risbg-04.ll
11.8 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
; Test sequences that can use RISBG with a zeroed first operand.
; The tests here assume that RISBLG is available.
;
; RUN: llc < %s -mtriple=s390x-linux-gnu -mcpu=z196 | FileCheck %s
; Test an extraction of bit 0 from a right-shifted value.
define i32 @f1(i32 %foo) {
; CHECK-LABEL: f1:
; CHECK: risblg %r2, %r2, 31, 159, 54
; CHECK: br %r14
%shr = lshr i32 %foo, 10
%and = and i32 %shr, 1
ret i32 %and
}
; ...and again with i64.
define i64 @f2(i64 %foo) {
; CHECK-LABEL: f2:
; CHECK: risbg %r2, %r2, 63, 191, 54
; CHECK: br %r14
%shr = lshr i64 %foo, 10
%and = and i64 %shr, 1
ret i64 %and
}
; Test an extraction of other bits from a right-shifted value.
define i32 @f3(i32 %foo) {
; CHECK-LABEL: f3:
; CHECK: risblg %r2, %r2, 28, 157, 42
; CHECK: br %r14
%shr = lshr i32 %foo, 22
%and = and i32 %shr, 12
ret i32 %and
}
; ...and again with i64.
define i64 @f4(i64 %foo) {
; CHECK-LABEL: f4:
; CHECK: risbg %r2, %r2, 60, 189, 42
; CHECK: br %r14
%shr = lshr i64 %foo, 22
%and = and i64 %shr, 12
ret i64 %and
}
; Test an extraction of most bits from a right-shifted value.
; The range should be reduced to exclude the zeroed high bits.
define i32 @f5(i32 %foo) {
; CHECK-LABEL: f5:
; CHECK: risblg %r2, %r2, 2, 156, 62
; CHECK: br %r14
%shr = lshr i32 %foo, 2
%and = and i32 %shr, -8
ret i32 %and
}
; ...and again with i64.
define i64 @f6(i64 %foo) {
; CHECK-LABEL: f6:
; CHECK: risbg %r2, %r2, 2, 188, 62
; CHECK: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, -8
ret i64 %and
}
; Try the next value up (mask ....1111001). This needs a separate shift
; and mask.
define i32 @f7(i32 %foo) {
; CHECK-LABEL: f7:
; CHECK: srl %r2, 2
; CHECK: nill %r2, 65529
; CHECK: br %r14
%shr = lshr i32 %foo, 2
%and = and i32 %shr, -7
ret i32 %and
}
; ...and again with i64.
define i64 @f8(i64 %foo) {
; CHECK-LABEL: f8:
; CHECK: srlg %r2, %r2, 2
; CHECK: nill %r2, 65529
; CHECK: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, -7
ret i64 %and
}
; Test an extraction of bits from a left-shifted value. The range should
; be reduced to exclude the zeroed low bits.
define i32 @f9(i32 %foo) {
; CHECK-LABEL: f9:
; CHECK: risblg %r2, %r2, 24, 157, 2
; CHECK: br %r14
%shr = shl i32 %foo, 2
%and = and i32 %shr, 255
ret i32 %and
}
; ...and again with i64.
define i64 @f10(i64 %foo) {
; CHECK-LABEL: f10:
; CHECK: risbg %r2, %r2, 56, 189, 2
; CHECK: br %r14
%shr = shl i64 %foo, 2
%and = and i64 %shr, 255
ret i64 %and
}
; Try a wrap-around mask (mask ....111100001111). This needs a separate shift
; and mask.
define i32 @f11(i32 %foo) {
; CHECK-LABEL: f11:
; CHECK: sll %r2, 2
; CHECK: nill %r2, 65295
; CHECK: br %r14
%shr = shl i32 %foo, 2
%and = and i32 %shr, -241
ret i32 %and
}
; ...and again with i64.
define i64 @f12(i64 %foo) {
; CHECK-LABEL: f12:
; CHECK: sllg %r2, %r2, 2
; CHECK: nill %r2, 65295
; CHECK: br %r14
%shr = shl i64 %foo, 2
%and = and i64 %shr, -241
ret i64 %and
}
; Test an extraction from a rotated value, no mask wraparound.
; This is equivalent to the lshr case, because the bits from the
; shl are not used.
define i32 @f13(i32 %foo) {
; CHECK-LABEL: f13:
; CHECK: risblg %r2, %r2, 24, 156, 46
; CHECK: br %r14
%parta = shl i32 %foo, 14
%partb = lshr i32 %foo, 18
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 248
ret i32 %and
}
; ...and again with i64.
define i64 @f14(i64 %foo) {
; CHECK-LABEL: f14:
; CHECK: risbg %r2, %r2, 56, 188, 14
; CHECK: br %r14
%parta = shl i64 %foo, 14
%partb = lshr i64 %foo, 50
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 248
ret i64 %and
}
; Try a case in which only the bits from the shl are used.
define i32 @f15(i32 %foo) {
; CHECK-LABEL: f15:
; CHECK: risblg %r2, %r2, 15, 145, 14
; CHECK: br %r14
%parta = shl i32 %foo, 14
%partb = lshr i32 %foo, 18
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 114688
ret i32 %and
}
; ...and again with i64.
define i64 @f16(i64 %foo) {
; CHECK-LABEL: f16:
; CHECK: risbg %r2, %r2, 47, 177, 14
; CHECK: br %r14
%parta = shl i64 %foo, 14
%partb = lshr i64 %foo, 50
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 114688
ret i64 %and
}
; Test a 32-bit rotate in which both parts of the OR are needed.
; This needs a separate shift and mask.
define i32 @f17(i32 %foo) {
; CHECK-LABEL: f17:
; CHECK: rll %r2, %r2, 4
; CHECK: nilf %r2, 126
; CHECK: br %r14
%parta = shl i32 %foo, 4
%partb = lshr i32 %foo, 28
%rotl = or i32 %parta, %partb
%and = and i32 %rotl, 126
ret i32 %and
}
; ...and for i64, where RISBG should do the rotate too.
define i64 @f18(i64 %foo) {
; CHECK-LABEL: f18:
; CHECK: risbg %r2, %r2, 57, 190, 4
; CHECK: br %r14
%parta = shl i64 %foo, 4
%partb = lshr i64 %foo, 60
%rotl = or i64 %parta, %partb
%and = and i64 %rotl, 126
ret i64 %and
}
; Test an arithmetic shift right in which some of the sign bits are kept.
; This needs a separate shift and mask.
define i32 @f19(i32 %foo) {
; CHECK-LABEL: f19:
; CHECK: sra %r2, 28
; CHECK: nilf %r2, 30
; CHECK: br %r14
%shr = ashr i32 %foo, 28
%and = and i32 %shr, 30
ret i32 %and
}
; ...and again with i64. In this case RISBG is the best way of doing the AND.
define i64 @f20(i64 %foo) {
; CHECK-LABEL: f20:
; CHECK: srag [[REG:%r[0-5]]], %r2, 60
; CHECK: risbg %r2, [[REG]], 59, 190, 0
; CHECK: br %r14
%shr = ashr i64 %foo, 60
%and = and i64 %shr, 30
ret i64 %and
}
; Now try an arithmetic right shift in which the sign bits aren't needed.
; Introduce a second use of %shr so that the ashr doesn't decompose to
; an lshr.
define i32 @f21(i32 %foo, i32 *%dest) {
; CHECK-LABEL: f21:
; CHECK: risblg %r2, %r2, 28, 158, 36
; CHECK: br %r14
%shr = ashr i32 %foo, 28
store i32 %shr, i32 *%dest
%and = and i32 %shr, 14
ret i32 %and
}
; ...and again with i64.
define i64 @f22(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f22:
; CHECK: risbg %r2, %r2, 60, 190, 4
; CHECK: br %r14
%shr = ashr i64 %foo, 60
store i64 %shr, i64 *%dest
%and = and i64 %shr, 14
ret i64 %and
}
; Check that we use RISBG for shifted values even if the AND is a
; natural zero extension.
define i64 @f23(i64 %foo) {
; CHECK-LABEL: f23:
; CHECK: risbg %r2, %r2, 56, 191, 62
; CHECK: br %r14
%shr = lshr i64 %foo, 2
%and = and i64 %shr, 255
ret i64 %and
}
; Test a case where the AND comes before a rotate. This needs a separate
; mask and rotate.
define i32 @f24(i32 %foo) {
; CHECK-LABEL: f24:
; CHECK: nilf %r2, 254
; CHECK: rll %r2, %r2, 29
; CHECK: br %r14
%and = and i32 %foo, 254
%parta = lshr i32 %and, 3
%partb = shl i32 %and, 29
%rotl = or i32 %parta, %partb
ret i32 %rotl
}
; ...and again with i64, where a single RISBG is enough.
define i64 @f25(i64 %foo) {
; CHECK-LABEL: f25:
; CHECK: risbg %r2, %r2, 57, 187, 3
; CHECK: br %r14
%and = and i64 %foo, 14
%parta = shl i64 %and, 3
%partb = lshr i64 %and, 61
%rotl = or i64 %parta, %partb
ret i64 %rotl
}
; Test a wrap-around case in which the AND comes before a rotate.
; This again needs a separate mask and rotate.
define i32 @f26(i32 %foo) {
; CHECK-LABEL: f26:
; CHECK: rll %r2, %r2, 5
; CHECK: br %r14
%and = and i32 %foo, -49
%parta = shl i32 %and, 5
%partb = lshr i32 %and, 27
%rotl = or i32 %parta, %partb
ret i32 %rotl
}
; ...and again with i64, where a single RISBG is OK.
define i64 @f27(i64 %foo) {
; CHECK-LABEL: f27:
; CHECK: risbg %r2, %r2, 55, 180, 5
; CHECK: br %r14
%and = and i64 %foo, -49
%parta = shl i64 %and, 5
%partb = lshr i64 %and, 59
%rotl = or i64 %parta, %partb
ret i64 %rotl
}
; Test a case where the AND comes before a shift left.
define i32 @f28(i32 %foo) {
; CHECK-LABEL: f28:
; CHECK: risblg %r2, %r2, 0, 141, 17
; CHECK: br %r14
%and = and i32 %foo, 32766
%shl = shl i32 %and, 17
ret i32 %shl
}
; ...and again with i64.
define i64 @f29(i64 %foo) {
; CHECK-LABEL: f29:
; CHECK: risbg %r2, %r2, 0, 141, 49
; CHECK: br %r14
%and = and i64 %foo, 32766
%shl = shl i64 %and, 49
ret i64 %shl
}
; Test the next shift up from f28, in which the mask should get shortened.
define i32 @f30(i32 %foo) {
; CHECK-LABEL: f30:
; CHECK: risblg %r2, %r2, 0, 140, 18
; CHECK: br %r14
%and = and i32 %foo, 32766
%shl = shl i32 %and, 18
ret i32 %shl
}
; ...and again with i64.
define i64 @f31(i64 %foo) {
; CHECK-LABEL: f31:
; CHECK: risbg %r2, %r2, 0, 140, 50
; CHECK: br %r14
%and = and i64 %foo, 32766
%shl = shl i64 %and, 50
ret i64 %shl
}
; Test a wrap-around case in which the shift left comes after the AND.
; We can't use RISBG for the shift in that case.
define i32 @f32(i32 %foo) {
; CHECK-LABEL: f32:
; CHECK: sll %r2
; CHECK: br %r14
%and = and i32 %foo, -7
%shl = shl i32 %and, 10
ret i32 %shl
}
; ...and again with i64.
define i64 @f33(i64 %foo) {
; CHECK-LABEL: f33:
; CHECK: sllg %r2
; CHECK: br %r14
%and = and i64 %foo, -7
%shl = shl i64 %and, 10
ret i64 %shl
}
; Test a case where the AND comes before a shift right.
define i32 @f34(i32 %foo) {
; CHECK-LABEL: f34:
; CHECK: risblg %r2, %r2, 25, 159, 55
; CHECK: br %r14
%and = and i32 %foo, 65535
%shl = lshr i32 %and, 9
ret i32 %shl
}
; ...and again with i64.
define i64 @f35(i64 %foo) {
; CHECK-LABEL: f35:
; CHECK: risbg %r2, %r2, 57, 191, 55
; CHECK: br %r14
%and = and i64 %foo, 65535
%shl = lshr i64 %and, 9
ret i64 %shl
}
; Test a wrap-around case where the AND comes before a shift right.
; We can't use RISBG for the shift in that case.
define i32 @f36(i32 %foo) {
; CHECK-LABEL: f36:
; CHECK: srl %r2
; CHECK: br %r14
%and = and i32 %foo, -25
%shl = lshr i32 %and, 1
ret i32 %shl
}
; ...and again with i64.
define i64 @f37(i64 %foo) {
; CHECK-LABEL: f37:
; CHECK: srlg %r2
; CHECK: br %r14
%and = and i64 %foo, -25
%shl = lshr i64 %and, 1
ret i64 %shl
}
; Test a combination involving a large ASHR and a shift left. We can't
; use RISBG there.
define i64 @f38(i64 %foo) {
; CHECK-LABEL: f38:
; CHECK: srag {{%r[0-5]}}
; CHECK: sllg {{%r[0-5]}}
; CHECK: br %r14
%ashr = ashr i64 %foo, 32
%shl = shl i64 %ashr, 5
ret i64 %shl
}
; Try a similar thing in which no shifted sign bits are kept.
define i64 @f39(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f39:
; CHECK: srag [[REG:%r[01345]]], %r2, 35
; CHECK: risbg %r2, %r2, 33, 189, 31
; CHECK: br %r14
%ashr = ashr i64 %foo, 35
store i64 %ashr, i64 *%dest
%shl = shl i64 %ashr, 2
%and = and i64 %shl, 2147483647
ret i64 %and
}
; ...and again with the next highest shift value, where one sign bit is kept.
define i64 @f40(i64 %foo, i64 *%dest) {
; CHECK-LABEL: f40:
; CHECK: srag [[REG:%r[01345]]], %r2, 36
; CHECK: risbg %r2, [[REG]], 33, 189, 2
; CHECK: br %r14
%ashr = ashr i64 %foo, 36
store i64 %ashr, i64 *%dest
%shl = shl i64 %ashr, 2
%and = and i64 %shl, 2147483647
ret i64 %and
}
; Check a case where the result is zero-extended.
define i64 @f41(i32 %a) {
; CHECK-LABEL: f41
; CHECK: risbg %r2, %r2, 36, 191, 62
; CHECK: br %r14
%shl = shl i32 %a, 2
%shr = lshr i32 %shl, 4
%ext = zext i32 %shr to i64
ret i64 %ext
}
; In this case the sign extension is converted to a pair of 32-bit shifts,
; which is then extended to 64 bits. We previously used the wrong bit size
; when testing whether the shifted-in bits of the shift right were significant.
define i64 @f42(i1 %x) {
; CHECK-LABEL: f42:
; CHECK: nilf %r2, 1
; CHECK: lcr %r0, %r2
; CHECK: llgcr %r2, %r0
; CHECK: br %r14
%ext = sext i1 %x to i8
%ext2 = zext i8 %ext to i64
ret i64 %ext2
}
; Check that we get the case where a 64-bit shift is used by a 32-bit and.
; Note that this cannot use RISBLG, but should use RISBG.
define signext i32 @f43(i64 %x) {
; CHECK-LABEL: f43:
; CHECK: risbg [[REG:%r[0-5]]], %r2, 32, 189, 52
; CHECK: lgfr %r2, [[REG]]
%shr3 = lshr i64 %x, 12
%shr3.tr = trunc i64 %shr3 to i32
%conv = and i32 %shr3.tr, -4
ret i32 %conv
}
; Check that we don't get the case where the 32-bit and mask is not contiguous
define signext i32 @f44(i64 %x) {
; CHECK-LABEL: f44:
; CHECK: srlg [[REG:%r[0-5]]], %r2, 12
%shr4 = lshr i64 %x, 12
%conv = trunc i64 %shr4 to i32
%and = and i32 %conv, 10
ret i32 %and
}