CPPLanguageRuntime.cpp 13.4 KB
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
//===-- CPPLanguageRuntime.cpp
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include <string.h>

#include <memory>

#include "CPPLanguageRuntime.h"

#include "llvm/ADT/StringRef.h"

#include "lldb/Symbol/Block.h"
#include "lldb/Symbol/Variable.h"
#include "lldb/Symbol/VariableList.h"

#include "lldb/Core/PluginManager.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Target/ABI.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/RegisterContext.h"
#include "lldb/Target/SectionLoadList.h"
#include "lldb/Target/StackFrame.h"
#include "lldb/Target/ThreadPlanRunToAddress.h"
#include "lldb/Target/ThreadPlanStepInRange.h"
#include "lldb/Utility/Timer.h"

using namespace lldb;
using namespace lldb_private;

static ConstString g_this = ConstString("this");

char CPPLanguageRuntime::ID = 0;

// Destructor
CPPLanguageRuntime::~CPPLanguageRuntime() {}

CPPLanguageRuntime::CPPLanguageRuntime(Process *process)
    : LanguageRuntime(process) {}

bool CPPLanguageRuntime::IsWhitelistedRuntimeValue(ConstString name) {
  return name == g_this;
}

bool CPPLanguageRuntime::GetObjectDescription(Stream &str,
                                              ValueObject &object) {
  // C++ has no generic way to do this.
  return false;
}

bool CPPLanguageRuntime::GetObjectDescription(
    Stream &str, Value &value, ExecutionContextScope *exe_scope) {
  // C++ has no generic way to do this.
  return false;
}

bool contains_lambda_identifier(llvm::StringRef &str_ref) {
  return str_ref.contains("$_") || str_ref.contains("'lambda'");
}

CPPLanguageRuntime::LibCppStdFunctionCallableInfo
line_entry_helper(Target &target, const SymbolContext &sc, Symbol *symbol,
                  llvm::StringRef first_template_param_sref,
                  bool has___invoke) {

  CPPLanguageRuntime::LibCppStdFunctionCallableInfo optional_info;

  AddressRange range;
  sc.GetAddressRange(eSymbolContextEverything, 0, false, range);

  Address address = range.GetBaseAddress();

  Address addr;
  if (target.ResolveLoadAddress(address.GetCallableLoadAddress(&target),
                                addr)) {
    LineEntry line_entry;
    addr.CalculateSymbolContextLineEntry(line_entry);

    if (contains_lambda_identifier(first_template_param_sref) || has___invoke) {
      // Case 1 and 2
      optional_info.callable_case = lldb_private::CPPLanguageRuntime::
          LibCppStdFunctionCallableCase::Lambda;
    } else {
      // Case 3
      optional_info.callable_case = lldb_private::CPPLanguageRuntime::
          LibCppStdFunctionCallableCase::CallableObject;
    }

    optional_info.callable_symbol = *symbol;
    optional_info.callable_line_entry = line_entry;
    optional_info.callable_address = addr;
  }

  return optional_info;
}

CPPLanguageRuntime::LibCppStdFunctionCallableInfo
CPPLanguageRuntime::FindLibCppStdFunctionCallableInfo(
    lldb::ValueObjectSP &valobj_sp) {
  static Timer::Category func_cat(LLVM_PRETTY_FUNCTION);
  Timer scoped_timer(func_cat,
                     "CPPLanguageRuntime::FindLibCppStdFunctionCallableInfo");

  LibCppStdFunctionCallableInfo optional_info;

  if (!valobj_sp)
    return optional_info;

  // Member __f_ has type __base*, the contents of which will hold:
  // 1) a vtable entry which may hold type information needed to discover the
  //    lambda being called
  // 2) possibly hold a pointer to the callable object
  // e.g.
  //
  // (lldb) frame var -R  f_display
  // (std::__1::function<void (int)>) f_display = {
  //  __buf_ = {
  //  …
  // }
  //  __f_ = 0x00007ffeefbffa00
  // }
  // (lldb) memory read -fA 0x00007ffeefbffa00
  // 0x7ffeefbffa00: ... `vtable for std::__1::__function::__func<void (*) ...
  // 0x7ffeefbffa08: ... `print_num(int) at std_function_cppreference_exam ...
  //
  // We will be handling five cases below, std::function is wrapping:
  //
  // 1) a lambda we know at compile time. We will obtain the name of the lambda
  //    from the first template pameter from __func's vtable. We will look up
  //    the lambda's operator()() and obtain the line table entry.
  // 2) a lambda we know at runtime. A pointer to the lambdas __invoke method
  //    will be stored after the vtable. We will obtain the lambdas name from
  //    this entry and lookup operator()() and obtain the line table entry.
  // 3) a callable object via operator()(). We will obtain the name of the
  //    object from the first template parameter from __func's vtable. We will
  //    look up the objects operator()() and obtain the line table entry.
  // 4) a member function. A pointer to the function will stored after the
  //    we will obtain the name from this pointer.
  // 5) a free function. A pointer to the function will stored after the vtable
  //    we will obtain the name from this pointer.
  ValueObjectSP member__f_(
      valobj_sp->GetChildMemberWithName(ConstString("__f_"), true));

  if (member__f_) {
    ValueObjectSP sub_member__f_(
       member__f_->GetChildMemberWithName(ConstString("__f_"), true));

    if (sub_member__f_)
        member__f_ = sub_member__f_;
  }

  lldb::addr_t member__f_pointer_value = member__f_->GetValueAsUnsigned(0);

  optional_info.member__f_pointer_value = member__f_pointer_value;

  if (!member__f_pointer_value)
    return optional_info;

  ExecutionContext exe_ctx(valobj_sp->GetExecutionContextRef());
  Process *process = exe_ctx.GetProcessPtr();

  if (process == nullptr)
    return optional_info;

  uint32_t address_size = process->GetAddressByteSize();
  Status status;

  // First item pointed to by __f_ should be the pointer to the vtable for
  // a __base object.
  lldb::addr_t vtable_address =
      process->ReadPointerFromMemory(member__f_pointer_value, status);

  if (status.Fail())
    return optional_info;

  lldb::addr_t vtable_address_first_entry =
      process->ReadPointerFromMemory(vtable_address + address_size, status);

  if (status.Fail())
    return optional_info;

  lldb::addr_t address_after_vtable = member__f_pointer_value + address_size;
  // As commented above we may not have a function pointer but if we do we will
  // need it.
  lldb::addr_t possible_function_address =
      process->ReadPointerFromMemory(address_after_vtable, status);

  if (status.Fail())
    return optional_info;

  Target &target = process->GetTarget();

  if (target.GetSectionLoadList().IsEmpty())
    return optional_info;

  Address vtable_first_entry_resolved;

  if (!target.GetSectionLoadList().ResolveLoadAddress(
          vtable_address_first_entry, vtable_first_entry_resolved))
    return optional_info;

  Address vtable_addr_resolved;
  SymbolContext sc;
  Symbol *symbol = nullptr;

  if (!target.GetSectionLoadList().ResolveLoadAddress(vtable_address,
                                                      vtable_addr_resolved))
    return optional_info;

  target.GetImages().ResolveSymbolContextForAddress(
      vtable_addr_resolved, eSymbolContextEverything, sc);
  symbol = sc.symbol;

  if (symbol == nullptr)
    return optional_info;

  llvm::StringRef vtable_name(symbol->GetName().GetStringRef());
  bool found_expected_start_string =
      vtable_name.startswith("vtable for std::__1::__function::__func<");

  if (!found_expected_start_string)
    return optional_info;

  // Given case 1 or 3 we have a vtable name, we are want to extract the first
  // template parameter
  //
  //  ... __func<main::$_0, std::__1::allocator<main::$_0> ...
  //             ^^^^^^^^^
  //
  // We could see names such as:
  //    main::$_0
  //    Bar::add_num2(int)::'lambda'(int)
  //    Bar
  //
  // We do this by find the first < and , and extracting in between.
  //
  // This covers the case of the lambda known at compile time.
  size_t first_open_angle_bracket = vtable_name.find('<') + 1;
  size_t first_comma = vtable_name.find(',');

  llvm::StringRef first_template_parameter =
      vtable_name.slice(first_open_angle_bracket, first_comma);

  Address function_address_resolved;

  // Setup for cases 2, 4 and 5 we have a pointer to a function after the
  // vtable. We will use a process of elimination to drop through each case
  // and obtain the data we need.
  if (target.GetSectionLoadList().ResolveLoadAddress(
          possible_function_address, function_address_resolved)) {
    target.GetImages().ResolveSymbolContextForAddress(
        function_address_resolved, eSymbolContextEverything, sc);
    symbol = sc.symbol;
  }

  // These conditions are used several times to simplify statements later on.
  bool has___invoke =
      (symbol ? symbol->GetName().GetStringRef().contains("__invoke") : false);
  auto calculate_symbol_context_helper = [](auto &t,
                                            SymbolContextList &sc_list) {
    SymbolContext sc;
    t->CalculateSymbolContext(&sc);
    sc_list.Append(sc);
  };

  // Case 2
  if (has___invoke) {
    SymbolContextList scl;
    calculate_symbol_context_helper(symbol, scl);

    return line_entry_helper(target, scl[0], symbol, first_template_parameter,
                             has___invoke);
  }

  // Case 4 or 5
  if (symbol && !symbol->GetName().GetStringRef().startswith("vtable for") &&
      !contains_lambda_identifier(first_template_parameter) && !has___invoke) {
    optional_info.callable_case =
        LibCppStdFunctionCallableCase::FreeOrMemberFunction;
    optional_info.callable_address = function_address_resolved;
    optional_info.callable_symbol = *symbol;

    return optional_info;
  }

  std::string func_to_match = first_template_parameter.str();

  auto it = CallableLookupCache.find(func_to_match);
  if (it != CallableLookupCache.end())
    return it->second;

  SymbolContextList scl;

  CompileUnit *vtable_cu =
      vtable_first_entry_resolved.CalculateSymbolContextCompileUnit();
  llvm::StringRef name_to_use = func_to_match;

  // Case 3, we have a callable object instead of a lambda
  //
  // TODO
  // We currently don't support this case a callable object may have multiple
  // operator()() varying on const/non-const and number of arguments and we
  // don't have a way to currently distinguish them so we will bail out now.
  if (!contains_lambda_identifier(name_to_use))
    return optional_info;

  if (vtable_cu && !has___invoke) {
    lldb::FunctionSP func_sp =
        vtable_cu->FindFunction([name_to_use](const FunctionSP &f) {
          auto name = f->GetName().GetStringRef();
          if (name.startswith(name_to_use) && name.contains("operator"))
            return true;

          return false;
        });

    if (func_sp) {
      calculate_symbol_context_helper(func_sp, scl);
    }
  }

  // Case 1 or 3
  if (scl.GetSize() >= 1) {
    optional_info = line_entry_helper(target, scl[0], symbol,
                                      first_template_parameter, has___invoke);
  }

  CallableLookupCache[func_to_match] = optional_info;

  return optional_info;
}

lldb::ThreadPlanSP
CPPLanguageRuntime::GetStepThroughTrampolinePlan(Thread &thread,
                                                 bool stop_others) {
  ThreadPlanSP ret_plan_sp;

  lldb::addr_t curr_pc = thread.GetRegisterContext()->GetPC();

  TargetSP target_sp(thread.CalculateTarget());

  if (target_sp->GetSectionLoadList().IsEmpty())
    return ret_plan_sp;

  Address pc_addr_resolved;
  SymbolContext sc;
  Symbol *symbol;

  if (!target_sp->GetSectionLoadList().ResolveLoadAddress(curr_pc,
                                                          pc_addr_resolved))
    return ret_plan_sp;

  target_sp->GetImages().ResolveSymbolContextForAddress(
      pc_addr_resolved, eSymbolContextEverything, sc);
  symbol = sc.symbol;

  if (symbol == nullptr)
    return ret_plan_sp;

  llvm::StringRef function_name(symbol->GetName().GetCString());

  // Handling the case where we are attempting to step into std::function.
  // The behavior will be that we will attempt to obtain the wrapped
  // callable via FindLibCppStdFunctionCallableInfo() and if we find it we
  // will return a ThreadPlanRunToAddress to the callable. Therefore we will
  // step into the wrapped callable.
  //
  bool found_expected_start_string =
      function_name.startswith("std::__1::function<");

  if (!found_expected_start_string)
    return ret_plan_sp;

  AddressRange range_of_curr_func;
  sc.GetAddressRange(eSymbolContextEverything, 0, false, range_of_curr_func);

  StackFrameSP frame = thread.GetStackFrameAtIndex(0);

  if (frame) {
    ValueObjectSP value_sp = frame->FindVariable(g_this);

    CPPLanguageRuntime::LibCppStdFunctionCallableInfo callable_info =
        FindLibCppStdFunctionCallableInfo(value_sp);

    if (callable_info.callable_case != LibCppStdFunctionCallableCase::Invalid &&
        value_sp->GetValueIsValid()) {
      // We found the std::function wrapped callable and we have its address.
      // We now create a ThreadPlan to run to the callable.
      ret_plan_sp = std::make_shared<ThreadPlanRunToAddress>(
          thread, callable_info.callable_address, stop_others);
      return ret_plan_sp;
    } else {
      // We are in std::function but we could not obtain the callable.
      // We create a ThreadPlan to keep stepping through using the address range
      // of the current function.
      ret_plan_sp = std::make_shared<ThreadPlanStepInRange>(
          thread, range_of_curr_func, sc, eOnlyThisThread, eLazyBoolYes,
          eLazyBoolYes);
      return ret_plan_sp;
    }
  }

  return ret_plan_sp;
}