Object.cpp 83.7 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400
//===- Object.cpp ---------------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "Object.h"
#include "llvm-objcopy.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/iterator_range.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Object/ELFObjectFile.h"
#include "llvm/Support/Compression.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FileOutputBuffer.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <unordered_set>
#include <utility>
#include <vector>

namespace llvm {
namespace objcopy {
namespace elf {

using namespace object;
using namespace ELF;

template <class ELFT> void ELFWriter<ELFT>::writePhdr(const Segment &Seg) {
  uint8_t *B = Buf.getBufferStart() + Obj.ProgramHdrSegment.Offset +
               Seg.Index * sizeof(Elf_Phdr);
  Elf_Phdr &Phdr = *reinterpret_cast<Elf_Phdr *>(B);
  Phdr.p_type = Seg.Type;
  Phdr.p_flags = Seg.Flags;
  Phdr.p_offset = Seg.Offset;
  Phdr.p_vaddr = Seg.VAddr;
  Phdr.p_paddr = Seg.PAddr;
  Phdr.p_filesz = Seg.FileSize;
  Phdr.p_memsz = Seg.MemSize;
  Phdr.p_align = Seg.Align;
}

Error SectionBase::removeSectionReferences(
    bool AllowBrokenLinks,
    function_ref<bool(const SectionBase *)> ToRemove) {
  return Error::success();
}

Error SectionBase::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
  return Error::success();
}

void SectionBase::initialize(SectionTableRef SecTable) {}
void SectionBase::finalize() {}
void SectionBase::markSymbols() {}
void SectionBase::replaceSectionReferences(
    const DenseMap<SectionBase *, SectionBase *> &) {}

template <class ELFT> void ELFWriter<ELFT>::writeShdr(const SectionBase &Sec) {
  uint8_t *B = Buf.getBufferStart() + Sec.HeaderOffset;
  Elf_Shdr &Shdr = *reinterpret_cast<Elf_Shdr *>(B);
  Shdr.sh_name = Sec.NameIndex;
  Shdr.sh_type = Sec.Type;
  Shdr.sh_flags = Sec.Flags;
  Shdr.sh_addr = Sec.Addr;
  Shdr.sh_offset = Sec.Offset;
  Shdr.sh_size = Sec.Size;
  Shdr.sh_link = Sec.Link;
  Shdr.sh_info = Sec.Info;
  Shdr.sh_addralign = Sec.Align;
  Shdr.sh_entsize = Sec.EntrySize;
}

template <class ELFT> void ELFSectionSizer<ELFT>::visit(Section &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(OwnedDataSection &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(StringTableSection &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(DynamicRelocationSection &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(SymbolTableSection &Sec) {
  Sec.EntrySize = sizeof(Elf_Sym);
  Sec.Size = Sec.Symbols.size() * Sec.EntrySize;
  // Align to the largest field in Elf_Sym.
  Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(RelocationSection &Sec) {
  Sec.EntrySize = Sec.Type == SHT_REL ? sizeof(Elf_Rel) : sizeof(Elf_Rela);
  Sec.Size = Sec.Relocations.size() * Sec.EntrySize;
  // Align to the largest field in Elf_Rel(a).
  Sec.Align = ELFT::Is64Bits ? sizeof(Elf_Xword) : sizeof(Elf_Word);
}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(GnuDebugLinkSection &Sec) {}

template <class ELFT> void ELFSectionSizer<ELFT>::visit(GroupSection &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(SectionIndexSection &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(CompressedSection &Sec) {}

template <class ELFT>
void ELFSectionSizer<ELFT>::visit(DecompressedSection &Sec) {}

void BinarySectionWriter::visit(const SectionIndexSection &Sec) {
  error("cannot write symbol section index table '" + Sec.Name + "' ");
}

void BinarySectionWriter::visit(const SymbolTableSection &Sec) {
  error("cannot write symbol table '" + Sec.Name + "' out to binary");
}

void BinarySectionWriter::visit(const RelocationSection &Sec) {
  error("cannot write relocation section '" + Sec.Name + "' out to binary");
}

void BinarySectionWriter::visit(const GnuDebugLinkSection &Sec) {
  error("cannot write '" + Sec.Name + "' out to binary");
}

void BinarySectionWriter::visit(const GroupSection &Sec) {
  error("cannot write '" + Sec.Name + "' out to binary");
}

void SectionWriter::visit(const Section &Sec) {
  if (Sec.Type != SHT_NOBITS)
    llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
}

static bool addressOverflows32bit(uint64_t Addr) {
  // Sign extended 32 bit addresses (e.g 0xFFFFFFFF80000000) are ok
  return Addr > UINT32_MAX && Addr + 0x80000000 > UINT32_MAX;
}

template <class T> static T checkedGetHex(StringRef S) {
  T Value;
  bool Fail = S.getAsInteger(16, Value);
  assert(!Fail);
  (void)Fail;
  return Value;
}

// Fills exactly Len bytes of buffer with hexadecimal characters
// representing value 'X'
template <class T, class Iterator>
static Iterator utohexstr(T X, Iterator It, size_t Len) {
  // Fill range with '0'
  std::fill(It, It + Len, '0');

  for (long I = Len - 1; I >= 0; --I) {
    unsigned char Mod = static_cast<unsigned char>(X) & 15;
    *(It + I) = hexdigit(Mod, false);
    X >>= 4;
  }
  assert(X == 0);
  return It + Len;
}

uint8_t IHexRecord::getChecksum(StringRef S) {
  assert((S.size() & 1) == 0);
  uint8_t Checksum = 0;
  while (!S.empty()) {
    Checksum += checkedGetHex<uint8_t>(S.take_front(2));
    S = S.drop_front(2);
  }
  return -Checksum;
}

IHexLineData IHexRecord::getLine(uint8_t Type, uint16_t Addr,
                                 ArrayRef<uint8_t> Data) {
  IHexLineData Line(getLineLength(Data.size()));
  assert(Line.size());
  auto Iter = Line.begin();
  *Iter++ = ':';
  Iter = utohexstr(Data.size(), Iter, 2);
  Iter = utohexstr(Addr, Iter, 4);
  Iter = utohexstr(Type, Iter, 2);
  for (uint8_t X : Data)
    Iter = utohexstr(X, Iter, 2);
  StringRef S(Line.data() + 1, std::distance(Line.begin() + 1, Iter));
  Iter = utohexstr(getChecksum(S), Iter, 2);
  *Iter++ = '\r';
  *Iter++ = '\n';
  assert(Iter == Line.end());
  return Line;
}

static Error checkRecord(const IHexRecord &R) {
  switch (R.Type) {
  case IHexRecord::Data:
    if (R.HexData.size() == 0)
      return createStringError(
          errc::invalid_argument,
          "zero data length is not allowed for data records");
    break;
  case IHexRecord::EndOfFile:
    break;
  case IHexRecord::SegmentAddr:
    // 20-bit segment address. Data length must be 2 bytes
    // (4 bytes in hex)
    if (R.HexData.size() != 4)
      return createStringError(
          errc::invalid_argument,
          "segment address data should be 2 bytes in size");
    break;
  case IHexRecord::StartAddr80x86:
  case IHexRecord::StartAddr:
    if (R.HexData.size() != 8)
      return createStringError(errc::invalid_argument,
                               "start address data should be 4 bytes in size");
    // According to Intel HEX specification '03' record
    // only specifies the code address within the 20-bit
    // segmented address space of the 8086/80186. This
    // means 12 high order bits should be zeroes.
    if (R.Type == IHexRecord::StartAddr80x86 &&
        R.HexData.take_front(3) != "000")
      return createStringError(errc::invalid_argument,
                               "start address exceeds 20 bit for 80x86");
    break;
  case IHexRecord::ExtendedAddr:
    // 16-31 bits of linear base address
    if (R.HexData.size() != 4)
      return createStringError(
          errc::invalid_argument,
          "extended address data should be 2 bytes in size");
    break;
  default:
    // Unknown record type
    return createStringError(errc::invalid_argument, "unknown record type: %u",
                             static_cast<unsigned>(R.Type));
  }
  return Error::success();
}

// Checks that IHEX line contains valid characters.
// This allows converting hexadecimal data to integers
// without extra verification.
static Error checkChars(StringRef Line) {
  assert(!Line.empty());
  if (Line[0] != ':')
    return createStringError(errc::invalid_argument,
                             "missing ':' in the beginning of line.");

  for (size_t Pos = 1; Pos < Line.size(); ++Pos)
    if (hexDigitValue(Line[Pos]) == -1U)
      return createStringError(errc::invalid_argument,
                               "invalid character at position %zu.", Pos + 1);
  return Error::success();
}

Expected<IHexRecord> IHexRecord::parse(StringRef Line) {
  assert(!Line.empty());

  // ':' + Length + Address + Type + Checksum with empty data ':LLAAAATTCC'
  if (Line.size() < 11)
    return createStringError(errc::invalid_argument,
                             "line is too short: %zu chars.", Line.size());

  if (Error E = checkChars(Line))
    return std::move(E);

  IHexRecord Rec;
  size_t DataLen = checkedGetHex<uint8_t>(Line.substr(1, 2));
  if (Line.size() != getLength(DataLen))
    return createStringError(errc::invalid_argument,
                             "invalid line length %zu (should be %zu)",
                             Line.size(), getLength(DataLen));

  Rec.Addr = checkedGetHex<uint16_t>(Line.substr(3, 4));
  Rec.Type = checkedGetHex<uint8_t>(Line.substr(7, 2));
  Rec.HexData = Line.substr(9, DataLen * 2);

  if (getChecksum(Line.drop_front(1)) != 0)
    return createStringError(errc::invalid_argument, "incorrect checksum.");
  if (Error E = checkRecord(Rec))
    return std::move(E);
  return Rec;
}

static uint64_t sectionPhysicalAddr(const SectionBase *Sec) {
  Segment *Seg = Sec->ParentSegment;
  if (Seg && Seg->Type != ELF::PT_LOAD)
    Seg = nullptr;
  return Seg ? Seg->PAddr + Sec->OriginalOffset - Seg->OriginalOffset
             : Sec->Addr;
}

void IHexSectionWriterBase::writeSection(const SectionBase *Sec,
                                         ArrayRef<uint8_t> Data) {
  assert(Data.size() == Sec->Size);
  const uint32_t ChunkSize = 16;
  uint32_t Addr = sectionPhysicalAddr(Sec) & 0xFFFFFFFFU;
  while (!Data.empty()) {
    uint64_t DataSize = std::min<uint64_t>(Data.size(), ChunkSize);
    if (Addr > SegmentAddr + BaseAddr + 0xFFFFU) {
      if (Addr > 0xFFFFFU) {
        // Write extended address record, zeroing segment address
        // if needed.
        if (SegmentAddr != 0)
          SegmentAddr = writeSegmentAddr(0U);
        BaseAddr = writeBaseAddr(Addr);
      } else {
        // We can still remain 16-bit
        SegmentAddr = writeSegmentAddr(Addr);
      }
    }
    uint64_t SegOffset = Addr - BaseAddr - SegmentAddr;
    assert(SegOffset <= 0xFFFFU);
    DataSize = std::min(DataSize, 0x10000U - SegOffset);
    writeData(0, SegOffset, Data.take_front(DataSize));
    Addr += DataSize;
    Data = Data.drop_front(DataSize);
  }
}

uint64_t IHexSectionWriterBase::writeSegmentAddr(uint64_t Addr) {
  assert(Addr <= 0xFFFFFU);
  uint8_t Data[] = {static_cast<uint8_t>((Addr & 0xF0000U) >> 12), 0};
  writeData(2, 0, Data);
  return Addr & 0xF0000U;
}

uint64_t IHexSectionWriterBase::writeBaseAddr(uint64_t Addr) {
  assert(Addr <= 0xFFFFFFFFU);
  uint64_t Base = Addr & 0xFFFF0000U;
  uint8_t Data[] = {static_cast<uint8_t>(Base >> 24),
                    static_cast<uint8_t>((Base >> 16) & 0xFF)};
  writeData(4, 0, Data);
  return Base;
}

void IHexSectionWriterBase::writeData(uint8_t Type, uint16_t Addr,
                                      ArrayRef<uint8_t> Data) {
  Offset += IHexRecord::getLineLength(Data.size());
}

void IHexSectionWriterBase::visit(const Section &Sec) {
  writeSection(&Sec, Sec.Contents);
}

void IHexSectionWriterBase::visit(const OwnedDataSection &Sec) {
  writeSection(&Sec, Sec.Data);
}

void IHexSectionWriterBase::visit(const StringTableSection &Sec) {
  // Check that sizer has already done its work
  assert(Sec.Size == Sec.StrTabBuilder.getSize());
  // We are free to pass an invalid pointer to writeSection as long
  // as we don't actually write any data. The real writer class has
  // to override this method .
  writeSection(&Sec, {nullptr, static_cast<size_t>(Sec.Size)});
}

void IHexSectionWriterBase::visit(const DynamicRelocationSection &Sec) {
  writeSection(&Sec, Sec.Contents);
}

void IHexSectionWriter::writeData(uint8_t Type, uint16_t Addr,
                                  ArrayRef<uint8_t> Data) {
  IHexLineData HexData = IHexRecord::getLine(Type, Addr, Data);
  memcpy(Out.getBufferStart() + Offset, HexData.data(), HexData.size());
  Offset += HexData.size();
}

void IHexSectionWriter::visit(const StringTableSection &Sec) {
  assert(Sec.Size == Sec.StrTabBuilder.getSize());
  std::vector<uint8_t> Data(Sec.Size);
  Sec.StrTabBuilder.write(Data.data());
  writeSection(&Sec, Data);
}

void Section::accept(SectionVisitor &Visitor) const { Visitor.visit(*this); }

void Section::accept(MutableSectionVisitor &Visitor) { Visitor.visit(*this); }

void SectionWriter::visit(const OwnedDataSection &Sec) {
  llvm::copy(Sec.Data, Out.getBufferStart() + Sec.Offset);
}

static constexpr std::array<uint8_t, 4> ZlibGnuMagic = {{'Z', 'L', 'I', 'B'}};

static bool isDataGnuCompressed(ArrayRef<uint8_t> Data) {
  return Data.size() > ZlibGnuMagic.size() &&
         std::equal(ZlibGnuMagic.begin(), ZlibGnuMagic.end(), Data.data());
}

template <class ELFT>
static std::tuple<uint64_t, uint64_t>
getDecompressedSizeAndAlignment(ArrayRef<uint8_t> Data) {
  const bool IsGnuDebug = isDataGnuCompressed(Data);
  const uint64_t DecompressedSize =
      IsGnuDebug
          ? support::endian::read64be(Data.data() + ZlibGnuMagic.size())
          : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())->ch_size;
  const uint64_t DecompressedAlign =
      IsGnuDebug ? 1
                 : reinterpret_cast<const Elf_Chdr_Impl<ELFT> *>(Data.data())
                       ->ch_addralign;

  return std::make_tuple(DecompressedSize, DecompressedAlign);
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const DecompressedSection &Sec) {
  const size_t DataOffset = isDataGnuCompressed(Sec.OriginalData)
                                ? (ZlibGnuMagic.size() + sizeof(Sec.Size))
                                : sizeof(Elf_Chdr_Impl<ELFT>);

  StringRef CompressedContent(
      reinterpret_cast<const char *>(Sec.OriginalData.data()) + DataOffset,
      Sec.OriginalData.size() - DataOffset);

  SmallVector<char, 128> DecompressedContent;
  if (Error E = zlib::uncompress(CompressedContent, DecompressedContent,
                                 static_cast<size_t>(Sec.Size)))
    reportError(Sec.Name, std::move(E));

  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  std::copy(DecompressedContent.begin(), DecompressedContent.end(), Buf);
}

void BinarySectionWriter::visit(const DecompressedSection &Sec) {
  error("cannot write compressed section '" + Sec.Name + "' ");
}

void DecompressedSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void DecompressedSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

void OwnedDataSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void OwnedDataSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

void OwnedDataSection::appendHexData(StringRef HexData) {
  assert((HexData.size() & 1) == 0);
  while (!HexData.empty()) {
    Data.push_back(checkedGetHex<uint8_t>(HexData.take_front(2)));
    HexData = HexData.drop_front(2);
  }
  Size = Data.size();
}

void BinarySectionWriter::visit(const CompressedSection &Sec) {
  error("cannot write compressed section '" + Sec.Name + "' ");
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const CompressedSection &Sec) {
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  if (Sec.CompressionType == DebugCompressionType::None) {
    std::copy(Sec.OriginalData.begin(), Sec.OriginalData.end(), Buf);
    return;
  }

  if (Sec.CompressionType == DebugCompressionType::GNU) {
    const char *Magic = "ZLIB";
    memcpy(Buf, Magic, strlen(Magic));
    Buf += strlen(Magic);
    const uint64_t DecompressedSize =
        support::endian::read64be(&Sec.DecompressedSize);
    memcpy(Buf, &DecompressedSize, sizeof(DecompressedSize));
    Buf += sizeof(DecompressedSize);
  } else {
    Elf_Chdr_Impl<ELFT> Chdr;
    Chdr.ch_type = ELF::ELFCOMPRESS_ZLIB;
    Chdr.ch_size = Sec.DecompressedSize;
    Chdr.ch_addralign = Sec.DecompressedAlign;
    memcpy(Buf, &Chdr, sizeof(Chdr));
    Buf += sizeof(Chdr);
  }

  std::copy(Sec.CompressedData.begin(), Sec.CompressedData.end(), Buf);
}

CompressedSection::CompressedSection(const SectionBase &Sec,
                                     DebugCompressionType CompressionType)
    : SectionBase(Sec), CompressionType(CompressionType),
      DecompressedSize(Sec.OriginalData.size()), DecompressedAlign(Sec.Align) {
  if (Error E = zlib::compress(
          StringRef(reinterpret_cast<const char *>(OriginalData.data()),
                    OriginalData.size()),
          CompressedData))
    reportError(Name, std::move(E));

  size_t ChdrSize;
  if (CompressionType == DebugCompressionType::GNU) {
    Name = ".z" + Sec.Name.substr(1);
    ChdrSize = sizeof("ZLIB") - 1 + sizeof(uint64_t);
  } else {
    Flags |= ELF::SHF_COMPRESSED;
    ChdrSize =
        std::max(std::max(sizeof(object::Elf_Chdr_Impl<object::ELF64LE>),
                          sizeof(object::Elf_Chdr_Impl<object::ELF64BE>)),
                 std::max(sizeof(object::Elf_Chdr_Impl<object::ELF32LE>),
                          sizeof(object::Elf_Chdr_Impl<object::ELF32BE>)));
  }
  Size = ChdrSize + CompressedData.size();
  Align = 8;
}

CompressedSection::CompressedSection(ArrayRef<uint8_t> CompressedData,
                                     uint64_t DecompressedSize,
                                     uint64_t DecompressedAlign)
    : CompressionType(DebugCompressionType::None),
      DecompressedSize(DecompressedSize), DecompressedAlign(DecompressedAlign) {
  OriginalData = CompressedData;
}

void CompressedSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void CompressedSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

void StringTableSection::addString(StringRef Name) { StrTabBuilder.add(Name); }

uint32_t StringTableSection::findIndex(StringRef Name) const {
  return StrTabBuilder.getOffset(Name);
}

void StringTableSection::prepareForLayout() {
  StrTabBuilder.finalize();
  Size = StrTabBuilder.getSize();
}

void SectionWriter::visit(const StringTableSection &Sec) {
  Sec.StrTabBuilder.write(Out.getBufferStart() + Sec.Offset);
}

void StringTableSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void StringTableSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const SectionIndexSection &Sec) {
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  llvm::copy(Sec.Indexes, reinterpret_cast<Elf_Word *>(Buf));
}

void SectionIndexSection::initialize(SectionTableRef SecTable) {
  Size = 0;
  setSymTab(SecTable.getSectionOfType<SymbolTableSection>(
      Link,
      "Link field value " + Twine(Link) + " in section " + Name + " is invalid",
      "Link field value " + Twine(Link) + " in section " + Name +
          " is not a symbol table"));
  Symbols->setShndxTable(this);
}

void SectionIndexSection::finalize() { Link = Symbols->Index; }

void SectionIndexSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void SectionIndexSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

static bool isValidReservedSectionIndex(uint16_t Index, uint16_t Machine) {
  switch (Index) {
  case SHN_ABS:
  case SHN_COMMON:
    return true;
  }

  if (Machine == EM_AMDGPU) {
    return Index == SHN_AMDGPU_LDS;
  }

  if (Machine == EM_HEXAGON) {
    switch (Index) {
    case SHN_HEXAGON_SCOMMON:
    case SHN_HEXAGON_SCOMMON_2:
    case SHN_HEXAGON_SCOMMON_4:
    case SHN_HEXAGON_SCOMMON_8:
      return true;
    }
  }
  return false;
}

// Large indexes force us to clarify exactly what this function should do. This
// function should return the value that will appear in st_shndx when written
// out.
uint16_t Symbol::getShndx() const {
  if (DefinedIn != nullptr) {
    if (DefinedIn->Index >= SHN_LORESERVE)
      return SHN_XINDEX;
    return DefinedIn->Index;
  }

  if (ShndxType == SYMBOL_SIMPLE_INDEX) {
    // This means that we don't have a defined section but we do need to
    // output a legitimate section index.
    return SHN_UNDEF;
  }

  assert(ShndxType == SYMBOL_ABS || ShndxType == SYMBOL_COMMON ||
         (ShndxType >= SYMBOL_LOPROC && ShndxType <= SYMBOL_HIPROC) ||
         (ShndxType >= SYMBOL_LOOS && ShndxType <= SYMBOL_HIOS));
  return static_cast<uint16_t>(ShndxType);
}

bool Symbol::isCommon() const { return getShndx() == SHN_COMMON; }

void SymbolTableSection::assignIndices() {
  uint32_t Index = 0;
  for (auto &Sym : Symbols)
    Sym->Index = Index++;
}

void SymbolTableSection::addSymbol(Twine Name, uint8_t Bind, uint8_t Type,
                                   SectionBase *DefinedIn, uint64_t Value,
                                   uint8_t Visibility, uint16_t Shndx,
                                   uint64_t SymbolSize) {
  Symbol Sym;
  Sym.Name = Name.str();
  Sym.Binding = Bind;
  Sym.Type = Type;
  Sym.DefinedIn = DefinedIn;
  if (DefinedIn != nullptr)
    DefinedIn->HasSymbol = true;
  if (DefinedIn == nullptr) {
    if (Shndx >= SHN_LORESERVE)
      Sym.ShndxType = static_cast<SymbolShndxType>(Shndx);
    else
      Sym.ShndxType = SYMBOL_SIMPLE_INDEX;
  }
  Sym.Value = Value;
  Sym.Visibility = Visibility;
  Sym.Size = SymbolSize;
  Sym.Index = Symbols.size();
  Symbols.emplace_back(std::make_unique<Symbol>(Sym));
  Size += this->EntrySize;
}

Error SymbolTableSection::removeSectionReferences(
    bool AllowBrokenLinks,
    function_ref<bool(const SectionBase *)> ToRemove) {
  if (ToRemove(SectionIndexTable))
    SectionIndexTable = nullptr;
  if (ToRemove(SymbolNames)) {
    if (!AllowBrokenLinks)
      return createStringError(
          llvm::errc::invalid_argument,
          "string table '%s' cannot be removed because it is "
          "referenced by the symbol table '%s'",
          SymbolNames->Name.data(), this->Name.data());
    SymbolNames = nullptr;
  }
  return removeSymbols(
      [ToRemove](const Symbol &Sym) { return ToRemove(Sym.DefinedIn); });
}

void SymbolTableSection::updateSymbols(function_ref<void(Symbol &)> Callable) {
  std::for_each(std::begin(Symbols) + 1, std::end(Symbols),
                [Callable](SymPtr &Sym) { Callable(*Sym); });
  std::stable_partition(
      std::begin(Symbols), std::end(Symbols),
      [](const SymPtr &Sym) { return Sym->Binding == STB_LOCAL; });
  assignIndices();
}

Error SymbolTableSection::removeSymbols(
    function_ref<bool(const Symbol &)> ToRemove) {
  Symbols.erase(
      std::remove_if(std::begin(Symbols) + 1, std::end(Symbols),
                     [ToRemove](const SymPtr &Sym) { return ToRemove(*Sym); }),
      std::end(Symbols));
  Size = Symbols.size() * EntrySize;
  assignIndices();
  return Error::success();
}

void SymbolTableSection::replaceSectionReferences(
    const DenseMap<SectionBase *, SectionBase *> &FromTo) {
  for (std::unique_ptr<Symbol> &Sym : Symbols)
    if (SectionBase *To = FromTo.lookup(Sym->DefinedIn))
      Sym->DefinedIn = To;
}

void SymbolTableSection::initialize(SectionTableRef SecTable) {
  Size = 0;
  setStrTab(SecTable.getSectionOfType<StringTableSection>(
      Link,
      "Symbol table has link index of " + Twine(Link) +
          " which is not a valid index",
      "Symbol table has link index of " + Twine(Link) +
          " which is not a string table"));
}

void SymbolTableSection::finalize() {
  uint32_t MaxLocalIndex = 0;
  for (std::unique_ptr<Symbol> &Sym : Symbols) {
    Sym->NameIndex =
        SymbolNames == nullptr ? 0 : SymbolNames->findIndex(Sym->Name);
    if (Sym->Binding == STB_LOCAL)
      MaxLocalIndex = std::max(MaxLocalIndex, Sym->Index);
  }
  // Now we need to set the Link and Info fields.
  Link = SymbolNames == nullptr ? 0 : SymbolNames->Index;
  Info = MaxLocalIndex + 1;
}

void SymbolTableSection::prepareForLayout() {
  // Reserve proper amount of space in section index table, so we can
  // layout sections correctly. We will fill the table with correct
  // indexes later in fillShdnxTable.
  if (SectionIndexTable)  
    SectionIndexTable->reserve(Symbols.size());

  // Add all of our strings to SymbolNames so that SymbolNames has the right
  // size before layout is decided.
  // If the symbol names section has been removed, don't try to add strings to
  // the table.
  if (SymbolNames != nullptr)
    for (std::unique_ptr<Symbol> &Sym : Symbols)
      SymbolNames->addString(Sym->Name);
}

void SymbolTableSection::fillShndxTable() {
  if (SectionIndexTable == nullptr)
    return;
  // Fill section index table with real section indexes. This function must
  // be called after assignOffsets.
  for (const std::unique_ptr<Symbol> &Sym : Symbols) {
    if (Sym->DefinedIn != nullptr && Sym->DefinedIn->Index >= SHN_LORESERVE)
      SectionIndexTable->addIndex(Sym->DefinedIn->Index);
    else
      SectionIndexTable->addIndex(SHN_UNDEF);
  }
}

const Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) const {
  if (Symbols.size() <= Index)
    error("invalid symbol index: " + Twine(Index));
  return Symbols[Index].get();
}

Symbol *SymbolTableSection::getSymbolByIndex(uint32_t Index) {
  return const_cast<Symbol *>(
      static_cast<const SymbolTableSection *>(this)->getSymbolByIndex(Index));
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const SymbolTableSection &Sec) {
  Elf_Sym *Sym = reinterpret_cast<Elf_Sym *>(Out.getBufferStart() + Sec.Offset);
  // Loop though symbols setting each entry of the symbol table.
  for (const std::unique_ptr<Symbol> &Symbol : Sec.Symbols) {
    Sym->st_name = Symbol->NameIndex;
    Sym->st_value = Symbol->Value;
    Sym->st_size = Symbol->Size;
    Sym->st_other = Symbol->Visibility;
    Sym->setBinding(Symbol->Binding);
    Sym->setType(Symbol->Type);
    Sym->st_shndx = Symbol->getShndx();
    ++Sym;
  }
}

void SymbolTableSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void SymbolTableSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

Error RelocationSection::removeSectionReferences(
    bool AllowBrokenLinks,
    function_ref<bool(const SectionBase *)> ToRemove) {
  if (ToRemove(Symbols)) {
    if (!AllowBrokenLinks)
      return createStringError(
          llvm::errc::invalid_argument,
          "symbol table '%s' cannot be removed because it is "
          "referenced by the relocation section '%s'",
          Symbols->Name.data(), this->Name.data());
    Symbols = nullptr;
  }

  for (const Relocation &R : Relocations) {
    if (!R.RelocSymbol || !R.RelocSymbol->DefinedIn ||
        !ToRemove(R.RelocSymbol->DefinedIn))
      continue;
    return createStringError(llvm::errc::invalid_argument,
                             "section '%s' cannot be removed: (%s+0x%" PRIx64
                             ") has relocation against symbol '%s'",
                             R.RelocSymbol->DefinedIn->Name.data(),
                             SecToApplyRel->Name.data(), R.Offset,
                             R.RelocSymbol->Name.c_str());
  }

  return Error::success();
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::initialize(
    SectionTableRef SecTable) {
  if (Link != SHN_UNDEF)
    setSymTab(SecTable.getSectionOfType<SymTabType>(
        Link,
        "Link field value " + Twine(Link) + " in section " + Name +
            " is invalid",
        "Link field value " + Twine(Link) + " in section " + Name +
            " is not a symbol table"));

  if (Info != SHN_UNDEF)
    setSection(SecTable.getSection(Info, "Info field value " + Twine(Info) +
                                             " in section " + Name +
                                             " is invalid"));
  else
    setSection(nullptr);
}

template <class SymTabType>
void RelocSectionWithSymtabBase<SymTabType>::finalize() {
  this->Link = Symbols ? Symbols->Index : 0;

  if (SecToApplyRel != nullptr)
    this->Info = SecToApplyRel->Index;
}

template <class ELFT>
static void setAddend(Elf_Rel_Impl<ELFT, false> &Rel, uint64_t Addend) {}

template <class ELFT>
static void setAddend(Elf_Rel_Impl<ELFT, true> &Rela, uint64_t Addend) {
  Rela.r_addend = Addend;
}

template <class RelRange, class T>
static void writeRel(const RelRange &Relocations, T *Buf) {
  for (const auto &Reloc : Relocations) {
    Buf->r_offset = Reloc.Offset;
    setAddend(*Buf, Reloc.Addend);
    Buf->setSymbolAndType(Reloc.RelocSymbol ? Reloc.RelocSymbol->Index : 0,
                          Reloc.Type, false);
    ++Buf;
  }
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const RelocationSection &Sec) {
  uint8_t *Buf = Out.getBufferStart() + Sec.Offset;
  if (Sec.Type == SHT_REL)
    writeRel(Sec.Relocations, reinterpret_cast<Elf_Rel *>(Buf));
  else
    writeRel(Sec.Relocations, reinterpret_cast<Elf_Rela *>(Buf));
}

void RelocationSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void RelocationSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

Error RelocationSection::removeSymbols(
    function_ref<bool(const Symbol &)> ToRemove) {
  for (const Relocation &Reloc : Relocations)
    if (Reloc.RelocSymbol && ToRemove(*Reloc.RelocSymbol))
      return createStringError(
          llvm::errc::invalid_argument,
          "not stripping symbol '%s' because it is named in a relocation",
          Reloc.RelocSymbol->Name.data());
  return Error::success();
}

void RelocationSection::markSymbols() {
  for (const Relocation &Reloc : Relocations)
    if (Reloc.RelocSymbol)
      Reloc.RelocSymbol->Referenced = true;
}

void RelocationSection::replaceSectionReferences(
    const DenseMap<SectionBase *, SectionBase *> &FromTo) {
  // Update the target section if it was replaced.
  if (SectionBase *To = FromTo.lookup(SecToApplyRel))
    SecToApplyRel = To;
}

void SectionWriter::visit(const DynamicRelocationSection &Sec) {
  llvm::copy(Sec.Contents, Out.getBufferStart() + Sec.Offset);
}

void DynamicRelocationSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void DynamicRelocationSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

Error DynamicRelocationSection::removeSectionReferences(
    bool AllowBrokenLinks, function_ref<bool(const SectionBase *)> ToRemove) {
  if (ToRemove(Symbols)) {
    if (!AllowBrokenLinks)
      return createStringError(
          llvm::errc::invalid_argument,
          "symbol table '%s' cannot be removed because it is "
          "referenced by the relocation section '%s'",
          Symbols->Name.data(), this->Name.data());
    Symbols = nullptr;
  }

  // SecToApplyRel contains a section referenced by sh_info field. It keeps
  // a section to which the relocation section applies. When we remove any
  // sections we also remove their relocation sections. Since we do that much
  // earlier, this assert should never be triggered.
  assert(!SecToApplyRel || !ToRemove(SecToApplyRel));
  return Error::success();
}

Error Section::removeSectionReferences(
    bool AllowBrokenDependency,
    function_ref<bool(const SectionBase *)> ToRemove) {
  if (ToRemove(LinkSection)) {
    if (!AllowBrokenDependency)
      return createStringError(llvm::errc::invalid_argument,
                               "section '%s' cannot be removed because it is "
                               "referenced by the section '%s'",
                               LinkSection->Name.data(), this->Name.data());
    LinkSection = nullptr;
  }
  return Error::success();
}

void GroupSection::finalize() {
  this->Info = Sym->Index;
  this->Link = SymTab->Index;
}

Error GroupSection::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
  if (ToRemove(*Sym))
    return createStringError(llvm::errc::invalid_argument,
                             "symbol '%s' cannot be removed because it is "
                             "referenced by the section '%s[%d]'",
                             Sym->Name.data(), this->Name.data(), this->Index);
  return Error::success();
}

void GroupSection::markSymbols() {
  if (Sym)
    Sym->Referenced = true;
}

void GroupSection::replaceSectionReferences(
    const DenseMap<SectionBase *, SectionBase *> &FromTo) {
  for (SectionBase *&Sec : GroupMembers)
    if (SectionBase *To = FromTo.lookup(Sec))
      Sec = To;
}

void Section::initialize(SectionTableRef SecTable) {
  if (Link == ELF::SHN_UNDEF)
    return;
  LinkSection =
      SecTable.getSection(Link, "Link field value " + Twine(Link) +
                                    " in section " + Name + " is invalid");
  if (LinkSection->Type == ELF::SHT_SYMTAB)
    LinkSection = nullptr;
}

void Section::finalize() { this->Link = LinkSection ? LinkSection->Index : 0; }

void GnuDebugLinkSection::init(StringRef File) {
  FileName = sys::path::filename(File);
  // The format for the .gnu_debuglink starts with the file name and is
  // followed by a null terminator and then the CRC32 of the file. The CRC32
  // should be 4 byte aligned. So we add the FileName size, a 1 for the null
  // byte, and then finally push the size to alignment and add 4.
  Size = alignTo(FileName.size() + 1, 4) + 4;
  // The CRC32 will only be aligned if we align the whole section.
  Align = 4;
  Type = OriginalType = ELF::SHT_PROGBITS;
  Name = ".gnu_debuglink";
  // For sections not found in segments, OriginalOffset is only used to
  // establish the order that sections should go in. By using the maximum
  // possible offset we cause this section to wind up at the end.
  OriginalOffset = std::numeric_limits<uint64_t>::max();
}

GnuDebugLinkSection::GnuDebugLinkSection(StringRef File,
                                         uint32_t PrecomputedCRC)
    : FileName(File), CRC32(PrecomputedCRC) {
  init(File);
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GnuDebugLinkSection &Sec) {
  unsigned char *Buf = Out.getBufferStart() + Sec.Offset;
  Elf_Word *CRC =
      reinterpret_cast<Elf_Word *>(Buf + Sec.Size - sizeof(Elf_Word));
  *CRC = Sec.CRC32;
  llvm::copy(Sec.FileName, Buf);
}

void GnuDebugLinkSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void GnuDebugLinkSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

template <class ELFT>
void ELFSectionWriter<ELFT>::visit(const GroupSection &Sec) {
  ELF::Elf32_Word *Buf =
      reinterpret_cast<ELF::Elf32_Word *>(Out.getBufferStart() + Sec.Offset);
  *Buf++ = Sec.FlagWord;
  for (SectionBase *S : Sec.GroupMembers)
    support::endian::write32<ELFT::TargetEndianness>(Buf++, S->Index);
}

void GroupSection::accept(SectionVisitor &Visitor) const {
  Visitor.visit(*this);
}

void GroupSection::accept(MutableSectionVisitor &Visitor) {
  Visitor.visit(*this);
}

// Returns true IFF a section is wholly inside the range of a segment
static bool sectionWithinSegment(const SectionBase &Sec, const Segment &Seg) {
  // If a section is empty it should be treated like it has a size of 1. This is
  // to clarify the case when an empty section lies on a boundary between two
  // segments and ensures that the section "belongs" to the second segment and
  // not the first.
  uint64_t SecSize = Sec.Size ? Sec.Size : 1;

  if (Sec.Type == SHT_NOBITS) {
    if (!(Sec.Flags & SHF_ALLOC))
      return false;

    bool SectionIsTLS = Sec.Flags & SHF_TLS;
    bool SegmentIsTLS = Seg.Type == PT_TLS;
    if (SectionIsTLS != SegmentIsTLS)
      return false;

    return Seg.VAddr <= Sec.Addr &&
           Seg.VAddr + Seg.MemSize >= Sec.Addr + SecSize;
  }

  return Seg.Offset <= Sec.OriginalOffset &&
         Seg.Offset + Seg.FileSize >= Sec.OriginalOffset + SecSize;
}

// Returns true IFF a segment's original offset is inside of another segment's
// range.
static bool segmentOverlapsSegment(const Segment &Child,
                                   const Segment &Parent) {

  return Parent.OriginalOffset <= Child.OriginalOffset &&
         Parent.OriginalOffset + Parent.FileSize > Child.OriginalOffset;
}

static bool compareSegmentsByOffset(const Segment *A, const Segment *B) {
  // Any segment without a parent segment should come before a segment
  // that has a parent segment.
  if (A->OriginalOffset < B->OriginalOffset)
    return true;
  if (A->OriginalOffset > B->OriginalOffset)
    return false;
  return A->Index < B->Index;
}

static bool compareSegmentsByPAddr(const Segment *A, const Segment *B) {
  if (A->PAddr < B->PAddr)
    return true;
  if (A->PAddr > B->PAddr)
    return false;
  return A->Index < B->Index;
}

void BasicELFBuilder::initFileHeader() {
  Obj->Flags = 0x0;
  Obj->Type = ET_REL;
  Obj->OSABI = ELFOSABI_NONE;
  Obj->ABIVersion = 0;
  Obj->Entry = 0x0;
  Obj->Machine = EM_NONE;
  Obj->Version = 1;
}

void BasicELFBuilder::initHeaderSegment() { Obj->ElfHdrSegment.Index = 0; }

StringTableSection *BasicELFBuilder::addStrTab() {
  auto &StrTab = Obj->addSection<StringTableSection>();
  StrTab.Name = ".strtab";

  Obj->SectionNames = &StrTab;
  return &StrTab;
}

SymbolTableSection *BasicELFBuilder::addSymTab(StringTableSection *StrTab) {
  auto &SymTab = Obj->addSection<SymbolTableSection>();

  SymTab.Name = ".symtab";
  SymTab.Link = StrTab->Index;

  // The symbol table always needs a null symbol
  SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);

  Obj->SymbolTable = &SymTab;
  return &SymTab;
}

void BasicELFBuilder::initSections() {
  for (SectionBase &Sec : Obj->sections())
    Sec.initialize(Obj->sections());
}

void BinaryELFBuilder::addData(SymbolTableSection *SymTab) {
  auto Data = ArrayRef<uint8_t>(
      reinterpret_cast<const uint8_t *>(MemBuf->getBufferStart()),
      MemBuf->getBufferSize());
  auto &DataSection = Obj->addSection<Section>(Data);
  DataSection.Name = ".data";
  DataSection.Type = ELF::SHT_PROGBITS;
  DataSection.Size = Data.size();
  DataSection.Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;

  std::string SanitizedFilename = MemBuf->getBufferIdentifier().str();
  std::replace_if(std::begin(SanitizedFilename), std::end(SanitizedFilename),
                  [](char C) { return !isalnum(C); }, '_');
  Twine Prefix = Twine("_binary_") + SanitizedFilename;

  SymTab->addSymbol(Prefix + "_start", STB_GLOBAL, STT_NOTYPE, &DataSection,
                    /*Value=*/0, NewSymbolVisibility, 0, 0);
  SymTab->addSymbol(Prefix + "_end", STB_GLOBAL, STT_NOTYPE, &DataSection,
                    /*Value=*/DataSection.Size, NewSymbolVisibility, 0, 0);
  SymTab->addSymbol(Prefix + "_size", STB_GLOBAL, STT_NOTYPE, nullptr,
                    /*Value=*/DataSection.Size, NewSymbolVisibility, SHN_ABS,
                    0);
}

std::unique_ptr<Object> BinaryELFBuilder::build() {
  initFileHeader();
  initHeaderSegment();

  SymbolTableSection *SymTab = addSymTab(addStrTab());
  initSections();
  addData(SymTab);

  return std::move(Obj);
}

// Adds sections from IHEX data file. Data should have been
// fully validated by this time.
void IHexELFBuilder::addDataSections() {
  OwnedDataSection *Section = nullptr;
  uint64_t SegmentAddr = 0, BaseAddr = 0;
  uint32_t SecNo = 1;

  for (const IHexRecord &R : Records) {
    uint64_t RecAddr;
    switch (R.Type) {
    case IHexRecord::Data:
      // Ignore empty data records
      if (R.HexData.empty())
        continue;
      RecAddr = R.Addr + SegmentAddr + BaseAddr;
      if (!Section || Section->Addr + Section->Size != RecAddr)
        // OriginalOffset field is only used to sort section properly, so
        // instead of keeping track of real offset in IHEX file, we use
        // section number.
        Section = &Obj->addSection<OwnedDataSection>(
            ".sec" + std::to_string(SecNo++), RecAddr,
            ELF::SHF_ALLOC | ELF::SHF_WRITE, SecNo);
      Section->appendHexData(R.HexData);
      break;
    case IHexRecord::EndOfFile:
      break;
    case IHexRecord::SegmentAddr:
      // 20-bit segment address.
      SegmentAddr = checkedGetHex<uint16_t>(R.HexData) << 4;
      break;
    case IHexRecord::StartAddr80x86:
    case IHexRecord::StartAddr:
      Obj->Entry = checkedGetHex<uint32_t>(R.HexData);
      assert(Obj->Entry <= 0xFFFFFU);
      break;
    case IHexRecord::ExtendedAddr:
      // 16-31 bits of linear base address
      BaseAddr = checkedGetHex<uint16_t>(R.HexData) << 16;
      break;
    default:
      llvm_unreachable("unknown record type");
    }
  }
}

std::unique_ptr<Object> IHexELFBuilder::build() {
  initFileHeader();
  initHeaderSegment();
  StringTableSection *StrTab = addStrTab();
  addSymTab(StrTab);
  initSections();
  addDataSections();

  return std::move(Obj);
}

template <class ELFT> void ELFBuilder<ELFT>::setParentSegment(Segment &Child) {
  for (Segment &Parent : Obj.segments()) {
    // Every segment will overlap with itself but we don't want a segment to
    // be it's own parent so we avoid that situation.
    if (&Child != &Parent && segmentOverlapsSegment(Child, Parent)) {
      // We want a canonical "most parental" segment but this requires
      // inspecting the ParentSegment.
      if (compareSegmentsByOffset(&Parent, &Child))
        if (Child.ParentSegment == nullptr ||
            compareSegmentsByOffset(&Parent, Child.ParentSegment)) {
          Child.ParentSegment = &Parent;
        }
    }
  }
}

template <class ELFT> void ELFBuilder<ELFT>::findEhdrOffset() {
  if (!ExtractPartition)
    return;

  for (const SectionBase &Sec : Obj.sections()) {
    if (Sec.Type == SHT_LLVM_PART_EHDR && Sec.Name == *ExtractPartition) {
      EhdrOffset = Sec.Offset;
      return;
    }
  }
  error("could not find partition named '" + *ExtractPartition + "'");
}

template <class ELFT>
void ELFBuilder<ELFT>::readProgramHeaders(const ELFFile<ELFT> &HeadersFile) {
  uint32_t Index = 0;
  for (const auto &Phdr : unwrapOrError(HeadersFile.program_headers())) {
    if (Phdr.p_offset + Phdr.p_filesz > HeadersFile.getBufSize())
      error("program header with offset 0x" + Twine::utohexstr(Phdr.p_offset) +
            " and file size 0x" + Twine::utohexstr(Phdr.p_filesz) +
            " goes past the end of the file");

    ArrayRef<uint8_t> Data{HeadersFile.base() + Phdr.p_offset,
                           (size_t)Phdr.p_filesz};
    Segment &Seg = Obj.addSegment(Data);
    Seg.Type = Phdr.p_type;
    Seg.Flags = Phdr.p_flags;
    Seg.OriginalOffset = Phdr.p_offset + EhdrOffset;
    Seg.Offset = Phdr.p_offset + EhdrOffset;
    Seg.VAddr = Phdr.p_vaddr;
    Seg.PAddr = Phdr.p_paddr;
    Seg.FileSize = Phdr.p_filesz;
    Seg.MemSize = Phdr.p_memsz;
    Seg.Align = Phdr.p_align;
    Seg.Index = Index++;
    for (SectionBase &Sec : Obj.sections())
      if (sectionWithinSegment(Sec, Seg)) {
        Seg.addSection(&Sec);
        if (!Sec.ParentSegment || Sec.ParentSegment->Offset > Seg.Offset)
          Sec.ParentSegment = &Seg;
      }
  }

  auto &ElfHdr = Obj.ElfHdrSegment;
  ElfHdr.Index = Index++;
  ElfHdr.OriginalOffset = ElfHdr.Offset = EhdrOffset;

  const auto &Ehdr = *HeadersFile.getHeader();
  auto &PrHdr = Obj.ProgramHdrSegment;
  PrHdr.Type = PT_PHDR;
  PrHdr.Flags = 0;
  // The spec requires us to have p_vaddr % p_align == p_offset % p_align.
  // Whereas this works automatically for ElfHdr, here OriginalOffset is
  // always non-zero and to ensure the equation we assign the same value to
  // VAddr as well.
  PrHdr.OriginalOffset = PrHdr.Offset = PrHdr.VAddr = EhdrOffset + Ehdr.e_phoff;
  PrHdr.PAddr = 0;
  PrHdr.FileSize = PrHdr.MemSize = Ehdr.e_phentsize * Ehdr.e_phnum;
  // The spec requires us to naturally align all the fields.
  PrHdr.Align = sizeof(Elf_Addr);
  PrHdr.Index = Index++;

  // Now we do an O(n^2) loop through the segments in order to match up
  // segments.
  for (Segment &Child : Obj.segments())
    setParentSegment(Child);
  setParentSegment(ElfHdr);
  setParentSegment(PrHdr);
}

template <class ELFT>
void ELFBuilder<ELFT>::initGroupSection(GroupSection *GroupSec) {
  if (GroupSec->Align % sizeof(ELF::Elf32_Word) != 0)
    error("invalid alignment " + Twine(GroupSec->Align) + " of group section '" +
          GroupSec->Name + "'");
  SectionTableRef SecTable = Obj.sections();
  auto SymTab = SecTable.template getSectionOfType<SymbolTableSection>(
      GroupSec->Link,
      "link field value '" + Twine(GroupSec->Link) + "' in section '" +
          GroupSec->Name + "' is invalid",
      "link field value '" + Twine(GroupSec->Link) + "' in section '" +
          GroupSec->Name + "' is not a symbol table");
  Symbol *Sym = SymTab->getSymbolByIndex(GroupSec->Info);
  if (!Sym)
    error("info field value '" + Twine(GroupSec->Info) + "' in section '" +
          GroupSec->Name + "' is not a valid symbol index");
  GroupSec->setSymTab(SymTab);
  GroupSec->setSymbol(Sym);
  if (GroupSec->Contents.size() % sizeof(ELF::Elf32_Word) ||
      GroupSec->Contents.empty())
    error("the content of the section " + GroupSec->Name + " is malformed");
  const ELF::Elf32_Word *Word =
      reinterpret_cast<const ELF::Elf32_Word *>(GroupSec->Contents.data());
  const ELF::Elf32_Word *End =
      Word + GroupSec->Contents.size() / sizeof(ELF::Elf32_Word);
  GroupSec->setFlagWord(*Word++);
  for (; Word != End; ++Word) {
    uint32_t Index = support::endian::read32<ELFT::TargetEndianness>(Word);
    GroupSec->addMember(SecTable.getSection(
        Index, "group member index " + Twine(Index) + " in section '" +
                   GroupSec->Name + "' is invalid"));
  }
}

template <class ELFT>
void ELFBuilder<ELFT>::initSymbolTable(SymbolTableSection *SymTab) {
  const Elf_Shdr &Shdr = *unwrapOrError(ElfFile.getSection(SymTab->Index));
  StringRef StrTabData = unwrapOrError(ElfFile.getStringTableForSymtab(Shdr));
  ArrayRef<Elf_Word> ShndxData;

  auto Symbols = unwrapOrError(ElfFile.symbols(&Shdr));
  for (const auto &Sym : Symbols) {
    SectionBase *DefSection = nullptr;
    StringRef Name = unwrapOrError(Sym.getName(StrTabData));

    if (Sym.st_shndx == SHN_XINDEX) {
      if (SymTab->getShndxTable() == nullptr)
        error("symbol '" + Name +
              "' has index SHN_XINDEX but no SHT_SYMTAB_SHNDX section exists");
      if (ShndxData.data() == nullptr) {
        const Elf_Shdr &ShndxSec =
            *unwrapOrError(ElfFile.getSection(SymTab->getShndxTable()->Index));
        ShndxData = unwrapOrError(
            ElfFile.template getSectionContentsAsArray<Elf_Word>(&ShndxSec));
        if (ShndxData.size() != Symbols.size())
          error("symbol section index table does not have the same number of "
                "entries as the symbol table");
      }
      Elf_Word Index = ShndxData[&Sym - Symbols.begin()];
      DefSection = Obj.sections().getSection(
          Index,
          "symbol '" + Name + "' has invalid section index " + Twine(Index));
    } else if (Sym.st_shndx >= SHN_LORESERVE) {
      if (!isValidReservedSectionIndex(Sym.st_shndx, Obj.Machine)) {
        error(
            "symbol '" + Name +
            "' has unsupported value greater than or equal to SHN_LORESERVE: " +
            Twine(Sym.st_shndx));
      }
    } else if (Sym.st_shndx != SHN_UNDEF) {
      DefSection = Obj.sections().getSection(
          Sym.st_shndx, "symbol '" + Name +
                            "' is defined has invalid section index " +
                            Twine(Sym.st_shndx));
    }

    SymTab->addSymbol(Name, Sym.getBinding(), Sym.getType(), DefSection,
                      Sym.getValue(), Sym.st_other, Sym.st_shndx, Sym.st_size);
  }
}

template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, false> &Rel) {}

template <class ELFT>
static void getAddend(uint64_t &ToSet, const Elf_Rel_Impl<ELFT, true> &Rela) {
  ToSet = Rela.r_addend;
}

template <class T>
static void initRelocations(RelocationSection *Relocs,
                            SymbolTableSection *SymbolTable, T RelRange) {
  for (const auto &Rel : RelRange) {
    Relocation ToAdd;
    ToAdd.Offset = Rel.r_offset;
    getAddend(ToAdd.Addend, Rel);
    ToAdd.Type = Rel.getType(false);

    if (uint32_t Sym = Rel.getSymbol(false)) {
      if (!SymbolTable)
        error("'" + Relocs->Name +
              "': relocation references symbol with index " + Twine(Sym) +
              ", but there is no symbol table");
      ToAdd.RelocSymbol = SymbolTable->getSymbolByIndex(Sym);
    }

    Relocs->addRelocation(ToAdd);
  }
}

SectionBase *SectionTableRef::getSection(uint32_t Index, Twine ErrMsg) {
  if (Index == SHN_UNDEF || Index > Sections.size())
    error(ErrMsg);
  return Sections[Index - 1].get();
}

template <class T>
T *SectionTableRef::getSectionOfType(uint32_t Index, Twine IndexErrMsg,
                                     Twine TypeErrMsg) {
  if (T *Sec = dyn_cast<T>(getSection(Index, IndexErrMsg)))
    return Sec;
  error(TypeErrMsg);
}

template <class ELFT>
SectionBase &ELFBuilder<ELFT>::makeSection(const Elf_Shdr &Shdr) {
  ArrayRef<uint8_t> Data;
  switch (Shdr.sh_type) {
  case SHT_REL:
  case SHT_RELA:
    if (Shdr.sh_flags & SHF_ALLOC) {
      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
      return Obj.addSection<DynamicRelocationSection>(Data);
    }
    return Obj.addSection<RelocationSection>();
  case SHT_STRTAB:
    // If a string table is allocated we don't want to mess with it. That would
    // mean altering the memory image. There are no special link types or
    // anything so we can just use a Section.
    if (Shdr.sh_flags & SHF_ALLOC) {
      Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
      return Obj.addSection<Section>(Data);
    }
    return Obj.addSection<StringTableSection>();
  case SHT_HASH:
  case SHT_GNU_HASH:
    // Hash tables should refer to SHT_DYNSYM which we're not going to change.
    // Because of this we don't need to mess with the hash tables either.
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<Section>(Data);
  case SHT_GROUP:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<GroupSection>(Data);
  case SHT_DYNSYM:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<DynamicSymbolTableSection>(Data);
  case SHT_DYNAMIC:
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));
    return Obj.addSection<DynamicSection>(Data);
  case SHT_SYMTAB: {
    auto &SymTab = Obj.addSection<SymbolTableSection>();
    Obj.SymbolTable = &SymTab;
    return SymTab;
  }
  case SHT_SYMTAB_SHNDX: {
    auto &ShndxSection = Obj.addSection<SectionIndexSection>();
    Obj.SectionIndexTable = &ShndxSection;
    return ShndxSection;
  }
  case SHT_NOBITS:
    return Obj.addSection<Section>(Data);
  default: {
    Data = unwrapOrError(ElfFile.getSectionContents(&Shdr));

    StringRef Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
    if (Name.startswith(".zdebug") || (Shdr.sh_flags & ELF::SHF_COMPRESSED)) {
      uint64_t DecompressedSize, DecompressedAlign;
      std::tie(DecompressedSize, DecompressedAlign) =
          getDecompressedSizeAndAlignment<ELFT>(Data);
      return Obj.addSection<CompressedSection>(Data, DecompressedSize,
                                               DecompressedAlign);
    }

    return Obj.addSection<Section>(Data);
  }
  }
}

template <class ELFT> void ELFBuilder<ELFT>::readSectionHeaders() {
  uint32_t Index = 0;
  for (const auto &Shdr : unwrapOrError(ElfFile.sections())) {
    if (Index == 0) {
      ++Index;
      continue;
    }
    auto &Sec = makeSection(Shdr);
    Sec.Name = unwrapOrError(ElfFile.getSectionName(&Shdr));
    Sec.Type = Sec.OriginalType = Shdr.sh_type;
    Sec.Flags = Sec.OriginalFlags = Shdr.sh_flags;
    Sec.Addr = Shdr.sh_addr;
    Sec.Offset = Shdr.sh_offset;
    Sec.OriginalOffset = Shdr.sh_offset;
    Sec.Size = Shdr.sh_size;
    Sec.Link = Shdr.sh_link;
    Sec.Info = Shdr.sh_info;
    Sec.Align = Shdr.sh_addralign;
    Sec.EntrySize = Shdr.sh_entsize;
    Sec.Index = Index++;
    Sec.OriginalData =
        ArrayRef<uint8_t>(ElfFile.base() + Shdr.sh_offset,
                          (Shdr.sh_type == SHT_NOBITS) ? 0 : Shdr.sh_size);
  }
}

template <class ELFT> void ELFBuilder<ELFT>::readSections(bool EnsureSymtab) {
  uint32_t ShstrIndex = ElfFile.getHeader()->e_shstrndx;
  if (ShstrIndex == SHN_XINDEX)
    ShstrIndex = unwrapOrError(ElfFile.getSection(0))->sh_link;

  if (ShstrIndex == SHN_UNDEF)
    Obj.HadShdrs = false;
  else
    Obj.SectionNames =
        Obj.sections().template getSectionOfType<StringTableSection>(
            ShstrIndex,
            "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
                " is invalid",
            "e_shstrndx field value " + Twine(ShstrIndex) + " in elf header " +
                " does not reference a string table");

  // If a section index table exists we'll need to initialize it before we
  // initialize the symbol table because the symbol table might need to
  // reference it.
  if (Obj.SectionIndexTable)
    Obj.SectionIndexTable->initialize(Obj.sections());

  // Now that all of the sections have been added we can fill out some extra
  // details about symbol tables. We need the symbol table filled out before
  // any relocations.
  if (Obj.SymbolTable) {
    Obj.SymbolTable->initialize(Obj.sections());
    initSymbolTable(Obj.SymbolTable);
  } else if (EnsureSymtab) {
    // Reuse an existing SHT_STRTAB section if it exists.
    StringTableSection *StrTab = nullptr;
    for (auto &Sec : Obj.sections()) {
      if (Sec.Type == ELF::SHT_STRTAB && !(Sec.Flags & SHF_ALLOC)) {
        StrTab = static_cast<StringTableSection *>(&Sec);

        // Prefer a string table that is not the section header string table, if
        // such a table exists.
        if (Obj.SectionNames != &Sec)
          break;
      }
    }
    if (!StrTab)
      StrTab = &Obj.addSection<StringTableSection>();

    SymbolTableSection &SymTab = Obj.addSection<SymbolTableSection>();
    SymTab.Name = ".symtab";
    SymTab.Link = StrTab->Index;
    SymTab.initialize(Obj.sections());
    SymTab.addSymbol("", 0, 0, nullptr, 0, 0, 0, 0);
    Obj.SymbolTable = &SymTab;
  }

  // Now that all sections and symbols have been added we can add
  // relocations that reference symbols and set the link and info fields for
  // relocation sections.
  for (auto &Sec : Obj.sections()) {
    if (&Sec == Obj.SymbolTable)
      continue;
    Sec.initialize(Obj.sections());
    if (auto RelSec = dyn_cast<RelocationSection>(&Sec)) {
      auto Shdr = unwrapOrError(ElfFile.sections()).begin() + RelSec->Index;
      if (RelSec->Type == SHT_REL)
        initRelocations(RelSec, Obj.SymbolTable,
                        unwrapOrError(ElfFile.rels(Shdr)));
      else
        initRelocations(RelSec, Obj.SymbolTable,
                        unwrapOrError(ElfFile.relas(Shdr)));
    } else if (auto GroupSec = dyn_cast<GroupSection>(&Sec)) {
      initGroupSection(GroupSec);
    }
  }
}

template <class ELFT> void ELFBuilder<ELFT>::build(bool EnsureSymtab) {
  readSectionHeaders();
  findEhdrOffset();

  // The ELFFile whose ELF headers and program headers are copied into the
  // output file. Normally the same as ElfFile, but if we're extracting a
  // loadable partition it will point to the partition's headers.
  ELFFile<ELFT> HeadersFile = unwrapOrError(ELFFile<ELFT>::create(toStringRef(
      {ElfFile.base() + EhdrOffset, ElfFile.getBufSize() - EhdrOffset})));

  auto &Ehdr = *HeadersFile.getHeader();
  Obj.OSABI = Ehdr.e_ident[EI_OSABI];
  Obj.ABIVersion = Ehdr.e_ident[EI_ABIVERSION];
  Obj.Type = Ehdr.e_type;
  Obj.Machine = Ehdr.e_machine;
  Obj.Version = Ehdr.e_version;
  Obj.Entry = Ehdr.e_entry;
  Obj.Flags = Ehdr.e_flags;

  readSections(EnsureSymtab);
  readProgramHeaders(HeadersFile);
}

Writer::~Writer() {}

Reader::~Reader() {}

std::unique_ptr<Object> BinaryReader::create(bool /*EnsureSymtab*/) const {
  return BinaryELFBuilder(MemBuf, NewSymbolVisibility).build();
}

Expected<std::vector<IHexRecord>> IHexReader::parse() const {
  SmallVector<StringRef, 16> Lines;
  std::vector<IHexRecord> Records;
  bool HasSections = false;

  MemBuf->getBuffer().split(Lines, '\n');
  Records.reserve(Lines.size());
  for (size_t LineNo = 1; LineNo <= Lines.size(); ++LineNo) {
    StringRef Line = Lines[LineNo - 1].trim();
    if (Line.empty())
      continue;

    Expected<IHexRecord> R = IHexRecord::parse(Line);
    if (!R)
      return parseError(LineNo, R.takeError());
    if (R->Type == IHexRecord::EndOfFile)
      break;
    HasSections |= (R->Type == IHexRecord::Data);
    Records.push_back(*R);
  }
  if (!HasSections)
    return parseError(-1U, "no sections");

  return std::move(Records);
}

std::unique_ptr<Object> IHexReader::create(bool /*EnsureSymtab*/) const {
  std::vector<IHexRecord> Records = unwrapOrError(parse());
  return IHexELFBuilder(Records).build();
}

std::unique_ptr<Object> ELFReader::create(bool EnsureSymtab) const {
  auto Obj = std::make_unique<Object>();
  if (auto *O = dyn_cast<ELFObjectFile<ELF32LE>>(Bin)) {
    ELFBuilder<ELF32LE> Builder(*O, *Obj, ExtractPartition);
    Builder.build(EnsureSymtab);
    return Obj;
  } else if (auto *O = dyn_cast<ELFObjectFile<ELF64LE>>(Bin)) {
    ELFBuilder<ELF64LE> Builder(*O, *Obj, ExtractPartition);
    Builder.build(EnsureSymtab);
    return Obj;
  } else if (auto *O = dyn_cast<ELFObjectFile<ELF32BE>>(Bin)) {
    ELFBuilder<ELF32BE> Builder(*O, *Obj, ExtractPartition);
    Builder.build(EnsureSymtab);
    return Obj;
  } else if (auto *O = dyn_cast<ELFObjectFile<ELF64BE>>(Bin)) {
    ELFBuilder<ELF64BE> Builder(*O, *Obj, ExtractPartition);
    Builder.build(EnsureSymtab);
    return Obj;
  }
  error("invalid file type");
}

template <class ELFT> void ELFWriter<ELFT>::writeEhdr() {
  Elf_Ehdr &Ehdr = *reinterpret_cast<Elf_Ehdr *>(Buf.getBufferStart());
  std::fill(Ehdr.e_ident, Ehdr.e_ident + 16, 0);
  Ehdr.e_ident[EI_MAG0] = 0x7f;
  Ehdr.e_ident[EI_MAG1] = 'E';
  Ehdr.e_ident[EI_MAG2] = 'L';
  Ehdr.e_ident[EI_MAG3] = 'F';
  Ehdr.e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32;
  Ehdr.e_ident[EI_DATA] =
      ELFT::TargetEndianness == support::big ? ELFDATA2MSB : ELFDATA2LSB;
  Ehdr.e_ident[EI_VERSION] = EV_CURRENT;
  Ehdr.e_ident[EI_OSABI] = Obj.OSABI;
  Ehdr.e_ident[EI_ABIVERSION] = Obj.ABIVersion;

  Ehdr.e_type = Obj.Type;
  Ehdr.e_machine = Obj.Machine;
  Ehdr.e_version = Obj.Version;
  Ehdr.e_entry = Obj.Entry;
  // We have to use the fully-qualified name llvm::size
  // since some compilers complain on ambiguous resolution.
  Ehdr.e_phnum = llvm::size(Obj.segments());
  Ehdr.e_phoff = (Ehdr.e_phnum != 0) ? Obj.ProgramHdrSegment.Offset : 0;
  Ehdr.e_phentsize = (Ehdr.e_phnum != 0) ? sizeof(Elf_Phdr) : 0;
  Ehdr.e_flags = Obj.Flags;
  Ehdr.e_ehsize = sizeof(Elf_Ehdr);
  if (WriteSectionHeaders && Obj.sections().size() != 0) {
    Ehdr.e_shentsize = sizeof(Elf_Shdr);
    Ehdr.e_shoff = Obj.SHOff;
    // """
    // If the number of sections is greater than or equal to
    // SHN_LORESERVE (0xff00), this member has the value zero and the actual
    // number of section header table entries is contained in the sh_size field
    // of the section header at index 0.
    // """
    auto Shnum = Obj.sections().size() + 1;
    if (Shnum >= SHN_LORESERVE)
      Ehdr.e_shnum = 0;
    else
      Ehdr.e_shnum = Shnum;
    // """
    // If the section name string table section index is greater than or equal
    // to SHN_LORESERVE (0xff00), this member has the value SHN_XINDEX (0xffff)
    // and the actual index of the section name string table section is
    // contained in the sh_link field of the section header at index 0.
    // """
    if (Obj.SectionNames->Index >= SHN_LORESERVE)
      Ehdr.e_shstrndx = SHN_XINDEX;
    else
      Ehdr.e_shstrndx = Obj.SectionNames->Index;
  } else {
    Ehdr.e_shentsize = 0;
    Ehdr.e_shoff = 0;
    Ehdr.e_shnum = 0;
    Ehdr.e_shstrndx = 0;
  }
}

template <class ELFT> void ELFWriter<ELFT>::writePhdrs() {
  for (auto &Seg : Obj.segments())
    writePhdr(Seg);
}

template <class ELFT> void ELFWriter<ELFT>::writeShdrs() {
  // This reference serves to write the dummy section header at the begining
  // of the file. It is not used for anything else
  Elf_Shdr &Shdr =
      *reinterpret_cast<Elf_Shdr *>(Buf.getBufferStart() + Obj.SHOff);
  Shdr.sh_name = 0;
  Shdr.sh_type = SHT_NULL;
  Shdr.sh_flags = 0;
  Shdr.sh_addr = 0;
  Shdr.sh_offset = 0;
  // See writeEhdr for why we do this.
  uint64_t Shnum = Obj.sections().size() + 1;
  if (Shnum >= SHN_LORESERVE)
    Shdr.sh_size = Shnum;
  else
    Shdr.sh_size = 0;
  // See writeEhdr for why we do this.
  if (Obj.SectionNames != nullptr && Obj.SectionNames->Index >= SHN_LORESERVE)
    Shdr.sh_link = Obj.SectionNames->Index;
  else
    Shdr.sh_link = 0;
  Shdr.sh_info = 0;
  Shdr.sh_addralign = 0;
  Shdr.sh_entsize = 0;

  for (SectionBase &Sec : Obj.sections())
    writeShdr(Sec);
}

template <class ELFT> void ELFWriter<ELFT>::writeSectionData() {
  for (SectionBase &Sec : Obj.sections())
    // Segments are responsible for writing their contents, so only write the
    // section data if the section is not in a segment. Note that this renders
    // sections in segments effectively immutable.
    if (Sec.ParentSegment == nullptr)
      Sec.accept(*SecWriter);
}

template <class ELFT> void ELFWriter<ELFT>::writeSegmentData() {
  for (Segment &Seg : Obj.segments()) {
    size_t Size = std::min<size_t>(Seg.FileSize, Seg.getContents().size());
    std::memcpy(Buf.getBufferStart() + Seg.Offset, Seg.getContents().data(),
                Size);
  }

  // Iterate over removed sections and overwrite their old data with zeroes.
  for (auto &Sec : Obj.removedSections()) {
    Segment *Parent = Sec.ParentSegment;
    if (Parent == nullptr || Sec.Type == SHT_NOBITS || Sec.Size == 0)
      continue;
    uint64_t Offset =
        Sec.OriginalOffset - Parent->OriginalOffset + Parent->Offset;
    std::memset(Buf.getBufferStart() + Offset, 0, Sec.Size);
  }
}

template <class ELFT>
ELFWriter<ELFT>::ELFWriter(Object &Obj, Buffer &Buf, bool WSH,
                           bool OnlyKeepDebug)
    : Writer(Obj, Buf), WriteSectionHeaders(WSH && Obj.HadShdrs),
      OnlyKeepDebug(OnlyKeepDebug) {}

Error Object::removeSections(bool AllowBrokenLinks,
    std::function<bool(const SectionBase &)> ToRemove) {

  auto Iter = std::stable_partition(
      std::begin(Sections), std::end(Sections), [=](const SecPtr &Sec) {
        if (ToRemove(*Sec))
          return false;
        if (auto RelSec = dyn_cast<RelocationSectionBase>(Sec.get())) {
          if (auto ToRelSec = RelSec->getSection())
            return !ToRemove(*ToRelSec);
        }
        return true;
      });
  if (SymbolTable != nullptr && ToRemove(*SymbolTable))
    SymbolTable = nullptr;
  if (SectionNames != nullptr && ToRemove(*SectionNames))
    SectionNames = nullptr;
  if (SectionIndexTable != nullptr && ToRemove(*SectionIndexTable))
    SectionIndexTable = nullptr;
  // Now make sure there are no remaining references to the sections that will
  // be removed. Sometimes it is impossible to remove a reference so we emit
  // an error here instead.
  std::unordered_set<const SectionBase *> RemoveSections;
  RemoveSections.reserve(std::distance(Iter, std::end(Sections)));
  for (auto &RemoveSec : make_range(Iter, std::end(Sections))) {
    for (auto &Segment : Segments)
      Segment->removeSection(RemoveSec.get());
    RemoveSections.insert(RemoveSec.get());
  }

  // For each section that remains alive, we want to remove the dead references.
  // This either might update the content of the section (e.g. remove symbols
  // from symbol table that belongs to removed section) or trigger an error if
  // a live section critically depends on a section being removed somehow
  // (e.g. the removed section is referenced by a relocation).
  for (auto &KeepSec : make_range(std::begin(Sections), Iter)) {
    if (Error E = KeepSec->removeSectionReferences(AllowBrokenLinks,
            [&RemoveSections](const SectionBase *Sec) {
              return RemoveSections.find(Sec) != RemoveSections.end();
            }))
      return E;
  }

  // Transfer removed sections into the Object RemovedSections container for use
  // later.
  std::move(Iter, Sections.end(), std::back_inserter(RemovedSections));
  // Now finally get rid of them all together.
  Sections.erase(Iter, std::end(Sections));
  return Error::success();
}

Error Object::removeSymbols(function_ref<bool(const Symbol &)> ToRemove) {
  if (SymbolTable)
    for (const SecPtr &Sec : Sections)
      if (Error E = Sec->removeSymbols(ToRemove))
        return E;
  return Error::success();
}

void Object::sortSections() {
  // Use stable_sort to maintain the original ordering as closely as possible.
  llvm::stable_sort(Sections, [](const SecPtr &A, const SecPtr &B) {
    // Put SHT_GROUP sections first, since group section headers must come
    // before the sections they contain. This also matches what GNU objcopy
    // does.
    if (A->Type != B->Type &&
        (A->Type == ELF::SHT_GROUP || B->Type == ELF::SHT_GROUP))
      return A->Type == ELF::SHT_GROUP;
    // For all other sections, sort by offset order.
    return A->OriginalOffset < B->OriginalOffset;
  });
}

// Orders segments such that if x = y->ParentSegment then y comes before x.
static void orderSegments(std::vector<Segment *> &Segments) {
  llvm::stable_sort(Segments, compareSegmentsByOffset);
}

// This function finds a consistent layout for a list of segments starting from
// an Offset. It assumes that Segments have been sorted by orderSegments and
// returns an Offset one past the end of the last segment.
static uint64_t layoutSegments(std::vector<Segment *> &Segments,
                               uint64_t Offset) {
  assert(std::is_sorted(std::begin(Segments), std::end(Segments),
                        compareSegmentsByOffset));
  // The only way a segment should move is if a section was between two
  // segments and that section was removed. If that section isn't in a segment
  // then it's acceptable, but not ideal, to simply move it to after the
  // segments. So we can simply layout segments one after the other accounting
  // for alignment.
  for (Segment *Seg : Segments) {
    // We assume that segments have been ordered by OriginalOffset and Index
    // such that a parent segment will always come before a child segment in
    // OrderedSegments. This means that the Offset of the ParentSegment should
    // already be set and we can set our offset relative to it.
    if (Seg->ParentSegment != nullptr) {
      Segment *Parent = Seg->ParentSegment;
      Seg->Offset =
          Parent->Offset + Seg->OriginalOffset - Parent->OriginalOffset;
    } else {
      Seg->Offset =
          alignTo(Offset, std::max<uint64_t>(Seg->Align, 1), Seg->VAddr);
    }
    Offset = std::max(Offset, Seg->Offset + Seg->FileSize);
  }
  return Offset;
}

// This function finds a consistent layout for a list of sections. It assumes
// that the ->ParentSegment of each section has already been laid out. The
// supplied starting Offset is used for the starting offset of any section that
// does not have a ParentSegment. It returns either the offset given if all
// sections had a ParentSegment or an offset one past the last section if there
// was a section that didn't have a ParentSegment.
template <class Range>
static uint64_t layoutSections(Range Sections, uint64_t Offset) {
  // Now the offset of every segment has been set we can assign the offsets
  // of each section. For sections that are covered by a segment we should use
  // the segment's original offset and the section's original offset to compute
  // the offset from the start of the segment. Using the offset from the start
  // of the segment we can assign a new offset to the section. For sections not
  // covered by segments we can just bump Offset to the next valid location.
  uint32_t Index = 1;
  for (auto &Sec : Sections) {
    Sec.Index = Index++;
    if (Sec.ParentSegment != nullptr) {
      auto Segment = *Sec.ParentSegment;
      Sec.Offset =
          Segment.Offset + (Sec.OriginalOffset - Segment.OriginalOffset);
    } else {
      Offset = alignTo(Offset, Sec.Align == 0 ? 1 : Sec.Align);
      Sec.Offset = Offset;
      if (Sec.Type != SHT_NOBITS)
        Offset += Sec.Size;
    }
  }
  return Offset;
}

// Rewrite sh_offset after some sections are changed to SHT_NOBITS and thus
// occupy no space in the file.
static uint64_t layoutSectionsForOnlyKeepDebug(Object &Obj, uint64_t Off) {
  uint32_t Index = 1;
  for (auto &Sec : Obj.sections()) {
    Sec.Index = Index++;

    auto *FirstSec = Sec.ParentSegment && Sec.ParentSegment->Type == PT_LOAD
                         ? Sec.ParentSegment->firstSection()
                         : nullptr;

    // The first section in a PT_LOAD has to have congruent offset and address
    // modulo the alignment, which usually equals the maximum page size.
    if (FirstSec && FirstSec == &Sec)
      Off = alignTo(Off, Sec.ParentSegment->Align, Sec.Addr);

    // sh_offset is not significant for SHT_NOBITS sections, but the congruence
    // rule must be followed if it is the first section in a PT_LOAD. Do not
    // advance Off.
    if (Sec.Type == SHT_NOBITS) {
      Sec.Offset = Off;
      continue;
    }

    if (!FirstSec) {
      // FirstSec being nullptr generally means that Sec does not have the
      // SHF_ALLOC flag.
      Off = Sec.Align ? alignTo(Off, Sec.Align) : Off;
    } else if (FirstSec != &Sec) {
      // The offset is relative to the first section in the PT_LOAD segment. Use
      // sh_offset for non-SHF_ALLOC sections.
      Off = Sec.OriginalOffset - FirstSec->OriginalOffset + FirstSec->Offset;
    }
    Sec.Offset = Off;
    Off += Sec.Size;
  }
  return Off;
}

// Rewrite p_offset and p_filesz of non-empty non-PT_PHDR segments after
// sh_offset values have been updated.
static uint64_t layoutSegmentsForOnlyKeepDebug(std::vector<Segment *> &Segments,
                                               uint64_t HdrEnd) {
  uint64_t MaxOffset = 0;
  for (Segment *Seg : Segments) {
    const SectionBase *FirstSec = Seg->firstSection();
    if (Seg->Type == PT_PHDR || !FirstSec)
      continue;

    uint64_t Offset = FirstSec->Offset;
    uint64_t FileSize = 0;
    for (const SectionBase *Sec : Seg->Sections) {
      uint64_t Size = Sec->Type == SHT_NOBITS ? 0 : Sec->Size;
      if (Sec->Offset + Size > Offset)
        FileSize = std::max(FileSize, Sec->Offset + Size - Offset);
    }

    // If the segment includes EHDR and program headers, don't make it smaller
    // than the headers.
    if (Seg->Offset < HdrEnd && HdrEnd <= Seg->Offset + Seg->FileSize) {
      FileSize += Offset - Seg->Offset;
      Offset = Seg->Offset;
      FileSize = std::max(FileSize, HdrEnd - Offset);
    }

    Seg->Offset = Offset;
    Seg->FileSize = FileSize;
    MaxOffset = std::max(MaxOffset, Offset + FileSize);
  }
  return MaxOffset;
}

template <class ELFT> void ELFWriter<ELFT>::initEhdrSegment() {
  Segment &ElfHdr = Obj.ElfHdrSegment;
  ElfHdr.Type = PT_PHDR;
  ElfHdr.Flags = 0;
  ElfHdr.VAddr = 0;
  ElfHdr.PAddr = 0;
  ElfHdr.FileSize = ElfHdr.MemSize = sizeof(Elf_Ehdr);
  ElfHdr.Align = 0;
}

template <class ELFT> void ELFWriter<ELFT>::assignOffsets() {
  // We need a temporary list of segments that has a special order to it
  // so that we know that anytime ->ParentSegment is set that segment has
  // already had its offset properly set.
  std::vector<Segment *> OrderedSegments;
  for (Segment &Segment : Obj.segments())
    OrderedSegments.push_back(&Segment);
  OrderedSegments.push_back(&Obj.ElfHdrSegment);
  OrderedSegments.push_back(&Obj.ProgramHdrSegment);
  orderSegments(OrderedSegments);

  uint64_t Offset;
  if (OnlyKeepDebug) {
    // For --only-keep-debug, the sections that did not preserve contents were
    // changed to SHT_NOBITS. We now rewrite sh_offset fields of sections, and
    // then rewrite p_offset/p_filesz of program headers.
    uint64_t HdrEnd =
        sizeof(Elf_Ehdr) + llvm::size(Obj.segments()) * sizeof(Elf_Phdr);
    Offset = layoutSectionsForOnlyKeepDebug(Obj, HdrEnd);
    Offset = std::max(Offset,
                      layoutSegmentsForOnlyKeepDebug(OrderedSegments, HdrEnd));
  } else {
    // Offset is used as the start offset of the first segment to be laid out.
    // Since the ELF Header (ElfHdrSegment) must be at the start of the file,
    // we start at offset 0.
    Offset = layoutSegments(OrderedSegments, 0);
    Offset = layoutSections(Obj.sections(), Offset);
  }
  // If we need to write the section header table out then we need to align the
  // Offset so that SHOffset is valid.
  if (WriteSectionHeaders)
    Offset = alignTo(Offset, sizeof(Elf_Addr));
  Obj.SHOff = Offset;
}

template <class ELFT> size_t ELFWriter<ELFT>::totalSize() const {
  // We already have the section header offset so we can calculate the total
  // size by just adding up the size of each section header.
  if (!WriteSectionHeaders)
    return Obj.SHOff;
  size_t ShdrCount = Obj.sections().size() + 1; // Includes null shdr.
  return Obj.SHOff + ShdrCount * sizeof(Elf_Shdr);
}

template <class ELFT> Error ELFWriter<ELFT>::write() {
  // Segment data must be written first, so that the ELF header and program
  // header tables can overwrite it, if covered by a segment.
  writeSegmentData();
  writeEhdr();
  writePhdrs();
  writeSectionData();
  if (WriteSectionHeaders)
    writeShdrs();
  return Buf.commit();
}

static Error removeUnneededSections(Object &Obj) {
  // We can remove an empty symbol table from non-relocatable objects.
  // Relocatable objects typically have relocation sections whose
  // sh_link field points to .symtab, so we can't remove .symtab
  // even if it is empty.
  if (Obj.isRelocatable() || Obj.SymbolTable == nullptr ||
      !Obj.SymbolTable->empty())
    return Error::success();

  // .strtab can be used for section names. In such a case we shouldn't
  // remove it.
  auto *StrTab = Obj.SymbolTable->getStrTab() == Obj.SectionNames
                     ? nullptr
                     : Obj.SymbolTable->getStrTab();
  return Obj.removeSections(false, [&](const SectionBase &Sec) {
    return &Sec == Obj.SymbolTable || &Sec == StrTab;
  });
}

template <class ELFT> Error ELFWriter<ELFT>::finalize() {
  // It could happen that SectionNames has been removed and yet the user wants
  // a section header table output. We need to throw an error if a user tries
  // to do that.
  if (Obj.SectionNames == nullptr && WriteSectionHeaders)
    return createStringError(llvm::errc::invalid_argument,
                             "cannot write section header table because "
                             "section header string table was removed");

  if (Error E = removeUnneededSections(Obj))
    return E;
  Obj.sortSections();

  // We need to assign indexes before we perform layout because we need to know
  // if we need large indexes or not. We can assign indexes first and check as
  // we go to see if we will actully need large indexes.
  bool NeedsLargeIndexes = false;
  if (Obj.sections().size() >= SHN_LORESERVE) {
    SectionTableRef Sections = Obj.sections();
    NeedsLargeIndexes =
        std::any_of(Sections.begin() + SHN_LORESERVE, Sections.end(),
                    [](const SectionBase &Sec) { return Sec.HasSymbol; });
    // TODO: handle case where only one section needs the large index table but
    // only needs it because the large index table hasn't been removed yet.
  }

  if (NeedsLargeIndexes) {
    // This means we definitely need to have a section index table but if we
    // already have one then we should use it instead of making a new one.
    if (Obj.SymbolTable != nullptr && Obj.SectionIndexTable == nullptr) {
      // Addition of a section to the end does not invalidate the indexes of
      // other sections and assigns the correct index to the new section.
      auto &Shndx = Obj.addSection<SectionIndexSection>();
      Obj.SymbolTable->setShndxTable(&Shndx);
      Shndx.setSymTab(Obj.SymbolTable);
    }
  } else {
    // Since we don't need SectionIndexTable we should remove it and all
    // references to it.
    if (Obj.SectionIndexTable != nullptr) {
      // We do not support sections referring to the section index table.
      if (Error E = Obj.removeSections(false /*AllowBrokenLinks*/,
                                       [this](const SectionBase &Sec) {
                                         return &Sec == Obj.SectionIndexTable;
                                       }))
        return E;
    }
  }

  // Make sure we add the names of all the sections. Importantly this must be
  // done after we decide to add or remove SectionIndexes.
  if (Obj.SectionNames != nullptr)
    for (const SectionBase &Sec : Obj.sections())
      Obj.SectionNames->addString(Sec.Name);

  initEhdrSegment();

  // Before we can prepare for layout the indexes need to be finalized.
  // Also, the output arch may not be the same as the input arch, so fix up
  // size-related fields before doing layout calculations.
  uint64_t Index = 0;
  auto SecSizer = std::make_unique<ELFSectionSizer<ELFT>>();
  for (SectionBase &Sec : Obj.sections()) {
    Sec.Index = Index++;
    Sec.accept(*SecSizer);
  }

  // The symbol table does not update all other sections on update. For
  // instance, symbol names are not added as new symbols are added. This means
  // that some sections, like .strtab, don't yet have their final size.
  if (Obj.SymbolTable != nullptr)
    Obj.SymbolTable->prepareForLayout();

  // Now that all strings are added we want to finalize string table builders,
  // because that affects section sizes which in turn affects section offsets.
  for (SectionBase &Sec : Obj.sections())
    if (auto StrTab = dyn_cast<StringTableSection>(&Sec))
      StrTab->prepareForLayout();

  assignOffsets();

  // layoutSections could have modified section indexes, so we need
  // to fill the index table after assignOffsets.
  if (Obj.SymbolTable != nullptr)
    Obj.SymbolTable->fillShndxTable();

  // Finally now that all offsets and indexes have been set we can finalize any
  // remaining issues.
  uint64_t Offset = Obj.SHOff + sizeof(Elf_Shdr);
  for (SectionBase &Sec : Obj.sections()) {
    Sec.HeaderOffset = Offset;
    Offset += sizeof(Elf_Shdr);
    if (WriteSectionHeaders)
      Sec.NameIndex = Obj.SectionNames->findIndex(Sec.Name);
    Sec.finalize();
  }

  if (Error E = Buf.allocate(totalSize()))
    return E;
  SecWriter = std::make_unique<ELFSectionWriter<ELFT>>(Buf);
  return Error::success();
}

Error BinaryWriter::write() {
  for (const SectionBase &Sec : Obj.allocSections())
    Sec.accept(*SecWriter);
  return Buf.commit();
}

Error BinaryWriter::finalize() {
  // We need a temporary list of segments that has a special order to it
  // so that we know that anytime ->ParentSegment is set that segment has
  // already had it's offset properly set. We only want to consider the segments
  // that will affect layout of allocated sections so we only add those.
  std::vector<Segment *> OrderedSegments;
  for (const SectionBase &Sec : Obj.allocSections())
    if (Sec.ParentSegment != nullptr)
      OrderedSegments.push_back(Sec.ParentSegment);

  // For binary output, we're going to use physical addresses instead of
  // virtual addresses, since a binary output is used for cases like ROM
  // loading and physical addresses are intended for ROM loading.
  // However, if no segment has a physical address, we'll fallback to using
  // virtual addresses for all.
  if (all_of(OrderedSegments,
             [](const Segment *Seg) { return Seg->PAddr == 0; }))
    for (Segment *Seg : OrderedSegments)
      Seg->PAddr = Seg->VAddr;

  llvm::stable_sort(OrderedSegments, compareSegmentsByPAddr);

  // Because we add a ParentSegment for each section we might have duplicate
  // segments in OrderedSegments. If there were duplicates then layoutSegments
  // would do very strange things.
  auto End =
      std::unique(std::begin(OrderedSegments), std::end(OrderedSegments));
  OrderedSegments.erase(End, std::end(OrderedSegments));

  // Compute the section LMA based on its sh_offset and the containing segment's
  // p_offset and p_paddr. Also compute the minimum LMA of all sections as
  // MinAddr. In the output, the contents between address 0 and MinAddr will be
  // skipped.
  uint64_t MinAddr = UINT64_MAX;
  for (SectionBase &Sec : Obj.allocSections()) {
    if (Sec.ParentSegment != nullptr)
      Sec.Addr =
          Sec.Offset - Sec.ParentSegment->Offset + Sec.ParentSegment->PAddr;
    MinAddr = std::min(MinAddr, Sec.Addr);
  }

  // Now that every section has been laid out we just need to compute the total
  // file size. This might not be the same as the offset returned by
  // layoutSections, because we want to truncate the last segment to the end of
  // its last section, to match GNU objcopy's behaviour.
  TotalSize = 0;
  for (SectionBase &Sec : Obj.allocSections()) {
    Sec.Offset = Sec.Addr - MinAddr;
    if (Sec.Type != SHT_NOBITS)
      TotalSize = std::max(TotalSize, Sec.Offset + Sec.Size);
  }

  if (Error E = Buf.allocate(TotalSize))
    return E;
  SecWriter = std::make_unique<BinarySectionWriter>(Buf);
  return Error::success();
}

bool IHexWriter::SectionCompare::operator()(const SectionBase *Lhs,
                                            const SectionBase *Rhs) const {
  return (sectionPhysicalAddr(Lhs) & 0xFFFFFFFFU) <
         (sectionPhysicalAddr(Rhs) & 0xFFFFFFFFU);
}

uint64_t IHexWriter::writeEntryPointRecord(uint8_t *Buf) {
  IHexLineData HexData;
  uint8_t Data[4] = {};
  // We don't write entry point record if entry is zero.
  if (Obj.Entry == 0)
    return 0;

  if (Obj.Entry <= 0xFFFFFU) {
    Data[0] = ((Obj.Entry & 0xF0000U) >> 12) & 0xFF;
    support::endian::write(&Data[2], static_cast<uint16_t>(Obj.Entry),
                           support::big);
    HexData = IHexRecord::getLine(IHexRecord::StartAddr80x86, 0, Data);
  } else {
    support::endian::write(Data, static_cast<uint32_t>(Obj.Entry),
                           support::big);
    HexData = IHexRecord::getLine(IHexRecord::StartAddr, 0, Data);
  }
  memcpy(Buf, HexData.data(), HexData.size());
  return HexData.size();
}

uint64_t IHexWriter::writeEndOfFileRecord(uint8_t *Buf) {
  IHexLineData HexData = IHexRecord::getLine(IHexRecord::EndOfFile, 0, {});
  memcpy(Buf, HexData.data(), HexData.size());
  return HexData.size();
}

Error IHexWriter::write() {
  IHexSectionWriter Writer(Buf);
  // Write sections.
  for (const SectionBase *Sec : Sections)
    Sec->accept(Writer);

  uint64_t Offset = Writer.getBufferOffset();
  // Write entry point address.
  Offset += writeEntryPointRecord(Buf.getBufferStart() + Offset);
  // Write EOF.
  Offset += writeEndOfFileRecord(Buf.getBufferStart() + Offset);
  assert(Offset == TotalSize);
  return Buf.commit();
}

Error IHexWriter::checkSection(const SectionBase &Sec) {
  uint64_t Addr = sectionPhysicalAddr(&Sec);
  if (addressOverflows32bit(Addr) || addressOverflows32bit(Addr + Sec.Size - 1))
    return createStringError(
        errc::invalid_argument,
        "Section '%s' address range [0x%llx, 0x%llx] is not 32 bit", Sec.Name.c_str(),
        Addr, Addr + Sec.Size - 1);
  return Error::success();
}

Error IHexWriter::finalize() {
  bool UseSegments = false;
  auto ShouldWrite = [](const SectionBase &Sec) {
    return (Sec.Flags & ELF::SHF_ALLOC) && (Sec.Type != ELF::SHT_NOBITS);
  };
  auto IsInPtLoad = [](const SectionBase &Sec) {
    return Sec.ParentSegment && Sec.ParentSegment->Type == ELF::PT_LOAD;
  };

  // We can't write 64-bit addresses.
  if (addressOverflows32bit(Obj.Entry))
    return createStringError(errc::invalid_argument,
                             "Entry point address 0x%llx overflows 32 bits.",
                             Obj.Entry);

  // If any section we're to write has segment then we
  // switch to using physical addresses. Otherwise we
  // use section virtual address.
  for (const SectionBase &Sec : Obj.sections())
    if (ShouldWrite(Sec) && IsInPtLoad(Sec)) {
      UseSegments = true;
      break;
    }

  for (const SectionBase &Sec : Obj.sections())
    if (ShouldWrite(Sec) && (!UseSegments || IsInPtLoad(Sec))) {
      if (Error E = checkSection(Sec))
        return E;
      Sections.insert(&Sec);
    }

  IHexSectionWriterBase LengthCalc(Buf);
  for (const SectionBase *Sec : Sections)
    Sec->accept(LengthCalc);

  // We need space to write section records + StartAddress record
  // (if start adress is not zero) + EndOfFile record.
  TotalSize = LengthCalc.getBufferOffset() +
              (Obj.Entry ? IHexRecord::getLineLength(4) : 0) +
              IHexRecord::getLineLength(0);
  if (Error E = Buf.allocate(TotalSize))
    return E;
  return Error::success();
}

template class ELFBuilder<ELF64LE>;
template class ELFBuilder<ELF64BE>;
template class ELFBuilder<ELF32LE>;
template class ELFBuilder<ELF32BE>;

template class ELFWriter<ELF64LE>;
template class ELFWriter<ELF64BE>;
template class ELFWriter<ELF32LE>;
template class ELFWriter<ELF32BE>;

} // end namespace elf
} // end namespace objcopy
} // end namespace llvm