExternalByDefault = !TM->getTargetTriple().isOSBinFormatMachO();

    // FIXME: extern global merging is only enabled when we optimise for size
    // because there are some regressions with it also enabled for performance.
    if (!OnlyOptimizeForSize)
      MergeExternalByDefault = false;

    addPass(createGlobalMergePass(TM, 4095, OnlyOptimizeForSize,
                                  MergeExternalByDefault));
  }

  return false;
}

bool AArch64PassConfig::addInstSelector() {
  addPass(createAArch64ISelDag(getAArch64TargetMachine(), getOptLevel()));

  // For ELF, cleanup any local-dynamic TLS accesses (i.e. combine as many
  // references to _TLS_MODULE_BASE_ as possible.
  if (TM->getTargetTriple().isOSBinFormatELF() &&
      getOptLevel() != CodeGenOpt::None)
    addPass(createAArch64CleanupLocalDynamicTLSPass());

  return false;
}

bool AArch64PassConfig::addIRTranslator() {
  addPass(new IRTranslator());
  return false;
}

void AArch64PassConfig::addPreLegalizeMachineIR() {
  bool IsOptNone = getOptLevel() == CodeGenOpt::None;
  addPass(createAArch64PreLegalizeCombiner(IsOptNone));
}

bool AArch64PassConfig::addLegalizeMachineIR() {
  addPass(new Legalizer());
  return false;
}

bool AArch64PassConfig::addRegBankSelect() {
  addPass(new RegBankSelect());
  return false;
}

void AArch64PassConfig::addPreGlobalInstructionSelect() {
  addPass(new Localizer());
}

bool AArch64PassConfig::addGlobalInstructionSelect() {
  addPass(new InstructionSelect());
  return false;
}

bool AArch64PassConfig::addILPOpts() {
  if (EnableCondOpt)
    addPass(createAArch64ConditionOptimizerPass());
  if (EnableCCMP)
    addPass(createAArch64ConditionalCompares());
  if (EnableMCR)
    addPass(&MachineCombinerID);
  if (EnableCondBrTuning)
    addPass(createAArch64CondBrTuning());
  if (EnableEarlyIfConversion)
    addPass(&EarlyIfConverterID);
  if (EnableStPairSuppress)
    addPass(createAArch64StorePairSuppressPass());
  addPass(createAArch64SIMDInstrOptPass());
  if (TM->getOptLevel() != CodeGenOpt::None)
    addPass(createAArch64StackTaggingPreRAPass());
  return true;
}

void AArch64PassConfig::addPreRegAlloc() {
  // Change dead register definitions to refer to the zero register.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableDeadRegisterElimination)
    addPass(createAArch64DeadRegisterDefinitions());

  // Use AdvSIMD scalar instructions whenever profitable.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableAdvSIMDScalar) {
    addPass(createAArch64AdvSIMDScalar());
    // The AdvSIMD pass may produce copies that can be rewritten to
    // be register coalescer friendly.
    addPass(&PeepholeOptimizerID);
  }
}

void AArch64PassConfig::addPostRegAlloc() {
  // Remove redundant copy instructions.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableRedundantCopyElimination)
    addPass(createAArch64RedundantCopyEliminationPass());

  if (TM->getOptLevel() != CodeGenOpt::None && usingDefaultRegAlloc())
    // Improve performance for some FP/SIMD code for A57.
    addPass(createAArch64A57FPLoadBalancing());
}

void AArch64PassConfig::addPreSched2() {
  // Expand some pseudo instructions to allow proper scheduling.
  addPass(createAArch64ExpandPseudoPass());
  // Use load/store pair instructions when possible.
  if (TM->getOptLevel() != CodeGenOpt::None) {
    if (EnableLoadStoreOpt)
      addPass(createAArch64LoadStoreOptimizationPass());
  }

  // The AArch64SpeculationHardeningPass destroys dominator tree and natural
  // loop info, which is needed for the FalkorHWPFFixPass and also later on.
  // Therefore, run the AArch64SpeculationHardeningPass before the
  // FalkorHWPFFixPass to avoid recomputing dominator tree and natural loop
  // info.
  addPass(createAArch64SpeculationHardeningPass());

  if (TM->getOptLevel() != CodeGenOpt::None) {
    if (EnableFalkorHWPFFix)
      addPass(createFalkorHWPFFixPass());
  }
}

void AArch64PassConfig::addPreEmitPass() {
  // Machine Block Placement might have created new opportunities when run
  // at O3, where the Tail Duplication Threshold is set to 4 instructions.
  // Run the load/store optimizer once more.
  if (TM->getOptLevel() >= CodeGenOpt::Aggressive && EnableLoadStoreOpt)
    addPass(createAArch64LoadStoreOptimizationPass());

  if (EnableA53Fix835769)
    addPass(createAArch64A53Fix835769());

  if (EnableBranchTargets)
    addPass(createAArch64BranchTargetsPass());

  // Relax conditional branch instructions if they're otherwise out of
  // range of their destination.
  if (BranchRelaxation)
    addPass(&BranchRelaxationPassID);

  // Identify valid longjmp targets for Windows Control Flow Guard.
  if (TM->getTargetTriple().isOSWindows())
    addPass(createCFGuardLongjmpPass());

  if (TM->getOptLevel() != CodeGenOpt::None && EnableCompressJumpTables)
    addPass(createAArch64CompressJumpTablesPass());

  if (TM->getOptLevel() != CodeGenOpt::None && EnableCollectLOH &&
      TM->getTargetTriple().isOSBinFormatMachO())
    addPass(createAArch64CollectLOHPass());
}